JP2008162916A - 8-substituted guanosine derivative having hydrogen-bonding substituent and oligonucleotide containing the same - Google Patents

8-substituted guanosine derivative having hydrogen-bonding substituent and oligonucleotide containing the same Download PDF

Info

Publication number
JP2008162916A
JP2008162916A JP2006352017A JP2006352017A JP2008162916A JP 2008162916 A JP2008162916 A JP 2008162916A JP 2006352017 A JP2006352017 A JP 2006352017A JP 2006352017 A JP2006352017 A JP 2006352017A JP 2008162916 A JP2008162916 A JP 2008162916A
Authority
JP
Japan
Prior art keywords
compound
group
hydrogen atom
hydrogen
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352017A
Other languages
Japanese (ja)
Other versions
JP5105404B2 (en
Inventor
Retsu Saito
烈 齋藤
Yoshio Saito
義雄 齋藤
Kazuo Hanawa
和夫 花輪
Yoshihiko Matsumoto
桂彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2006352017A priority Critical patent/JP5105404B2/en
Publication of JP2008162916A publication Critical patent/JP2008162916A/en
Application granted granted Critical
Publication of JP5105404B2 publication Critical patent/JP5105404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00137Injection moldable mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an 8-substituted guanosine derivative having a functional substituent at the 8-position of guanine and to provide an oligonucleotide containing the derivative. <P>SOLUTION: A method for synthesizing the 8-substituted guanosine derivative comprises a series of (1) bromination, (2) a coupling reaction of an alkylene compound using a Pd catalyst and (3) a catalytic hydrogenation step of a saccharide part under conditions of no protected hydroxy group using natural 2'-deoxyguanosine and guanosine as starting materials. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、グアニンの8位に水素結合性置換基を有する8―置換グアノシン誘導体及びそれを含むオリゴヌクレオチド、ならびにそれらの製造方法に関する。   The present invention relates to an 8-substituted guanosine derivative having a hydrogen bonding substituent at the 8-position of guanine, an oligonucleotide containing the same, and a method for producing them.

近年、PCR法を用いた核酸の利用法として、In vitro selection法が注目されている。In vitro selection法では、まず、多数のランダム配列領域を持つ多数の一本鎖核酸ライブラリーを、様々なセレクション系により特定機能で選び出す。続いて、選び出された核酸をPCRによって増幅した後、同様のセレクションを行う。このサイクルを繰り返すことで、特定機能を持つ配列に収束させることが可能となる。In vitro selection法は、もともと、ある特定の物質に対して特異的に結合する核酸分子種を選び出す手法として開発されたため、Systematic Evolution of Ligands by Exponential enrichment (SELEX)とも呼ばれる。この手法で得られた結合能を有する核酸はアプタマーと呼ばれ、酵素のような触媒能を持ったDNA、RNAはそれぞれデオキシリボザイム、リボザイムと呼ばれる。   In recent years, the in vitro selection method has attracted attention as a method of using nucleic acids using the PCR method. In the in vitro selection method, first, a large number of single-stranded nucleic acid libraries having a large number of random sequence regions are selected with specific functions by various selection systems. Subsequently, after the selected nucleic acid is amplified by PCR, the same selection is performed. By repeating this cycle, it is possible to converge to an array having a specific function. The in vitro selection method was originally developed as a method for selecting nucleic acid molecular species that specifically bind to a specific substance, and is also called Systematic Evolution of Ligands by Exponential enrichment (SELEX). Nucleic acids having binding ability obtained by this method are called aptamers, and DNA and RNA having catalytic ability such as enzymes are called deoxyribozymes and ribozymes, respectively.

アプタマーは、特定の二次構造を持つ場合が多い。それらは、ヘアピン(hairpin)、バルジ(bulge)、シュードノット(pseudoknot)、グアニンカルテット(G-quartet)等の構造に分類される。アプタマーは、そのような二次構造をとることで、標的分子を特異的に認識して結合すると考えられており、デオキシリボザイムまたはリボザイムにおいても二次構造が重要な役割を担っていると考えられる。
しかしながら、天然のDNAアプタマー、デオキシリボザイムまたはリボザイムは、抗体または酵素に比べ、その結合能及び触媒能は極めて小さい。その理由は、以下の二つが考えられる。
1)抗体または酵素などの蛋白質は20種のアミノ酸から構成されるのに対し、DNAは4種類のヌクレオシドしかない。
2)蛋白質はイミダゾールまたはアミノ基などの活性中心に多く存在する官能基を持つのに対して、核酸にはそのようなものがない。
このため、In vitro selection法では、結合能及び触媒能を高めるための種々の機能性置換基を導入した修飾DNAの利用が有効になると考えられる。
Aptamers often have a specific secondary structure. They are classified into structures such as hairpins, bulges, pseudoknots, guanine quartets and the like. Aptamers are thought to specifically recognize and bind to target molecules by taking such secondary structures, and secondary structures are also considered to play an important role in deoxyribozymes or ribozymes. .
However, natural DNA aptamers, deoxyribozymes or ribozymes have very little binding ability and catalytic ability compared to antibodies or enzymes. There are two possible reasons for this.
1) Proteins such as antibodies or enzymes are composed of 20 types of amino acids, whereas DNA has only 4 types of nucleosides.
2) Proteins have functional groups that are present in large numbers in active centers such as imidazole or amino groups, whereas nucleic acids do not have such.
For this reason, in the in vitro selection method, it is considered that the use of modified DNA into which various functional substituents are introduced to enhance the binding ability and catalytic ability is effective.

上記のような修飾DNAの合成には、機能性置換基を導入した修飾ヌクレオシドが有用である。修飾ヌクレオシドは種々知られているが、グアニン誘導体は、他の核酸塩基の誘導体と比較して少なく、その構造は特定のものに限られている。例えば、特開2004−262791号公報(特許文献1)では、グアニンの8位にメチル基を有する8−置換グアノシン誘導体が記載されている。しかしながら、該公報に記載の方法では、グアニンの8位に機能性置換基を導入することはできない。
特開2004−262791号公報
For the synthesis of the modified DNA as described above, a modified nucleoside having a functional substituent introduced therein is useful. Various modified nucleosides are known, but guanine derivatives are less than other nucleobase derivatives, and their structures are limited to specific ones. For example, Japanese Patent Application Laid-Open No. 2004-262791 (Patent Document 1) describes an 8-substituted guanosine derivative having a methyl group at the 8-position of guanine. However, the method described in the publication cannot introduce a functional substituent at the 8-position of guanine.
JP 2004-262791 A

このような状況下、機能性置換基を導入した修飾ヌクレオシド、特に機能性置換基を導入した8−置換グアノシン誘導体の提供が求められている。   Under such circumstances, provision of a modified nucleoside into which a functional substituent has been introduced, particularly an 8-substituted guanosine derivative into which a functional substituent has been introduced, has been demanded.

本発明者らは、グアニンカルテットなどの様々な二次構造の中でも特に重要な役割を果たしているグアニンに着目し、種々の水素結合性置換基を導入した修飾ヌクレオシドをデザインし、その合成を試みた。なお、水素結合性置換基の導入位置としては、DNAの二重鎖形成に直接関与しておらず、フレキシブルなアルキル直鎖を介してDNAメジャーグループに置換基を出すことができるようにグアニンの8位とした。   The present inventors focused on guanine, which plays a particularly important role in various secondary structures such as guanine quartet, and designed modified nucleosides into which various hydrogen-bonding substituents were introduced, and tried to synthesize them. . Note that the position of introduction of the hydrogen bonding substituent is not directly related to DNA double strand formation, and guanine can be introduced to the DNA major group via a flexible alkyl straight chain. 8th place.

その結果、グアノシンまたは2’−デオキシグアノシンを出発物質として、一連の1)ブロモ化、2)Pd触媒を用いたカップリング反応、3)糖部分の水酸基無保護条件下での接触水添、により、種々の水素結合性置換基をグアニンの8位に導入することに成功した。   As a result, a series of 1) bromination, 2) coupling reaction using Pd catalyst, and 3) catalytic hydrogenation of the sugar moiety under hydroxyl-unprotected conditions, starting from guanosine or 2′-deoxyguanosine, And succeeded in introducing various hydrogen bonding substituents at position 8 of guanine.

なお、本発明者らは、水素結合性置換基を有する8−置換アデノシン誘導体の合成方法を既に確立している(Y. Saito et al., Tetrahedron Letters 46 (2005) 7605-7608)。この文献に示されるとおり、アデノシン誘導体は、糖部分の水酸基を保護しない状態で反応を十分に進行させることができる。しかしながら、グアノシン誘導体は、アデノシン誘導体と比較して溶解性が非常に低いため、糖部分の水酸基を保護して反応を行うと考えるのが一般的である。本発明はこのような従来の技術常識に反して、糖部分の水酸基を無保護条件下で反応を進行させることにより、本発明を完成させるに至った。   The present inventors have already established a method for synthesizing an 8-substituted adenosine derivative having a hydrogen bonding substituent (Y. Saito et al., Tetrahedron Letters 46 (2005) 7605-7608). As shown in this document, the adenosine derivative can sufficiently proceed the reaction without protecting the hydroxyl group of the sugar moiety. However, since the guanosine derivative has a very low solubility as compared with the adenosine derivative, it is generally considered that the reaction is carried out while protecting the hydroxyl group of the sugar moiety. Contrary to such conventional technical common knowledge, the present invention has completed the present invention by allowing the hydroxyl group of the sugar moiety to proceed under unprotected conditions.

すなわち、本発明は、以下に示す8−置換グアノシン誘導体及びオリゴヌクレオチド、ならびにそれらの製造方法に係るものである。
[1]下記式(I):

Figure 2008162916
(式中、R1は水素結合性置換基であり、R2は水素原子または水酸基であり、nは1〜10の整数である。)で表される8−置換グアノシン誘導体。
[2]R1は、−NH2、−SH、−CN、−OH、−NH−C(=R)NH2(Rは酸素原子またはイミノ基を表す。)、−COOR’(R’は水素原子または低級アルキル基を表す。)、−CONH2、−CSNH2、−C(=NH)NH2、−NH−COCF3、−OCOCH3及び−S−S(CH33からなる群から選ばれるものである、[1]記載の8−置換グアノシン誘導体。
[3]下記式(a):
Figure 2008162916
(式中、R2は水素原子または水酸基である。);
下記式(b):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基である。);
下記式(c):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR”(R”は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2である。);あるいは
下記式(d):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33である。)
で表されるものである[1]記載の8−置換グアノシン誘導体。
[4]下記式(II):
Figure 2008162916
(式中、R6は水素結合性置換基を含む有機基であり、R2は水素原子または水酸基であり、DMTrはジメトキシトリチル基であり、nは1〜10の整数である。)で表される8−置換グアノシン誘導体。
[5]R1は、−NH2、−SH、−CN、−OH、−NH−C(=R)NH2(Rは酸素原子またはイミノ基を表す。)、−COOR’(R’は水素原子または低級アルキル基を表す。)、−CONH2、−CSNH2、−C(=NH)NH2、−NH−COCF3、−OCOCH3及び−S−S(CH33からなる群から選ばれるものである、[4]記載の8−置換グアノシン誘導体。
[6]下記式(e):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、DMTrはジメトキシトリチル基である。);
下記式(f):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基であり、DMTrはジメトキシトリチル基である。);
下記式(g):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR”(R”は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2であり、DMTrはジメトキシトリチル基である。);あるいは
下記式(h):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33であり、DMTrはジメトキシトリチル基である。)
で表されるものである、[4]記載の8−置換グアノシン誘導体。
[7]下記式(III):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R6は水素結合性置換基を含む有機基であり、mは0〜9である。)で表される化合物を、糖部分の水酸基を無保護条件下、接触水添させる工程を含む、[1]から[6]までの何れか記載の8−置換グアノシン誘導体の製造方法。
[8]水素結合性置換基を8位に有するグアニン誘導体を含むオリゴヌクレオチド。
[9][4]から[6]までの何れかに記載の8−置換グアノシン誘導体を用いることを含む、[8]記載のオリゴヌクレオチドの製造方法。 That is, the present invention relates to the following 8-substituted guanosine derivatives and oligonucleotides and methods for producing them.
[1] The following formula (I):
Figure 2008162916
(Wherein, R 1 is a hydrogen-bonding substituent, R 2 is a hydrogen atom or a hydroxyl group, and n is an integer of 1 to 10).
[2] R 1 represents —NH 2 , —SH, —CN, —OH, —NH—C (═R) NH 2 (R represents an oxygen atom or an imino group), —COOR ′ (R ′ represents represents a hydrogen atom or a lower alkyl group), -. CONH 2, -CSNH 2, -C (= NH) NH 2, -NH-COCF 3, the group consisting of -OCOCH 3 and -S-S (CH 3) 3 The 8-substituted guanosine derivative according to [1], which is selected from:
[3] The following formula (a):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group);
The following formula (b):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and R 3 is an oxygen atom or an imino group);
The following formula (c):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 4 is —C (═NH) NH 2 , —COOR ″ (R ″ represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 ); or the following formula (d):
Figure 2008162916
(In the formula, R 2 is a hydrogen atom or a hydroxyl group, and R 5 is —OCOCH 3 or —S—S (CH 3 ) 3. )
The 8-substituted guanosine derivative according to [1], which is represented by:
[4] The following formula (II):
Figure 2008162916
(Wherein R 6 is an organic group containing a hydrogen bonding substituent, R 2 is a hydrogen atom or a hydroxyl group, DMTr is a dimethoxytrityl group, and n is an integer of 1 to 10). 8-substituted guanosine derivatives.
[5] R 1 represents —NH 2 , —SH, —CN, —OH, —NH—C (═R) NH 2 (R represents an oxygen atom or an imino group), —COOR ′ (R ′ represents represents a hydrogen atom or a lower alkyl group), -. CONH 2, -CSNH 2, -C (= NH) NH 2, -NH-COCF 3, the group consisting of -OCOCH 3 and -S-S (CH 3) 3 The 8-substituted guanosine derivative according to [4], which is selected from:
[6] The following formula (e):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and DMTr is a dimethoxytrityl group);
Formula (f) below:
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 3 is an oxygen atom or an imino group, and DMTr is a dimethoxytrityl group);
The following formula (g):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 4 is —C (═NH) NH 2 , —COOR ″ (R ″ represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 and DMTr is a dimethoxytrityl group); or the following formula (h):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 5 is —OCOCH 3 or —S—S (CH 3 ) 3 , and DMTr is a dimethoxytrityl group.)
The 8-substituted guanosine derivative according to [4], which is represented by:
[7] The following formula (III):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 6 is an organic group containing a hydrogen-bonding substituent, and m is 0 to 9). The method for producing an 8-substituted guanosine derivative according to any one of [1] to [6], comprising a step of contact hydrogenation under unprotected conditions.
[8] An oligonucleotide containing a guanine derivative having a hydrogen bonding substituent at the 8-position.
[9] A method for producing an oligonucleotide according to [8], comprising using the 8-substituted guanosine derivative according to any one of [4] to [6].

本発明によれば、種々の水素結合性置換基を8位に有するグアノシン誘導体を提供することができる。また、本発明によれば、種々の水素結合性置換基を8位に有するグアニン誘導体を含むオリゴヌクレオチドを提供することができる。
本発明の水素結合性の置換基を有するグアノシン誘導体をグアニンカルテット等の様々な配列に導入することにより、それらの構造の安定化が期待でき、より結合能及び触媒能の高いアプタマー、デオキシリボザイム、及びリボザイム等を得ることができる。
According to the present invention, guanosine derivatives having various hydrogen bonding substituents at the 8-position can be provided. In addition, according to the present invention, an oligonucleotide containing a guanine derivative having various hydrogen bonding substituents at the 8-position can be provided.
By introducing the guanosine derivative having a hydrogen bonding substituent of the present invention into various sequences such as guanine quartet, stabilization of their structures can be expected, aptamers having higher binding ability and catalytic ability, deoxyribozymes, And ribozymes can be obtained.

以下、本発明の8−置換グアノシン誘導体及びオリゴヌクレオチド、ならびにそれらの製造方法を詳細に説明する。   Hereinafter, the 8-substituted guanosine derivative and oligonucleotide of the present invention and the production method thereof will be described in detail.

A.8−置換グアノシン誘導体
本発明の8−置換グアノシン誘導体は、下記式(I):

Figure 2008162916
で表される。 A. 8-Substituted Guanosine Derivative The 8-substituted guanosine derivative of the present invention has the following formula (I):
Figure 2008162916
It is represented by

式(I)で表されるとおり、本発明の8−置換グアノシン誘導体は、グアニンの8位に水素結合性置換基を有している。グアニンの8位は、DNAの二重鎖形成に直接関与していない。このため、この位置に、フレキシブルなアルキル直鎖を介して、水素結合性置換基を導入することにより、本発明の8−置換グアノシン誘導体をオリゴヌクレオチドに導入した際、DNAメジャーグループに水素結合性置換基を出すことが可能である。   As represented by the formula (I), the 8-substituted guanosine derivative of the present invention has a hydrogen bonding substituent at the 8-position of guanine. Position 8 of guanine is not directly involved in DNA duplex formation. For this reason, when the 8-substituted guanosine derivative of the present invention is introduced into an oligonucleotide by introducing a hydrogen-bonding substituent at this position through a flexible alkyl straight chain, the DNA major group has hydrogen-bonding properties. Substituents can be released.

式(I)において、R1は、水素結合性置換基である。水素結合性置換基は、分子間または分子内において水素結合を形成しうる置換基であれば特に限定されない。水素結合性置換基は、好ましくは、−NH2、−SH、−CN、−OH、−NH−C(=R)NH2(Rは酸素原子またはイミノ基を表す。)、−COOR’(R’は水素原子または低級アルキル基を表す。)、−CONH2、−CSNH2、−C(=NH)NH2、−NH−COCF3、−OCOCH3及び−S−S(CH33かからなる群から選ばれる。なお、本明細書において、低級アルキル基は、炭素数1〜6の直鎖または分岐鎖のアルキル基を意味する。低級アルキル基としては、例えば、イソプロピル、n−ブチル、sec−ブチル、tert−ブチル、ペンチル、ヘキシルなどが挙げられる。 In the formula (I), R 1 is a hydrogen bonding substituent. The hydrogen bonding substituent is not particularly limited as long as it is a substituent capable of forming a hydrogen bond between molecules or within a molecule. The hydrogen bonding substituent is preferably —NH 2 , —SH, —CN, —OH, —NH—C (═R) NH 2 (R represents an oxygen atom or an imino group), —COOR ′ ( R 'represents a hydrogen atom or a lower alkyl group), -. CONH 2, -CSNH 2, -C (= NH) NH 2, -NH-COCF 3, -OCOCH 3 and -S-S (CH 3) 3 Selected from the group consisting of In the present specification, the lower alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms. Examples of the lower alkyl group include isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.

2は水素原子または水酸基である。R2が水素原子である場合、糖部分はβ−D−2’−デオキシリボースであり、R2が水酸基である場合、糖部分はβ−D−リボースである。すなわち、本発明の8−置換グアノシン誘導体は、2’−デオキシグアノシン誘導体及びグアノシン誘導体の双方を含む。 R 2 is a hydrogen atom or a hydroxyl group. When R 2 is a hydrogen atom, the sugar moiety is β-D-2′-deoxyribose, and when R 2 is a hydroxyl group, the sugar moiety is β-D-ribose. That is, the 8-substituted guanosine derivative of the present invention includes both 2′-deoxyguanosine derivatives and guanosine derivatives.

nは1〜10の整数である。好ましくは、nは1〜6、より好ましくは、nは1〜4、さらに好ましくは、nは1または2である。   n is an integer of 1-10. Preferably, n is 1-6, more preferably n is 1-4, and still more preferably n is 1 or 2.

本発明の好ましい実施態様として、例えば、下記式(a)〜(d)で表される化合物が挙げられる。

Figure 2008162916
(式中、R2は水素原子または水酸基である。);
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基である。);
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR”(R"は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2である。);
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33である。) Preferred embodiments of the present invention include, for example, compounds represented by the following formulas (a) to (d).
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group);
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and R 3 is an oxygen atom or an imino group);
Figure 2008162916
(Wherein R 2 represents a hydrogen atom or a hydroxyl group, R 4 represents —C (═NH) NH 2 , —COOR ″ (R represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 );
Figure 2008162916
(In the formula, R 2 is a hydrogen atom or a hydroxyl group, and R 5 is —OCOCH 3 or —S—S (CH 3 ) 3. )

なお、上記は一例であり、これらの化合物を中間生成物として、常法に従い、他の水素結合性置換基を有する化合物を誘導することもできる。本発明の式(I)で表される8−置換グアノシン誘導体には、そのようにして得られる化合物も含まれる。   The above is an example, and these compounds can be used as intermediate products to derive compounds having other hydrogen bonding substituents in accordance with conventional methods. The 8-substituted guanosine derivative represented by the formula (I) of the present invention includes a compound thus obtained.

式(I)で表される8−置換グアノシン誘導体は、それ自体、抗癌剤、抗ウィルス剤、抗HIV等の核酸系医薬品として有用であるが、水素結合性置換基を有する8−置換グアノシン誘導体をオリゴヌクレオチドに導入する際には、式(I)で表される8−置換グアノシン誘導体の糖部分の水酸基、及び、グアニン部分のアミノ基などの反応性置換基を適切に保護することが望ましい。本発明の8−置換グアノシン誘導体は、そのような反応性置換基を保護基で保護した化合物、すなわち、下記式(II):

Figure 2008162916
で表される化合物をも含む。以下、式(II)で表される化合物について説明する。 The 8-substituted guanosine derivative represented by the formula (I) is itself useful as a nucleic acid pharmaceutical such as an anticancer agent, an antiviral agent, and an anti-HIV, but an 8-substituted guanosine derivative having a hydrogen bonding substituent is When introduced into the oligonucleotide, it is desirable to appropriately protect the reactive substituents such as the hydroxyl group of the sugar moiety and the amino group of the guanine moiety of the 8-substituted guanosine derivative represented by the formula (I). The 8-substituted guanosine derivative of the present invention is a compound in which such a reactive substituent is protected with a protecting group, that is, the following formula (II):
Figure 2008162916
The compound represented by these is also included. Hereinafter, the compound represented by the formula (II) will be described.

式(II)において、R6は水素結合性置換基を含む有機基である。ここで、水素結合性置換基を含む有機基は、水素結合性置換基を含む一価の有機基であれば特に限定されない。例えば、水素結合性置換基それ自体または水素結合性置換基が保護基で保護された有機基などが含まれる。具体的には、アミノ基などの水素結合性置換基がトリフルオロアセトアミド基などの保護基によって保護された有機基などが挙げられる。なお、水素結合性置換基は、式(I)で説明したものと同じであるので、ここでは説明を繰り返さない。
2は水素原子または水酸基であり、nは1〜10の整数である。nの好ましい範囲は、式(I)において記載した範囲と同じ範囲である。
In the formula (II), R 6 is an organic group containing a hydrogen bonding substituent. Here, the organic group containing a hydrogen bonding substituent is not particularly limited as long as it is a monovalent organic group containing a hydrogen bonding substituent. For example, the hydrogen bonding substituent itself or an organic group in which the hydrogen bonding substituent is protected with a protecting group is included. Specific examples include an organic group in which a hydrogen-bonding substituent such as an amino group is protected by a protecting group such as a trifluoroacetamide group. Since the hydrogen bonding substituent is the same as that described in formula (I), description thereof will not be repeated here.
R 2 is a hydrogen atom or a hydroxyl group, and n is an integer of 1 to 10. The preferred range of n is the same range as described in formula (I).

式(II)で表される8−置換グアノシン誘導体を用いることにより、水素結合性置換基を8位に有するグアニン誘導体を含むオリゴヌクレオチドの簡便な方法で製造することができる。式(II)で表される8−置換グアノシン誘導体は、前記式(I)で表される8−置換グアノシン誘導体から容易に製造することができる。詳しくは、実施例の項において説明する。   By using the 8-substituted guanosine derivative represented by the formula (II), an oligonucleotide containing a guanine derivative having a hydrogen bonding substituent at the 8-position can be produced by a simple method. The 8-substituted guanosine derivative represented by the formula (II) can be easily produced from the 8-substituted guanosine derivative represented by the formula (I). Details will be described in the section of the embodiment.

本発明の好ましい実施態様として、例えば、下記式(e)〜(h)で表される化合物が挙げられる。

Figure 2008162916
(式中、R2は水素原子または水酸基である。);
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基である。);
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR"(R"は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2であり、DMTrはジメトキシトリチル基である。);または
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33である。) Preferred embodiments of the present invention include, for example, compounds represented by the following formulas (e) to (h).
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group);
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and R 3 is an oxygen atom or an imino group);
Figure 2008162916
(Wherein R 2 represents a hydrogen atom or a hydroxyl group, R 4 represents —C (═NH) NH 2 , —COOR (R represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 and DMTr is a dimethoxytrityl group)); or
Figure 2008162916
(In the formula, R 2 is a hydrogen atom or a hydroxyl group, and R 5 is —OCOCH 3 or —S—S (CH 3 ) 3. )

なお、上記は一例である。これらの化合物を中間生成物として、常法に従い、他の水素結合性置換基を有する化合物を誘導することもできる。本発明の式(II)で表される8−置換グアノシン誘導体には、そのようにして得られる化合物も含まれる。   The above is an example. Using these compounds as intermediate products, compounds having other hydrogen-bonding substituents can be derived according to a conventional method. The 8-substituted guanosine derivative represented by the formula (II) of the present invention includes a compound thus obtained.

次に、本発明の8−置換グアノシン誘導体の製造方法について述べる。本発明の8−置換グアノシン誘導体は、いずれも、天然の2’−デオキシグアノシンまたはグアノシンを出発物質とする簡便な方法で製造することができる。   Next, a method for producing the 8-substituted guanosine derivative of the present invention will be described. Any of the 8-substituted guanosine derivatives of the present invention can be produced by a simple method using natural 2'-deoxyguanosine or guanosine as a starting material.

本発明の方法は、糖部分の水酸基を保護しない状態でグアノシンに導入した置換アルキレン基を接触水添する工程を含むものであり、この方法によれば、所望の化合物を高収率かつ短時間で合成することができる。すなわち、本発明の8−置換グアノシン誘導体の製造方法は、下記式(III):

Figure 2008162916
で表される化合物を、糖部分の水酸基を無保護条件下、接触水添させる工程を含むことを特徴とする。 The method of the present invention includes a step of catalytic hydrogenation of a substituted alkylene group introduced into guanosine without protecting the hydroxyl group of the sugar moiety. According to this method, the desired compound is obtained in a high yield and in a short time. Can be synthesized. That is, the method for producing an 8-substituted guanosine derivative of the present invention has the following formula (III):
Figure 2008162916
And a step of catalytically hydrogenating the hydroxyl group of the sugar moiety under unprotected conditions.

式(III)において、R2は水素原子または水酸基であり、R6は水素結合性置換基を含む有機基である。なお、水素結合性置換基を含む有機基は、式(II)において説明したものと同じであり、好ましい例示も前記のとおりである。mは0〜9の整数であり、好ましくは、mは0〜5、より好ましくは、mは0〜3、さらに好ましくは、mは0または1である。 In the formula (III), R 2 is a hydrogen atom or a hydroxyl group, and R 6 is an organic group containing a hydrogen bonding substituent. In addition, the organic group containing a hydrogen bondable substituent is the same as what was demonstrated in Formula (II), and its preferable illustration is also as above-mentioned. m is an integer of 0 to 9, preferably m is 0 to 5, more preferably m is 0 to 3, and more preferably m is 0 or 1.

式(III)で表される化合物は、例えば、天然の2’−デオキシグアノシンまたはグアノシンを出発物質として、常法に従って合成することができる。例えば、2’−デオキシグアノシンまたはグアノシンにおけるグアニンの8位を1)ブロモ化し、2)適切なアセチレン誘導体を、Pd触媒を用いてカップリング反応することによって合成することができる。詳しくは、実施例におけるスキーム1〜4を参照することができる。   The compound represented by the formula (III) can be synthesized according to a conventional method using, for example, natural 2'-deoxyguanosine or guanosine as a starting material. For example, the 8'-position of guanine in 2'-deoxyguanosine or guanosine can be synthesized by 1) bromination, and 2) a suitable acetylene derivative by a coupling reaction using a Pd catalyst. For details, schemes 1 to 4 in Examples can be referred to.

本発明の方法によれば、式(III)で表される化合物を接触水添することによって、下記式(IV):

Figure 2008162916
(式中のR2、R6は前記のとおりであり、nは1〜10である。)で表される化合物を得ることができる。なお、好ましくは、nは1〜6、より好ましくは、nは1〜4、さらに好ましくは、nは1または2である。 According to the method of the present invention, by catalytic hydrogenation of the compound represented by the formula (III), the following formula (IV):
Figure 2008162916
(Wherein R 2 and R 6 are as described above, and n is 1 to 10). In addition, Preferably, n is 1-6, More preferably, n is 1-4, More preferably, n is 1 or 2.

上記反応はパラジウム触媒の存在下で行うことが好ましい。例えば、活性炭などの炭素に担持されたパラジウム、いわゆるパラジウムカーボン(Pd/C)として市販されているものを用いることができる。反応温度は、例えば、60℃〜0℃、好ましくは40℃〜10℃である。パラジウム触媒の使用量は、式(III)で表される化合物に対し、好ましくは100モル%〜1モル%である。
また、反応は酸化白金触媒の存在下で行うこともできる。この場合、反応温度は、例えば、100℃〜4℃、好ましくは60℃〜10℃である。酸化白金触媒の使用量は、式(III)で表される化合物に対し、好ましくは100モル%〜1モル%である。
反応溶媒は、式(III)または式(IV)で表される化合物、ならびに使用する触媒等に対して不活性なものであれば特に限定されない。例えば、パラジウム触媒を用いる場合には、メタノールなどのアルコール系溶媒、ジクロロメタン、クロロホルムなどを好ましく使用できる。酸化白金触媒を使用する場合には、酢酸などを使用できる。
なお、本反応に用いられる触媒の種類及びその使用量、反応温度、ならびに反応溶媒は、出発物質等の様々な条件に依存して、適宜、決定することができる。
反応中は、いずれの触媒を用いた場合にも、反応溶液を激しく攪拌することが好ましい。
The above reaction is preferably performed in the presence of a palladium catalyst. For example, palladium supported on carbon such as activated carbon, that is, commercially available as so-called palladium carbon (Pd / C) can be used. The reaction temperature is, for example, 60 ° C to 0 ° C, preferably 40 ° C to 10 ° C. The amount of the palladium catalyst to be used is preferably 100 mol% to 1 mol% with respect to the compound represented by the formula (III).
The reaction can also be performed in the presence of a platinum oxide catalyst. In this case, the reaction temperature is, for example, 100 ° C to 4 ° C, preferably 60 ° C to 10 ° C. The amount of the platinum oxide catalyst used is preferably 100 mol% to 1 mol% with respect to the compound represented by the formula (III).
The reaction solvent is not particularly limited as long as it is inert to the compound represented by the formula (III) or the formula (IV), the catalyst to be used, and the like. For example, when a palladium catalyst is used, alcohol solvents such as methanol, dichloromethane, chloroform and the like can be preferably used. In the case of using a platinum oxide catalyst, acetic acid or the like can be used.
In addition, the kind of catalyst used for this reaction, its usage-amount, reaction temperature, and a reaction solvent can be suitably determined depending on various conditions, such as a starting material.
During the reaction, it is preferable to vigorously stir the reaction solution regardless of which catalyst is used.

本発明の方法によれば、糖部分の水酸基を保護基で保護して反応を行った場合に比べて、短時間で効率よく目的の化合物、すなわち、式(IV)で表される化合物を得ることができる。   According to the method of the present invention, the target compound, that is, the compound represented by the formula (IV) is obtained efficiently in a short time compared with the case where the reaction is carried out by protecting the hydroxyl group of the sugar moiety with a protecting group. be able to.

式(IV)で表される化合物は、常法に従って、糖部分の水酸基、及び、グアニン部分のアミノ基を適切な保護基で保護することによって、下記式(II):

Figure 2008162916
(式中のR2、R6、nおよびDMTrOは、前記のとおりである。)で表される化合物を得ることができる。具体的には、実施例に示したスキーム1〜4を参照することができる。 The compound represented by formula (IV) is protected by the following formula (II) by protecting the hydroxyl group of the sugar moiety and the amino group of the guanine moiety with an appropriate protecting group according to a conventional method.
Figure 2008162916
(Wherein R 2 , R 6 , n and DMTrO are as described above) can be obtained. Specifically, schemes 1 to 4 shown in Examples can be referred to.

B.水素結合性置換基を8位に有するグアニン誘導体を含むオリゴヌクレオチド
次に、本発明のオリゴヌクレオチドについて説明する。
本発明のオリゴヌクレオチドは、水素結合性置換基を8位に有するグアニン誘導体を含むことを特徴としている。この水素結合性置換基の導入位置は、DNAの二重鎖形成に直接関与していない。このため、フレキシブルなアルキル直鎖を介して水素結合性置換基を導入することにより、該水素結合性置換基は、分子内または分子間の他の水素結合性置換基と相互作用することができる。このような本発明のオリゴヌクレオチドをグアニンカルテット等の様々な配列に導入することによって、それらの構造の安定化が期待でき、より結合能及び触媒能の高いアプタマー、デオキシリボザイム又はリボザイム等を得ることができる。
B. Oligonucleotides containing a guanine derivative having a hydrogen bonding substituent at position 8 Next, the oligonucleotide of the present invention will be described.
The oligonucleotide of the present invention is characterized by including a guanine derivative having a hydrogen bonding substituent at the 8-position. The introduction position of this hydrogen bonding substituent is not directly involved in DNA double strand formation. For this reason, by introducing a hydrogen bonding substituent through a flexible alkyl straight chain, the hydrogen bonding substituent can interact with other hydrogen bonding substituents within or between molecules. . By introducing such oligonucleotides of the present invention into various sequences such as guanine quartet, stabilization of their structures can be expected, and aptamers, deoxyribozymes or ribozymes having higher binding ability and catalytic ability can be obtained. Can do.

本発明のオリゴヌクレオチドは、前記式(II)で表される8−置換グアノシン誘導体、好ましくは前記式(e)〜(h)で表される8−置換グアノシン誘導体を用いることによって製造することができる。例えば、市販のDNA合成機を使用したDNAオリゴマーの固相合成法を用いることができる(固相合成法については、例えば、文献 F.C. Richardson et al., Nucleic Acid Research 20 (1992) 1763-1768 を参照することができる)。操作手順等は、それぞれのDNA合成機に添付されているプロトコールに従って行うことができる。   The oligonucleotide of the present invention can be produced by using an 8-substituted guanosine derivative represented by the above formula (II), preferably an 8-substituted guanosine derivative represented by the above formulas (e) to (h). it can. For example, a solid phase synthesis method of a DNA oligomer using a commercially available DNA synthesizer can be used (for example, the literature FC Richardson et al., Nucleic Acid Research 20 (1992) 1763-1768 Can be referred). The operation procedure and the like can be performed according to the protocol attached to each DNA synthesizer.

以下、本発明の8−置換グアノシン誘導体及びオリゴヌクレオチドについて、実施例を用いてより具体的に説明する。なお、実施例は一例であり、本発明の範囲がこれらの実施例に限定されない。   Hereinafter, the 8-substituted guanosine derivative and oligonucleotide of the present invention will be described more specifically with reference to examples. In addition, an Example is an example and the range of this invention is not limited to these Examples.

実施例1
2’−デオキシグアノシンを出発物質として用い、下記のスキーム1に従って、本発明の8−置換グアノシン誘導体(化合物(4)及び(7))ならびにオリゴヌクレオチドを製造した。

Figure 2008162916
Example 1
The 8-substituted guanosine derivatives of the present invention (compounds (4) and (7)) and oligonucleotides were prepared according to the following scheme 1 using 2′-deoxyguanosine as a starting material.
Figure 2008162916

1)化合物(2)の製造
2’−デオキシグアノシン(1)(5.681g, 0.021mol)を蒸留水400mlに懸濁させ、N−ブロモコハク酸イミド(4.17g,0.023mol)を加えた。この溶液を室温で30分撹拌し、析出した固体を吸引濾過により集め、蒸留水、アセトンで洗浄し、淡紫色の固体(5.57mg,76%)として得た。
得られた化合物(2)のスペクトルデータは以下のとおりである。
1H NMR(CD3OD,400MHz) δ 2.10(ddd,1H,H−2’,J=3.0Hz,6.6Hz,13.2Hz),δ 3.16(ddd,1H,H−2’,J=6.4Hz,7.8Hz,13.6Hz),δ 3.50(dd,1H,H−5’,J=6.0Hz,12Hz),δ 3.62(dd,1H,H−5’,J=5.6Hz,11.2Hz),δ 3.80(ddd,1H,H−3’,J=3.2Hz,5.6Hz,11.2Hz),δ 4.40(ddd,1H,H−4’,J=3.2Hz,6.8Hz,13.2Hz),δ 6.16(dd,1H,H−1’,J=6.9Hz,7.7Hz),δ 10.81(s,1H,H−9)
1) Production of Compound (2) 2′-Deoxyguanosine (1) (5.681 g, 0.021 mol) was suspended in 400 ml of distilled water, and N-bromosuccinimide (4.17 g, 0.023 mol) was added. It was. This solution was stirred at room temperature for 30 minutes, and the precipitated solid was collected by suction filtration and washed with distilled water and acetone to obtain a pale purple solid (5.57 mg, 76%).
The spectrum data of the obtained compound (2) are as follows.
1 H NMR (CD 3 OD, 400 MHz) δ 2.10 (ddd, 1H, H-2 ′, J = 3.0 Hz, 6.6 Hz, 13.2 Hz), δ 3.16 (ddd, 1H, H− 2 ′, J = 6.4 Hz, 7.8 Hz, 13.6 Hz), δ 3.50 (dd, 1H, H-5 ′, J = 6.0 Hz, 12 Hz), δ 3.62 (dd, 1H, H-5 ′, J = 5.6 Hz, 11.2 Hz), δ 3.80 (ddd, 1H, H-3 ′, J = 3.2 Hz, 5.6 Hz, 11.2 Hz), δ 4.40 ( ddd, 1H, H-4 ′, J = 3.2 Hz, 6.8 Hz, 13.2 Hz), δ 6.16 (dd, 1H, H−1 ′, J = 6.9 Hz, 7.7 Hz), δ 10.81 (s, 1H, H-9)

2)化合物(3)の製造
前記工程1)で得られた化合物(2)(300mg,0.867mmol)を無水N,N−ジメチルホルムアミド30mlに溶解し、アルゴン雰囲気下、N−プロパギルトリフルオロアセトアミド(390mg,2.581mmol)を加えた。更に、この溶液にヨウ化銅(I)(33mg,0.173mmol
)、テトラキストリフェニルホスフィンパラジウム(0)(99mg,0.086mmol)、トリエチルアミン(148μl,1.463mmol)を加えた。この溶液を55℃で2時間撹拌した。薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール=7/1)により精製して目的の化合物(3)を茶色の固体(331mg,92%)として得た。
得られた化合物(3)のスペクトルデータは以下のとおりである。
1H NMR(CD3OD,400MHz) δ 2.09(ddd,1H,H−2’,J=2Hz,6.4Hz,13.2Hz),δ 2.91(ddd,1H,H−2’,J=6Hz,8.4Hz,14.6Hz),δ 3.59(dd,1H,H−5’,J=4.0Hz,12.0Hz),δ 3.70(dd,1H,H−5’,J=2.8Hz,12.0Hz),δ 3.86(m,1H,H−3’),δ 4.25(s,2H,TFAHN−CH2−),δ 4.44 (m,1H,H−4’),δ 6.26(dd,1H,H−1’,J=6.8Hz,8.0Hz)
2) Production of Compound (3) Compound (2) (300 mg, 0.867 mmol) obtained in the above step 1) was dissolved in 30 ml of anhydrous N, N-dimethylformamide, and N-propargyltrifluoro was added under an argon atmosphere. Acetamide (390 mg, 2.581 mmol) was added. Furthermore, copper (I) iodide (33 mg, 0.173 mmol) was added to this solution.
), Tetrakistriphenylphosphine palladium (0) (99 mg, 0.086 mmol), and triethylamine (148 μl, 1.463 mmol) were added. The solution was stirred at 55 ° C. for 2 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, solute solvent chloroform / methanol = 7/1) to obtain the target compound (3 ) As a brown solid (331 mg, 92%).
The spectrum data of the obtained compound (3) are as follows.
1 H NMR (CD 3 OD, 400 MHz) δ 2.09 (ddd, 1H, H-2 ′, J = 2 Hz, 6.4 Hz, 13.2 Hz), δ 2.91 (ddd, 1H, H-2 ′) , J = 6 Hz, 8.4 Hz, 14.6 Hz), δ 3.59 (dd, 1H, H-5 ′, J = 4.0 Hz, 12.0 Hz), δ 3.70 (dd, 1H, H− 5 ′, J = 2.8 Hz, 12.0 Hz), δ 3.86 (m, 1H, H-3 ′), δ 4.25 (s, 2H, TFAHN—CH 2 —), δ 4.44 ( m, 1H, H-4 ′), δ 6.26 (dd, 1H, H-1 ′, J = 6.8 Hz, 8.0 Hz)

3)化合物(4)の製造
前記工程2)で得られた化合物(3)(300mg,0.721mmol)を無水エタノール15mlに溶解した。この溶液にパラジウムカーボン(10%)を50mg加え、水素に置換した後、室温で2時間撹拌させ、ろ過によってパラジウムカーボンを除去し、再度、溶媒メタノール15mlに溶解し、パラジウムカーボン(10%)を50mg加え、水素に置換した後、室温で14時間撹拌させた。薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール=7/1)により精製し黄色のオイル状(245mg,81%)として得た。
得られた化合物(4)のスペクトルデータは以下のとおりである。
1H NMR(CD3OD,400MHz) δ 1.92(q,2H,−CH2−,J=7.2Hz),δ 2.12(ddd,1H,H−2’,J=2.2Hz,6.2Hz,13.2Hz),δ 2.78(t, 2H,−CH 2 −CH2−),δ 2.99(ddd,1H,H−2’,J=6Hz,8.4Hz,14.6Hz),δ 3.28(t,2H,TFANH−CH2−),δ 3.65(dd,1H,H−5’,J=4.0Hz,12.0Hz),δ 3.75(dd,1H,H−5’,J=3.2Hz,12.0Hz),δ 3.92(dd,1H,H−3’,J=32.Hz,6.0Hz),δ 4.54(m,1H,H−4’),δ 6.14(dd,1H,H−1’,J=6.2Hz,8.6Hz)
3) Production of Compound (4) Compound (3) (300 mg, 0.721 mmol) obtained in the above step 2) was dissolved in 15 ml of absolute ethanol. After adding 50 mg of palladium carbon (10%) to this solution and replacing with hydrogen, the mixture was stirred at room temperature for 2 hours, the palladium carbon was removed by filtration, dissolved again in 15 ml of solvent methanol, and palladium carbon (10%) was added. After adding 50 mg and replacing with hydrogen, the mixture was stirred at room temperature for 14 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, solute solvent chloroform / methanol = 7/1) to give a yellow oil (245 mg). , 81%).
The spectrum data of the obtained compound (4) are as follows.
1 H NMR (CD 3 OD, 400 MHz) δ 1.92 (q, 2H, —CH 2 —, J = 7.2 Hz), δ 2.12 (ddd, 1H, H-2 ′, J = 2.2 Hz) , 6.2Hz, 13.2Hz), δ 2.78 (t, 2H, - CH 2 -CH 2 -), δ 2.99 (ddd, 1H, H-2 ', J = 6Hz, 8.4Hz, 14.6 Hz), δ 3.28 (t, 2H, TFANH—CH 2 —), δ 3.65 (dd, 1H, H-5 ′, J = 4.0 Hz, 12.0 Hz), δ 3.75 (Dd, 1H, H-5 ′, J = 3.2 Hz, 12.0 Hz), δ 3.92 (dd, 1H, H-3 ′, J = 32.Hz, 6.0 Hz), δ 4.54 (M, 1H, H-4 ′), δ 6.14 (dd, 1H, H-1 ′, J = 6.2 Hz, 8.6 Hz)

4)化合物(5)の製造
前記工程3)で得られた化合物(4)(178mg,0.423mmol)をアルゴン雰囲気下、無水N,N−ジメチルホルムアミド10mlに溶解し、N,N’−ジメチルホルムアミドジエチルアセタール(1ml,5.835mmol)を加えた。この溶液を50℃で2時間撹拌し、薄層クロマトグラフィー(TLC)
で原料の消失を確認後、反応溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール=7/1)により精製して目的の化合物(5)を薄黄色の固体(199mg,99%)として得た。
得られた化合物(5)のスペクトルデータは以下のとおりである。
1H NMR(CD3OD,400MHz) δ 1.94(q,2H,−CH2−,J=7.2Hz),δ 2.16(ddd,1H,H−2’,J=2.8Hz,6.4Hz,13.6Hz),δ 280(t,2H,−CH 2 −CH2−),δ 2.97(s,3H,N(CH3)),δ 3.14(m,4H,N(CH3),H−2’),δ 3.27(t,2H,TFANH−CH2−),δ 3.62(dd,1H,H−5’,J=4.0Hz,12.0Hz),δ 3.72(dd,1H,H−5’,J=3.4Hz,12.2Hz),δ 3.89(dd,1H,H−3’,J=3.6Hz,6.8Hz),δ 4.54(m,1H,H−4’),δ 6.38(dd,1H,H−1’,J=6.4Hz,8.0Hz),δ 8.38(s,1H,N=CH−N)
4) Production of Compound (5) Compound (4) (178 mg, 0.423 mmol) obtained in the above step 3) was dissolved in 10 ml of anhydrous N, N-dimethylformamide under an argon atmosphere, and N, N′-dimethyl was dissolved. Formamide diethyl acetal (1 ml, 5.835 mmol) was added. The solution was stirred at 50 ° C. for 2 hours and thin layer chromatography (TLC)
After confirming the disappearance of the raw materials, the reaction solvent was distilled off under reduced pressure. The residue was purified by column chromatography (silica gel, solute solvent chloroform / methanol = 7/1) to obtain the target compound (5) as a pale yellow solid (199 mg, 99%).
The spectrum data of the obtained compound (5) are as follows.
1 H NMR (CD 3 OD, 400 MHz) δ 1.94 (q, 2H, —CH 2 —, J = 7.2 Hz), δ 2.16 (ddd, 1H, H-2 ′, J = 2.8 Hz) , 6.4Hz, 13.6Hz), δ 280 (t, 2H, - CH 2 -CH 2 -), δ 2.97 (s, 3H, N (CH 3)), δ 3.14 (m, 4H , N (CH 3 ), H-2 ′), δ 3.27 (t, 2H, TFANH—CH 2 —), δ 3.62 (dd, 1H, H-5 ′, J = 4.0 Hz, 12 .0Hz), δ 3.72 (dd, 1H, H-5 ′, J = 3.4 Hz, 12.2 Hz), δ 3.89 (dd, 1H, H-3 ′, J = 3.6 Hz, 6) .8 Hz), δ 4.54 (m, 1H, H-4 ′), δ 6.38 (dd, 1H, H−1 ′, J = 6.4 Hz, 8.0 Hz), δ 8.38 (s) , 1H, N = CH-N)

5)化合物(6)の製造
アルゴン雰囲気下、前記工程4)で得られた化合物(5)(140mg, 0.294mmol)を無水ピリジン10mlに溶解し、4,4’−ジメトキシトリチルクロリド(120mg,0.354mmol),N,N−ジメチルアミノピリジン(7.2mg,0.059mmol)を加えた。この溶液を室温で1時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去した。残渣をカラムクロマトグラフィー(シリカゲル、溶出溶媒 クロロホルム/メタノール/トリエチルアミン=89/10/1)により精製して目的の化合物(6)を淡黄色の固体(220mg, 96%)として得た。
得られた化合物(6)のスペクトルデータは以下のとおりである。
1H NMR(CD3OD,400MHz) δ 1.85(m,2H,−CH2−),δ 2.12(ddd,1H,H−2’,J=2Hz,6Hz,8.0Hz,13.6Hz),δ 2.77(m,9H,−CH 2 −CH2−,N(CH3,H−2’),δ 3.22(m,3H,H−5’,TFANH−CH2−),δ 3.49(d,6H,−O−CH3,J=2.8Hz),δ 3.82(m,1H,H−3’),δ 4.58(m,1H,H−4’),δ 6.06(dd,1H,H−1’,J=5.2Hz,7.6Hz),δ 6.40−7.09(m,13H,Ar−H),δ 8.14(s,1H,N=CH−N)
5) Production of Compound (6) Compound (5) (140 mg, 0.294 mmol) obtained in Step 4) was dissolved in 10 ml of anhydrous pyridine under an argon atmosphere, and 4,4′-dimethoxytrityl chloride (120 mg, 120 mg, 0.354 mmol), N, N-dimethylaminopyridine (7.2 mg, 0.059 mmol) was added. This solution was stirred at room temperature for 1 hour. After confirming the disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent was distilled off under reduced pressure. The residue was purified by column chromatography (silica gel, elution solvent chloroform / methanol / triethylamine = 89/10/1) to obtain the target compound (6) as a pale yellow solid (220 mg, 96%).
The spectrum data of the obtained compound (6) are as follows.
1 H NMR (CD 3 OD, 400 MHz) δ 1.85 (m, 2H, —CH 2 —), δ 2.12 (ddd, 1H, H-2 ′, J = 2 Hz, 6 Hz, 8.0 Hz, 13 .6Hz), δ 2.77 (m, 9H, - CH 2 -CH 2 -, N (CH 3, H-2 '), δ 3.22 (m, 3H, H-5', TFANH-CH 2 −), Δ 3.49 (d, 6H, —O—CH 3 , J = 2.8 Hz), δ 3.82 (m, 1H, H-3 ′), δ 4.58 (m, 1H, H) -4 ′), δ 6.06 (dd, 1H, H-1 ′, J = 5.2 Hz, 7.6 Hz), δ 6.40-7.09 (m, 13H, Ar—H), δ 8 .14 (s, 1H, N = CH-N)

6)化合物(7)の製造
アルゴン雰囲気下、前記工程5)で得られた化合物(6)(46mg, 0.059mmol)を無水ジクロロメタン460μlに溶解し、1H−テトラゾール無水アセトニトリル溶液(0.45M,196μl,0.088mmol)、2−シアノエチル−N,N,N’,N’−テトライソプロピルホスホロジアミダイト(28μl,0.089mmol)を加えた。この溶液を室温で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応液を分液漏斗に移し、飽和重曹水、蒸留水で洗浄し、有機層を硫酸ナトリウムで乾燥させた後、反応溶媒を減圧留去した。残渣を無水アセトニトリル1mlに溶解し、コスモナイスフィルターS(溶媒系、ナカライテスク株式会社製)でろ過した。ろ液を減圧留去し、目的の化合物(7)を粗生成物として得た。DNA合成には化合物(7)の粗生成物をそのまま用いた。
6) Preparation of Compound (7) Compound (6) (46 mg, 0.059 mmol) obtained in the above step 5) was dissolved in 460 μl of anhydrous dichloromethane under an argon atmosphere, and 1H-tetrazole anhydrous acetonitrile solution (0.45 M, 196 μl, 0.088 mmol), 2-cyanoethyl-N, N, N ′, N′-tetraisopropyl phosphorodiamidite (28 μl, 0.089 mmol) was added. The solution was stirred at room temperature for 2 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solution was transferred to a separatory funnel, washed with saturated sodium bicarbonate water and distilled water, and the organic layer was washed with sodium sulfate. After drying, the reaction solvent was distilled off under reduced pressure. The residue was dissolved in 1 ml of anhydrous acetonitrile and filtered through Cosmonis filter S (solvent system, manufactured by Nacalai Tesque, Inc.). The filtrate was distilled off under reduced pressure to obtain the target compound (7) as a crude product. The crude product of compound (7) was used as it was for DNA synthesis.

7)化合物(7)からオリゴヌクレオチドを得る行程
前記工程6)で得られた化合物(7)を用いてDNA自動合成機(3400DNA/RNA シンセサイザ、アプライドバイオシステムズ社)を用いて目的とする配列(5’−CGCAATXTAACGC−3’ と5’−CGCAACXCAACGC−3’)を合成した。合成終了後、固層担体から切り出された溶液をエッペンドルフチューブに移し替え、37℃で18時間加熱し、脱保護を行った。得られたオリゴヌクレオチド鎖を高速液体クロマトグラフィー(PU−2080−puls, JASCO)で精製した。精製後、凍結乾燥で溶媒を減圧留去することにより目的の配列(5’−CGCAATXTAACGC−3’と5’−CGCAACXCAACGC−3’)のオリゴヌクレオチド鎖を得た。また、目的物はMALDI−TOF Mass(AXIMA−LNR,SHIMADZU)を使って確認した。
5’−CGCAATXTAACGC−3’[M+H]+:cacd.=4199.9744,found =4200.12
5’−CGCAACXCAACGC−3’[M+H]+:cacd.=4229.9980,found =4230.28
7) Step of obtaining oligonucleotide from compound (7) The target sequence (3400 DNA / RNA synthesizer, Applied Biosystems) using compound (7) obtained in the above step 6) using the target sequence ( 5′-CGCAATXTAACGC-3 ′ and 5′-CGCAACXCAACGC-3 ′) were synthesized. After completion of the synthesis, the solution cut out from the solid support was transferred to an Eppendorf tube and heated at 37 ° C. for 18 hours for deprotection. The obtained oligonucleotide chain was purified by high performance liquid chromatography (PU-2080-puls, JASCO). After purification, the solvent was distilled off under reduced pressure by lyophilization to obtain an oligonucleotide chain of the target sequence (5′-CGCAATXTAACGC-3 ′ and 5′-CGCAACXCAACGC-3 ′). Moreover, the target object was confirmed using MALDI-TOF Mass (AXIMA-LNR, SHIMADZU).
5′-CGCAATXTAACGC-3 ′ [M + H] +: cacc. = 41999.9744, found = 4200.12
5′-CGCAACXCAACGC-3 ′ [M + H] +: cacc. = 42299.9980, found = 4230.28

なお、上記は、2’−デオキシグアノシンを出発物質として用いた場合であるが、グアノシンを出発物質として用いた場合にも、同様の反応試薬及び反応条件を用いて、本発明の8−置換グアノシン誘導体ならびにオリゴヌクレオチドを製造することができる。また、化合物(4)を常法に従って脱保護することにより、上記式(I)で表される8−置換グアノシン誘導体に相当する化合物を中間生成物として得ることもできる。   The above is the case where 2′-deoxyguanosine is used as a starting material. However, even when guanosine is used as a starting material, the 8-replaced guanosine of the present invention is prepared using the same reaction reagent and reaction conditions. Derivatives as well as oligonucleotides can be produced. Moreover, the compound corresponding to the 8-substituted guanosine derivative represented by the above formula (I) can also be obtained as an intermediate product by deprotecting the compound (4) according to a conventional method.

次に、実施例1で示したもの以外の水素結合性置換基を有する8−置換グアノシン誘導体及びこれを用いたオリゴヌクレオチドの製造方法を実施例2〜4に示す。なお、実施例2〜4は、いずれも、2’−デオキシグアノシンの誘導体を出発物質として用いているが、グアノシン誘導体を出発物質とした場合も同様の反応試薬及び反応条件を用いて目的の化合物を製造することができる。   Next, Examples 2 to 4 show 8-substituted guanosine derivatives having hydrogen-bonding substituents other than those shown in Example 1 and methods for producing oligonucleotides using the same. In all of Examples 2 to 4, a derivative of 2′-deoxyguanosine is used as a starting material. However, when a guanosine derivative is used as a starting material, the target compound is obtained using the same reaction reagent and reaction conditions. Can be manufactured.

実施例2
前記式(b)または(f)で表される8−置換グアノシン誘導体(それぞれ、スキーム2の化合物(9)、化合物(12)に相当する。)、及びそれを用いたオリゴヌクレオチドは、下記のスキーム2に従って製造することができる。

Figure 2008162916
Example 2
The 8-substituted guanosine derivative represented by the formula (b) or (f) (corresponding to the compound (9) and the compound (12) of Scheme 2 respectively) and the oligonucleotide using the same are as follows. It can be prepared according to Scheme 2.
Figure 2008162916

1)化合物(8)の製造
前記工程で得られた化合物(4)を過剰量の28%アンモニア水に溶解させる。この溶液を室温で1日撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。これを分液漏斗に移し、クロロホルムで洗浄した後、水層を減圧留去して目的の化合物(8)を得ることができる。
1) Production of Compound (8) Compound (4) obtained in the above step is dissolved in an excess amount of 28% aqueous ammonia. This solution is stirred at room temperature for 1 day, and after confirming the disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. This is transferred to a separatory funnel and washed with chloroform, and then the aqueous layer is distilled off under reduced pressure to obtain the desired compound (8).

2)化合物(9a)の製造
前記工程で得られる化合物(8)を蒸留水に溶解させ、シアン酸カリウムを加える。この溶液を55℃で1日撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をHW−40Cにより精製して目的の化合物(9a)を得ることができる。
2) Production of Compound (9a) Compound (8) obtained in the above step is dissolved in distilled water, and potassium cyanate is added. The solution was stirred at 55 ° C. for 1 day, and disappearance of the starting material was confirmed by thin layer chromatography (TLC). Then, the reaction solvent was distilled off under reduced pressure, and the residue was purified by HW-40C to obtain the desired compound (9a). Obtainable.

3)化合物(9b)の製造
アルゴン雰囲気下、前記工程で得られた化合物(8)を蒸留水に溶解させ、炭酸カリウム、アミノイミノメタンスルホン酸を加える。この溶液を室温で1日撹拌し、逆層薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をHW−40Cにより精製して目的の化合物(9b)を得ることができる。
3) Production of compound (9b) In an argon atmosphere, the compound (8) obtained in the above step is dissolved in distilled water, and potassium carbonate and aminoiminomethanesulfonic acid are added. This solution was stirred at room temperature for 1 day. After confirming the disappearance of the raw materials by reverse layer thin layer chromatography (TLC), the reaction solvent was distilled off under reduced pressure, and the residue was purified by HW-40C to obtain the desired compound (9b). Can be obtained.

4)化合物(10)の製造
アルゴン雰囲気下、前記工程で得られた化合物(9)を無水N,N−ジメチルホルムアミドに溶解させ、N,N−ジメチルホルムアミドジエチルアセタール1mlを加える。この溶液を55℃で3時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール=7/1)により精製して目的の化合物(10)を得ることができる。
4) Production of Compound (10) In an argon atmosphere, the compound (9) obtained in the above step is dissolved in anhydrous N, N-dimethylformamide, and 1 ml of N, N-dimethylformamide diethyl acetal is added. This solution is stirred at 55 ° C. for 3 hours. After confirming the disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, solute solvent chloroform / methanol = 7/1) to obtain the target compound (10).

5)化合物(11)の製造
アルゴン雰囲気下、前記工程で得られた化合物(10)を無水ピリジンに溶解させ、4,4'−ジメトキシトリチルクロリド、N,N−ジメチルアミノピリジンを加える。この溶液を室温で8時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール/トリエチルアミン=89/10/1)により精製して目的の化合物(11)を得ることができる。
5) Production of Compound (11) In an argon atmosphere, the compound (10) obtained in the above step is dissolved in anhydrous pyridine, and 4,4′-dimethoxytrityl chloride and N, N-dimethylaminopyridine are added. This solution is stirred at room temperature for 8 hours, and after confirming disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, solute solvent chloroform / methanol / triethylamine = 89/10/1) to obtain the target compound (11).

6)化合物(12)の製造
アルゴン雰囲気下、前記工程で得られた化合物(11)を無水ジクロロメタンに溶解させ、1H−テトラゾール無水アセトニトリル溶液、2−シアノエチル−N,N,N’,N’−テトライソプロピルホスホロジアミダイトを加える。この溶液を室温で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、飽和重曹水および蒸留水で洗浄する。有機相を無水硫酸ナトリウムで乾燥させた後、反応溶媒を減圧留去する。残渣を無水アセトニトリル1mlに溶解し、コスモナイスフィルターS(溶媒系、ナカライテスク株式会社製)でろ過し、ろ液を減圧留去することで目的の化合物(12)を粗生成物として得ることができる。DNA合成には化合物(12)の粗生成物をそのまま用いることができる。
6) Production of Compound (12) Compound (11) obtained in the above step was dissolved in anhydrous dichloromethane under an argon atmosphere, and 1H-tetrazole anhydrous acetonitrile solution, 2-cyanoethyl-N, N, N ′, N′— Add tetraisopropyl phosphorodiamidite. This solution is stirred at room temperature for 2 hours, and after disappearance of raw materials is confirmed by thin layer chromatography (TLC), it is washed with saturated sodium bicarbonate water and distilled water. After drying the organic phase with anhydrous sodium sulfate, the reaction solvent is distilled off under reduced pressure. The residue can be dissolved in 1 ml of anhydrous acetonitrile, filtered through Cosmonis filter S (solvent system, manufactured by Nacalai Tesque), and the filtrate can be distilled off under reduced pressure to obtain the desired compound (12) as a crude product. it can. The crude product of compound (12) can be used as it is for DNA synthesis.

なお、化合物(12)からオリゴヌクレオチドを得る行程は、実施例1の化合物(7)からオリゴヌクレオチドを得る行程と同様にして行うことができる。実施例3及び4においても同様にして行うことができる。   The step of obtaining the oligonucleotide from the compound (12) can be performed in the same manner as the step of obtaining the oligonucleotide from the compound (7) of Example 1. It can carry out similarly in Example 3 and 4.

実施例3
前記式(c)または(g)で表される8−置換グアノシン誘導体(それぞれ、スキーム3の化合物(15)、化合物(18)に相当する。)、及びそれを用いたオリゴヌクレオチドは、下記のスキーム3に従って製造することができる。

Figure 2008162916
Example 3
The 8-substituted guanosine derivative represented by the formula (c) or (g) (corresponding to the compound (15) and the compound (18) in Scheme 3 respectively) and the oligonucleotide using the same are as follows. It can be prepared according to Scheme 3.
Figure 2008162916

1)化合物(13)の製造
8−ブロモ2’−デオキシグアノシン(2)をDMFに溶解し、2-Propynenitrile、パラジウムテトラキストリフェニルホスフィン、ヨウ化銅、トリエチルアミンを加えて室温で一晩撹拌する。反応溶媒を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製して化合物(13)を得ることができる。
1) Production of Compound (13) 8-Bromo 2′-deoxyguanosine (2) is dissolved in DMF, 2-Propynenitrile, palladium tetrakistriphenylphosphine, copper iodide and triethylamine are added and stirred overnight at room temperature. The reaction solvent is concentrated under reduced pressure, and the residue is purified by silica gel column chromatography to give compound (13).

2)化合物(14a)の製造
前工程で得られる化合物(13)を塩化水素ガスを飽和させたエタノールに溶解し0℃で20時間撹拌する。その後反応溶液を濃縮し残渣にアンモニアガスを溶解させたエタノールを加えて、室温で20時間撹拌する。反応溶媒を濃縮後、残渣を分取用TLCにより精製して化合物(14a)を得ることができる。
2) Production of Compound (14a) The compound (13) obtained in the previous step is dissolved in ethanol saturated with hydrogen chloride gas and stirred at 0 ° C. for 20 hours. Thereafter, the reaction solution is concentrated, ethanol in which ammonia gas is dissolved is added to the residue, and the mixture is stirred at room temperature for 20 hours. After concentration of the reaction solvent, the residue can be purified by preparative TLC to obtain compound (14a).

3)化合物(14b)の製造
前工程で得られる化合物(13)を塩化水素ガスを飽和させたエタノールに溶解し0℃で2時間撹拌する。反応溶液を濃縮し残渣に水を加え0℃で1時間撹拌する。その後反応溶液を濃縮し残渣を分取用逆相TLCにより精製して化合物(14b)を得ることができる。
3) Production of Compound (14b) Compound (13) obtained in the previous step is dissolved in ethanol saturated with hydrogen chloride gas and stirred at 0 ° C. for 2 hours. The reaction solution is concentrated, water is added to the residue, and the mixture is stirred at 0 ° C. for 1 hour. Thereafter, the reaction solution is concentrated, and the residue is purified by preparative reverse phase TLC to obtain the compound (14b).

4)化合物(14c)の製造
前工程で得られる化合物(14b)を封管中でメタノールに溶解し、液体アンモニアを加えて室温で14時間撹拌する。反応溶液を濃縮し残渣を分取用逆相TLCにより精製して化合物(14c)を得ることができる。
4) Production of compound (14c) Compound (14b) obtained in the previous step is dissolved in methanol in a sealed tube, and liquid ammonia is added thereto, followed by stirring at room temperature for 14 hours. The reaction solution is concentrated, and the residue can be purified by preparative reverse phase TLC to give compound (14c).

5)化合物(14d)の製造
前工程で得られる化合物(13)を無水ピリジンに溶解し、トリエチルアミンを加えて0℃で硫化水素ガスを飽和させる。その後栓をして、室温で14時間撹拌する。反応溶媒を濃縮後、残渣を分取用TLCにより精製して化合物(14d)を得ることができる。
5) Production of Compound (14d) The compound (13) obtained in the previous step is dissolved in anhydrous pyridine, and triethylamine is added to saturate the hydrogen sulfide gas at 0 ° C. Then plug and stir at room temperature for 14 hours. After concentrating the reaction solvent, the residue can be purified by preparative TLC to give compound (14d).

6)化合物(15)の製造
前記工程2)〜5)で得られる化合物(14a〜d)を無水エタノールに溶解する。この溶液にパラジウムカーボン(10%)を加え、水素に置換した後、室温で2時間撹拌させ、ろ過によってパラジウムカーボンを除去し、再度、溶媒メタノールに溶解し、パラジウムカーボン(10%)を加え、水素に置換した後、室温で14時間撹拌させる。薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール)により精製し化合物(15)を得ることができる。
6) Production of Compound (15) The compounds (14a to d) obtained in the above steps 2) to 5) are dissolved in absolute ethanol. After adding palladium carbon (10%) to this solution and replacing with hydrogen, the mixture was stirred at room temperature for 2 hours, filtered to remove palladium carbon, dissolved again in solvent methanol, palladium carbon (10%) was added, After replacing with hydrogen, the mixture is stirred at room temperature for 14 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure, and the residue is purified by column chromatography (silica gel, solute solvent chloroform / methanol) to obtain compound (15).

7)化合物(16)の製造
前記工程6)で得られる化合物(15)をアルゴン雰囲気下、無水N,N−ジメチルホルムアミドに溶解し、N,N’−ジメチルホルムアミドジエチルアセタールを加える。この溶液を50℃で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール)により精製して目的の化合物(16)を得ることができる。
7) Production of Compound (16) Compound (15) obtained in the above step 6) is dissolved in anhydrous N, N-dimethylformamide under an argon atmosphere, and N, N′-dimethylformamide diethyl acetal is added. This solution is stirred at 50 ° C. for 2 hours. After confirming disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, solute solvent chloroform / methanol) to obtain the target compound (16).

8)化合物(17)の製造
アルゴン雰囲気下、前記工程7)で得られる化合物(16)を無水ピリジンに溶解し、4,4’−ジメトキシトリチルクロリド,N,N−ジメチルアミノピリジンを加える。この溶液を室温で1時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶出溶媒 クロロホルム/メタノール/トリエチルアミン)により精製して目的の化合物(17)を得ることができる。
8) Production of Compound (17) Compound (16) obtained in the above step 7) is dissolved in anhydrous pyridine under an argon atmosphere, and 4,4′-dimethoxytrityl chloride, N, N-dimethylaminopyridine is added. This solution is stirred at room temperature for 1 hour. After confirming disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, elution solvent chloroform / methanol / triethylamine) to obtain the desired compound (17).

9)化合物(18)の製造
アルゴン雰囲気下、前記工程8)で得られる化合物(17)を無水ジクロロメタンに溶解し、1H−テトラゾール無水アセトニトリル溶液(0.45M)、2−シアノエチル−N,N,N’,N’−テトライソプロピルホスホロジアミダイトを加える。この溶液を室温で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応液を分液漏斗に移し、飽和重曹水、蒸留水で洗浄し、有機層を硫酸ナトリウムで乾燥させた後、反応溶媒を減圧留去する。残渣を無水アセトニトリル1mlに溶解し、コスモナイスフィルターS(溶媒系、ナカライテスク株式会社製)でろ過する。ろ液を減圧留去し、目的の化合物(18)を粗生成物として得ることができる。DNA合成には化合物(18)の粗生成物をそのまま用いることができる。
9) Preparation of Compound (18) Compound (17) obtained in the above step 8) was dissolved in anhydrous dichloromethane under an argon atmosphere, and 1H-tetrazole anhydrous acetonitrile solution (0.45M), 2-cyanoethyl-N, N, Add N ', N'-tetraisopropyl phosphorodiamidite. The solution was stirred at room temperature for 2 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solution was transferred to a separatory funnel, washed with saturated sodium bicarbonate water and distilled water, and the organic layer was washed with sodium sulfate. After drying, the reaction solvent is distilled off under reduced pressure. The residue is dissolved in 1 ml of anhydrous acetonitrile and filtered through a Cosmonis filter S (solvent system, manufactured by Nacalai Tesque). The filtrate can be distilled off under reduced pressure to obtain the target compound (18) as a crude product. The crude product of compound (18) can be used as it is for DNA synthesis.

実施例4
前記式(d)または(h)で表される8−置換グアノシン誘導体(それぞれ、スキーム4の化合物(20)、化合物(23)に相当する。)、及びそれを用いたオリゴヌクレオチドは、下記のスキーム4に従って製造することができる。

Figure 2008162916
Example 4
The 8-substituted guanosine derivative represented by the formula (d) or (h) (corresponding to the compound (20) and the compound (23) in Scheme 4 respectively) and the oligonucleotide using the same are as follows. It can be produced according to scheme 4.
Figure 2008162916

1)化合物(19)の製造
8−ブロモ2’−デオキシグアノシン(2)をDMFに溶解し、パラジウムテトラキストリフェニルホスフィン、ヨウ化銅、トリエチルアミン、プロパルギルアセテート(19a)またはtert-butyl propargyl disulfide(19b)を加えて室温で一晩撹拌する。反応溶媒を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製して化合物(13)を得ることができる。
1) Production of Compound (19) 8-Bromo 2′-deoxyguanosine (2) is dissolved in DMF, and palladium tetrakistriphenylphosphine, copper iodide, triethylamine, propargyl acetate (19a) or tert-butyl propargyl disulfide (19b) is dissolved. ) And stirred overnight at room temperature. The reaction solvent is concentrated under reduced pressure, and the residue is purified by silica gel column chromatography to give compound (13).

2)化合物(20)の製造
前記工程1)で得られる化合物(19aまたは19b)を無水エタノールに溶解する。この溶液にパラジウムカーボン(10%)を加え、水素に置換した後、室温で2時間撹拌させ、ろ過によってパラジウムカーボンを除去し、再度、溶媒メタノールに溶解し、パラジウムカーボン(10%)を加え、水素に置換した後、室温で14時間撹拌する。薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去し、残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール)により精製し化合物(20)を得ることができる。
2) Production of Compound (20) The compound (19a or 19b) obtained in the above step 1) is dissolved in absolute ethanol. After adding palladium carbon (10%) to this solution and replacing with hydrogen, the mixture was stirred at room temperature for 2 hours, filtered to remove palladium carbon, dissolved again in solvent methanol, palladium carbon (10%) was added, After replacing with hydrogen, the mixture is stirred at room temperature for 14 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure, and the residue is purified by column chromatography (silica gel, solute solvent chloroform / methanol) to obtain compound (20).

3)化合物(21)の製造
前記工程2)で得られる化合物(20)をアルゴン雰囲気下、無水N,N−ジメチルホルムアミドに溶解し、N,N’−ジメチルホルムアミドジエチルアセタールを加える。この溶液を50℃で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶質溶媒 クロロホルム/メタノール)により精製して目的の化合物(21)を得ることができる。
3) Production of Compound (21) Compound (20) obtained in the above step 2) is dissolved in anhydrous N, N-dimethylformamide under an argon atmosphere, and N, N′-dimethylformamide diethyl acetal is added. This solution is stirred at 50 ° C. for 2 hours. After confirming disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, solute solvent chloroform / methanol) to obtain the desired compound (21).

4)化合物(22)の製造
アルゴン雰囲気下、前記工程3)で得られる化合物(21)を無水ピリジンに溶解し、4,4’−ジメトキシトリチルクロリド、N,N−ジメチルアミノピリジンを加える。この溶液を室温で1時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応溶媒を減圧留去する。残渣をカラムクロマトグラフィー(シリカゲル、溶出溶媒 クロロホルム/メタノール/トリエチルアミン)により精製して目的の化合物(22)を得ることができる。
4) Production of Compound (22) In an argon atmosphere, the compound (21) obtained in Step 3) is dissolved in anhydrous pyridine, and 4,4′-dimethoxytrityl chloride and N, N-dimethylaminopyridine are added. This solution is stirred at room temperature for 1 hour. After confirming disappearance of the raw material by thin layer chromatography (TLC), the reaction solvent is distilled off under reduced pressure. The residue can be purified by column chromatography (silica gel, elution solvent chloroform / methanol / triethylamine) to obtain the target compound (22).

5)化合物(23)の製造
アルゴン雰囲気下、前記工程4)で得られる化合物(22)を無水ジクロロメタンに溶解し、1H−テトラゾール無水アセトニトリル溶液(0.45M)、2−シアノエチル−N,N,N’,N’−テトライソプロピルホスホロジアミダイトを加える。この溶液を室温で2時間撹拌し、薄層クロマトグラフィー(TLC)で原料の消失を確認後、反応液を分液漏斗に移し、飽和重曹水、蒸留水で洗浄し、有機層を硫酸ナトリウムで乾燥させた後、反応溶媒を減圧留去する。残渣を無水アセトニトリル1mlに溶解し、コスモナイスフィルターS(溶媒系、ナカライテスク株式会社製)でろ過する。ろ液を減圧留去し、目的の化合物(23)を粗生成物として得ることができる。DNA合成には化合物(23)の粗生成物をそのまま用いることができる。
5) Preparation of compound (23) Under argon atmosphere, compound (22) obtained in the above step 4) was dissolved in anhydrous dichloromethane, and 1H-tetrazole anhydrous acetonitrile solution (0.45M), 2-cyanoethyl-N, N, Add N ', N'-tetraisopropyl phosphorodiamidite. The solution was stirred at room temperature for 2 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the reaction solution was transferred to a separatory funnel, washed with saturated sodium bicarbonate water and distilled water, and the organic layer was washed with sodium sulfate. After drying, the reaction solvent is distilled off under reduced pressure. The residue is dissolved in 1 ml of anhydrous acetonitrile and filtered through a Cosmonis filter S (solvent system, manufactured by Nacalai Tesque). The filtrate can be distilled off under reduced pressure to obtain the target compound (23) as a crude product. The crude product of compound (23) can be used as it is for DNA synthesis.

本発明の8−置換グアノシン誘導体及びオリゴヌクレオチドは、抗癌剤、抗ウィルス剤、抗HIV等の核酸系医薬品として、また、遺伝子関連産業の試薬またはツールとして広範囲に利用できる可能性がある。   The 8-substituted guanosine derivatives and oligonucleotides of the present invention may be widely used as nucleic acid drugs such as anticancer agents, antiviral agents, and anti-HIVs, and as reagents or tools for gene-related industries.

Claims (9)

下記式(I):
Figure 2008162916
(式中、R1は水素結合性置換基であり、R2は水素原子または水酸基であり、nは1〜10の整数である。)で表される8−置換グアノシン誘導体。
The following formula (I):
Figure 2008162916
(Wherein, R 1 is a hydrogen-bonding substituent, R 2 is a hydrogen atom or a hydroxyl group, and n is an integer of 1 to 10).
1は、−NH2、−SH、−CN、−OH、−NH−C(=R)NH2(Rは酸素原子またはイミノ基を表す。)、−COOR’(R’は水素原子または低級アルキル基を表す。)、−CONH2、−CSNH2、−C(=NH)NH2、−NH−COCF3、−OCOCH3及び−S−S(CH33からなる群から選ばれるものである、請求項1記載の8−置換グアノシン誘導体。 R 1 is —NH 2 , —SH, —CN, —OH, —NH—C (═R) NH 2 (R represents an oxygen atom or an imino group), —COOR ′ (R ′ is a hydrogen atom or Represents a lower alkyl group.), —CONH 2 , —CSNH 2 , —C (═NH) NH 2 , —NH—COCF 3 , —OCOCH 3 and —S—S (CH 3 ) 3. The 8-substituted guanosine derivative according to claim 1, wherein 下記式(a):
Figure 2008162916
(式中、R2は水素原子または水酸基である。);
下記式(b):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基である。);
下記式(c):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR”(R”は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2である。);あるいは
下記式(d):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33である。)
で表されるものである請求項1記載の8−置換グアノシン誘導体。
The following formula (a):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group);
The following formula (b):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and R 3 is an oxygen atom or an imino group);
The following formula (c):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 4 is —C (═NH) NH 2 , —COOR ″ (R ″ represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 ); or the following formula (d):
Figure 2008162916
(In the formula, R 2 is a hydrogen atom or a hydroxyl group, and R 5 is —OCOCH 3 or —S—S (CH 3 ) 3. )
The 8-substituted guanosine derivative according to claim 1, which is represented by:
下記式(II):
Figure 2008162916
(式中、R6は水素結合性置換基を含む有機基であり、R2は水素原子または水酸基であり、DMTrはジメトキシトリチル基であり、nは1〜10の整数である。)で表される8−置換グアノシン誘導体。
Formula (II) below:
Figure 2008162916
(Wherein R 6 is an organic group containing a hydrogen bonding substituent, R 2 is a hydrogen atom or a hydroxyl group, DMTr is a dimethoxytrityl group, and n is an integer of 1 to 10). 8-substituted guanosine derivatives.
1は、−NH2、−SH、−CN、−OH、−NH−C(=R)NH2(Rは酸素原子またはイミノ基を表す。)、−COOR’(R’は水素原子または低級アルキル基を表す。)、−CONH2、−CSNH2、−C(=NH)NH2、−NH−COCF3、−OCOCH3及び−S−S(CH33からなる群から選ばれるものである、請求項4記載の8−置換グアノシン誘導体。 R 1 is —NH 2 , —SH, —CN, —OH, —NH—C (═R) NH 2 (R represents an oxygen atom or an imino group), —COOR ′ (R ′ is a hydrogen atom or Represents a lower alkyl group.), —CONH 2 , —CSNH 2 , —C (═NH) NH 2 , —NH—COCF 3 , —OCOCH 3 and —S—S (CH 3 ) 3. The 8-substituted guanosine derivative according to claim 4, wherein 下記式(e):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、DMTrはジメトキシトリチル基である。);
下記式(f):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R3は酸素原子またはイミノ基であり、DMTrはジメトキシトリチル基である。);
下記式(g):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R4は−C(=NH)NH2、−COOR”(R”は水素原子または低級アルキル基を表す。)、−CONH2または−CSNH2であり、DMTrはジメトキシトリチル基である。);あるいは
下記式(h):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R5は−OCOCH3または−S−S(CH33であり、DMTrはジメトキシトリチル基である。)
で表されるものである、請求項4記載の8−置換グアノシン誘導体。
The following formula (e):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, and DMTr is a dimethoxytrityl group);
Formula (f) below:
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 3 is an oxygen atom or an imino group, and DMTr is a dimethoxytrityl group);
The following formula (g):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 4 is —C (═NH) NH 2 , —COOR ″ (R ″ represents a hydrogen atom or a lower alkyl group), —CONH 2 or —CSNH. 2 and DMTr is a dimethoxytrityl group); or the following formula (h):
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 5 is —OCOCH 3 or —S—S (CH 3 ) 3 , and DMTr is a dimethoxytrityl group.)
The 8-substituted guanosine derivative | guide_body of Claim 4 which is represented by these.
下記式(III):
Figure 2008162916
(式中、R2は水素原子または水酸基であり、R6は水素結合性置換基を含む有機基であり、mは0〜9である。)で表される化合物を、糖部分の水酸基を無保護条件下、接触水添させる工程を含む、請求項1から6までの何れか記載の8−置換グアノシン誘導体の製造方法。
Formula (III) below:
Figure 2008162916
(Wherein R 2 is a hydrogen atom or a hydroxyl group, R 6 is an organic group containing a hydrogen-bonding substituent, and m is 0 to 9). The method for producing an 8-substituted guanosine derivative according to any one of claims 1 to 6, comprising a step of contact hydrogenation under unprotected conditions.
水素結合性置換基を8位に有するグアニン誘導体を含むオリゴヌクレオチド。   An oligonucleotide comprising a guanine derivative having a hydrogen bonding substituent at the 8-position. 請求項4から6までの何れかに記載の8−置換グアノシン誘導体を用いることを含む、請求項8記載のオリゴヌクレオチドの製造方法。   The method for producing an oligonucleotide according to claim 8, comprising using the 8-substituted guanosine derivative according to any one of claims 4 to 6.
JP2006352017A 2006-12-27 2006-12-27 8-substituted guanosine derivatives having hydrogen-bonding substituents and oligonucleotides containing the same Expired - Fee Related JP5105404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352017A JP5105404B2 (en) 2006-12-27 2006-12-27 8-substituted guanosine derivatives having hydrogen-bonding substituents and oligonucleotides containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352017A JP5105404B2 (en) 2006-12-27 2006-12-27 8-substituted guanosine derivatives having hydrogen-bonding substituents and oligonucleotides containing the same

Publications (2)

Publication Number Publication Date
JP2008162916A true JP2008162916A (en) 2008-07-17
JP5105404B2 JP5105404B2 (en) 2012-12-26

Family

ID=39692874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352017A Expired - Fee Related JP5105404B2 (en) 2006-12-27 2006-12-27 8-substituted guanosine derivatives having hydrogen-bonding substituents and oligonucleotides containing the same

Country Status (1)

Country Link
JP (1) JP5105404B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169240A (en) * 2004-11-18 2006-06-29 Kyoto Univ Prodan-containing nucleotide and utilization of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169240A (en) * 2004-11-18 2006-06-29 Kyoto Univ Prodan-containing nucleotide and utilization of the same

Also Published As

Publication number Publication date
JP5105404B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US5428149A (en) Method for palladium catalyzed carbon-carbon coulping and products
JP2002543214A (en) L-ribo-LNA analog
JPH10501809A (en) Novel method for producing known and novel 2&#39;-nucleosides by intramolecular nucleophilic substitution
JP2011521930A (en) RNA chemical synthesis method
CA2561741A1 (en) Processes and reagents for oligonucleotide synthesis and purification
KR20190065341A (en) Method of joining oligomeric compounds
JP2022183382A (en) Improved process for preparing imetelstat
JP5194256B2 (en) 2 &#39;hydroxyl group-modified ribonucleoside derivative
JP7475056B2 (en) Method for producing photoresponsive nucleotide analogues
JP5076504B2 (en) Amidite for nucleic acid synthesis and nucleic acid synthesis method
Saneyoshi et al. Chemical synthesis of RNA via 2′-O-cyanoethylated intermediates
JP5105404B2 (en) 8-substituted guanosine derivatives having hydrogen-bonding substituents and oligonucleotides containing the same
JP6501753B2 (en) Ribonucleoside analog having an azide group, method for producing the same, and chimeric oligoribonucleotide analog containing triazole-linked oligoribonucleotide formed from the analog
JP6429264B2 (en) Boranophosphate compounds and nucleic acid oligomers
WO2022255469A1 (en) Chimeric nucleic acid oligomer including phosphorothioate and boranophosphate, and method for producing same
JP4805143B2 (en) Novel artificial RNA modified with 2 &#39;hydroxyl group
JP4180681B2 (en) Antisense oligonucleotide
WO2023149564A1 (en) Method for producing oligonucleotides
JP7298866B2 (en) Solid phase carrier for nucleic acid synthesis and method for producing nucleic acid using the same
JP2009256335A (en) Preparation method of ribonucleic acid having alkyl protective group at position 2&#39;
JPH0374239B2 (en)
JP2002501929A (en) Novel synthons for oligonucleotide synthesis
JP2021059518A (en) Nucleotide-modified solid-phase carriers, method for producing dna chain and rna chain-modified carriers, and methods for producing dna and rna
EP1565479B1 (en) 2&#39;-o-trisubstituted silyloxymethyl-ribonucleoside-derivative and method for preparing the same
RU2440364C2 (en) Synthesis of phosphitylated compounds using quaternary heterocyclic activator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees