JP2008163096A - Pigment stabilizer - Google Patents

Pigment stabilizer Download PDF

Info

Publication number
JP2008163096A
JP2008163096A JP2006351717A JP2006351717A JP2008163096A JP 2008163096 A JP2008163096 A JP 2008163096A JP 2006351717 A JP2006351717 A JP 2006351717A JP 2006351717 A JP2006351717 A JP 2006351717A JP 2008163096 A JP2008163096 A JP 2008163096A
Authority
JP
Japan
Prior art keywords
starch
dye
pigment
evaluation
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006351717A
Other languages
Japanese (ja)
Other versions
JP4937732B2 (en
Inventor
Koichi Murayama
晃一 村山
Ariyoshi Hayashi
有美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTAMURA STARCH KK
Futamura Chemical Co Ltd
Original Assignee
FUTAMURA STARCH KK
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTAMURA STARCH KK, Futamura Chemical Co Ltd filed Critical FUTAMURA STARCH KK
Priority to JP2006351717A priority Critical patent/JP4937732B2/en
Publication of JP2008163096A publication Critical patent/JP2008163096A/en
Application granted granted Critical
Publication of JP4937732B2 publication Critical patent/JP4937732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pigment stabilizer derived from starch capable of suppressing fading of a pigment compound without greatly affecting a taste of a food after addition thereof using the starch having safety established as the food and easily available at low cost as a raw material. <P>SOLUTION: The pigment stabilizer is suitable for stabilizing coloring of a pigment mainly derived from a natural product and contains a micro-dispersed starch prepared by carrying out processing of irradiating the starch consisting essentially of waxy corn starch with ultrasonic waves and dispersing the starch as an active ingredient. The pigment stabilizer is a liquid prepared by solubilizing the micro-dispersed starch in water or powder obtained by powdering the micro-dispersed starch. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素安定剤に関し、特に天然物由来色素の発色を安定化させるデンプンから調製された色素安定剤に関する。   The present invention relates to a pigment stabilizer, and more particularly to a pigment stabilizer prepared from starch that stabilizes the color development of pigments derived from natural products.

食品において、その色彩は味や風味と並んで極めて重要な要素であり、特に形状、色彩等の外観の善し悪しが需要者の選択の尺度となる。この点、青果類、魚介類、畜肉類等の生鮮食品は言うに及ばず、加工食品においても同様である。すなわち、食品の美的な外観を需要者に訴求する上で色彩は重要な位置を占めており、その善し悪しが売れ行きを大きく左右する。   In foods, the color is an extremely important factor along with the taste and flavor, and the quality of appearance such as shape and color is a measure for selection by the consumer. In this respect, the same applies to processed foods, not to mention fresh foods such as fruits and vegetables, seafood, and livestock meat. In other words, color occupies an important position in appealing to consumers about the aesthetic appearance of food, and its good or bad influences sales.

食品の色合い、色彩は、含有される各種の色素化合物の影響により構成される。一般的に食品に添加される各種の色素化合物は経時変化に加え、調理、加工時の加熱や殺菌、酸性やアルカリ性等の加工上の諸条件により、容易に当該化合物分子は分解等により退色が進んでしまう。このようなことから、食品製造に際し、色彩の退色に細心の注意を払った上で加工される。   The color and color of food are constituted by the influence of various pigment compounds contained therein. In general, various dye compounds that are added to foods can be easily discolored due to decomposition, etc. due to various processing conditions such as cooking and processing, heating and sterilization, and acidity and alkalinity. Proceed. For this reason, the food is processed after paying close attention to color fading.

また、食品の退色は、その加工時だけではなく流通時にも生じることが知られている。この場合、流通過程の温度管理の不徹底による温度上昇、日光曝露等の事故的な要因ばかりでなく、商品として陳列棚に載せられた後の店内照明による退色もある。例えば、漬物等の加工食品は、食材そのものの新鮮さを強調するため、透明フィルムの容器で包装される。そのため、こういった食品は常に光線透過の影響を受けることから、食品の退色への有効な対策が求められている。特に、天然物由来色素では退色の影響を受けやすい。   In addition, it is known that fading of food occurs not only during its processing but also during distribution. In this case, there are not only accidental factors such as temperature rise and sun exposure due to inadequate temperature management in the distribution process, but also fading due to in-store lighting after being placed on display shelves as products. For example, processed foods such as pickles are packaged in a transparent film container in order to emphasize the freshness of the ingredients themselves. Therefore, since such foods are always affected by light transmission, effective measures against fading of foods are required. In particular, natural product-derived pigments are susceptible to fading.

そこで、色彩の退色を見越して予め退色防止効果のある成分を食品に添加する提案が成されている。例えば、クチナシ黄色色素の退色防止剤としてクロロゲン酸を代表とするポリフェノール類を添加する手法(特許文献1参照)、ナス漬け物について、シクロデキストリンを含有した浸漬液を用いることにより色調を安定化させる手法(特許文献2参照)が提唱されている。また、アントシアニン系色素に対して、その0.1〜5.0倍量のグリシルリチンまたはその塩を添加する手法(特許文献3参照)、さらには、ニゲロオリゴ糖を有効成分として用いた退色防止剤が報告されている(特許文献4参照)。   Therefore, proposals have been made to add to the food in advance a component that has an anti-fading effect in anticipation of color fading. For example, a technique of adding polyphenols typified by chlorogenic acid as an anti-fading agent for gardenia yellow pigment (see Patent Document 1), a technique of stabilizing color tone by using an immersion liquid containing cyclodextrin for eggplant pickles (See Patent Document 2). In addition, a method of adding 0.1 to 5.0 times the amount of glycyrrhizin or a salt thereof to an anthocyanin-based pigment (see Patent Document 3), and further a discoloration inhibitor using nigerooligosaccharide as an active ingredient It has been reported (see Patent Document 4).

しかしながら、特許文献1にあっては、純度の低いクロロゲン酸は植物抽出物特有の苦味や雑味を有しており、それらの除去には溶媒抽出等の煩雑な工程を要する。特許文献2について、シクロデキストリンは食品成分として安定性の付与に有効であることは周知である。しかし、水への溶解性が低いという難点がある。次に特許文献3については、グリシルリチンは砂糖の200倍もの甘味を呈するため、使用量いかんによっては、食品全体の味覚の調和を損ないやすい欠点がある。さらに、特許文献4のニゲロオリゴ糖は、特殊な微生物の産生する糖転移酵素により生成される。ゆえに、製造が煩雑化し、経費の面で割高となる。
特許第2904974号公報 特許第2981223号公報 特開平9−263707号公報 特許第3364442号公報
However, in Patent Document 1, chlorogenic acid having a low purity has a bitter taste and a miscellaneous taste peculiar to plant extracts, and removal thereof requires a complicated process such as solvent extraction. Regarding Patent Document 2, it is well known that cyclodextrin is effective as a food ingredient for imparting stability. However, there is a drawback that the solubility in water is low. Regarding Patent Document 3, since glycyrrhizin has a sweetness 200 times that of sugar, there is a drawback that the taste of the whole food tends to be impaired depending on the amount used. Furthermore, the nigerooligosaccharide of Patent Document 4 is produced by a glycosyltransferase produced by a special microorganism. Therefore, the production becomes complicated and the cost is high.
Japanese Patent No. 2904974 Japanese Patent No. 2981223 JP-A-9-263707 Japanese Patent No. 3364442

発明者らは、前記の先行技術にあるシクロデキストリン等の糖鎖化合物の安定化機能を調査しつつ、そのもととなるデンプンについても鋭意研究を重ねた。デンプンは低廉に入手可能であり、保存性に優れ、しかも安全面においては周知である。この結果、発明者らは、超音波照射を伴ったデンプン糊化物の適度な分散物が色素成分の安定化に寄与することを発見した。   The inventors investigated the stabilizing function of the sugar chain compound such as cyclodextrin in the above-mentioned prior art, and repeated earnest research on the starch as a basis. Starch is available at low cost, has excellent storage stability, and is well known in terms of safety. As a result, the inventors have found that an appropriate dispersion of starch gelatinized product with ultrasonic irradiation contributes to the stabilization of the pigment component.

本発明は前記の点に鑑みなされたものであり、食品としての安全性が確立され安価に調達容易なデンプンを原料として、色素化合物の退色を抑制するデンプン由来の色素安定剤を提供する。   The present invention has been made in view of the above points, and provides a starch-derived pigment stabilizer that suppresses fading of pigment compounds using starch that has been established as a food and is easily procured at low cost.

すなわち、請求項1の発明は、超音波加工による微分散デンプンを有効成分とすることを特徴とする色素安定剤に係る。   That is, the invention of claim 1 relates to a dye stabilizer characterized by comprising finely dispersed starch obtained by ultrasonic processing as an active ingredient.

請求項2の発明は、前記微分散デンプンを水溶化した液体からなる請求項1に記載の色素安定剤に係る。   A second aspect of the present invention relates to the dye stabilizer according to the first aspect, comprising a liquid in which the finely dispersed starch is water-solubilized.

請求項3の発明は、前記微分散デンプンが粉体からなる請求項1又は2に記載の色素安定剤に係る。   Invention of Claim 3 concerns on the pigment | dye stabilizer of Claim 1 or 2 in which the said fine dispersion starch consists of powder.

請求項4の発明は、前記微分散デンプンがワキシーコーンスターチを主体とする請求項1ないし3のいずれか1項に記載の色素安定剤に係る。   The invention according to claim 4 relates to the dye stabilizer according to any one of claims 1 to 3, wherein the finely dispersed starch is mainly waxy corn starch.

請求項1の発明に係る色素安定剤によると、超音波加工による微分散デンプンを有効成分とするため、食品としての安全性が確立され安価に調達容易なデンプンを原料として色素化合物の退色を抑制するデンプン由来の色素安定剤を得ることができる。特に、デンプン自体には味がないため、添加後に食品の味覚に与える影響は少ない。   According to the dye stabilizer according to the invention of claim 1, since the finely dispersed starch obtained by ultrasonic processing is used as an active ingredient, the safety as a food is established, and the fading of the dye compound is suppressed using starch which is easily procured at low cost. A starch stabilizer derived from starch can be obtained. In particular, since starch itself has no taste, it has little effect on the taste of food after addition.

請求項2の発明に係る色素安定剤によると、請求項1の発明において、前記微分散デンプンを水溶化した液体からなるため、デンプンの糊化物を得る製造工程を利用可能となり、比較的安価に製造することができる。   According to the dye stabilizer according to the invention of claim 2, in the invention of claim 1, since it comprises a liquid in which the finely dispersed starch is water-solubilized, it becomes possible to use a production process for obtaining a gelatinized product of starch, which is relatively inexpensive. Can be manufactured.

請求項3の発明に係る色素安定剤によると、請求項1又は2の発明において、前記微分散デンプンが粉体からなるため、色素安定剤としての防腐や保存、取り扱いやすさが向上する。   According to the dye stabilizer according to the invention of claim 3, in the invention of claim 1 or 2, since the finely dispersed starch is made of powder, preservability, storage and ease of handling as the dye stabilizer are improved.

請求項4の発明に係る色素安定剤によると、請求項1ないし3のいずれか1項の発明において、前記微分散デンプンがワキシーコーンスターチを主体とするため、アミロペクチン含有量が極めて高いことから糊化時の安定性に優れ、容易に色素安定化性能を得ることができる。   According to the dye stabilizer according to the invention of claim 4, in the invention of any one of claims 1 to 3, since the finely dispersed starch is mainly waxy corn starch, it is gelatinized because the amylopectin content is extremely high It is excellent in time stability and can easily obtain dye stabilizing performance.

以下添付の図面に基づきこの発明の好適な実施形態を説明する。
図1は第1実施形態の色素安定剤の概略工程図、図2は第2実施形態の色素安定剤の概略工程図である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a schematic process diagram of the dye stabilizer of the first embodiment, and FIG. 2 is a schematic process diagram of the dye stabilizer of the second embodiment.

色素化合物の退色の主な要因は、経時変化に伴う色素化合物(特にはその分子)の分解、構造変化である。この経時変化に加え、加工や保存時の加熱、水素イオン濃度の変化による色素化合物分子の分解、構造変化、陳列時の光線曝露(可視光線、紫外線等の電磁波)に伴い、食品内の溶存酸素、その他の酸素供与種から生じる酸素ラジカル種の攻撃を受けることによる色素化合物分子の分解、構造変化は促進する。そのため、加熱、水素イオン濃度の変化、及び活性酸素の影響から色素化合物分子を保護することができれば、発色に有効な量の色素化合物分子をより温存可能となり、製造時の色合いを維持できるものと考えられる。   The main factor of the color fading of the dye compound is decomposition and structural change of the dye compound (especially its molecule) accompanying a change with time. In addition to this change over time, dissolved oxygen in foods due to heating during processing and storage, decomposition of dye compound molecules due to changes in hydrogen ion concentration, structural changes, and exposure to light (visible light, electromagnetic waves such as ultraviolet rays) during display The decomposition and structural change of the dye compound molecule by the attack of oxygen radical species generated from other oxygen donor species is promoted. Therefore, if the dye compound molecules can be protected from the effects of heating, changes in the hydrogen ion concentration, and active oxygen, the amount of the dye compound molecules effective for color development can be preserved more, and the hue at the time of production can be maintained. Conceivable.

そこで、発明者らは、デンプンの諸物性を鋭意研究するうちに、請求項1に規定するように、食品の着色、発色目的に添加される色素化合物に作用することにより、その退色抑制を可能とした超音波加工を伴って微分散したデンプンを有効成分とする安定剤を得るに至った。   Therefore, the inventors have made extensive studies on the physical properties of starch and, as defined in claim 1, can act on coloring compounds added for the purpose of coloring foods and coloring, thereby suppressing their fading. As a result, a stabilizer containing finely dispersed starch as an active ingredient was obtained.

色素の安定化の対象となる色素化合物は、主に天然物由来の色素が該当する。大別すると、カロテノイド系(アトナー色素、クチナシ色素、パプリカ色素等)、アントシアニン系(赤キャベツ色素、ぶどう果皮色素等)、フラボノイド系(ベニバナ色素等)、ベタシアニン系(赤ビート色素等)、アザフィロン系(ベニコウジ色素等)、フィコシアニン系(スピルリナ色素等)の各種色素が例示される。当然ながら、これら以外の天然物由来の色素にも適用可能である。また、発色作用を有する有機化合物、レーキ等の合成色素を含めてもよい。   The pigment compound that is the target of pigment stabilization mainly corresponds to pigments derived from natural products. Broadly divided into carotenoids (atner pigments, gardenia pigments, paprika pigments, etc.), anthocyanins (red cabbage pigments, grape skin pigments, etc.), flavonoids (safflower pigments, etc.), betacyanins (red beet pigments, etc.), azaphylons Examples thereof include various pigments such as (Benicouji pigment) and phycocyanin (spiralina pigment, etc.). Naturally, it is applicable also to the pigments derived from natural products other than these. Moreover, you may include synthetic compounds, such as an organic compound which has a coloring effect, and a lake.

図1の概略工程図を用い、請求項2の発明に規定する第1実施形態の色素安定剤に関して説明する。色素安定剤は安価であり調達容易なデンプンを出発原料とする。デンプンは、いったん水等の水分に分散後、加熱等により適度にデンプン結晶中に水分子が入り込んだ状態、すなわち糊化される(S11)。次に、糊化したデンプン溶液に対して超音波が照射される。この物理的なエネルギーが加わることにより、複数デンプン分子の絡み合いの解消、すなわち分散が促進する(S12)。こうして、超音波照射により適度に分散したデンプン分子の液状物(微分散デンプンの水溶化物)が得られる。これは、第1実施形態の色素安定剤(P1)である。   The dye stabilizer of the first embodiment defined in the invention of claim 2 will be described using the schematic process diagram of FIG. The pigment stabilizer is inexpensive and easy to procure from starch. Starch is once dispersed in moisture such as water, and is then gelatinized in a state in which water molecules have moderately entered starch crystals by heating or the like (S11). Next, an ultrasonic wave is irradiated with respect to the gelatinized starch solution. By applying this physical energy, the entanglement of the plurality of starch molecules, that is, dispersion is promoted (S12). In this way, a liquid product of starch molecules (water-solubilized finely dispersed starch) dispersed moderately by ultrasonic irradiation is obtained. This is the dye stabilizer (P1) of the first embodiment.

図1の概略工程図に示した糊化(S11)において、デンプン糊化時の粘度は、デンプンの種類、添加水分量、色素安定化性能を始め、設備面等より好適に勘案される。たいてい、デンプンは0.2〜40Pa・sの粘度範囲内に調製される。特に、工程間の流動性等が考慮されるため、デンプンは0.2〜4Pa・sの粘度範囲内に調製されることが好ましい。   In the gelatinization (S11) shown in the schematic process diagram of FIG. 1, the viscosity at the time of starch gelatinization is suitably taken into consideration from the viewpoint of equipment, such as starch type, added water content, and pigment stabilization performance. Mostly starches are prepared in the viscosity range of 0.2 to 40 Pa · s. In particular, since flowability between processes is taken into consideration, starch is preferably prepared within a viscosity range of 0.2 to 4 Pa · s.

デンプンを溶解する場合、作業効率の面から温水、熱水が用いられる。加えて、製品となる色素安定剤の添加用途に合わせて、水以外に塩水、糖蜜水、調味料を溶解させた溶液、スープ(ブイヨン)、出汁、たれ、つゆ等にデンプンを溶解させて、呈味のデンプン糊化物とすることも可能である。この場合、添加対象となる食材の水分希釈が回避される。   When starch is dissolved, warm water and hot water are used from the viewpoint of work efficiency. In addition, in addition to water, salt water, molasses water, a solution in which seasoning is dissolved, soup (bouillon), soup, sauce, sauce, etc. It is also possible to obtain a starch starch paste. In this case, moisture dilution of the food material to be added is avoided.

超音波照射(S12)において、照射する超音波は、20kHz〜1MHzの一般的な周波数であり、超音波発振器の出力も100〜2000Wの適宜である。周波数や出力は、照射対象となるデンプンの種類、濃度、糊化の性状、並びに所望する最終的な粘度等により総合的に規定される。   In the ultrasonic irradiation (S12), the ultrasonic wave to be irradiated has a general frequency of 20 kHz to 1 MHz, and the output of the ultrasonic oscillator is also appropriately 100 to 2000 W. The frequency and output are comprehensively defined by the type of starch to be irradiated, the concentration, the gelatinization properties, the desired final viscosity, and the like.

超音波照射に用いる処理槽、超音波振動子、超音波発振器等は、生産規模や処理能力等を勘案して適切に選択される。デンプン糊化物に対する超音波照射は、逐次回分式あるいは連続式のいずれであっても良い。   A treatment tank, an ultrasonic vibrator, an ultrasonic oscillator, and the like used for ultrasonic irradiation are appropriately selected in consideration of a production scale, a processing capability, and the like. The ultrasonic irradiation with respect to the starch gelatinized material may be either a sequential batch method or a continuous method.

続いて図2の概略工程図を用い、請求項3の発明に規定する第2実施形態の色素安定剤に関して説明する。第1実施形態の場合と同様に、デンプンは、いったん水等の水分に分散後、加熱等により適度にデンプン結晶中に水分子が入り込んだ状態、すなわち糊化される(S21)。次に、糊化したデンプン溶液に対して超音波が照射され、物理的なエネルギーが加わり絡み合ったデンプン分子の解きほぐし(分散)が促進する(S22)。超音波照射により水等に分散されたデンプン分子の液状物(デンプン分散物)が乾燥され、乾燥物に加工される(S23)。こうして、超音波照射により適度に低分子量化したデンプン分子の粉状物(微分散デンプンの粉体)が得られる。この乾燥物が第2実施形態の色素安定剤(P2)である。溶解・糊化(S21)、超音波照射(S22)は、第1実施形態の色素安定剤(P1)にて詳述した装置、手法と同様であるため、その説明を省略する。   Next, the dye stabilizer of the second embodiment defined in the invention of claim 3 will be described using the schematic process diagram of FIG. As in the case of the first embodiment, starch is once dispersed in moisture such as water, and is then gelatinized by a state in which water molecules have appropriately entered starch crystals by heating or the like (S21). Next, the gelatinized starch solution is irradiated with ultrasonic waves, and physical energy is applied to accelerate the entanglement (dispersion) of the entangled starch molecules (S22). The starch molecule liquid (starch dispersion) dispersed in water or the like by ultrasonic irradiation is dried and processed into a dried product (S23). Thus, a starch molecule powder (finely-dispersed starch powder) moderately reduced in molecular weight by ultrasonic irradiation is obtained. This dried product is the dye stabilizer (P2) of the second embodiment. Since dissolution / gelatinization (S21) and ultrasonic irradiation (S22) are the same as the apparatus and method described in detail in the dye stabilizer (P1) of the first embodiment, description thereof is omitted.

乾燥(S23)においては、凍結乾燥、真空ドラムドライヤによる乾燥、噴霧乾燥(スプレードライ)等が用いられる。乾燥することにより、防腐や保存、取り扱いやすさ等の利便性が向上する。デンプン由来の色素安定剤は、もとより呈味や風味維持が所望されていないため、量産性に優れた噴霧乾燥が用いられる。乾燥物の形状は、粉末状あるいはフレークのような不定形状等、限定されない。なお、食品添加時の拡散性能の観点から、粉末状であることが好ましく、必要に応じて粒径の分級が行われる。   In the drying (S23), freeze drying, drying with a vacuum drum dryer, spray drying (spray drying), or the like is used. By drying, convenience such as antiseptic, storage, and ease of handling is improved. Since starch-derived pigment stabilizers are not desired to maintain taste and flavor, spray drying with excellent mass productivity is used. The shape of the dried product is not limited, such as powder or an indefinite shape such as flakes. In addition, it is preferable that it is a powder form from a viewpoint of the diffusion performance at the time of food addition, and classification of a particle size is performed as needed.

第2実施形態の原料デンプンの糊化に際し、水以外の塩水や調味料液を用いるならば、呈味を有するデンプン分散物の乾燥品が得られる。このような乾燥物は、食品添加用途として、食材の味を薄めることがなくなり、食品全体としての味のバランスを保つ上で好ましい。ただし、調味料液にデンプン分子を分散させている場合、風味の減退を避けるため、真空ドラムドライヤ等を用いることが好ましい。   In the gelatinization of the raw material starch of the second embodiment, if salt water other than water or a seasoning liquid is used, a dried product of a starch dispersion having a taste can be obtained. Such a dried product is preferable for maintaining the balance of the taste of the whole food product because it does not diminish the taste of the food material for use as a food additive. However, when starch molecules are dispersed in the seasoning liquid, it is preferable to use a vacuum drum dryer or the like in order to avoid a decrease in flavor.

これまでに述べた色素安定剤の原料となるデンプンは、トウモロコシ、コムギ、オオムギ、ライムギ、コメ、サツマイモ(甘藷デンプン)、ジャガイモ(馬鈴薯デンプン)、エンドウ、緑豆、タピオカ等に由来する。発明者らは、糊化後に沈澱や固化等を生じないデンプンほど、良好な色素の色素安定性能を発現することを見出した。デンプンの糊化後の安定性はアミロペクチン含量に相関があると考えられており、アミロペクチン量が高いほど糊化後に沈澱や固化を生じにくい。このことから、請求項4の発明に規定するように、デンプン分解物は、ワキシーコーンスターチを主原料とすることが最良である。このワキシーコーンスターチのデンプンは、ほぼ全量アミロペクチンから構成される。   The starch used as the raw material of the pigment stabilizer described so far is derived from corn, wheat, barley, rye, rice, sweet potato (sweet starch), potato (potato starch), pea, mung bean, tapioca and the like. The inventors have found that starch that does not cause precipitation or solidification after gelatinization exhibits better pigment stability of the pigment. The stability of starch after gelatinization is considered to have a correlation with the content of amylopectin, and the higher the amount of amylopectin, the less likely it is to precipitate or solidify after gelatinization. Thus, as defined in the invention of claim 4, it is best that the starch degradation product is mainly made of waxy corn starch. This waxy corn starch starch is composed almost entirely of amylopectin.

デンプン由来の色素安定剤の製造において、作業の簡便さから通常1種類の原料デンプン(主にワキシーコーンスターチのみ)を適度に制御しながら超音波照射することにより得られる。これに加えて、原料デンプンを別々に超音波照射して分散し、予め異なるデンプン分散物同士を事後的に所望の割合で混合して色素安定剤を調製することもできる。むろん、原料デンプンの超音波照射に当たり、単一種類のデンプンを異なる照射量毎に調製して事後混合する方法や、複数種類のデンプンを異なる照射量毎に調製して事後混合する方法等、適宜に選択できる。例えば、原料デンプンを調達するに当たり、原料の収穫地、収穫時期、収穫年等の環境要因による品質の変動がありうる。そこで、事後的にデンプン分散物同士を混ぜ合わせることにより、色素安定剤としての極力品質を安定させることができる。   In the production of starch-derived pigment stabilizers, it is usually obtained by irradiating ultrasonically while appropriately controlling one type of raw material starch (mainly only waxy corn starch) for the convenience of work. In addition to this, the raw material starch can be dispersed by ultrasonic irradiation separately, and different starch dispersions can be mixed afterwards in a desired ratio to prepare a pigment stabilizer. Of course, when irradiating raw material starch with ultrasound, a single type of starch is prepared for each different dose and post-mixed, or multiple types of starch are prepared for different doses and post-mixed, etc. Can be selected. For example, in the procurement of raw material starch, there may be fluctuations in quality due to environmental factors such as raw material harvesting place, harvest time, and harvest year. Therefore, the quality as a pigment stabilizer can be stabilized as much as possible by mixing the starch dispersions afterwards.

超音波照射を経た微分散デンプンによる色素安定化に関する作用機構の詳細は現時点で不明である。ただし、後述の実施例に開示するとおり、デンプンを溶解糊化して超音波を照射した微分散デンプンによって、色素成分の安定化作用は認められる。   The details of the mechanism of action for pigment stabilization by finely dispersed starch through ultrasonic irradiation are currently unknown. However, as disclosed in the examples described later, the stabilizing action of the pigment component is recognized by the finely dispersed starch obtained by dissolving and gelatinizing starch and irradiating ultrasonic waves.

そこで、本発明のデンプンの微分散物からなる色素安定剤にあっては、食品、飲料、医薬品、化粧品等に添加された色素成分による発色の安定化に有利に作用するものと考えられる。本発明の色素安定剤は既述のとおりデンプンを原料とするため、極めて安価に調達可能であり、食品として古くから利用されている。ゆえに、色素安定剤としての経済性並びに安全性において優れている。また、デンプンは添加した後に食品の味覚に影響を与えることがほとんどないため、食品添加用途としても都合がよい。特に、デンプンの微分散度は照射する超音波の時間、周波数等により定量的に制御可能であることから、目的とする色素に対応したデンプンの微分散物を造り分けることも容易である。さらには、野菜、果物の搾汁液に添加して、その発色を安定化させる用途にも適用可能である。むろん、本発明の微分散デンプンと既存の色素安定剤とを併用することも可能である。   Therefore, it is considered that the pigment stabilizer comprising the fine dispersion of starch of the present invention has an advantageous effect on the stabilization of color development by the pigment component added to foods, beverages, pharmaceuticals, cosmetics and the like. Since the pigment stabilizer of the present invention is based on starch as described above, it can be procured at a very low cost and has been used as a food for a long time. Therefore, it is excellent in economical efficiency and safety as a dye stabilizer. Moreover, since starch hardly affects the taste of food after it is added, it is also convenient for food addition. In particular, since the fine dispersion degree of starch can be quantitatively controlled by the time and frequency of ultrasonic waves to be irradiated, it is easy to make a fine dispersion of starch corresponding to the target pigment. Furthermore, it is applicable to the use which adds to the juice of vegetables and fruits and stabilizes the color development. Of course, it is also possible to use the finely dispersed starch of the present invention in combination with an existing pigment stabilizer.

[微分散デンプンの調製]
原料デンプンとしてワキシーコーンスターチ(日本食品化工株式会社製:ワキシスターチ)を用い、これに水を加え、ミニクッカー(ノリタケエンジニアリング株式会社製)により10%濃度の糊化液とした。次に、超音波分散機GSD1200CVP(株式会社ギンセン製)を用い、周波数20kHz、出力1200Wの条件の下、約50℃の液温を維持しながらデンプン糊化液に超音波照射し、粘度が約0.3Pa・sになるまで微分散化した。得られた液状物を乾燥機内に入れて100℃の熱風を当てながら乾燥して微分散デンプン粉末(各表中、微分散デンプンとした。)を得た(図2の工程図参照)。
[Preparation of finely dispersed starch]
Waxy corn starch (manufactured by Nippon Shokuhin Kako Co., Ltd .: Waxy Starch) was used as a raw material starch, water was added to this, and a mini-cooker (manufactured by Noritake Engineering Co., Ltd.) was used to obtain a gelatinized solution having a concentration of 10%. Next, using a ultrasonic disperser GSD1200CVP (manufactured by Ginsen Co., Ltd.), the starch gelatinization solution is ultrasonically irradiated while maintaining a liquid temperature of about 50 ° C. under the conditions of a frequency of 20 kHz and an output of 1200 W. Fine dispersion was performed until the pressure became 0.3 Pa · s. The obtained liquid was put in a dryer and dried while applying hot air at 100 ° C. to obtain finely dispersed starch powder (referred to as finely dispersed starch in each table) (see the process diagram of FIG. 2).

粘度の測定は、日本薬局方の一般試験法における粘度測定法に準拠し、粘度分析装置(東機産業株式会社製:TVB−10M)を用い、50℃における粘度(Pa・s)として測定した。なお、上記の粘度の選択に際し、出願人が以前に出願した超音波照射により微分散化したデンプンの乳化安定剤の知見を参考とした。   The viscosity was measured as a viscosity (Pa · s) at 50 ° C. using a viscosity analyzer (manufactured by Toki Sangyo Co., Ltd .: TVB-10M) based on the viscosity measurement method in the general test method of the Japanese Pharmacopoeia. . In addition, in selecting the above-mentioned viscosity, the knowledge of the emulsion stabilizer of starch finely dispersed by ultrasonic irradiation previously filed by the applicant was referred.

[使用色素]
発色安定試験用に次の9種類の天然物由来色素を用い、加熱、紫外線、水素イオン濃度(一部)による影響を測定した。測定に際し、水溶液中の色素の濃度は0.1%に統一した。
・評価色素1: ベニバナ色素 (関東化学株式会社製)
・評価色素2: クチナシ色素 (関東化学株式会社製)
・評価色素3:スピルリナ色素 (関東化学株式会社製)
・評価色素4:ぶどう果皮色素 (関東化学株式会社製)
・評価色素5:ベニコウジ色素 (関東化学株式会社製)
・評価色素6: アトナー色素 (関東化学株式会社製)
・評価色素7: 赤ビート色素 (関東化学株式会社製)
・評価色素8:赤キャベツ色素 (関東化学株式会社製)
・評価色素9: パプリカ色素 (関東化学株式会社製)
[Dye used]
The following nine types of natural product-derived dyes were used for the color stability test, and the effects of heating, ultraviolet rays, and hydrogen ion concentration (partial) were measured. In the measurement, the concentration of the dye in the aqueous solution was unified to 0.1%.
Evaluation dye 1: safflower dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 2: Gardenia dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 3: Spirulina dye (manufactured by Kanto Chemical Co., Inc.)
・ Evaluation dye 4: Grape skin dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 5: Benikouji dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 6: Atner dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 7: Red beet dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 8: red cabbage dye (manufactured by Kanto Chemical Co., Inc.)
Evaluation dye 9: Paprika dye (manufactured by Kanto Chemical Co., Inc.)

[対照群の設定]
本発明の微分散デンプン粉末の対照群として、既存の色素安定剤よりα−サイクロデキストリン(株式会社林原生物化学研究所製)、粉末水飴(フタムラスターチ株式会社製:粉末水飴HLD)を用いた。α−サイクロデキストリン、粉末水飴は、デンプンの加水分解物であり、微分散デンプンとの分解度の対照例として選択した。さらに、対比のため添加なし(上記の評価色素の水溶液のみ)も用意した。微分散デンプン粉末、α−サイクロデキストリン、粉末水飴の添加濃度は、いずれも0.1%とした。この添加濃度は一般的な食品添加用の色素濃度(上記の色素濃度参照)に相当し、通常使用されている色素安定剤の添加濃度に揃えたことによる。
[Control group settings]
As a control group of the finely dispersed starch powder of the present invention, α-cyclodextrin (manufactured by Hayashibara Biochemical Laboratories Co., Ltd.) and powder starch syrup (manufactured by Phutamura Starch Co., Ltd .: Powdered chicken jar HLD) were used from existing dye stabilizers. α-Cyclodextrin and powdered starch syrup are starch hydrolysates and were selected as a comparative example of the degree of degradation with finely dispersed starch. Further, for comparison, no addition (only the aqueous solution of the above-described evaluation dye) was prepared. The addition concentrations of the finely dispersed starch powder, α-cyclodextrin, and powdered starch syrup were all 0.1%. This addition concentration corresponds to a general pigment concentration for food addition (see the above-mentioned pigment concentration), and is based on the addition concentration of commonly used pigment stabilizers.

[極大吸収波長の特定]
上記9種類の評価色素とも0.1%濃度の水溶液に調整後、石英セル内(光路長10mm)に水と色素水溶液を添加し分光光度計(株式会社島津製作所製:UV−1700)に供した。水に対する色素水溶液の添加量については、極大吸収波長における吸光度値がおよそ1.0となるように、水3mLに対し色素水溶液100μLを目安に希釈、調整した。極大吸収波長の決定については、400〜1000nmのスペクトラムモード設定より各色素毎の極大吸収波長を探査し適宜データ処理を施した。得られた波長をその色素特有の極大吸収波長とした。
[Specification of maximum absorption wavelength]
After adjusting the above-mentioned nine kinds of evaluation dyes to an aqueous solution of 0.1% concentration, water and an aqueous dye solution are added into a quartz cell (optical path length 10 mm) and used for a spectrophotometer (manufactured by Shimadzu Corporation: UV-1700). did. The amount of the dye aqueous solution added to water was adjusted by diluting and adjusting 100 μL of the dye aqueous solution with respect to 3 mL of water so that the absorbance value at the maximum absorption wavelength was about 1.0. Regarding the determination of the maximum absorption wavelength, the maximum absorption wavelength for each dye was searched from the spectrum mode setting of 400 to 1000 nm, and data processing was appropriately performed. The obtained wavelength was defined as the maximum absorption wavelength peculiar to the dye.

各評価色素毎、以下のとおりの極大吸収波長である。
・評価色素1: ベニバナ色素 =400nm
・評価色素2: クチナシ色素 =440nm
・評価色素3:スピルリナ色素 =616nm
・評価色素4:ぶどう果皮色素 =528nm
・評価色素5:ベニコウジ色素 =420nm
・評価色素6: アトナー色素 =420nm
・評価色素7: 赤ビート色素 =520nm
・評価色素8:赤キャベツ色素 =536nm
・評価色素9: パプリカ色素 =528nm
For each evaluation dye, the maximum absorption wavelength is as follows.
Evaluation dye 1: safflower dye = 400 nm
Evaluation dye 2: Gardenia dye = 440 nm
Evaluation dye 3: Spirulina dye = 616 nm
Evaluation dye 4: grape skin dye = 528 nm
Evaluation dye 5: Benikouji dye = 420 nm
Evaluation dye 6: Atner dye = 420 nm
Evaluation dye 7: Red beet dye = 520 nm
Evaluation dye 8: red cabbage dye = 536 nm
Evaluation dye 9: paprika dye = 528 nm

[処理前の評価]
上記9種類の評価色素の極大吸収波長を特定した後、各評価色素の極大吸収波長による添加なし(水のみに評価色素を溶解、濃度0.1%)の吸光度を測定した。次に、評価色素及び微分散デンプン粉末水溶液(共に濃度0.1%ずつ)、評価色素及びα−サイクロデキストリン(α−CD)水溶液(共に濃度0.1%ずつ)、評価色素及び粉末水飴水溶液(共に濃度0.1%ずつ)の水溶液を評価色素毎に調整し、9種類の評価色素について吸光度を測定した。これらの吸光度は処理前の評価とした。なお、吸光度(Abs)のままでは比較しづらいため、各評価色素についてそれぞれ添加なしを100とし、この添加なしの吸光度から実際の吸光度との乖離量により個々の色素安定剤を評価することとした(表1ないし表9における処理前の欄を参照)。
[Evaluation before processing]
After specifying the maximum absorption wavelengths of the above nine kinds of evaluation dyes, the absorbance of each evaluation dye was measured without addition (dissolving the evaluation dye in water alone, concentration 0.1%). Next, an evaluation dye and a finely dispersed starch powder aqueous solution (both at a concentration of 0.1%), an evaluation dye and an α-cyclodextrin (α-CD) aqueous solution (both at a concentration of 0.1%), an evaluation dye and an aqueous syrup powder solution An aqueous solution (both at a concentration of 0.1%) was prepared for each evaluation dye, and the absorbance of nine kinds of evaluation dyes was measured. These absorbances were evaluated before the treatment. In addition, since it is difficult to compare with the absorbance (Abs) as it is, it is determined that each dye stabilizer is evaluated based on the amount of deviation from the absorbance without the addition, with 100 being no addition for each evaluation dye. (See columns before processing in Tables 1-9).

[加熱影響評価]
上記9種類の評価色素について、添加なし(水のみに評価色素を溶解、濃度0.1%)、評価色素及び微分散デンプン粉末水溶液(共に濃度0.1%ずつ)、評価色素及びα−サイクロデキストリン水溶液(共に濃度0.1%ずつ)、評価色素及び粉末水飴水溶液(共に濃度0.1%ずつ)の各水溶液を10mLずつ試験管に分取し、15分間ほど沸騰湯浴中に置いた。煮沸直後、その色素特有の極大吸収波長の吸光度を測定し、各評価色素の添加なしからの変化を算出した(表1ないし表9における加熱処理の欄を参照)。
[Evaluation of heating effect]
None of the above 9 types of evaluation dyes are added (evaluation dye is dissolved only in water, concentration 0.1%), evaluation dyes and finely dispersed starch powder aqueous solution (both at a concentration of 0.1%), evaluation dyes and α-cyclo. 10 mL of each aqueous solution of dextrin aqueous solution (both at a concentration of 0.1%), evaluation dye and powdered syrup solution (both at a concentration of 0.1%) were dispensed into a test tube and placed in a boiling water bath for about 15 minutes. . Immediately after boiling, the absorbance at the maximum absorption wavelength peculiar to the dye was measured, and the change from the addition of each evaluation dye was calculated (see the column of heat treatment in Tables 1 to 9).

[紫外線影響評価]
上記9種類の評価色素について、添加なし(水のみに評価色素を溶解、濃度0.1%)、評価色素及び微分散デンプン粉末水溶液(共に濃度0.1%ずつ)、評価色素及びα−サイクロデキストリン水溶液(共に濃度0.1%ずつ)、評価色素及び粉末水飴水溶液(共に濃度0.1%ずつ)の各水溶液について、それぞれ10mLずつ分取し、透明ポリエチレン樹脂袋(120mm×200mm、厚さ0.03mm)内に注入し袋の開口部をヒートシールにより密閉した。
[Ultraviolet light effect evaluation]
None of the above 9 types of evaluation dyes are added (evaluation dye is dissolved only in water, concentration 0.1%), evaluation dyes and finely dispersed starch powder aqueous solution (both at a concentration of 0.1%), evaluation dyes and α-cyclo. For each aqueous solution of dextrin aqueous solution (both concentrations 0.1%), evaluation dye and powdered syrup solution (both concentrations 0.1%), 10 mL each was taken, and a transparent polyethylene resin bag (120 mm × 200 mm, thickness) 0.03 mm), and the opening of the bag was sealed by heat sealing.

紫外線照射の光源には15Wの殺菌灯(三菱電機株式会社製:GL15)を用い、この殺菌灯の直下55cmに各水溶液を内包する透明ポリエチレン樹脂袋を薄く広げて静置した。殺菌灯を30分間、または60分間点灯して樹脂袋に紫外線を照射した。紫外線30分照射後、樹脂袋を開封してその色素特有の極大吸収波長の吸光度を測定し、各評価色素の添加なしからの変化を算出した。また、紫外線60分照射後、樹脂袋を開封してその色素特有の極大吸収波長の吸光度を測定し、各評価色素の添加なしからの変化を算出した(表1ないし表9における紫外線照射の欄を参照)。   A 15 W germicidal lamp (manufactured by Mitsubishi Electric Corporation: GL15) was used as a light source for ultraviolet irradiation, and a transparent polyethylene resin bag containing each aqueous solution was thinly spread and left still at 55 cm immediately below the germicidal lamp. The germicidal lamp was turned on for 30 minutes or 60 minutes, and the resin bag was irradiated with ultraviolet rays. After irradiation with ultraviolet rays for 30 minutes, the resin bag was opened, the absorbance at the maximum absorption wavelength peculiar to the dye was measured, and the change from no addition of each evaluation dye was calculated. Further, after irradiation with ultraviolet rays for 60 minutes, the resin bag was opened, the absorbance at the maximum absorption wavelength peculiar to the dye was measured, and the change from the addition of each evaluation dye was calculated (the column of ultraviolet irradiation in Tables 1 to 9). See).

[水素イオン濃度影響評価]
水素イオン濃度による影響の評価においては、評価色素を水に溶解する代わりにpH4.0に調整した10mM酢酸緩衝液、評価色素をpH6.0に調整した10mMリン酸緩衝液、評価色素をpH8.0に調整した10mMリン酸緩衝液にそれぞれ溶解した。そして、添加なし(pH4.0,pH6.0,pH8.0の各緩衝液に評価色素のみを溶解、濃度0.1%)の吸光度、評価色素及び微分散デンプン粉末水溶液(pH4.0,pH6.0,pH8.0の緩衝液に両者を溶解、いずれも共に濃度0.1%ずつ)、評価色素及びα−サイクロデキストリン(α−CD)水溶液(pH4.0,pH6.0,pH8.0の緩衝液に両者を溶解、いずれも共に濃度0.1%ずつ)、評価色素及び粉末水飴水溶液(pH4.0,pH6.0,pH8.0の緩衝液に両者を溶解、いずれも共に濃度0.1%ずつ)の水溶液を調整した。
[Evaluation of influence of hydrogen ion concentration]
In evaluating the influence of the hydrogen ion concentration, instead of dissolving the evaluation dye in water, the 10 mM acetate buffer adjusted to pH 4.0, the 10 mM phosphate buffer adjusted to pH 6.0, and the evaluation dye adjusted to pH 8. Each was dissolved in 10 mM phosphate buffer adjusted to 0. The absorbance, the evaluation dye, and the finely dispersed starch powder aqueous solution (pH 4.0, pH 6) without addition (only the evaluation dye is dissolved in each buffer solution at pH 4.0, pH 6.0, pH 8.0, concentration 0.1%). 0.0 and pH 8.0 are both dissolved in the buffer solution, each of which has a concentration of 0.1% each, an evaluation dye and an α-cyclodextrin (α-CD) aqueous solution (pH 4.0, pH 6.0, pH 8.0). Both are dissolved in a buffer solution of 0.1% in each case, each of which is 0.1% in concentration), both of the evaluation dye and a powdered syrup solution (pH 4.0, pH 6.0, pH 8.0 are both dissolved, both in a concentration of 0) (1% each) was prepared.

水素イオン濃度の影響評価は、評価色素1(ベニバナ色素),評価色素2(クチナシ色素),評価色素3(スピルリナ色素),評価色素4(ぶどう果皮色素),評価色素7(赤ビート色素)の色素について行い、添加、混合直後の極大吸収波長の吸光度を測定した。特に、評価色素7(赤ビート色素)の色素については、添加、混合直後に加えて、前述の加熱影響評価、紫外線影響評価も同様の方法により測定した(表10参照)。   The evaluation of the influence of the hydrogen ion concentration was performed using evaluation dye 1 (safflower dye), evaluation dye 2 (gardenia dye), evaluation dye 3 (Spirulina dye), evaluation dye 4 (grape skin dye), and evaluation dye 7 (red beet dye). The measurement was performed on the dye, and the absorbance at the maximum absorption wavelength immediately after addition and mixing was measured. In particular, for the dye of the evaluation dye 7 (red beet dye), in addition to immediately after addition and mixing, the above-described heating influence evaluation and ultraviolet light influence evaluation were also measured by the same method (see Table 10).

上記の処理前の評価、加熱影響評価、紫外線影響評価における吸光度の測定に当たり、極大吸収波長の探査と同様のセルを用い、同様の希釈濃度(水3mLに対し色素水溶液100μLを目安に希釈、調整)とした。また、水素イオン濃度影響評価においても、極大吸収波長の探査と同様のセルを用い、同様の希釈濃度とした。   In measuring the absorbance in the evaluation before the treatment, the heating effect evaluation, and the ultraviolet effect evaluation, the same cell as in the search for the maximum absorption wavelength is used, and the same dilution concentration (diluted and adjusted with 100 μL of the dye aqueous solution as a guide for 3 mL of water) ). In the evaluation of the influence of hydrogen ion concentration, the same dilution concentration was used by using the same cell as that used in the search for the maximum absorption wavelength.

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

Figure 2008163096
Figure 2008163096

[色素安定性の結果・考察]
各表に示すとおり、超音波照射を受けて微分散化したデンプンについては、加熱や、紫外線照射を経たとしても、色素の安定性が確保されていることから、概ね色素安定性能を発現しているものと認められる。厳密には各色素毎の性能上の差異は認められるものの、既存の色素安定剤であるα−サイクロデキストリンとの代替は十分可能である。また、水素イオン濃度の条件を酸性、弱酸性、アルカリ性と変化させた場合であっても、微分散デンプンには変動は見られず、ほぼ一定である。従って、広汎な食品添加用途にも対応可能である。
[Results and discussion of dye stability]
As shown in each table, starch that has been finely dispersed by irradiation with ultrasonic waves, even when heated or irradiated with ultraviolet rays, is stable in pigments. It is recognized that Strictly speaking, although there is a difference in performance for each dye, it can be sufficiently replaced with α-cyclodextrin which is an existing dye stabilizer. Even when the hydrogen ion concentration is changed to acidic, weakly acidic, or alkaline, the finely dispersed starch does not change and is almost constant. Therefore, it can respond to a wide range of food additive uses.

この結果を踏まえ、発明者らは、微分散デンプンの色素安定性発現についておおよそ次の機構を想定する。   Based on this result, the inventors assume the following mechanism about the pigment stability expression of finely dispersed starch.

一般的に糊化したデンプンにおいては、膨潤することによりデンプン結晶を構成する糖鎖間に水分子が侵入し、水分子が抱きかかえられたネットワーク状の高分子構造を形成している。そのため、デンプン糊に見られる特有の付着性や弾力性を発現している。糊化したデンプンに対し超音波が照射された場合、前記のネットワーク状の高分子構造が適度に分解される。デンプンに対する超音波照射による物理的な処理は、酵素処理と異なり分解を促進し過ぎない。   In general, gelatinized starch swells to allow water molecules to enter between sugar chains constituting starch crystals, thereby forming a network-like polymer structure in which water molecules are held. Therefore, it exhibits the unique adhesion and elasticity found in starch paste. When the gelatinized starch is irradiated with ultrasonic waves, the network-like polymer structure is appropriately decomposed. Unlike the enzyme treatment, physical treatment of starch with ultrasonic irradiation does not promote decomposition too much.

超音波照射を経た微分散デンプンは溶液中においてデンプンの構造をある程度維持している高分子である。発明者らの以前の知見から、数平均分子量はだいたい400000〜600000である。これは、デンプンを分解して得られるサイクロデキストリンや水飴等と比較して圧倒的に巨大な分子である。そのため、デンプン特有のらせん状の直鎖や分岐の高次構造が適度に保存されている。   Finely dispersed starch that has undergone ultrasonic irradiation is a polymer that maintains the structure of starch to some extent in solution. From the inventors' previous knowledge, the number average molecular weight is approximately 400,000 to 600,000. This is an overwhelmingly large molecule compared to cyclodextrins and chickenpox obtained by degrading starch. Therefore, the helical linear and branched higher order structure peculiar to starch is appropriately preserved.

色素成分のもととなる色素化合物分子の多くは、炭素の二重結合や炭素環(芳香環、複素環等も含む)に見られる複雑な構造骨格を有する。この構造特性により、固有の波長が吸収されて特有の発色が得られる。例えば、テルペン化合物の各種カロテン類、アスタキサンチン類、アトナー色素のビキシン、赤ビート色素のベタニン等は疎水性の構造部位を有していることから、比較的反応性に富み、酸素ラジカル種等の攻撃を受けやすい。そのため、色素化合物分子の多くは、加熱による分解等の影響を受けやすく、同時に保存時の光線曝露においても分解、別種分子への変化が生じやすい。また、各種の塩を形成している色素化合物分子にあっては、水素イオン濃度の変化に伴い活性部位が変化し、発色の変化、さらには退色を引き起こす。このため、分子内の反応性部位の保護も必要となる。   Many of the dye compound molecules that are the basis of the dye component have a complex structural skeleton found in carbon double bonds and carbocycles (including aromatic rings and heterocycles). Due to this structural characteristic, a specific wavelength is absorbed and a specific color is obtained. For example, various carotenes of terpene compounds, astaxanthins, bixin of Atner dye, and betanin of red beet dye have hydrophobic structural sites, so they are relatively reactive and attack oxygen radical species. It is easy to receive. Therefore, most of the dye compound molecules are easily affected by decomposition due to heating and the like, and at the same time, they are easily decomposed and changed to different kinds of molecules even when exposed to light during storage. In the case of dye compound molecules forming various salts, the active site changes with changes in the hydrogen ion concentration, causing changes in color development and further fading. For this reason, it is also necessary to protect reactive sites in the molecule.

上記のとおり、微分散デンプンは高次らせん状構造を適度に維持していることから、色素化合物分子は微分散デンプンにより包摂されて保護され、温度変化からの衝撃、食品水分中に生じた酸素ラジカル種との接触、水素イオン濃度の影響が低減、緩和されるものと考える。   As described above, since finely dispersed starch has a moderately high-order helical structure, the pigment compound molecules are incorporated and protected by the finely dispersed starch, impact from temperature changes, and oxygen generated in food moisture. It is considered that the effects of contact with radical species and the hydrogen ion concentration are reduced or alleviated.

なお、微分散デンプンを添加、混合しただけで10〜20%も数値が上昇した色素もある。このような色素増強効果に関して、色素分子が微分散デンプン内の高次らせん状構造に包摂されることにより、色素分子の立体構造に何らかの変化が生じ、より吸収が強まる構造に変化している可能性を予想する。   In addition, there is a pigment whose numerical value is increased by 10 to 20% just by adding and mixing finely dispersed starch. With regard to such a pigment enhancement effect, the pigment molecule is included in the higher-order spiral structure in the finely dispersed starch, so that there is some change in the three-dimensional structure of the pigment molecule, and it is possible to change to a structure that absorbs more strongly. Expect sex.

第1実施形態の色素安定剤の概略工程図である。It is a schematic process drawing of the pigment | dye stabilizer of 1st Embodiment. 第2実施形態の色素安定剤の概略工程図である。It is a schematic process drawing of the pigment | dye stabilizer of 2nd Embodiment.

Claims (4)

超音波加工による微分散デンプンを有効成分とすることを特徴とする色素安定剤。   A pigment stabilizer characterized by comprising finely dispersed starch produced by ultrasonic processing as an active ingredient. 前記微分散デンプンを水溶化した液体からなる請求項1に記載の色素安定剤。   The dye stabilizer according to claim 1, comprising a liquid obtained by water-solubilizing the finely dispersed starch. 前記微分散デンプンが粉体からなる請求項1又は2に記載の色素安定剤。   The pigment stabilizer according to claim 1 or 2, wherein the finely dispersed starch comprises a powder. 前記微分散デンプンがワキシーコーンスターチを主体とする請求項1ないし3のいずれか1項に記載の色素安定剤。   The pigment stabilizer according to any one of claims 1 to 3, wherein the finely dispersed starch is mainly waxy corn starch.
JP2006351717A 2006-12-27 2006-12-27 Dye stabilizer Active JP4937732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351717A JP4937732B2 (en) 2006-12-27 2006-12-27 Dye stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351717A JP4937732B2 (en) 2006-12-27 2006-12-27 Dye stabilizer

Publications (2)

Publication Number Publication Date
JP2008163096A true JP2008163096A (en) 2008-07-17
JP4937732B2 JP4937732B2 (en) 2012-05-23

Family

ID=39693008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351717A Active JP4937732B2 (en) 2006-12-27 2006-12-27 Dye stabilizer

Country Status (1)

Country Link
JP (1) JP4937732B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140325A (en) * 2015-02-04 2016-08-08 株式会社 伊藤園 Green color beverage and production method thereof
JP2019013253A (en) * 2018-11-01 2019-01-31 株式会社 伊藤園 Green color beverage and manufacturing method therefor
JP2020182385A (en) * 2019-04-26 2020-11-12 株式会社ミューズ・ジャパン Ancient rice-containing powder for beverage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232463A (en) * 1986-04-01 1987-10-12 クリストフア−・ビ−・ヒルズ Extraction of mutation induction inhibiting coloring matter from algae and plant
JP2002187837A (en) * 2000-12-20 2002-07-05 Kuraray Co Ltd Method for producing water-soluble preparation containing finely pulverized carotenoid
WO2006000347A1 (en) * 2004-06-23 2006-01-05 Basf Aktiengesellschaft Aqueous dispersions of low-water-solubility or water-insoluble active substances and dry powders produced therefrom
JP2006109792A (en) * 2004-10-18 2006-04-27 Riken Vitamin Co Ltd Paprika coloring matter pharmaceutical preparation
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material
JP2008093657A (en) * 2006-09-15 2008-04-24 Futamura Chemical Co Ltd Emulsion stabilizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232463A (en) * 1986-04-01 1987-10-12 クリストフア−・ビ−・ヒルズ Extraction of mutation induction inhibiting coloring matter from algae and plant
JP2002187837A (en) * 2000-12-20 2002-07-05 Kuraray Co Ltd Method for producing water-soluble preparation containing finely pulverized carotenoid
WO2006000347A1 (en) * 2004-06-23 2006-01-05 Basf Aktiengesellschaft Aqueous dispersions of low-water-solubility or water-insoluble active substances and dry powders produced therefrom
JP2006109792A (en) * 2004-10-18 2006-04-27 Riken Vitamin Co Ltd Paprika coloring matter pharmaceutical preparation
JP2006231219A (en) * 2005-02-25 2006-09-07 Futamura Chemical Co Ltd Method for producing liquid material from gelatinous material and method for producing powdery material
JP2008093657A (en) * 2006-09-15 2008-04-24 Futamura Chemical Co Ltd Emulsion stabilizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140325A (en) * 2015-02-04 2016-08-08 株式会社 伊藤園 Green color beverage and production method thereof
JP2019013253A (en) * 2018-11-01 2019-01-31 株式会社 伊藤園 Green color beverage and manufacturing method therefor
JP2020182385A (en) * 2019-04-26 2020-11-12 株式会社ミューズ・ジャパン Ancient rice-containing powder for beverage

Also Published As

Publication number Publication date
JP4937732B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
Duan et al. Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties
Kayacan et al. Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon
Yousefi et al. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.)
Jiménez-Aguilar et al. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material
CN103841838B (en) The encapsulating method of flavouring and the Matrix-assisted method for concentration of aqueous food and the product produced thus
Mustafa et al. Ultrasound-assisted chitosan–surfactant nanostructure assemblies: towards maintaining postharvest quality of tomatoes
Liu et al. Effects of pulsed electric fields on vacuum drying and quality characteristics of dried carrot
Bazaria et al. Effect of dextrose equivalency of maltodextrin together with Arabic gum on properties of encapsulated beetroot juice
EP2580966B1 (en) Method for preventing carotenoid pigment from adhering to container
Ratanapoompinyo et al. The effects of selected metal ions on the stability of red cabbage anthocyanins and total phenolic compounds subjected to encapsulation process
Zhao et al. Sulfite and starch affect color and carotenoids of dehydrated carrots (Daucus carota) during storage
Teng et al. Garlic essential oil microcapsules prepared using gallic acid grafted chitosan: Effect on nitrite control of prepared vegetable dishes during storage
JP4937732B2 (en) Dye stabilizer
Kearsley et al. Stability and use of natural colours in foods Red beet powder, copper chlorophyll powder and cochineal
BR112021003066B1 (en) METHOD FOR PRODUCING A SOLID HEAT COOKING PASTE COMPOSITION CONTAINING LEG GRAIN
CN107955215A (en) Fresh meat natural complex fresh-keeping film based on chitosan Maillard reaction
Hadiyanto et al. Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp.
Yu et al. Boosting food system sustainability through intelligent packaging: Application of biodegradable freshness indicators
Arumugham et al. Spray dried date fruit extract with a maltodextrin/gum arabic binary blend carrier agent system: Process optimization and product quality
Teng et al. Garlic essential oil emulsions stabilized by microwave dry-heating induced protein-pectin conjugates and their application in controlling nitrite content in prepared vegetable dishes
Alli et al. Hydrogen-assisted facile synthesis of N, N, N-trimethyl chitosan stabilized zinc oxide nanoparticles and its influence on the quality of Solanum lycopersicum L
Agcam Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process
JP6512997B2 (en) Dried food
EP3874957A1 (en) Resistant starch and production method thereof
Liao et al. Processability and physical-functional properties of purple sweet potato powder as influenced by explosion puffing drying

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250