JP2008161920A - Immersed nozzle with japanese hand drum shape weir - Google Patents

Immersed nozzle with japanese hand drum shape weir Download PDF

Info

Publication number
JP2008161920A
JP2008161920A JP2006355978A JP2006355978A JP2008161920A JP 2008161920 A JP2008161920 A JP 2008161920A JP 2006355978 A JP2006355978 A JP 2006355978A JP 2006355978 A JP2006355978 A JP 2006355978A JP 2008161920 A JP2008161920 A JP 2008161920A
Authority
JP
Japan
Prior art keywords
immersion nozzle
molten steel
protrusion
see
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006355978A
Other languages
Japanese (ja)
Other versions
JP4750013B2 (en
Inventor
Hitoshi Yoshida
仁 吉田
Masafumi Morishita
雅史 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006355978A priority Critical patent/JP4750013B2/en
Publication of JP2008161920A publication Critical patent/JP2008161920A/en
Application granted granted Critical
Publication of JP4750013B2 publication Critical patent/JP4750013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an immersed nozzle which can suppress drift currents in the directions of the thickness and width of a casting mold. <P>SOLUTION: The cylindrical immersed nozzle having a bottom is used for pouring molten steel to be held in a tundish into a casting mold. A pair of opposed molten steel discharging ports are formed on the peripheral wall of the immersed nozzle, and also a projecting portion is provided on the inside bottom surface so as to be parallel with the opening direction of the molten steel discharging ports in a bottom view. Further, the immersed nozzle satisfies the expression (1) of h/H=0.5 to 2.0 and the expression (2) of (a-b)/D=0.15 to 0.45, where h is the height of the upper surface of the projecting portion in the normal cross section for the elongating direction of the projecting portion; H is the distance between the lower end of the inner peripheral side opening edge of the molten steel discharging ports and the inside bottom surface; a is the width of the upper surface of the projecting portion of the immersed nozzle in a bottom view at the end portions of the projecting portion in the elongating direction; b is the width of the upper surface of the projecting portion of the immersed nozzle in a bottom view at the middle portion of the projecting portion in the elongating direction, and D is the inside diameter of the immersed nozzle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造用浸漬ノズルに係り、特に底部湯溜り部に突部を設けて鋳型厚み方向及び幅方向の偏流抑制を図った連続鋳造用浸漬ノズルに関する。   The present invention relates to an immersion nozzle for continuous casting, and more particularly to an immersion nozzle for continuous casting in which a protrusion is provided at the bottom of the sump to suppress drift in the mold thickness direction and the width direction.

従来の浸漬ノズルでは、ノズル底部に鋳造開始時のスプラッシュ低減を目的として湯溜り部が形成されている。ノズル吐出孔上方ノズル内において鋳型厚み方向に速度勾配を有する流れが発生したとき、ノズル底部の湯溜り部における圧力勾配からノズル底部を横切る流れが生じて吐出孔部において吐出方向を軸とした大きな単一の回転流が発生する。この偏流は溶鋼流量を調節するスライドプレートの開閉方向に依存せず発生する(非特許文献1及び非特許文献2参照)。この局所的に強い流れが鋳型コーナー部におけるシェルの再溶解を促し、凝固遅れを発生させる。この凝固遅れが大きいときには鋳片のブレークアウトに繋がる。   In the conventional immersion nozzle, a hot water reservoir is formed at the nozzle bottom for the purpose of reducing splash at the start of casting. When a flow having a velocity gradient in the mold thickness direction occurs in the nozzle above the nozzle discharge hole, a flow across the nozzle bottom is generated from the pressure gradient in the hot water pool at the bottom of the nozzle, and the discharge hole is large with the discharge direction as the axis. A single rotating flow is generated. This drift occurs regardless of the opening / closing direction of the slide plate that adjusts the molten steel flow rate (see Non-Patent Document 1 and Non-Patent Document 2). This locally strong flow promotes remelting of the shell at the mold corner and causes a solidification delay. When this solidification delay is large, it leads to breakout of the slab.

このような偏流を抑制するために、ノズル内底部に吐出方向に平行な一本の尾根状突起物を設置する発明がある(特許文献1参照)。   In order to suppress such drift, there is an invention in which a single ridge-like protrusion parallel to the discharge direction is installed on the inner bottom of the nozzle (see Patent Document 1).

また、湯溜り部に突起部を設け、この突起部を、長方形状の底面と、この底面から直立し対向する二等辺三角形の2個の垂直端面と、この垂直端面の辺に沿って傾斜し対向する長方形の2個の傾斜面を有する三角柱等とし、前記の垂直面を各々吐出孔に対向させる発明もある(特許文献2参照)。   In addition, a protrusion is provided in the hot water reservoir, and the protrusion is inclined along a rectangular bottom surface, two vertical end surfaces of an isosceles triangle that are upright and opposed from the bottom surface, and a side of the vertical end surface. There is also an invention in which a triangular prism having two inclined surfaces facing each other is used, and the vertical surfaces are opposed to the discharge holes, respectively (see Patent Document 2).

市川健治、外2名、「浸漬ノズル管内の流れについて[タンディッシュSNに関する水モデル実験結果;第3報]」、耐火物、耐火物技術協会、1990年1月、第42巻、第1号、p.43-46Kenji Ichikawa and two others, “Flows in Immersion Nozzle Tubes [Water Model Experiment Results on Tundish SN; Third Report]”, Refractory, Refractory Technology Association, January 1990, Vol. 42, No. 1 , P.43-46 A.R.マンデラス(A.R.Manderas)、「浸漬ノズル内の2相流に関する動力学と、当該流動が鋳型内2相流に及ぼす影響(Dynamics of two-phase downwards flow in submerged entry nozzle and its influence on the two-phase flow in the mold)」、Int.J.混相流(International Journal of Multiphase Flow)、オランダ、ELSEVIER、2005年、第31巻、p.643-665ARanderas, “Dynamics of two-phase downwards flow in submerged entry nozzle and its influence on the two- phase flow in the mold ”, Int. J. International Journal of Multiphase Flow, Netherlands, ELSEVIER, 2005, Vol. 31, p.643-665 国際公開2005/070589号パンフレットInternational publication 2005/070589 pamphlet 特開2005-125389号公報(図4、図5参照)JP 2005-125389 A (see FIGS. 4 and 5)

しかしながら、この特許文献1及び2に記載されているように突起物の幅が一定の場合、鋳型幅方向の偏流が顕著に現れる。その結果、幅方向の偏流によって鋳型コーナー部の凝固遅れは十分には抑制されない。   However, as described in Patent Documents 1 and 2, when the width of the protrusion is constant, the drift in the mold width direction appears remarkably. As a result, the solidification delay at the mold corner is not sufficiently suppressed by the drift in the width direction.

本発明は斯かる諸点に鑑みてなされたものであり、その主な目的は、鋳型厚み方向と幅方向の偏流が抑制される浸漬ノズルを提供することにある。   This invention is made | formed in view of such various points, The main objective is to provide the immersion nozzle by which the drift of a mold thickness direction and a width direction is suppressed.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

本発明の観点によれば、以下のように構成される浸漬ノズルが提供される。即ち、タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供される有底円筒状の浸漬ノズルである。該浸漬ノズルの内側底面から所定距離上方へ離れた位置において該浸漬ノズルの周壁に一対の対向する溶鋼吐出孔が穿孔されると共に、前記内側底面には該浸漬ノズルの底面視において前記溶鋼吐出孔の穿孔方向と平行に延在する突部が設けられ、更に下記式(1)及び(2)を満足する。
h/H=0.5〜2.0・・・(1)
(a-b)/D=0.15〜0.45・・・(2)
ただし、
h:前記突部の延在方向に対する垂直断面における該突部の上面の高さ
H:前記溶鋼吐出孔の内周側開口縁の下端と前記内側底面との間の距離
a:前記浸漬ノズルの底面視における前記突部の上面の幅であって、該突部の延在方向端部における幅
b:前記浸漬ノズルの底面視における前記突部の上面の幅であって、該突部の延在方向中央における幅
D:前記浸漬ノズルの内径
According to the viewpoint of this invention, the immersion nozzle comprised as follows is provided. That is, it is a bottomed cylindrical immersion nozzle provided for pouring molten steel held in the tundish into the mold. A pair of opposed molten steel discharge holes are drilled in the peripheral wall of the immersion nozzle at a position away from the inner bottom surface of the immersion nozzle by a predetermined distance, and the molten steel discharge hole is viewed from the bottom surface of the immersion nozzle in the bottom view of the immersion nozzle. A protrusion extending in parallel with the perforating direction is provided, and further satisfies the following expressions (1) and (2).
h / H = 0.5-2.0 ... (1)
(ab) /D=0.15~0.45 ... (2)
However,
h: the height of the upper surface of the protrusion in a cross section perpendicular to the extending direction of the protrusion
H: Distance between the lower end of the inner peripheral opening edge of the molten steel discharge hole and the inner bottom surface
a: The width of the top surface of the protrusion in the bottom view of the immersion nozzle, and the width at the end of the protrusion in the extending direction
b: The width of the upper surface of the protrusion in the bottom view of the immersion nozzle, and the width of the protrusion in the center in the extending direction
D: Inner diameter of the immersion nozzle

この構成によれば、鋳型厚み方向と幅方向の偏流を抑制し、鋳造開始時のスプラッシュを低減した連続鋳造用浸漬ノズルを提供できる。   According to this configuration, it is possible to provide an immersion nozzle for continuous casting that suppresses the drift in the mold thickness direction and the width direction and reduces the splash at the start of casting.

上記の浸漬ノズルは、更に、以下のように構成されるとよい。即ち、下記式(3)を満足する。
s/S=0.15〜0.5・・・(3)
ただし、
s:前記浸漬ノズルの底面視における前記突部の上面の投影面積
S:前記浸漬ノズルの底面視において観念し得る該浸漬ノズルの流路断面積
The above immersion nozzle may be further configured as follows. That is, the following formula (3) is satisfied.
s / S = 0.15-0.5 ... (3)
However,
s: Projected area of the upper surface of the protrusion in the bottom view of the immersion nozzle
S: Channel cross-sectional area of the immersion nozzle that can be conceived in the bottom view of the immersion nozzle

この構成によれば、スプラッシュ抑制効果が有効に奏される。   According to this configuration, the splash suppression effect is effectively achieved.

以下、図面を参照しつつ、本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る浸漬ノズルの縦断面図である。図2は、図1の2-2線矢視断面図である。図3は、図1の3-3線矢視断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of an immersion nozzle according to an embodiment of the present invention. 2 is a cross-sectional view taken along line 2-2 in FIG. 3 is a cross-sectional view taken along line 3-3 in FIG.

図1に示される浸漬ノズル1は、鋼の連続鋳造において、タンディッシュ内に保持される溶鋼を鋳型内へ滑らかに注湯するのに供される有底円筒状のものであって、その使用状態においては垂直とされる。   The immersion nozzle 1 shown in FIG. 1 has a bottomed cylindrical shape used for smoothly pouring molten steel held in a tundish into a mold in continuous casting of steel. The state is vertical.

本図に示す如く浸漬ノズル1は、中空円筒状の耐火物により構成され、その下端は閉塞される。この浸漬ノズル1の内側底面2から所定距離上方へ離れた位置において該浸漬ノズル1の周壁に一対の対向する溶鋼吐出孔3が穿孔される(図2も併せて参照)。更に、前記内側底面2には浸漬ノズル1の底面視(図3参照)において前記溶鋼吐出孔3の穿孔方向3Aと平行に延在する突部4が設けられる。具体的には下記の通りである。   As shown in the figure, the immersion nozzle 1 is made of a hollow cylindrical refractory, and its lower end is closed. A pair of opposed molten steel discharge holes 3 are drilled in the peripheral wall of the immersion nozzle 1 at a position away from the inner bottom surface 2 of the immersion nozzle 1 by a predetermined distance (see also FIG. 2). Further, the inner bottom surface 2 is provided with a protrusion 4 extending in parallel with the drilling direction 3A of the molten steel discharge hole 3 in the bottom view of the immersion nozzle 1 (see FIG. 3). Specifically, it is as follows.

前記の浸漬ノズル1の周壁の耐火物厚み(図3において符号gで示す。)と、同じく底壁の耐火物厚みは略同一とされる。前記の溶鋼吐出孔3は、タンディッシュから浸漬ノズル1へ流入する溶鋼を鋳型内へ適宜に吐出するための孔であって、一端は該浸漬ノズル1の内周面に接続され、他端は該浸漬ノズル1の外周面に接続され、更に、図2に示す垂直断面視において溶鋼吐出孔3はその穿孔方向が若干斜め下向きとなるように形成される。詳しくは、図2に示す垂直断面視において、この溶鋼吐出孔3の内底面3gと水平との為す角度θ1[deg]は-10〜60に設定される。溶鋼吐出孔3の内周側開口縁3aは、図1に示す垂直断面視において角部に若干の丸みを帯びた矩形とされ、溶鋼吐出孔3の外周側開口縁3bも同様である。なお、この溶鋼吐出孔3の外周側開口縁3bは内周側開口縁3aよりも幅広に形成され、もって、図3に示す底面視において溶鋼吐出孔3は、内周側開口縁3aから外周側開口縁3bへ向かうにつれて徐々に拡大するように形成される。内周側開口縁3aの幅は本図において符号fで示され、外周側開口縁3bの幅は同じく符号eで示す。 The thickness of the refractory on the peripheral wall of the immersion nozzle 1 (indicated by symbol g in FIG. 3) and the thickness of the refractory on the bottom wall are substantially the same. The molten steel discharge hole 3 is a hole for appropriately discharging the molten steel flowing from the tundish into the immersion nozzle 1 into the mold, and one end is connected to the inner peripheral surface of the immersion nozzle 1, and the other end is Connected to the outer peripheral surface of the immersion nozzle 1, and further, the molten steel discharge hole 3 is formed so that the drilling direction is slightly inclined downward in a vertical sectional view shown in FIG. Specifically, in the vertical sectional view shown in FIG. 2, the angle θ 1 [deg] between the inner bottom surface 3g of the molten steel discharge hole 3 and the horizontal is set to −10 to 60. The inner peripheral opening edge 3a of the molten steel discharge hole 3 has a rectangular shape with a slightly rounded corner in the vertical sectional view shown in FIG. 1, and the same applies to the outer peripheral opening edge 3b of the molten steel discharge hole 3. The outer peripheral opening edge 3b of the molten steel discharge hole 3 is formed wider than the inner peripheral opening edge 3a, so that the molten steel discharge hole 3 has an outer periphery from the inner peripheral opening edge 3a in the bottom view shown in FIG. It forms so that it may expand gradually as it goes to the side opening edge 3b. The width of the inner periphery side opening edge 3a is indicated by a symbol f in the figure, and the width of the outer periphery side opening edge 3b is also indicated by a symbol e.

前記の突部4は、図3に示す底面視において延在方向中央が狭窄された所謂鼓型とされる。この突部4の形状を以下に詳細に説明する。   The protrusion 4 has a so-called drum shape in which the center in the extending direction is narrowed in the bottom view shown in FIG. The shape of the protrusion 4 will be described in detail below.

突部4は、前述したように本図に示す底面視において、前記溶鋼吐出孔3の穿孔方向3Aと平行に延在し、その端部は図2にも示すように浸漬ノズル1の内周面に至る。この突部4の延在方向に対する垂直断面(図1に示す垂直断面視)における該突部4の上面の高さ(内側底面2からの高さ)を符号hで観念し、前記溶鋼吐出孔3の内周側開口縁3aの下端と前記内側底面2との間の距離を符号Hで観念すると、下記式(1)が満足される。ただし、前記突部4の上面は必ずしも平坦である必要はなく、角部に若干の丸みを形成するなどの設計変更は許容される。更に、図3に示される浸漬ノズル1の底面視における突部4の上面の幅であって、該突部4の延在方向端部における幅を符号aで観念し、同様に、該突部4の延在方向中央における幅を符号bで観念すると、下記式(2)が満足される。なお、下記式(2)において変数Dは浸漬ノズル1の内径を意味する。
h/H=0.5〜2.0・・・(1)
(a-b)/D=0.15〜0.45・・・(2)
As described above, the protrusion 4 extends in parallel with the drilling direction 3A of the molten steel discharge hole 3 in the bottom view shown in this figure, and its end is the inner periphery of the immersion nozzle 1 as shown in FIG. To the surface. The height of the upper surface of the protrusion 4 (height from the inner bottom surface 2) in the vertical cross section (vertical sectional view shown in FIG. 1) with respect to the extending direction of the protrusion 4 is considered by the symbol h, and the molten steel discharge hole When the distance between the lower end of the inner peripheral side opening edge 3a of 3 and the inner bottom surface 2 is considered by the symbol H, the following formula (1) is satisfied. However, the upper surface of the protrusion 4 does not necessarily have to be flat, and design changes such as forming a slight roundness at the corners are allowed. Further, the width of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1 shown in FIG. When the width at the center in the extending direction of 4 is considered by the symbol b, the following formula (2) is satisfied. In the following formula (2), the variable D means the inner diameter of the immersion nozzle 1.
h / H = 0.5-2.0 ... (1)
(ab) /D=0.15~0.45 ... (2)

上記突部4の形状を更に詳細に説明する。即ち、浸漬ノズル1の底面視(図3)における突部4の上面の投影面積s(本図において二点鎖線で略示する。)と、浸漬ノズル1の流路断面積Sと、は下記式(3)を満足する。なお、この流路断面積Sは、浸漬ノズル1の内径Dに基づいて一義的に求まる。
s/S=0.15〜0.5・・・(3)
The shape of the protrusion 4 will be described in more detail. That is, the projected area s of the top surface of the protrusion 4 in the bottom view (FIG. 3) of the immersion nozzle 1 (shown schematically by a two-dot chain line in this figure) and the flow path cross-sectional area S of the immersion nozzle 1 are as follows: Formula (3) is satisfied. The flow path cross-sectional area S is uniquely determined based on the inner diameter D of the immersion nozzle 1.
s / S = 0.15-0.5 ... (3)

なお、上記の浸漬ノズル1の上端は、この浸漬ノズル1から鋳型内へ吐出される溶鋼の吐出流量を調節するための溶鋼流量調節ユニットを介してタンディッシュの底部に接続される。この溶鋼流量調節ユニットに関して以下に概説する。図4を参照されたい。図4は、浸漬ノズルが連結された溶鋼流量調節ユニットの縦断面図である。本図に示す如く溶鋼流量調節ユニット10は、略円筒状に形成され、その延在方向中央には紙面と垂直方向へ開閉可能なスライドプレート11を備え、その延在方向上部にはポーラス状のリング12が設けられる。このリング12は、浸漬ノズル1や溶鋼流量調節ユニット10の内部に形成される流路内を流動する溶鋼に対してArガスに代表される不活性ガスを吹き込むためのガス噴出孔としての役割を担うものであって、適宜の吹込みノズル13を備える。以上の構成で、図略のArガス供給装置を吹込みノズル13に接続すると、Arガスが、浸漬ノズル1内を流動する溶鋼に適宜に供給されることとなる。   The upper end of the immersion nozzle 1 is connected to the bottom of the tundish via a molten steel flow rate adjusting unit for adjusting the discharge flow rate of the molten steel discharged from the immersion nozzle 1 into the mold. The molten steel flow rate control unit will be outlined below. Please refer to FIG. FIG. 4 is a longitudinal sectional view of a molten steel flow rate adjusting unit to which an immersion nozzle is connected. As shown in the figure, the molten steel flow rate adjustment unit 10 is formed in a substantially cylindrical shape, and has a slide plate 11 that can be opened and closed in the direction perpendicular to the paper surface at the center in the extending direction, and a porous shape at the upper part in the extending direction. A ring 12 is provided. This ring 12 serves as a gas ejection hole for injecting an inert gas typified by Ar gas into the molten steel flowing in the flow passage formed inside the immersion nozzle 1 and the molten steel flow rate adjusting unit 10. An appropriate blowing nozzle 13 is provided. With the above configuration, when an Ar gas supply device (not shown) is connected to the blowing nozzle 13, the Ar gas is appropriately supplied to the molten steel flowing in the immersion nozzle 1.

そして、以上のように構成される浸漬ノズル1は、その周壁に穿孔される溶鋼吐出孔3の穿孔方向3A(図3参照)が鋳型の幅方向と一致するようにタンディッシュ(実質的には溶鋼流量調節ユニット10)に着設される。   And the immersion nozzle 1 comprised as mentioned above is a tundish (substantially) so that the piercing direction 3A (refer FIG. 3) of the molten steel discharge hole 3 pierced in the surrounding wall corresponds with the width direction of a casting_mold | template. Installed in the molten steel flow control unit 10).

以上の構成の浸漬ノズル1を採用することにより奏される効果を図5に基づいて説明する。図5は、溶鋼の流れを曲線と矢でイメージした図である。即ち、本発明の発明者は、以前に、本図左に示す浸漬ノズル(比較例)を考案した。この浸漬ノズルは、内側底面に、溶鋼吐出孔の穿孔方向に対して平行に延在する突部を備え、この構成により、鋳造開始時におけるスプラッシュの抑制効果を維持しつつ、溶鋼吐出孔において鋳型厚み方向の偏流の原因とされる大きな単一の回転流の発生を抑制できる。しかし、本図左上に示す浸漬ノズルの底面視において現れるように上記突部の延在方向に沿って小径の渦の発生が確認されると共に、この渦の分岐点は上記突部の延在方向に沿って容易に移動できることが認められる。一方、本実施形態に係る浸漬ノズル1は、その内側底面2に同様の突部4を備えており、この突部4が延在方向中央において狭窄される形状とされる(図3も併せて参照)。この狭窄された形状により上記の渦の分岐点が突部4の延在方向中央において強力に拘束され、もって、一対の溶鋼吐出孔3・3夫々から吐出される溶鋼の流量を略同一とできると考えられる。   The effect produced by employing the immersion nozzle 1 having the above configuration will be described with reference to FIG. FIG. 5 is a diagram in which the flow of molten steel is imaged by curves and arrows. That is, the inventor of the present invention previously devised an immersion nozzle (comparative example) shown on the left side of the figure. This immersion nozzle is provided with a protrusion on the inner bottom surface that extends in parallel to the drilling direction of the molten steel discharge hole, and with this configuration, while maintaining the effect of suppressing splash at the start of casting, the mold in the molten steel discharge hole Generation | occurrence | production of the big single rotation flow which is the cause of the drift of thickness direction can be suppressed. However, as shown in the bottom view of the submerged nozzle shown in the upper left of the figure, the generation of a small-diameter vortex is confirmed along the extending direction of the protrusion, and the branch point of the vortex is the extending direction of the protrusion. It can be seen that it can be easily moved along. On the other hand, the immersion nozzle 1 according to the present embodiment is provided with a similar protrusion 4 on the inner bottom surface 2 thereof, and the protrusion 4 is narrowed at the center in the extending direction (also FIG. 3). reference). Due to this narrowed shape, the branch point of the vortex is strongly constrained at the center in the extending direction of the protrusion 4, so that the flow rate of the molten steel discharged from each of the pair of molten steel discharge holes 3 and 3 can be made substantially the same. it is conceivable that.

以下、本実施形態に係る浸漬ノズル1の技術的効果を確認するための試験に関して説明する。上述した各数値範囲などは、下記の確認試験により合理的に裏付けられている。   Hereinafter, a test for confirming the technical effect of the immersion nozzle 1 according to the present embodiment will be described. Each numerical range described above is reasonably supported by the following confirmation test.

<第一確認試験>
本試験は、鋳型厚み方向の偏流抑制効果の有無を検証するための試験(水モデル試験)である。以下に、試験方法及び試験条件、試験結果を示す。
<First confirmation test>
This test is a test (water model test) for verifying the presence or absence of the drift suppression effect in the mold thickness direction. The test methods, test conditions, and test results are shown below.

(試験方法)
図6を参照されたい。図6は、第一確認試験の試験方法を説明するための正面模式図である。本図に示すように、溶鋼吐出孔3の外周側開口縁3bの内側を通って吐出される水流の流速を電磁流速計(型番:ケネック製VM802H)で測定する。具体的には、電磁流速計の測定子は、外周側開口縁3bの左下端近傍と右下端近傍の二箇所に設置する。そして、外周側開口縁3bの左下端近傍に設置する電磁流速計により測定される水流の流速をV1とし、同じく外周側開口縁3bの右下端近傍に設置する電磁流速計により測定される水流の流速をV2として、下記式(4)に基づいて厚み方向偏流抑制率[%]を求め、これを、鋳型厚み方向の偏流抑制効果の有無を検証するのに供される評価対象とする。なお、この厚み方向偏流抑制率[%]が80以上となったものを「良好(厚み方向偏流なし)」と評価することにする。
(厚み方向偏流抑制率[%])=100×(1-速度差/速度和)=200×V2/(V1+V2) (ただし、V1>V2)・・・(4)
(Test method)
See FIG. FIG. 6 is a schematic front view for explaining the test method of the first confirmation test. As shown in the figure, the flow velocity of the water flow discharged through the inside of the outer peripheral side opening edge 3b of the molten steel discharge hole 3 is measured with an electromagnetic current meter (model number: VM802H manufactured by Kennek). Specifically, the measuring elements of the electromagnetic current meter are installed at two locations near the lower left end and near the lower right end of the outer peripheral opening edge 3b. The flow velocity of the water flow measured by the electromagnetic current meter installed in the vicinity of the lower left end of the outer peripheral opening edge 3b is V1, and the flow rate of the water flow measured by the electromagnetic current meter installed in the vicinity of the lower right end of the outer peripheral opening edge 3b Using the flow velocity as V2, the thickness direction drift suppression rate [%] is obtained based on the following formula (4), and this is used as an evaluation object for verifying the presence or absence of the drift suppression effect in the mold thickness direction. Note that a sample in which the thickness direction drift suppression rate [%] is 80 or more is evaluated as “good (no thickness direction drift)”.
(Thickness direction drift suppression rate [%]) = 100 × (1−Speed difference / Speed sum) = 200 × V2 / (V1 + V2) (V1> V2) (4)

(試験条件)
鋳型寸法[mm]:幅1260×厚み240
鋳造速度[m/min]:1.65
溶鋼過熱度ΔT[℃]:−
モデル種類:水モデル
溶鋼流量(又は水流量)[L/min]:水流量550
Arガス流量(又は空気流量)[L/min]:空気流量0
スライドプレートの開閉方向:鋳型厚み方向
h[mm](図1参照):下記表1参照
H[mm](図1参照):下記表1参照
h/H:下記表1参照
a[mm](図3参照):下記表1参照
b[mm](図3参照):下記表1参照
D[mm](図3参照):下記表1参照
(a-b)/D:下記表1参照
s[mm2](図3参照):下記表1参照
S(=πD2/4)[mm2]:下記表1参照
s/S:下記表1参照
θ1[deg.](図2参照):35
e[mm](図3参照):100
f[mm](図3参照):70
g[mm](図3参照):30
(Test conditions)
Mold dimension [mm]: width 1260 x thickness 240
Casting speed [m / min]: 1.65
Molten steel superheat degree ΔT [° C]: −
Model type: Water model Molten steel flow rate (or water flow rate) [L / min]: Water flow rate 550
Ar gas flow rate (or air flow rate) [L / min]: Air flow rate 0
Slide plate opening / closing direction: Mold thickness direction
h [mm] (See Fig. 1): See Table 1 below
H [mm] (See Fig. 1): See Table 1 below
h / H: See Table 1 below
a [mm] (See Fig. 3): See Table 1 below
b [mm] (See Fig. 3): See Table 1 below
D [mm] (See Fig. 3): See Table 1 below
(ab) / D: See Table 1 below
s [mm 2 ] (See Fig. 3): See Table 1 below
S (= πD 2/4) [mm 2]: See Table 1 below
s / S: see Table 1 below θ 1 [deg.] (see FIG. 2): 35
e [mm] (see Fig. 3): 100
f [mm] (see Fig. 3): 70
g [mm] (see Fig. 3): 30

(試験結果)
本試験結果を下記表1及び図7に示す。なお、図7において「現行品」は、表1における比較例2(つまり突部なし)に対応する。
(Test results)
The test results are shown in Table 1 below and FIG. In FIG. 7, “current product” corresponds to Comparative Example 2 in Table 1 (that is, no protrusions).

Figure 2008161920
Figure 2008161920

上記表1及び図7によれば、鋳型厚み方向の偏流抑制効果が有効に奏されるには、上記突部の存在を要し、一方で、前述の変数(a-b)/Dの大小は問わないことが判る。   According to Table 1 and FIG. 7 above, the presence of the protrusions is required in order to effectively exhibit the drift suppression effect in the mold thickness direction, while the magnitude of the variable (ab) / D is not limited. It turns out that there is no.

<第二確認試験>
本試験は、鋳型厚み方向の偏流抑制効果の有無を検証するための試験(水モデル試験)である。以下に、試験方法及び試験条件、試験結果を示す。
<Second confirmation test>
This test is a test (water model test) for verifying the presence or absence of the drift suppression effect in the mold thickness direction. The test methods, test conditions, and test results are shown below.

(試験方法)
上記第一確認試験と同様である。
(Test method)
This is the same as the first confirmation test.

(試験条件)
鋳型寸法[mm]:幅1260×厚み240
鋳造速度[m/min]:1.65
溶鋼過熱度ΔT[℃]:−
モデル種類:水モデル
溶鋼流量(又は水流量)[L/min]:水流量550
Arガス流量(又は空気流量)[L/min]:空気流量0
スライドプレートの開閉方向:鋳型厚み方向
h[mm](図1参照):下記表2参照
H[mm](図1参照):下記表2参照
h/H:下記表2参照
a[mm](図3参照):下記表2参照
b[mm](図3参照):下記表2参照
D[mm](図3参照):下記表2参照
(a-b)/D:下記表2参照
s[mm2](図3参照):下記表2参照
S(=πD2/4)[mm2]:下記表2参照
s/S:下記表2参照
θ1[deg.](図2参照):35
e[mm](図3参照):100
f[mm](図3参照):70
g[mm](図3参照):30
(Test conditions)
Mold dimension [mm]: width 1260 x thickness 240
Casting speed [m / min]: 1.65
Molten steel superheat degree ΔT [° C]: −
Model type: Water model Molten steel flow rate (or water flow rate) [L / min]: Water flow rate 550
Ar gas flow rate (or air flow rate) [L / min]: Air flow rate 0
Slide plate opening / closing direction: Mold thickness direction
h [mm] (See Fig. 1): See Table 2 below
H [mm] (See Fig. 1): See Table 2 below
h / H: See Table 2 below
a [mm] (See Fig. 3): See Table 2 below
b [mm] (See Fig. 3): See Table 2 below
D [mm] (See Fig. 3): See Table 2 below
(ab) / D: See Table 2 below
s [mm 2 ] (See Fig. 3): See Table 2 below
S (= πD 2/4) [mm 2]: Table 2 see
s / S: see Table 2 below θ 1 [deg.] (see FIG. 2): 35
e [mm] (see Fig. 3): 100
f [mm] (see Fig. 3): 70
g [mm] (see Fig. 3): 30

(試験結果)
本試験結果を下記表2及び図8に示す。なお、下記表2中、比較例3において上記突部は設けられていない。
(Test results)
The test results are shown in Table 2 below and FIG. In Table 2 below, the protrusion is not provided in Comparative Example 3.

Figure 2008161920
Figure 2008161920

上記表2及び図8によれば、鋳型厚み方向の偏流抑制効果が有効に奏されるには、上記突部の存在を要し、更に、前述の変数h/Hが上記式(1)を満足することを要することが判る。   According to Table 2 and FIG. 8 described above, the presence of the protrusions is necessary for the effect of suppressing the drift in the mold thickness direction, and the above-described variable h / H satisfies the above equation (1). It turns out that satisfaction is required.

<凝固遅れとブレークアウトとの因果関係>
上記実施形態に係る浸漬ノズル1を用いることにより期される効果は、前述したように主として鋳型厚み方向と鋳型幅方向における偏流の抑制である。この偏流を抑制することにより、所謂凝固遅れを改善し、もって、究極的には所謂ブレークアウト(凝固シェル内の溶鋼が凝固シェル外部へ流出してしまう現象)を回避することを目的とする。そこで、ここでは、凝固遅れを定量的に評価するための凝固遅れ度を定義すると共に、この凝固遅れ度とブレークアウトとの因果関係について説明する。
<Causal relationship between coagulation delay and breakout>
As described above, the effect expected by using the immersion nozzle 1 according to the above embodiment is mainly suppression of drift in the mold thickness direction and the mold width direction. By suppressing this drift, the object is to improve the so-called solidification delay and ultimately avoid the so-called breakout (a phenomenon in which molten steel in the solidified shell flows out of the solidified shell). Therefore, here, the degree of coagulation delay for quantitatively evaluating the coagulation delay is defined, and the causal relationship between the degree of coagulation delay and the breakout will be described.

即ち、「凝固遅れ」とは凝固シェルの部分的な成長遅れをいい、その定量化には凝固遅れ度が用いられる。「凝固遅れ度」は、図9に示すホワイトバンドに基づく。「ホワイトバンド」とは、凝固中のシェル前方の溶質が溶鋼流動により洗浄されて現れる線状組織であり、凝固シェルの成長の様子を表す。コーナー部のシェルBと健全部のシェルAの厚さに差が生じると、凝固遅れ部と健全部の凝固に伴う収縮量が異なり、凝固遅れ部には鋳片幅方向の引張応力が集中し、縦割の原因となる。縦割の程度が大きくなると凝固シェル内の溶鋼が凝固シェル外部へ流出し、ブレークアウトが発生する。過去のデータ(下記表3参照)で、凝固遅れ度が40%を越えるとブレークアウトが発生した実績があるために凝固遅れ度40%を許容上限とした。   That is, “solidification delay” refers to partial growth delay of the solidified shell, and the degree of solidification delay is used for quantification. “Degree of coagulation delay” is based on the white band shown in FIG. The “white band” is a linear structure that appears when the solute in front of the shell being solidified is washed by the molten steel flow, and represents the growth of the solidified shell. If there is a difference in the thickness of the shell B at the corner and the shell A at the healthy part, the shrinkage amount due to solidification of the solidification delayed part and the healthy part will differ, and the tensile stress in the slab width direction will concentrate on the solidification delayed part. Cause vertical splitting. When the degree of vertical split increases, the molten steel in the solidified shell flows out of the solidified shell and breakout occurs. In past data (see Table 3 below), there is a record that breakout occurs when the solidification delay exceeds 40%, so the solidification delay was set to 40%.

Figure 2008161920
Figure 2008161920

<鋳型幅方向の偏流の定量化方法>
次に、実機鋳造における鋳型幅方向の偏流の定量化方法について説明する。図10を参照されたい。図10は、実機鋳造における鋳型幅方向の偏流の定量化方法を説明するための説明図である。即ち、本図に示すように、(1)鋳型狭面中央に縦一列に埋め込まれる熱電対を用いて鋳造方向における鋳型の温度分布を測定し、(2)その温度分布の変曲点を湯面レベルとみなし、(3)鋳型狭面の一方における湯面レベル(「右側湯面」に相当。)と、他方における湯面レベル(「左側湯面」に相当。)との差Δhを求め、(4)この差Δhに依って鋳型幅方向の偏流を定量化した。
<Quantification method of drift in mold width direction>
Next, a method for quantifying the drift in the mold width direction in actual machine casting will be described. Please refer to FIG. FIG. 10 is an explanatory diagram for explaining a method for quantifying the drift in the mold width direction in actual casting. That is, as shown in this figure, (1) the temperature distribution of the mold in the casting direction was measured using a thermocouple embedded in a vertical row at the center of the mold narrow surface, and (2) the inflection point of the temperature distribution was determined. (3) The difference Δh between the molten metal level on one side of the mold narrow surface (corresponding to the “right side molten metal surface”) and the molten metal level on the other side (corresponding to “left side molten metal surface”) is obtained. (4) The drift in the mold width direction was quantified based on the difference Δh.

<凝固遅れ度と鋳片幅方向の偏流との因果関係>
次に、実機操業における、凝固遅れ度と鋳片幅方向の偏流との因果関係を図11を参照しつつ説明する。図11は、実機操業における凝固遅れ度と差Δhとの関係を示す図である。ただし、図11において溶鋼加熱度ΔTは、20〜30とされる。本図によれば、上記の差Δh(本図において「湯面レベル差」に相当する。)が10[mm]を超えると、凝固遅れ度が40%以上である凝固遅れが発生することが判る。従って、上述したブレークアウトを回避する観点からは、上記差Δh[mm]を10以下に抑えるとよい。
<Causal relationship between solidification delay and drift in slab width direction>
Next, the causal relationship between the solidification delay and the drift in the slab width direction in actual machine operation will be described with reference to FIG. FIG. 11 is a diagram showing the relationship between the degree of solidification delay and the difference Δh in actual machine operation. However, in FIG. 11, the molten steel heating degree ΔT is set to 20 to 30. According to this figure, when the above difference Δh (corresponding to “melt level difference” in this figure) exceeds 10 mm, a solidification delay with a solidification delay degree of 40% or more may occur. I understand. Therefore, from the viewpoint of avoiding the breakout described above, the difference Δh [mm] is preferably suppressed to 10 or less.

<水モデルを用いた検証実験の便宜を図るための換算>
上述した鋳型幅方向の偏流の定量化方法は、溶鋼が極めて高温であることを利用するものであるから、実機に代えて行おうとする水モデルを用いた検証実験に対しては該定量化方法を直接的には適用できない。従って、この定量化方法に対して若干の工夫を為して考案した、水モデルを用いた検証実験における鋳型幅方向の偏流の定量化方法を説明する。ここで、図12を参照されたい。図12は、水モデルにおける鋳型幅方向の偏流の定量化方法を説明するための説明図である。即ち、上記の差Δh[m]は、下記式(5)で表現できる。
Δh=ρm×U1 2/(2×g×(ρmp))-ρm×U2 2/(2×g×(ρmp))・・・(5)
ただし、
ρm[kg/m3]:溶鋼の密度
ρp[kg/m3]:モールドパウダの密度
U1[m/s]:鋳型狭面のうち一方の狭面の近傍における溶鋼の上昇流の流速
U2[m/s]:鋳型狭面のうち他方の狭面の近傍における溶鋼の上昇流の流速(U1>U2)
g[m/s2]:重力加速度
<Conversion for convenience of verification experiment using water model>
The above-described method for quantifying the drift in the mold width direction utilizes the fact that molten steel is extremely hot, so that the quantification method is used for verification experiments using a water model to be performed instead of the actual machine. Cannot be applied directly. Therefore, a method for quantifying the drift in the mold width direction in a verification experiment using a water model, which has been devised with some contrivance for this quantification method, will be described. Reference is now made to FIG. FIG. 12 is an explanatory diagram for explaining a method of quantifying the drift in the mold width direction in the water model. That is, the difference Δh [m] can be expressed by the following equation (5).
Δh = ρ m × U 1 2 / (2 × g × (ρ mp ))-ρ m × U 2 2 / (2 × g × (ρ mp )) ... (5)
However,
ρ m [kg / m 3 ]: Density of molten steel ρ p [kg / m 3 ]: Density of mold powder
U 1 [m / s]: Flow velocity of the upward flow of molten steel in the vicinity of one of the mold narrow surfaces
U 2 [m / s]: Flow velocity of the upward flow of molten steel in the vicinity of the other narrow surface of the mold (U 1 > U 2 )
g [m / s 2 ]: Gravity acceleration

例えば上記式(5)に対して、Δh[m]=0.01、g[m/s2]=9.8、ρm[kg/m3]=7000、ρp[kg/m3]=3000を代入すると下記式(6)が導かれる。
U1 2-U2 2=0.1・・・(6)
For example, Δh [m] = 0.01, g [m / s 2 ] = 9.8, ρ m [kg / m 3 ] = 7000, ρ p [kg / m 3 ] = 3000 is substituted for the above formula (5) Then, the following formula (6) is derived.
U 1 2 -U 2 2 = 0.1 ... (6)

<偏流度・無偏流・無偏流率の定義>
ところで、一般に、鋳型狭面における溶鋼の上昇流の流速は、該鋳型狭面近傍における溶鋼の表面流速と略等しいとされる(今村ら:連続鋳造内溶鋼流動の水力学的検討、鉄と鋼、Vol.78、No.3(1992)、p.439-446)から、図4に示すように鋳型狭面から30cm離れ、水面から深さ2cmの地点における水の表面流速を電磁流速計(型番:ケネック製VM-802H)を用いて測定し、以降の説明においては、この測定した表面流速を上記変数U1及びU2とみなすこととする。要するに、水の表面流速を測定することで、鋳型幅方向の偏流を評価する。
<Definition of drift degree, no drift, no drift rate>
By the way, the flow velocity of the molten steel in the narrow mold surface is generally equal to the surface flow velocity of the molten steel in the vicinity of the narrow mold surface (Imamura et al .: Hydraulic study of molten steel flow in continuous casting, iron and steel Vol. 78, No. 3 (1992), p. 439-446), the surface velocity of water at a point 30 cm away from the mold narrow surface and 2 cm deep from the water surface as shown in FIG. Model No .: VM-802H manufactured by Kennek), and in the following description, the measured surface flow velocity is regarded as the variables U 1 and U 2 . In short, the drift in the mold width direction is evaluated by measuring the surface flow velocity of water.

そして、「偏流度」を下記式(7)のように定義する。
(偏流度)=(U1 2-U2 2)/(U1 2-U2 2)cr・・・(7)
ただし、「(U1 2-U2 2)cr」は、上記式(6)の如く上記差Δh[m]が0.01となるときの(U1 2-U2 2)の値(つまり、0.1)を意味する。
Then, “the degree of drift” is defined as the following formula (7).
(Drift) = (U 1 2 -U 2 2 ) / (U 1 2 -U 2 2 ) cr ... (7)
However, “(U 1 2 −U 2 2 ) cr ” is the value of (U 1 2 −U 2 2 ) when the difference Δh [m] is 0.01 as shown in the equation (6) (that is, 0.1 ).

上記式(7)によって定義される偏流度の絶対値が1未満であるときを「無偏流」の状態と定義し、流速測定時間中において「無偏流」の状態の時間が占める割合を「無偏流率」と定義し、この「無偏流率」が60%以上を「幅方向偏流抑制に効果あり」と評価した。ここで、上記偏流度の測定結果の一例を図13に紹介する。図13は、偏流度の時間推移を表すグラフである。本図において「無偏流部」は、上記偏流度の絶対値が1未満である時間領域を示す。なお、図13に係る測定の測定条件は以下の通りである。   When the absolute value of the drift rate defined by the above equation (7) is less than 1, it is defined as the `` no drift '' state, and the proportion of the `` no drift '' state in the flow velocity measurement time is `` no “Miscellaneous current rate” was defined, and when this “non-current drift rate” was 60% or more, it was evaluated as “effective in suppressing lateral drift”. Here, an example of the measurement result of the drift current is introduced in FIG. FIG. 13 is a graph showing the time transition of the drift degree. In the figure, “no drift portion” indicates a time region where the absolute value of the drift degree is less than one. The measurement conditions for the measurement according to FIG. 13 are as follows.

(試験条件)
鋳型寸法[mm]:幅1260×厚み240
鋳造速度[m/min]:2.0
溶鋼過熱度ΔT[℃]:−
モデル種類:水モデル
溶鋼流量(又は水流量)[L/min]:水流量600
Arガス流量(又は空気流量)[L/min]:空気流量10
スライドプレートの開閉方向:鋳型厚み方向
h[mm](図1参照):20
H[mm](図1参照):20
h/H:1.0
a[mm](図3参照):40
b[mm](図3参照):15
D[mm](図3参照):85
(a-b)/D:0.29
s[mm2](図3参照):2332
S(=πD2/4)[mm2]:5675
s/S:0.41
θ1[deg.](図2参照):35
e[mm](図3参照):100
f[mm](図3参照):70
g[mm](図3参照):30
(Test conditions)
Mold dimension [mm]: width 1260 x thickness 240
Casting speed [m / min]: 2.0
Molten steel superheat degree ΔT [° C]: −
Model type: Water model Molten steel flow rate (or water flow rate) [L / min]: Water flow rate 600
Ar gas flow rate (or air flow rate) [L / min]: Air flow rate 10
Slide plate opening / closing direction: Mold thickness direction
h [mm] (see Fig. 1): 20
H [mm] (see Fig. 1): 20
h / H: 1.0
a [mm] (see Fig. 3): 40
b [mm] (see Fig. 3): 15
D [mm] (see Fig. 3): 85
(ab) / D: 0.29
s [mm 2 ] (see Fig. 3): 2332
S (= πD 2/4) [mm 2]: 5675
s / S: 0.41
θ 1 [deg.] (see Fig. 2): 35
e [mm] (see Fig. 3): 100
f [mm] (see Fig. 3): 70
g [mm] (see Fig. 3): 30

<第三確認試験>
本試験は、鋳型幅方向の偏流抑制効果の有無を検証するための試験(水モデル試験)である。以下、試験方法及び試験条件、試験結果を示す。
<Third confirmation test>
This test is a test (water model test) for verifying the presence or absence of the drift suppression effect in the mold width direction. The test methods, test conditions, and test results are shown below.

(試験方法)
無偏流率の測定方法は上記の通りである。なお、測定時間は二時間とする。
(Test method)
The method for measuring the non-flow rate is as described above. The measurement time is 2 hours.

(試験条件)
鋳型寸法[mm]:幅1260×厚み240
鋳造速度[m/min]:2.0
溶鋼過熱度ΔT[℃]:−
モデル種類:水モデル
溶鋼流量(又は水流量)[L/min]:水流量600
Arガス流量(又は空気流量)[L/min]:下記表4参照
スライドプレートの開閉方向:鋳型厚み方向
h[mm](図1参照):下記表4参照
H[mm](図1参照):下記表4参照
h/H:下記表4参照
a[mm](図3参照):下記表4参照
b[mm](図3参照):下記表4参照
D[mm](図3参照):下記表4参照
(a-b)/D:下記表4参照
s[mm2](図3参照):下記表4参照
S(=πD2/4)[mm2]:下記表4参照
s/S:下記表4参照
θ1[deg.](図2参照):35
e[mm](図3参照):100
f[mm](図3参照):70
g[mm](図3参照):30
(Test conditions)
Mold dimension [mm]: width 1260 x thickness 240
Casting speed [m / min]: 2.0
Molten steel superheat degree ΔT [° C]: −
Model type: Water model Molten steel flow rate (or water flow rate) [L / min]: Water flow rate 600
Ar gas flow rate (or air flow rate) [L / min]: See Table 4 below Slide plate opening / closing direction: Mold thickness direction
h [mm] (See Fig. 1): See Table 4 below
H [mm] (See Fig. 1): See Table 4 below
h / H: See Table 4 below
a [mm] (See Fig. 3): See Table 4 below
b [mm] (See Fig. 3): See Table 4 below
D [mm] (See Fig. 3): See Table 4 below
(ab) / D: See Table 4 below
s [mm 2 ] (See Fig. 3): See Table 4 below
S (= πD 2/4) [mm 2]: Table 4 refer
s / S: see Table 4 below θ 1 [deg.] (see FIG. 2): 35
e [mm] (see Fig. 3): 100
f [mm] (see Fig. 3): 70
g [mm] (see Fig. 3): 30

(試験結果)
本試験結果を下記表4及び図14に示す。なお、実機では浸漬ノズル内への介在物付着を抑制するためにArガスが溶鋼中に吹き込まれ、その流量は5〜20NL/minとされる。また、吹き込まれたArガスは溶鋼中で6.5倍に熱膨張[273K→1773K]する。更に、スライドプレート上方よりArガスを吹き込む場合、鋳型内に導入されるArガスの流量は、吹き込み量の約20%との報告(山中ら:日本学術振興会製鋼第19委員会凝固プロセス研究会資料、19委-12228、凝固プロセスIV40,2006)があるため、空気流量を10[L/min]又は25[L/min]とすることは、夫々実機におけるArガス吹き込み流量7.7[NL/min]と19.2[NL/min]に相当する。
(Test results)
The test results are shown in Table 4 below and FIG. In an actual machine, Ar gas is blown into the molten steel in order to suppress the inclusion adhesion in the immersion nozzle, and the flow rate is 5 to 20 NL / min. The Ar gas blown in the molten steel expands by a factor of 6.5 [273K → 1773K]. Furthermore, when Ar gas is blown from the top of the slide plate, the flow rate of Ar gas introduced into the mold is reported to be about 20% of the blown amount (Yamanaka et al .: Japan Society for the Promotion of Science, Steelmaking Committee 19 Solidification Process Study Group As the air flow rate is 10 [L / min] or 25 [L / min], Ar gas injection flow rate 7.7 [NL / min in the actual machine, respectively, because there is a document, 19 committee-12228, coagulation process IV40,2006) ] And 19.2 [NL / min].

Figure 2008161920
Figure 2008161920

上記表4及び図14によれば、(a-b)/Dを0.15〜0.45とすると、鋳型幅方向の偏流の抑制効果が有効に奏されることが判る。   According to Table 4 and FIG. 14, it can be seen that when (a−b) / D is set to 0.15 to 0.45, the effect of suppressing the drift in the mold width direction is effectively exhibited.

以上説明したように上記実施形態において浸漬ノズル1は以下のように構成される。即ち、タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供される有底円筒状の浸漬ノズル1である。該浸漬ノズル1の内側底面2から所定距離上方へ離れた位置において該浸漬ノズル1の周壁に一対の対向する溶鋼吐出孔3が穿孔されると共に、前記内側底面2には該浸漬ノズル1の底面視において前記溶鋼吐出孔3の穿孔方向3Aと平行に延在する突部4が設けられ、更に下記式(1)及び(2)を満足する。
h/H=0.5〜2.0・・・(1)
(a-b)/D=0.15〜0.45・・・(2)
ただし、
h:前記突部4の延在方向に対する垂直断面における該突部4の上面の高さ
H:前記溶鋼吐出孔3の内周側開口縁3aの下端と前記内側底面2との間の距離
a:前記浸漬ノズル1の底面視における前記突部4の上面の幅であって、該突部4の延在方向端部における幅
b:前記浸漬ノズル1の底面視における前記突部4の上面の幅であって、該突部4の延在方向中央における幅
D:前記浸漬ノズル1の内径
As described above, in the above embodiment, the immersion nozzle 1 is configured as follows. That is, it is a bottomed cylindrical immersion nozzle 1 used for pouring molten steel held in a tundish into a mold. A pair of opposed molten steel discharge holes 3 are perforated in the peripheral wall of the immersion nozzle 1 at a position away from the inner bottom surface 2 of the immersion nozzle 1 by a predetermined distance, and the inner bottom surface 2 has a bottom surface of the immersion nozzle 1 As viewed, a protrusion 4 extending in parallel with the drilling direction 3A of the molten steel discharge hole 3 is provided, and further satisfies the following expressions (1) and (2).
h / H = 0.5-2.0 ... (1)
(ab) /D=0.15~0.45 ... (2)
However,
h: the height of the upper surface of the protrusion 4 in a cross section perpendicular to the extending direction of the protrusion 4
H: Distance between the lower end of the inner peripheral opening edge 3a of the molten steel discharge hole 3 and the inner bottom surface 2
a: The width of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1, and the width at the end of the protrusion 4 in the extending direction
b: The width of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1, and the width of the protrusion 4 in the center in the extending direction
D: Inner diameter of the immersion nozzle 1

この構成によれば、鋳型厚み方向と幅方向の偏流を抑制すると共に、鋳造開始時のスプラッシュを低減できる。   According to this configuration, it is possible to suppress the drift in the mold thickness direction and the width direction and reduce splash at the start of casting.

<第四確認実験>
本試験は、スプラッシュ抑制効果の有無を検証するための試験(水モデル試験)である。以下に、試験方法及び試験条件、試験結果を示す。
<Fourth confirmation experiment>
This test is a test (water model test) for verifying the presence or absence of the splash suppression effect. The test methods, test conditions, and test results are shown below.

(試験方法)
ここで、上記の「スプラッシュ」とは、鋳造開始時において浸漬ノズル1に注湯された溶鋼がその内側底面2に勢いよく当たることで跳ね上がるように吐出される現象のことをいい、これに限らず、浸漬ノズル1の溶鋼吐出孔3から下方へ向かって溶鋼が勢いよく吐出されて鋳型内に予め挿入されているダミーバの上端面と鋳型の狭面とを介して跳ね上がってしまう現象をも含むものである。このスプラッシュは、生産性が低下するなどの理由から好ましくないとされる。
(Test method)
Here, the `` splash '' mentioned above refers to a phenomenon in which molten steel poured into the immersion nozzle 1 at the start of casting is ejected so as to jump up by striking the inner bottom surface 2 without limitation. In addition, there is also a phenomenon that the molten steel is discharged from the molten steel discharge hole 3 of the immersion nozzle 1 downward and jumps up through the upper end surface of the dummy bar inserted in the mold and the narrow surface of the mold. It is a waste. This splash is not preferable because the productivity is lowered.

上記スプラッシュ抑制効果の有無は、「飛散高さ」及び「気泡潜り深さ」を測定し、これらに基づいて評価する。なお、「飛散高さ」とは前者の現象に係るものであり、同じく「気泡潜り深さ」とは後者の現象に係るものである。なお、後者の現象は、溶鋼吐出孔3から下向きに吐出される水流の強さ(気泡潜り深さ)を評価することにより間接的に評価する。   The presence or absence of the splash suppression effect is evaluated based on measurement of “scattering height” and “bubble dive depth”. The “scattering height” is related to the former phenomenon, and the “bubble dive depth” is related to the latter phenomenon. The latter phenomenon is indirectly evaluated by evaluating the strength of the water flow discharged downward from the molten steel discharge hole 3 (bubble dive depth).

上記「飛散高さ」の測定は以下のように行う。図15は浸漬ノズルの側面図である。即ち、本図に示す如く浸漬ノズルの溶鋼吐出孔から上方に向かって吐出されて飛散する水滴の到達高さを、当該溶鋼吐出孔の外周側開口縁の上辺を基準として、目視により計測する。   The measurement of the “scattering height” is performed as follows. FIG. 15 is a side view of the immersion nozzle. That is, as shown in this figure, the arrival height of water droplets discharged and scattered upward from the molten steel discharge hole of the immersion nozzle is measured visually with reference to the upper side of the outer peripheral opening edge of the molten steel discharge hole.

一方、上記「気泡潜り深さ」の測定は以下のように行う。即ち、本図に示す如く浸漬ノズルの下方に、当該浸漬ノズルの下端に対する鉛直方向距離が5cmとなるように水面高さが調整された水槽を設置し、浸漬ノズルの溶鋼吐出孔から下方へ向かって勢いよく吐出された水吐出流が巻き込む気泡の到達深さを、当該水面を基準として、目視により測定する。なお、この到達深さを記録する観測対象は、水吐出流により巻き込まれた気泡のうち、その径が5mm以上のものに限定する。   On the other hand, the measurement of the “bubble dive depth” is performed as follows. That is, as shown in the figure, a water tank whose water surface height is adjusted so that the vertical distance to the lower end of the immersion nozzle is 5 cm is installed below the immersion nozzle and is directed downward from the molten steel discharge hole of the immersion nozzle. The depth of arrival of the bubbles in which the water discharge flow ejected vigorously is measured visually with reference to the water surface. In addition, the observation object which records this reach | attainment depth is limited to the thing whose diameter is 5 mm or more among the bubbles entrained by the water discharge flow.

そして、水滴の飛散高さが15cm未満であり、気泡潜り深さが35cm未満を、「スプラッシュ抑制効果あり」と評価する。   Then, when the splash height of the water droplet is less than 15 cm and the bubble dive depth is less than 35 cm, it is evaluated as “with splash suppression effect”.

(試験条件)
鋳型寸法[mm]:幅1260×厚み240
鋳造速度[m/min]:2.0
溶鋼過熱度ΔT[℃]:−
モデル種類:水モデル
溶鋼流量(又は水流量)[L/min]:水流量800(実機における鋳造開始相当)
Arガス流量(又は空気流量)[L/min]:空気流量0
スライドプレート11の開閉方向:鋳型厚み方向
h[mm](図1参照):下記表5参照
H[mm](図1参照):下記表5参照
h/H:下記表5参照
a[mm](図3参照):下記表5参照
b[mm](図3参照):下記表5参照
D[mm](図3参照):下記表5参照
(a-b)/D:下記表5参照
s[mm2](図3参照):下記表5参照
S(=πD2/4)[mm2]:下記表5参照
s/S:下記表5参照
θ1[deg.](図2参照):35
e[mm](図3参照):100
f[mm](図3参照):70
g[mm](図3参照):30
(Test conditions)
Mold dimension [mm]: width 1260 x thickness 240
Casting speed [m / min]: 2.0
Molten steel superheat degree ΔT [° C]: −
Model type: Water model molten steel flow rate (or water flow rate) [L / min]: Water flow rate 800 (equivalent to start of casting in actual machine)
Ar gas flow rate (or air flow rate) [L / min]: Air flow rate 0
Opening and closing direction of slide plate 11: mold thickness direction
h [mm] (See Fig. 1): See Table 5 below
H [mm] (See Fig. 1): See Table 5 below
h / H: See Table 5 below
a [mm] (See Fig. 3): See Table 5 below
b [mm] (See Fig. 3): See Table 5 below
D [mm] (See Fig. 3): See Table 5 below
(ab) / D: See Table 5 below
s [mm 2 ] (See Fig. 3): See Table 5 below
S (= πD 2/4) [mm 2]: Table 5 refer
s / S: see Table 5 below θ 1 [deg.] (see FIG. 2): 35
e [mm] (see Fig. 3): 100
f [mm] (see Fig. 3): 70
g [mm] (see Fig. 3): 30

(試験結果)
本試験結果を下記表5及び図16に示す。
(Test results)
The test results are shown in Table 5 below and FIG.

Figure 2008161920
Figure 2008161920

上記表5及び図16によれば、スプラッシュ抑制効果が有効に奏されるには、前述の変数s/Sが上記式(3)を満足することを要することが判る。   According to Table 5 and FIG. 16, it can be seen that the above-described variable s / S needs to satisfy the above formula (3) in order for the splash suppression effect to be effectively achieved.

また、突部4の製造の困難性の観点から、変数b(図3参照)は10mm以上確保することが好ましい。浸漬ノズル1の内径Dを120mmとし、(a-b)/D=0.15、b=10mmとすると、s/S=0.15となる。この点からも、s/Sの下限は0.15とすべきと言える。なお、s/S=0.15〜0.5と(a-b)/D=0.15〜0.5を同時に満たすと、実機で使用する浸漬ノズル1の内径Dが60〜120mmであることを考慮して、b/Dは0.08〜0.33となる。   Further, from the viewpoint of difficulty in manufacturing the protrusion 4, it is preferable to secure the variable b (see FIG. 3) of 10 mm or more. When the inner diameter D of the immersion nozzle 1 is 120 mm, (a−b) /D=0.15, and b = 10 mm, s / S = 0.15. From this point, it can be said that the lower limit of s / S should be 0.15. In addition, if s / S = 0.15 to 0.5 and (ab) /D=0.15 to 0.5 are satisfied at the same time, considering that the inner diameter D of the immersion nozzle 1 used in the actual machine is 60 to 120 mm, b / D is 0.08 to 0.33.

以上説明したように上記実施形態において、浸漬ノズル1は、更に以下のように構成される。即ち、下記式(3)を満足する。
s/S=0.15〜0.5・・・(3)
ただし、
s:前記浸漬ノズル1の底面視における前記突部4の上面の投影面積
S:前記浸漬ノズル1の底面視において観念し得る該浸漬ノズル1の流路断面積
As described above, in the above embodiment, the immersion nozzle 1 is further configured as follows. That is, the following formula (3) is satisfied.
s / S = 0.15-0.5 ... (3)
However,
s: projected area of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1
S: Channel cross-sectional area of the immersion nozzle 1 that can be conceived in the bottom view of the immersion nozzle 1

この構成によれば、スプラッシュ抑制効果が有効に奏される。   According to this configuration, the splash suppression effect is effectively achieved.

以上に、本発明の好適な実施形態を説明したが、本発明は、以下のように変更して実施できる。   Although the preferred embodiments of the present invention have been described above, the present invention can be implemented with the following modifications.

◆ 即ち、上記実施形態において溶鋼吐出孔3は、図3に示すように内周側から外周側へ向かって拡大するように形成されるとしたが、これに限らず、この溶鋼吐出孔3の内周側開口と外周側開口の開口断面積は同一としてもよい。 That is, in the above embodiment, the molten steel discharge hole 3 is formed so as to expand from the inner peripheral side toward the outer peripheral side as shown in FIG. The opening cross-sectional areas of the inner peripheral opening and the outer peripheral opening may be the same.

◆ また、上記突部4は、図17に示される形状としてもよい。図17は、図3に類似する図である。即ち、前記突部4は、その縦断面視(本図下側に表示:A-A断面に相当。)において上方に向かって狭窄される略台形とされ、該台形の上辺と側辺との交点に半径R2の丸みが付され、該台形の側辺と内側底面2との交点に半径R1の丸みが付され、該台形の側辺は内側底面2に対して角度θ3を為し、該台形の側辺の仮想延長線と内側底面2との交点により観念される前記突部4の底面幅a2は上面の幅a(図17に示される形状においては、側辺の仮想延長線と上面の仮想延長線との交点により観念される。)よりも大とする、形状としてもよい。前記突部4を本形状としたときの技術的効果は下記表6に示す如く実験的に十分に立証されている。 ◆ The protrusion 4 may have the shape shown in FIG. FIG. 17 is a view similar to FIG. That is, the protrusion 4 has a substantially trapezoidal shape narrowed upward in a longitudinal sectional view (displayed on the lower side of the figure: corresponding to the AA cross section), and at the intersection of the upper side and the side side of the trapezoid. The radius R2 is rounded, and the intersection of the side of the trapezoid and the inner bottom surface 2 is rounded with the radius R1, and the side of the trapezoid forms an angle θ3 with respect to the inner bottom surface 2, The bottom surface width a2 of the protrusion 4 that is considered by the intersection of the virtual extension line of the side and the inner bottom surface 2 is the width a of the top surface (in the shape shown in FIG. 17, the virtual extension line of the side and the virtual surface of the top surface The shape may be larger than the point of intersection with the extension line. The technical effect when the protrusion 4 is formed in this shape has been sufficiently proved experimentally as shown in Table 6 below.

Figure 2008161920
Figure 2008161920

(A)なお、図17に示される形状のように角部にRが付された結果、(i)前記浸漬ノズル1の底面視における前記突部4の上面の幅であって、該突部4の延在方向端部における幅や、(ii)前記浸漬ノズル1の底面視における前記突部4の上面の幅であって、該突部4の延在方向中央における幅、(iii)前記浸漬ノズル1の底面視における前記突部4の上面の投影面積、の(i)〜(iii)を直接的には観念できない場合は、該Rが付される前の段階における「突部4の上面」に基づいて(i)〜(iii)を観念するのが合理的である。(B)図17に示される突部4の側面(本図下側に示されるA-A断面において内側底面2から斜め上方向へ延びる輪郭線により表現される面。)に平面部が存在しないことを理由として、該Rが付される前の段階においても「突部4の上面」を観念できない場合は、該側面の輪郭線の変曲点における該側面の法線を有する仮想側面に基づいて上記(A)の手法により上記「突部4の上面」を観念するものとするのが合理的である。(C)上記(B)において該側面の輪郭線に変曲点が全く認められない場合でも、該側面の輪郭線と内側底面2との交点における該側面の法線を有し、該交点を面内に含む仮想側面に基づいて上記(A)の手法により上記「突部4の上面」を観念するものとするのが合理的である。   (A) Note that, as a result of R being added to the corner as in the shape shown in FIG. 17, (i) the width of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1, and the protrusion (Ii) the width of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1, the width at the center of the protrusion 4 in the extending direction, (iii) When the projected area of the upper surface of the protrusion 4 in the bottom view of the immersion nozzle 1 cannot be directly considered (i) to (iii), the "projection 4 It is reasonable to think of (i) to (iii) based on the “upper surface”. (B) There is no plane portion on the side surface of the protrusion 4 shown in FIG. 17 (the surface represented by the contour line extending obliquely upward from the inner bottom surface 2 in the AA cross section shown in the lower side of the figure). As a reason, when the “upper surface of the protrusion 4” cannot be considered even before the R is attached, the above is based on the virtual side surface having the normal of the side surface at the inflection point of the contour line of the side surface. It is reasonable to think of the “upper surface of the protrusion 4” by the method (A). (C) Even if no inflection point is found in the contour line of the side surface in (B) above, it has a normal line of the side surface at the intersection point of the contour line of the side surface and the inner bottom surface 2, and the intersection point is It is reasonable to think of the “upper surface of the protrusion 4” by the method (A) based on the virtual side surface included in the surface.

◆ また、上記突部4は、図18に示される形状としてもよい。図18は、図3に類似する図である。即ち、前記突部4は、その延在方向両端部から延在方向中央へ向かって滑らかに狭窄される、形状としてもよい。図示する突部4は、その側面が内側底面2に対して垂直とされるが、これに限らず、図17に示すように適宜のテーパを付しても問題ない。 ◆ The protrusion 4 may have a shape shown in FIG. FIG. 18 is a view similar to FIG. That is, the protrusion 4 may have a shape that is smoothly narrowed from both ends in the extending direction toward the center in the extending direction. Although the protrusion 4 shown in the drawing has a side surface perpendicular to the inner bottom surface 2, the present invention is not limited to this, and there is no problem even if an appropriate taper is provided as shown in FIG. 17.

本発明の一実施形態に係る浸漬ノズルの縦断面図The longitudinal cross-sectional view of the immersion nozzle which concerns on one Embodiment of this invention 図1の2-2線矢視断面図Sectional view taken along line 2-2 in FIG. 図1の3-3線矢視断面図Cross-sectional view taken along line 3-3 in FIG. 浸漬ノズルが連結された溶鋼流量調節ユニットの縦断面図Longitudinal section of molten steel flow control unit connected with immersion nozzle 溶鋼の流れを曲線と矢でイメージした図Figure depicting the flow of molten steel with curves and arrows 第一確認試験の試験方法を説明するための正面模式図Front schematic diagram for explaining the test method of the first confirmation test 第一確認試験の試験結果を示す図The figure which shows the test result of the first confirmation test 第二確認試験の試験結果を示す図The figure which shows the test result of the second confirmation test 鋳片の鋳造方向に対する垂直断面図Vertical sectional view of the slab in the casting direction 実機鋳造における鋳型幅方向の偏流の定量化方法を説明するための説明図Explanatory drawing for demonstrating the quantification method of the drift in the mold width direction in actual machine casting 実機操業における凝固遅れ度と差Δhとの関係を示す図Diagram showing the relationship between the degree of solidification delay and the difference Δh in actual machine operation 水モデルにおける鋳型幅方向の偏流の定量化方法を説明するための説明図Explanatory diagram for explaining the method for quantifying the drift in the mold width direction in the water model 偏流度の時間推移を表すグラフGraph showing time transition of drift current 第三確認試験の試験結果を示す図The figure which shows the test result of the third confirmation test 浸漬ノズルの側面図Side view of immersion nozzle 第四確認試験の試験結果を示す図The figure which shows the test result of the 4th confirmation test 図3に類似する図であって、変形例を示す図It is a figure similar to FIG. 3, Comprising: The figure which shows a modification 図3に類似する図であって、変形例を示す図It is a figure similar to FIG. 3, Comprising: The figure which shows a modification

符号の説明Explanation of symbols

1 浸漬ノズル
2 内側底面
3 溶鋼吐出孔
3A 穿孔方向
4 突部
D 内径
1 Immersion nozzle
2 Inside bottom
3 Molten steel discharge hole
3A Drilling direction
4 Projections
D Inner diameter

Claims (2)

タンディッシュ内に保持される溶鋼を鋳型内へ注湯するのに供される有底円筒状の浸漬ノズルにおいて、該浸漬ノズルの内側底面から所定距離上方へ離れた位置において該浸漬ノズルの周壁に一対の対向する溶鋼吐出孔が穿孔されると共に、前記内側底面には該浸漬ノズルの底面視において前記溶鋼吐出孔の穿孔方向と平行に延在する突部が設けられ、更に下記式(1)及び(2)を満足する、ことを特徴とする浸漬ノズル。
h/H=0.5〜2.0・・・(1)
(a-b)/D=0.15〜0.45・・・(2)
ただし、
h:前記突部の延在方向に対する垂直断面における該突部の上面の高さ
H:前記溶鋼吐出孔の内周側開口縁の下端と前記内側底面との間の距離
a:前記浸漬ノズルの底面視における前記突部の上面の幅であって、該突部の延在方向端部における幅
b:前記浸漬ノズルの底面視における前記突部の上面の幅であって、該突部の延在方向中央における幅
D:前記浸漬ノズルの内径
In a bottomed cylindrical immersion nozzle provided for pouring molten steel held in a tundish into a mold, the peripheral wall of the immersion nozzle is spaced apart from the inner bottom surface of the immersion nozzle by a predetermined distance. A pair of opposed molten steel discharge holes are drilled, and the inner bottom surface is provided with a protrusion extending in parallel with the drilling direction of the molten steel discharge hole in the bottom view of the immersion nozzle, and further includes the following formula (1) And an immersion nozzle satisfying (2).
h / H = 0.5-2.0 ... (1)
(ab) /D=0.15~0.45 ... (2)
However,
h: the height of the upper surface of the protrusion in a cross section perpendicular to the extending direction of the protrusion
H: Distance between the lower end of the inner peripheral opening edge of the molten steel discharge hole and the inner bottom surface
a: The width of the top surface of the protrusion in the bottom view of the immersion nozzle, and the width at the end of the protrusion in the extending direction
b: The width of the upper surface of the protrusion in the bottom view of the immersion nozzle, and the width of the protrusion in the center in the extending direction
D: Inner diameter of the immersion nozzle
下記式(3)を満足する、ことを特徴とする請求項1に記載の浸漬ノズル。
s/S=0.15〜0.5・・・(3)
ただし、
s:前記浸漬ノズルの底面視における前記突部の上面の投影面積
S:前記浸漬ノズルの底面視において観念し得る該浸漬ノズルの流路断面積
The immersion nozzle according to claim 1, wherein the following formula (3) is satisfied.
s / S = 0.15-0.5 ... (3)
However,
s: Projected area of the upper surface of the protrusion in the bottom view of the immersion nozzle
S: Channel cross-sectional area of the immersion nozzle that can be conceived in the bottom view of the immersion nozzle
JP2006355978A 2006-12-28 2006-12-28 Immersion nozzle with drum type weir Expired - Fee Related JP4750013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355978A JP4750013B2 (en) 2006-12-28 2006-12-28 Immersion nozzle with drum type weir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355978A JP4750013B2 (en) 2006-12-28 2006-12-28 Immersion nozzle with drum type weir

Publications (2)

Publication Number Publication Date
JP2008161920A true JP2008161920A (en) 2008-07-17
JP4750013B2 JP4750013B2 (en) 2011-08-17

Family

ID=39692080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355978A Expired - Fee Related JP4750013B2 (en) 2006-12-28 2006-12-28 Immersion nozzle with drum type weir

Country Status (1)

Country Link
JP (1) JP4750013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020778B2 (en) * 2007-10-30 2012-09-05 株式会社神戸製鋼所 Continuous casting method of medium and high carbon steel using immersion nozzle with drum type weir

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185192A (en) * 1992-01-13 1993-07-27 Kawasaki Steel Corp Immersed nozzle for continuous casting
JPH06218508A (en) * 1993-01-28 1994-08-09 Toshiba Ceramics Co Ltd Dipping nozzle for continuous casting
JP2005125389A (en) * 2003-10-24 2005-05-19 Toshiba Ceramics Co Ltd Immersion nozzle for continuous casting
WO2005070589A1 (en) * 2004-01-23 2005-08-04 Sumitomo Metal Industries, Ltd Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185192A (en) * 1992-01-13 1993-07-27 Kawasaki Steel Corp Immersed nozzle for continuous casting
JPH06218508A (en) * 1993-01-28 1994-08-09 Toshiba Ceramics Co Ltd Dipping nozzle for continuous casting
JP2005125389A (en) * 2003-10-24 2005-05-19 Toshiba Ceramics Co Ltd Immersion nozzle for continuous casting
WO2005070589A1 (en) * 2004-01-23 2005-08-04 Sumitomo Metal Industries, Ltd Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle

Also Published As

Publication number Publication date
JP4750013B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP2019063851A (en) Immersion nozzle for continuous casting and method for steel continuous casting
JP2007090424A (en) Tundish for continuous casting
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4750013B2 (en) Immersion nozzle with drum type weir
JP4686442B2 (en) Split nozzle with immersion weir
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP4833744B2 (en) Immersion nozzle
JP5206591B2 (en) Tundish for continuous casting
JP4553639B2 (en) Continuous casting method
JP2007331003A (en) Continuous casting method for low carbon steel, using immersion nozzle with weir-type reservoir
JP4896599B2 (en) Continuous casting method of low carbon steel using dipping nozzle with dimple
JP4938490B2 (en) Grooved immersion nozzle
JP5510047B2 (en) Continuous casting method and continuous casting apparatus
JP5020778B2 (en) Continuous casting method of medium and high carbon steel using immersion nozzle with drum type weir
JP4851199B2 (en) Immersion nozzle
JP3595464B2 (en) Immersion nozzle for continuous casting and continuous casting method for steel
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
US9718128B2 (en) Method for using upper nozzle
JP5239554B2 (en) Immersion nozzle for continuous casting of slabs
JP7031463B2 (en) Continuous casting method
JPH10109145A (en) Method for controlling fluidity of molten steel in continuous casting mold for steel
JP4320043B2 (en) Continuous casting method of medium and high carbon steel using submerged dammed nozzle
JP2008000810A (en) Method for continuously casting high carbon steel using immersion nozzle with gate type pouring basin
JP2007216271A (en) Immersed nozzle
JP4902276B2 (en) Continuous casting method of high carbon steel using dipping nozzle with dimple

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4750013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees