JP2008161884A - Electromagnetic stirring device - Google Patents

Electromagnetic stirring device Download PDF

Info

Publication number
JP2008161884A
JP2008161884A JP2006351576A JP2006351576A JP2008161884A JP 2008161884 A JP2008161884 A JP 2008161884A JP 2006351576 A JP2006351576 A JP 2006351576A JP 2006351576 A JP2006351576 A JP 2006351576A JP 2008161884 A JP2008161884 A JP 2008161884A
Authority
JP
Japan
Prior art keywords
magnetic field
solidified shell
conductive material
moving magnetic
axially moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006351576A
Other languages
Japanese (ja)
Other versions
JP4859661B2 (en
Inventor
Tomofumi Kasahara
奉文 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006351576A priority Critical patent/JP4859661B2/en
Publication of JP2008161884A publication Critical patent/JP2008161884A/en
Application granted granted Critical
Publication of JP4859661B2 publication Critical patent/JP4859661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a flow causing to stir at the same time in the axial direction and the circumferential direction only with a magnetic field generating coil moving in the axial direction. <P>SOLUTION: The magnetic field generating coil 3 moving in the axial direction, for generating the magnetic line of force to the axial direction of a solidified shell 3 to an electrically conductive material 1 in a molten state surrounded by the solidified shell 4, is constituted so that the axial centers Oa to Of of respective rings 3a to 3f are tilted to the axis Ov of the solidified shell 4, and further, the axial centers Oa to Of of the respective rings 3a to 3f are arranged so as to be shifted one by one at intervals to the circumferential direction and the axial direction of the solidified shell 4, thereby such a flow that movement in the axial direction and the rotational movement are superposed is caused to the electrically conductive material 1 in a molten state surrounded by the solidified shell 4, so as to perform stirring. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は連続鋳造装置に関する。さらに詳述すると、本発明は、凝固中の導電性物質例えば溶融金属に電磁力を利用して非接触で撹拌させる工程を有する連続鋳造装置に関する。   The present invention relates to a continuous casting apparatus. More specifically, the present invention relates to a continuous casting apparatus having a step of agitating a solidified conductive material such as molten metal in a non-contact manner using electromagnetic force.

近年、スラブ連続鋳造装置のスラブ表層の清浄化対策として、鋳型内において凝固中の鋳片内溶鋼部分を電磁気力によって流動させるモールド内電磁攪拌装置が提案されている(非特許文献1)。モールド内の鋳片後方にリニアインダクタを設置することにより、モールド全幅をカバーする平行移動磁界を発生させ、この平行移動磁界でモールド内メニスカス近傍の溶鋼を水平方向に回転駆動させるものである。この移動磁界により発生した溶鋼攪拌流が柱状晶の間に補足された非金属介在物を洗い出し、初期凝固シェルに補足されることを防止する。また、洗い出された非金属介在物が溶鋼中心部で衝突、凝集して巨大化し、浮上しやすくなることにより、メニスカスまで浮上した非金属介在物がパウダーに細くされることで鋳片から取り除かれるようにしている。またこの攪拌流はモールド内の溶鋼温度分布を均一にし、凝固シェル厚みの偏差を減少させることで凝固遅れによる初期凝固シェルの歪みを軽減させ、鋳片の縦割れを防止するとしている。   In recent years, an in-mold electromagnetic stirrer has been proposed as a countermeasure for cleaning the slab surface layer of a slab continuous casting apparatus, in which a molten steel portion in a slab being solidified is flowed by electromagnetic force in a mold (Non-patent Document 1). By installing a linear inductor behind the slab in the mold, a parallel magnetic field that covers the entire width of the mold is generated, and the molten steel near the meniscus in the mold is rotationally driven in the horizontal direction by this parallel magnetic field. The molten steel stirring flow generated by the moving magnetic field is washed out of non-metallic inclusions captured between the columnar crystals, and is prevented from being captured by the initial solidified shell. In addition, the washed out non-metallic inclusions collide and agglomerate at the center of the molten steel and become enormous and easily float up. It is trying to be. Further, this stirring flow makes the molten steel temperature distribution in the mold uniform and reduces the deviation of the solidified shell thickness, thereby reducing the distortion of the initial solidified shell due to the solidification delay and preventing the vertical crack of the slab.

他方、溶融金属の電磁撹拌においては、周方向だけではなく上下方向も同時に撹拌することが効果的であることが知られている。回転(円周)方向移動磁界による電磁撹拌は、容器内の溶融金属の撹拌に適用すると、液面が回転によって大変形するために大きな電力を投入できないという欠点がある上に、水平回転運動のみでは溶融金属が剛体回転に近い挙動をするため、溶融金属の混合が十分ではない。また、実験の結果からも、溶融金属の回転運動に比して軸方向の運動には大きな抵抗があり、回転磁界による回転運動のみでは十分な効果が得られないことが判明している。   On the other hand, in electromagnetic stirring of molten metal, it is known that it is effective to stir not only in the circumferential direction but also in the vertical direction at the same time. When applied to the stirring of molten metal in a container, electromagnetic stirring using a rotating (circumferential) moving magnetic field has the disadvantage that large electric power cannot be applied because the liquid level is greatly deformed by rotation, and only horizontal rotational motion is possible. Then, since the molten metal behaves close to a rigid body rotation, mixing of the molten metal is not sufficient. Also from the experimental results, it has been found that there is a large resistance to the movement in the axial direction as compared with the rotational movement of the molten metal, and a sufficient effect cannot be obtained only by the rotational movement by the rotating magnetic field.

そこで、近年、鉛直移動磁界をつくる三相交流コイルと周方向移動磁界をつくる三相交流コイルの2種類のコイルを容器の外側に配置し、誘導効果を利用して上下方向の電磁力と周方向の電磁力を発生させることによって上下方向と周方向に同時に撹拌するものが提案されている(特許文献1)。   Therefore, in recent years, two types of coils, a three-phase AC coil that generates a vertical moving magnetic field and a three-phase AC coil that generates a circumferential moving magnetic field, are arranged outside the container, and the electromagnetic effect in the vertical direction and the circumferential force are utilized by using the induction effect. There has been proposed a technique in which stirring is performed simultaneously in the vertical direction and the circumferential direction by generating electromagnetic force in a direction (Patent Document 1).

また、容器内の溶融金属に回転磁界を与えるコイル(回転コイルと呼ぶ)を容器の軸に対して捩るように鉄心に斜めに配置して、三相交流の通電によりねじれ磁場を印加し、回転磁場と同時に軸方向の進行磁場(移動磁場)を与える誘導型電磁駆動装置も提案されている(特許文献2)。   In addition, a coil (referred to as a rotating coil) that applies a rotating magnetic field to the molten metal in the container is disposed obliquely on the iron core so as to twist with respect to the axis of the container, and a torsional magnetic field is applied by energization of three-phase alternating current. There has also been proposed an inductive electromagnetic drive device that provides an axial traveling magnetic field (moving magnetic field) simultaneously with a magnetic field (Patent Document 2).

新日鉄技法 第376号「新日本製鐵式スラブ用モールド内電磁攪拌装置”M−EMS”」Nippon Steel Technique No. 376 “Nippon-made slab electromagnetic stirring device“ M-EMS ”” 特開2003−220323号JP 2003-220323 A 特開2000−152600号JP 2000-152600 A

しかしながら、非特許文献1のスラブ連続鋳造装置におけるモールド内電磁攪拌装置の場合、水平磁界のみである。水平回転磁界による撹拌は、周辺ほど強く、中心に向かうほど弱くなるため、鋳型内で形成される周辺の凝固シェル近傍での撹拌力が最も強く、中心に向かうほど攪拌効果が薄れるものである。このため、非金属介在物を洗い出し初期凝固シェルに補足されることを防止するスラブ表層の清浄化対策においては有用ではあっても、凝固シェル内で最も遅く凝固が起こるスラブ中心に向かうほど撹拌が起き難く、結晶が大きく成長するため、結晶粒の微細化と均一化には効果が期待できない。   However, in the case of the in-mold electromagnetic stirring device in the slab continuous casting device of Non-Patent Document 1, only the horizontal magnetic field is used. Stirring by the horizontal rotating magnetic field is stronger toward the periphery and weaker toward the center. Therefore, the stirring force in the vicinity of the surrounding solidified shell formed in the mold is the strongest, and the stirring effect decreases toward the center. For this reason, although it is useful in cleaning measures of the slab surface layer that prevents non-metallic inclusions from being washed out and captured by the initial solidified shell, stirring is performed toward the center of the slab where solidification occurs most slowly in the solidified shell. It is difficult to occur, and the crystal grows greatly, so that no effect can be expected for making the crystal grains finer and uniform.

また、特許文献1の電磁撹拌装置では、鉛直移動磁界をつくる三相交流コイルと周方向移動磁界をつくる三相交流コイルとを容器の外側に重ねて配置するため、コイル容積が嵩張り装置が大型化すると共に2種類のコイルを備えるために高価な設備となる。   Moreover, in the electromagnetic stirring apparatus of patent document 1, since the three-phase alternating current coil which produces a vertical movement magnetic field, and the three-phase alternating current coil which produces a circumferential movement magnetic field are piled up on the outer side of a container, a coil volume is bulky. Since the size is increased and two types of coils are provided, expensive equipment is required.

また、特許文献2の電磁撹拌装置は、回転磁場を与えるコイルを捩るように配置しているので、溶融金属に流れる電流は装置内で閉じたループを形成しないため、推力の発生に寄与しない電気的エネルギーが生じることになり、撹拌能力が低くなる傾向にある。   In addition, since the electromagnetic stirrer of Patent Document 2 is arranged so as to twist a coil that applies a rotating magnetic field, the current flowing through the molten metal does not form a closed loop in the device, and thus does not contribute to the generation of thrust. Energy is generated and the stirring ability tends to be low.

本発明は、結晶粒の微細化と均一化を可能とする連続鋳造装置並びに方法を提供することを目的とする。また、本発明は、軸方向と周方向とを同時に撹拌する流れを一種類の移動磁界発生手段で生成可能として、設備コストが安価で且つ設備容積がコンパクトな連続鋳造装置及び方法を提供することを目的とする。   An object of this invention is to provide the continuous casting apparatus and method which enable refinement | miniaturization and uniformization of a crystal grain. In addition, the present invention provides a continuous casting apparatus and method in which the flow of stirring the axial direction and the circumferential direction simultaneously can be generated by one kind of moving magnetic field generating means, the equipment cost is low, and the equipment volume is compact. With the goal.

かかる目的を達成するため、本発明の連続鋳造方法は、溶融状態の導電性物質が固まり始めて凝固を完了するまでの間に、凝固シェルの内方の溶融状態の導電性物質に対して凝固シェルの軸方向に移動する複数の軸方向移動磁界を互いに凝固シェルの軸に対して傾斜させると共に凝固シェルの周方向かつ軸方向に間隔をあけて順次ずらして印加され、軸方向移動磁界を凝固シェルの周りに回転させて電磁撹拌するようにしている。また、本発明の連続鋳造装置は、溶融状態の導電性物質が固まり始め凝固を完了するまでの間の全域あるいはいずれかの領域で凝固シェルを包囲しかつ凝固シェルの内方の溶融状態の導電性物質に対して凝固シェルの軸方向に磁力線を発生させる軸方向移動磁界発生リングが、各リングの軸心を前記中心軸に対して傾斜させると共に各リングの軸心が凝固シェルの周方向並びに軸方向に間隔をあけて順次ずらして配置され、軸方向移動磁界発生リングによって凝固シェルで囲まれた溶融状態の導電性物質に軸方向の電磁力がつくられると同時にその軸方向移動磁界が凝固シェルの周りを回転するようにしている。   In order to achieve such an object, the continuous casting method of the present invention provides a solidified shell for a molten conductive material inside the solidified shell until the molten conductive material starts to solidify and completes solidification. A plurality of axially moving magnetic fields that move in the axial direction of the solidified shell are inclined with respect to the axis of the solidified shell and are sequentially shifted at intervals in the circumferential direction and the axial direction of the solidified shell, and the axially moving magnetic field is applied to the solidified shell. It is made to rotate around and electromagnetically stir. Further, the continuous casting apparatus of the present invention surrounds the solidified shell in the whole region or any region until the solidified conductive material starts to solidify and completes solidification, and the molten state conductive material inside the solidified shell. An axially moving magnetic field generating ring for generating a magnetic force line in the axial direction of the solidified shell with respect to the active substance inclines the axis of each ring with respect to the central axis, and the axis of each ring is arranged in the circumferential direction of the solidified shell. Axial electromagnetic force is generated in the molten conductive material, which is arranged sequentially shifted at intervals in the axial direction and surrounded by the solidified shell by the axially moving magnetic field generating ring, and at the same time, the axially moving magnetic field is solidified. It is designed to rotate around the shell.

凝固シェル近傍の溶融状態にある導電性物質内においては、軸方向移動磁界発生リングによって発生する磁界がコイル軸の傾きによって垂直成分と水平成分とを有し、垂直成分が垂直方向(軸方向)の移動磁界として作用する一方、水平成分が水平面を周方向に回転させる磁界として作用する。このため、垂直成分と周方向の回転成分を合成する螺旋流の移動磁界が生成される。この螺旋流の移動磁界と電磁誘導により溶融状態の導電性物質たとえば溶融金属に流れる電流との間で、垂直成分と回転成分を有する電磁力が形成され、凝固シェル近傍の溶融状態の導電性物質にはらせん状の運動が与えられる。   In the conductive material in the molten state near the solidified shell, the magnetic field generated by the axially moving magnetic field generating ring has a vertical component and a horizontal component due to the inclination of the coil axis, and the vertical component is in the vertical direction (axial direction). The horizontal component acts as a magnetic field that rotates the horizontal plane in the circumferential direction. For this reason, the moving magnetic field of the spiral flow which synthesize | combines a vertical component and the rotation component of the circumferential direction is produced | generated. An electromagnetic force having a vertical component and a rotational component is formed between the moving magnetic field of the spiral flow and a molten conductive material such as a current flowing through the molten metal by electromagnetic induction, and the molten conductive material in the vicinity of the solidified shell. Is given a spiral motion.

ここで、本発明の電磁撹拌装置において、軸方向移動磁界発生リングは、通電によって軸方向移動磁界が凝固シェルの周りに回転する環状の電磁コイルの採用が好ましく、より好ましくは3相交流コイルの採用であって、順方向巻きのコイルと逆向き巻きのコイルを使って隣り合うコイル間に60°の位相差を設けたものである。   Here, in the electromagnetic stirrer of the present invention, the axially moving magnetic field generating ring is preferably an annular electromagnetic coil in which the axially moving magnetic field rotates around the solidified shell when energized, more preferably a three-phase AC coil. Adopting and using a forward winding coil and a reverse winding coil, a phase difference of 60 ° is provided between adjacent coils.

また、本発明の電磁撹拌装置において、軸方向移動磁界発生リングは永久磁石であり、当該リングそのものを容器あるいは流れの中心軸を中心として回転させることにより軸方向移動磁界が容器あるいは流れの周りに回転するようにしても良い。この場合における軸方向移動磁界発生リングは、高温超伝導磁石であることが好ましい。   In the electromagnetic stirring device of the present invention, the axially moving magnetic field generating ring is a permanent magnet, and the axially moving magnetic field is moved around the container or flow by rotating the ring itself around the container or the central axis of the flow. You may make it rotate. In this case, the axially moving magnetic field generating ring is preferably a high-temperature superconducting magnet.

また、本発明の電磁撹拌装置における軸方向移動磁界発生リングはその軸心を円周方向に60°ずつずらし、6リングで1周することが好ましい。   Further, it is preferable that the axially moving magnetic field generating ring in the electromagnetic stirrer of the present invention has its axial center shifted by 60 ° in the circumferential direction and made one turn with 6 rings.

本発明の電磁撹拌装置並びに方法によれば、軸方向移動磁界発生コイルによって凝固シェルで囲まれた溶融状態の導電性物質に軸方向の電磁力がつくられると同時にその磁界が導電性物質の流れの周りを回転するため、溶融金属には軸方向の電磁力に起因する溶融状態の金属の流れと、この流れとは別の流れ、即ち周方向への磁界の移動に伴う流れが与えられる。これにより、容器の周壁近傍の溶融金属には、軸方向の電磁力に起因する軸方向運動と回転運動とが重畳した流れが生じ、軸方向移動磁界発生手段のみで溶融金属が軸方向と周方向に同時に撹拌される。依って、回転磁界型とリニアモーター型の2種類の電磁コイルを組み合わせなくとも、軸方向移動磁界発生コイルだけで軸方向と周方向の同時撹拌を可能とする螺旋の旋回流が形成できるので、部品点数が少なくコンパクトで安価な設備とすることができる。   According to the electromagnetic stirrer and method of the present invention, the axial electromagnetic force is generated in the molten conductive material surrounded by the solidified shell by the axially moving magnetic field generating coil, and at the same time, the magnetic field flows through the conductive material. Therefore, the molten metal is provided with a molten metal flow caused by the axial electromagnetic force and a flow different from this flow, that is, a flow accompanying the movement of the magnetic field in the circumferential direction. As a result, the molten metal in the vicinity of the peripheral wall of the container has a flow in which the axial motion and the rotational motion due to the electromagnetic force in the axial direction are superimposed, and the molten metal is moved around the axial direction only by the axial moving magnetic field generating means. Are simultaneously stirred in the direction. Therefore, since it is possible to form a spiral swirl flow that enables simultaneous stirring in the axial direction and the circumferential direction only by the axial moving magnetic field generating coil without combining two types of electromagnetic coils of the rotating magnetic field type and the linear motor type, The number of parts is small and the equipment can be made compact and inexpensive.

また、螺旋状の回転力が与えられながら凝固シェルの中心に向かう対流によって攪拌される溶融状態の導電性物質の固まりかけた部分即ち結晶化し始めたものが、凝固シェルとの境界において衝突により結晶粒が砕かれて細かくされるので、結晶粒の微細化と均一化が可能となる。しかも、撹拌に効果的な軸方向移動成分が主となって周方向移動成分(回転)が生成されるため、撹拌能力も高いものとなる。したがって、結晶粒が砕かれて微細化されると共に、結晶粒が小さくされたままで凝固することにより結晶粒の再成長も抑制できる。   In addition, a portion of the molten conductive material that has been agitated by convection toward the center of the solidified shell while being given a helical rotational force, that is, a portion that has started to crystallize, is crystallized due to collision at the boundary with the solidified shell. Since the grains are crushed and made fine, the crystal grains can be made finer and uniform. In addition, since the axial movement component effective for stirring is mainly generated and the circumferential movement component (rotation) is generated, the stirring ability is also high. Accordingly, the crystal grains are crushed and refined, and the crystal grains can be solidified with the crystal grains kept small to suppress regrowth of the crystal grains.

さらに、請求項3記載の電磁撹拌装置によれば、軸方向移動磁界発生リングを構成する電磁コイルへの通電制御だけで移動磁界が生成され、機械的駆動部を必要としないため、作動が安定する。特に、請求項4記載の電磁撹拌装置によれば、商用電源をそのまま使用するだけで三相電源の電流の位相差を利用して移動磁界を生成できる。   Furthermore, according to the electromagnetic stirrer according to claim 3, since the moving magnetic field is generated only by the energization control to the electromagnetic coil constituting the axial direction moving magnetic field generating ring, and the mechanical drive unit is not required, the operation is stable. To do. In particular, according to the electromagnetic stirrer described in claim 4, it is possible to generate a moving magnetic field by using the phase difference of the current of the three-phase power source simply by using the commercial power source as it is.

また、請求項5記載の電磁撹拌装置によれば、軸方向移動磁界発生リングが永久磁石で構成されているので、当該リングそのものを容器あるいは流れの中心軸を中心として回転させるだけで、軸方向移動磁界の回転を実現できる。特に、高温超伝導磁石を用いた請求項6記載の電磁撹拌装置によれば、大きな電磁力を印加可能であるため、強い撹拌力を得ることができる。   According to the electromagnetic stirrer of claim 5, since the axially moving magnetic field generating ring is composed of a permanent magnet, the ring itself can be rotated only by rotating the ring itself around the central axis of the container or the flow. The rotation of the moving magnetic field can be realized. In particular, according to the electromagnetic stirring device according to claim 6 using a high-temperature superconducting magnet, a large stirring force can be obtained because a large electromagnetic force can be applied.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1に本発明にかかる電磁撹拌式連続鋳造装置の一実施形態を示す。この実施形態の連続鋳造装置は、鋳型2あるいは二次冷却帯8の周囲に電磁撹拌力を与える電磁撹拌装置3を備え、凝固シェル4で溶融状態の導電性物質1が包囲された成形物に対して溶融状態の導電性物質1が固まり始め凝固を完了するまでの間に電磁撹拌を与えるようにしたものである。電磁撹拌装置3は、凝固シェル4に包囲された溶融状態の導電性物質1に対して凝固シェル4の軸方向に磁力線を発生させる複数例えば6個の軸方向移動磁界発生リング3a〜3fによって構成され、各リング3a〜3fの軸心Oa〜Ofが凝固シェル4あるいは鋳型2の中心軸Ovに対して傾斜させると共に各リング3の軸心Oa〜Ofが凝固シェル4あるいは鋳型2の周方向並びに軸方向に間隔をあけて順次ずらして配置するようにしたものである。   FIG. 1 shows an embodiment of an electromagnetic stirring type continuous casting apparatus according to the present invention. The continuous casting apparatus of this embodiment includes an electromagnetic stirring device 3 that applies electromagnetic stirring force around the mold 2 or the secondary cooling zone 8, and a molded product in which a molten conductive material 1 is surrounded by a solidified shell 4. On the other hand, electromagnetic stirring is applied until the molten conductive material 1 starts to solidify and solidifies. The electromagnetic stirring device 3 includes a plurality of, for example, six axially moving magnetic field generating rings 3 a to 3 f that generate magnetic lines of force in the axial direction of the solidified shell 4 with respect to the molten conductive material 1 surrounded by the solidified shell 4. The axial centers Oa to Of of the rings 3a to 3f are inclined with respect to the central axis Ov of the solidified shell 4 or the mold 2, and the axial centers Oa to Of of the rings 3 are arranged in the circumferential direction of the solidified shell 4 or the mold 2. They are arranged so as to be sequentially shifted with an interval in the axial direction.

この電磁撹拌装置3により、溶融状態の導電性物質1が固まり始めて凝固を完了するまでの間に、凝固シェル4の内方の溶融状態の導電性物質1に対して軸方向移動磁界を凝固シェル4の周りに回転させながら印加するものである。電磁撹拌は、溶融状態の導電性物質1が固まり始めてから凝固を完了するまでの間のいずれかに凝固シェル4で囲まれた溶融状態の導電性物質1に対して軸方向移動磁界を与えることが必要である。したがって、連続鋳造装置における電磁撹拌装置は、鋳型内、鋳型下、凝固末期の3つの位置のいずれか1つに若しくは2つ以上に組み合わせて配置されて用いられることが好ましく、より好ましくは凝固開始から完了までの全域で電磁撹拌を与えることである。そこで、本実施形態においては鋳型2および二次冷却帯8の凝固シェル4の周りに電磁撹拌装置3を配置するようにしている。   The electromagnetic stirring device 3 applies an axial moving magnetic field to the molten conductive material 1 inside the solidified shell 4 until the molten conductive material 1 starts to solidify and completes solidification. 4 is applied while rotating around 4. The electromagnetic stirring applies an axial moving magnetic field to the molten conductive material 1 surrounded by the solidified shell 4 at any time between the start of solidification of the molten conductive material 1 and the completion of solidification. is required. Therefore, the electromagnetic stirring device in the continuous casting apparatus is preferably used by being disposed in any one of the three positions in the mold, under the mold, or at the end of solidification, or in combination of two or more, and more preferably the solidification start. To provide electromagnetic stirring throughout the entire process. Therefore, in this embodiment, the electromagnetic stirring device 3 is arranged around the mold 2 and the solidified shell 4 of the secondary cooling zone 8.

ここで、鋳型2には、冷却能力を有していると同時に磁束を透過させることが必要であり、磁力線を貫通させ易い材質でかつ撹拌しようとする溶融金属1の融点よりも高い融点の材料、例えば透磁率の低いオーステナイト系ステンレス、銅やアルミニウムなどの非鉄金属あるいはこれらの組み合わせによって構成されている。例えば、溶鋼を冷却する機能を持つ銅板と、鋳型としての剛性を保つためのステンレス鋼部材とから構成される鋳型の使用が好ましい。しかしながら、銅板やステンレス鋼などは、あまり厚いと磁場により内部に渦電流が流れ、反発する磁場が発生するため、結果的に溶融状態の導電性物質中の磁場が減衰することがある。そこで、溶融状態の導電性物質により強い電磁力を付与するため、銅板は導電率が低くかつ薄い方が好ましく、ステンレス鋼部材についても同様に薄い方が望ましい。そこで、鋳型2は、例えば薄いかあるいはスリットが入れられて渦電流の発生が抑制された冷却用の銅板と溶湯に直接接触するステンレスとで構成される。また、励磁電流の周波数を低周波数化することにより磁束密度の減衰を少なくすることも可能であり、例えば10Hz以下、好ましくは5Hz程度の低周波数電流の使用が磁束の通過を容易にする。特に、大断面ブルームの凝固末期における電磁撹拌には、厚い凝固シェル4を通して電磁力を作用させる必要から10Hz以下の低周波数電流を用いることが好ましい。また、鋳型直下あるいは凝固末期に至る位置に配置される電磁撹拌装置3の場合には、電磁力の減衰を小さくするため商用電源周波数の電流が用いられる。   Here, the mold 2 must have a cooling capability and at the same time allow the magnetic flux to pass therethrough, and is a material that can easily penetrate the magnetic field lines and has a melting point higher than the melting point of the molten metal 1 to be stirred. For example, it is made of austenitic stainless steel having a low magnetic permeability, non-ferrous metal such as copper or aluminum, or a combination thereof. For example, it is preferable to use a mold composed of a copper plate having a function of cooling molten steel and a stainless steel member for maintaining rigidity as a mold. However, if the copper plate or stainless steel is too thick, an eddy current flows inside due to the magnetic field and a repulsive magnetic field is generated. As a result, the magnetic field in the molten conductive material may be attenuated. Therefore, in order to apply a strong electromagnetic force to the molten conductive material, the copper plate is preferably low in conductivity and thin, and the stainless steel member is also preferably thin. Therefore, the mold 2 is composed of, for example, a thin copper plate or a cooling copper plate in which slits are inserted to suppress the generation of eddy currents and stainless steel that is in direct contact with the molten metal. It is also possible to reduce the attenuation of the magnetic flux density by reducing the frequency of the exciting current. For example, the use of a low frequency current of 10 Hz or less, preferably about 5 Hz, facilitates the passage of the magnetic flux. In particular, it is preferable to use a low-frequency current of 10 Hz or less for electromagnetic stirring at the end of solidification of a large-section bloom because it is necessary to apply an electromagnetic force through the thick solidified shell 4. Further, in the case of the electromagnetic stirring device 3 arranged immediately below the mold or at the position reaching the end of solidification, a current at a commercial power supply frequency is used to reduce the attenuation of the electromagnetic force.

鋳型2には凝固シェル4を形成するための冷却水を循環させる冷却パイプ(図示省略)が埋設され、常時冷却されているため、その周囲に配置された電磁撹拌装置3を構成する軸方向移動磁界発生リング3a〜3fが溶湯の放射熱を直接受けることはなく、固体輻射熱で加熱される虞はない。   A cooling pipe (not shown) that circulates cooling water for forming the solidified shell 4 is embedded in the mold 2 and is always cooled. Therefore, the axial movement of the electromagnetic stirring device 3 arranged around the cooling pipe is provided. The magnetic field generating rings 3a to 3f do not directly receive the radiant heat of the molten metal, and there is no possibility of being heated by the solid radiant heat.

電磁撹拌装置3を構成する軸方向移動磁界発生リング3a〜3fは、凝固シェル4に包まれた溶融状態の導電性物質1に対して軸方向移動磁界を印加させるため、鋳型2の外あるいは鋳型2から引き出された凝固シェル4の周りに設置されている。本実施形態の場合、軸方向移動磁界発生リング3a〜3fは、環状の磁界発生コイルによって構成され、円筒状の鉄心5を備え、この鉄心5の内周面側に内方に向けて開口するように形成された環状溝(スロット)6に必要に応じたターン数がそれぞれ巻かれている。ここで、磁場の強さはコイルの巻き数に電流値をかけたもので決まることから、所望の磁場の強さが得られる条件を満たすように、巻き数が決められる。即ち、(磁場の強さ)=(巻き数)×(電流)の条件を見たすように、巻き数が決められる。また、各コイル3a〜3fに流す電流は、(電流)=(電圧)÷(インピーダンス)から求められる。   The axially moving magnetic field generating rings 3a to 3f that constitute the electromagnetic stirring device 3 apply an axially moving magnetic field to the molten conductive material 1 wrapped in the solidified shell 4, so that the outside of the mold 2 or the mold 2 is installed around the solidified shell 4 pulled out from 2. In the case of the present embodiment, the axially moving magnetic field generating rings 3 a to 3 f are configured by annular magnetic field generating coils, and include a cylindrical iron core 5 that opens inwardly on the inner peripheral surface side of the iron core 5. Each of the annular grooves (slots) 6 formed as described above is wound with a number of turns as necessary. Here, since the strength of the magnetic field is determined by multiplying the number of turns of the coil by the current value, the number of turns is determined so as to satisfy a condition for obtaining a desired magnetic field strength. That is, the number of turns is determined so as to satisfy the condition of (magnetic field strength) = (number of turns) × (current). Moreover, the electric current sent through each coil 3a-3f is calculated | required from (current) = (voltage) / (impedance).

そして、それぞれのスロット6に同心円状にコイル線材を巻回した環状コイル3a〜3fが収納されている。即ち、軸方向移動磁界発生コイル3a〜3fは、複数の環状コイルを同心状に軸方向に配置したものである。なお、電磁撹拌装置3を構成する軸方向移動磁界発生リングの数は上述の6個に特に限定されず、撹拌すべき溶融導電性物質1の材質・種類及び量、並びに撹拌のモード及び強度などに応じて任意に設定する。   And the annular coils 3a-3f which wound the coil wire material concentrically in each slot 6 are accommodated. That is, the axial direction moving magnetic field generating coils 3a to 3f are formed by concentrically arranging a plurality of annular coils in the axial direction. The number of axially moving magnetic field generating rings constituting the electromagnetic stirrer 3 is not particularly limited to the above six, and the material, type and amount of the molten conductive material 1 to be stirred, the mode and strength of stirring, etc. Set arbitrarily according to.

図3に20ターンを巻いた磁界発生から成る軸方向移動磁界発生リング3a〜3fの概念図を示す。尚、この図は、三相交流の通電状態と発生磁束との関係を説明するため、図1の軸方向移動磁界発生リング(磁界発生コイル)3a〜3fを説明の便宜上同心状に配置して示したものであり、鉄心5並びにスロット6も軸方向に等間隔で同心円状に複数本配置された状態で示されている。図3における磁界発生コイル3は、120°位相差を有する三相交流をそれぞれ流すA,B,Cの3種類のコイルと、これらとそれぞれ結線されて逆向きに巻回されるX,Y,Zの3種類のコイルとを設定している。コイルの配置順序は、三相交流の各相のコイルをA,B、C、それらと逆の向きに巻いたコイルをX,Y,Zとすると、例えば位相角の関係を示す図3の(B)及び(C)に示すように、AとX、BとY、CとZがそれぞれ結線されて対向する位置関係となるように、鋳型の軸方向下側に向けてA→Z→B→X→C→Y→A→…→Yの順番に配置され、各コイルの位相差が60°に設定されて6つのリング3a〜3fで1周するように設けられている。即ち、図3の(B)及び(C)に示すように、Aが0度のとき、Zが60度、Bが120度、Xが180度、Cが240度、Yが300度である。つまり、図1に示すように、本実施形態の電磁撹拌装置3は、凝固シェル4の周りを囲繞すると共に6つの環状コイル3a〜3fからなり、さらに当該コイルは3相交流コイルであり、順方向巻きのコイルと逆方向巻きのコイルを使って隣り合うコイル間に60°の位相差を設けるようにしている。したがって、磁界発生コイル3に図示していない電源より三相交流の電流が供給されると、例えば図3(A)に矢印で示すように、鉄心5から鋳型2を貫通して溶融金属1に達した後、鋳型2を貫通して鉄心5に戻る磁力線が発生する。磁力線は各コイル毎に発生するが、隣り合うコイル同士の位相差や巻き方向、各コイルに流れる電流の変化によって鋳型の軸方向下向きの移動磁界が形成される。しかも、三相交流の振幅に応じて磁界が周方向に移動するため、溶融状態の導電性物質1たる溶融金属には螺旋流7が起こる。   FIG. 3 shows a conceptual diagram of axially moving magnetic field generating rings 3a to 3f composed of magnetic field generation in which 20 turns are wound. In this figure, the axially moving magnetic field generating rings (magnetic field generating coils) 3a to 3f in FIG. 1 are arranged concentrically for convenience of explanation in order to explain the relationship between the energized state of the three-phase alternating current and the generated magnetic flux. The iron core 5 and the slots 6 are also shown in a state in which a plurality of concentric circles are arranged at equal intervals in the axial direction. The magnetic field generating coil 3 in FIG. 3 includes three types of coils A, B, and C that respectively flow three-phase alternating current having a phase difference of 120 °, and X, Y, Three types of coils, Z, are set. As for the arrangement order of the coils, assuming that the coils of the three-phase alternating current phases are A, B, and C, and the coils wound in the opposite directions are X, Y, and Z, for example, FIG. As shown in B) and (C), A → Z → B toward the lower side in the axial direction of the mold so that A and X, B and Y, and C and Z are connected and face each other. → X → C → Y → A →... → Y, the phase difference of each coil is set to 60 °, and it is provided so as to make one round with the six rings 3a to 3f. That is, as shown in FIGS. 3B and 3C, when A is 0 degree, Z is 60 degrees, B is 120 degrees, X is 180 degrees, C is 240 degrees, and Y is 300 degrees. . That is, as shown in FIG. 1, the electromagnetic stirring device 3 of the present embodiment surrounds the solidified shell 4 and includes six annular coils 3 a to 3 f, and the coil is a three-phase AC coil. Using a direction-wound coil and a reverse-wound coil, a phase difference of 60 ° is provided between adjacent coils. Therefore, when a three-phase AC current is supplied to the magnetic field generating coil 3 from a power source (not shown), for example, as indicated by an arrow in FIG. After reaching, magnetic lines of force that pass through the mold 2 and return to the iron core 5 are generated. Magnetic field lines are generated for each coil, but a moving magnetic field downward in the axial direction of the mold is formed by a phase difference between adjacent coils, a winding direction, and a change in current flowing in each coil. In addition, since the magnetic field moves in the circumferential direction according to the amplitude of the three-phase alternating current, a spiral flow 7 occurs in the molten metal that is the conductive material 1 in the molten state.

尚、各磁界発生コイル3a〜3fは、図示していないが、場合によっては冷却材例えば冷却用オイルを満たした環状鋳型内に設置し、通電による過熱を防止することもある。軸方向移動磁界発生コイルには3相交流商用電源から周波数可変のインバータ等を経て任意周波数の3相交流を通電する。   Although not shown in the drawings, the magnetic field generating coils 3a to 3f are sometimes installed in an annular mold filled with a coolant, for example, cooling oil, to prevent overheating due to energization. An axially moving magnetic field generating coil is energized with a three-phase alternating current of an arbitrary frequency from a three-phase alternating current commercial power source through a frequency variable inverter or the like.

以上のように構成された電磁撹拌装置3を備える連続鋳造装置によれば、軸方向移動磁界発生リング3a〜3fたる三相交流コイルへ三相交流が通電されると、アンペールの法則によりコイルの周りのヨーク材を通る磁力線が発生する。この同心円環型のコイルによって生じる磁力線は、鋳型2並びに凝固シェル4を透過して溶融金属1内に入り込み、磁路を形成する。三相交流の電流の時間変化とともに、コイルの周りの磁場は移動する。この移動磁場により、ファラデーの電磁誘導の法則により、溶融金属1内には常時周方向に電流が発生する。この電流の向きは移動磁場による磁場の変動により常時変化するが、電磁力の向きは常に同じ方向となり、一定方向例えば下方へ向けて発生する。つまり、下向きの移動磁界を形成することで、溶融金属の鋳型2の壁面近傍、即ち磁力線が鋳型2並びに凝固シェル4を径方向に貫通する位置に円周方向に流れる電流が発生する。例えば、図3(A)のP1位置では同図の奥側から手前側に向かう電流が、P2位置では同図の手前側から奥側に向かう電流が発生する。移動磁界と溶融金属1中に生じる電流とによってフレミングの左手の法則から下向きの電磁力Fが発生する。導電性液体1中に発生する電流は場所によって方向が逆になるが、A,B,Cのコイル3とX,Y,Zのコイル3の巻き方向も逆になっているので、常に下向きの電磁力Fが発生する。   According to the continuous casting apparatus including the electromagnetic stirrer 3 configured as described above, when a three-phase alternating current is supplied to the three-phase alternating current coils that are the axially moving magnetic field generating rings 3a to 3f, the coil is in accordance with Ampere's law. Magnetic field lines are generated through the surrounding yoke material. The lines of magnetic force generated by the concentric ring coils penetrate the mold 2 and the solidified shell 4 and enter the molten metal 1 to form a magnetic path. As the current of the three-phase alternating current changes with time, the magnetic field around the coil moves. By this moving magnetic field, current is always generated in the circumferential direction in the molten metal 1 according to Faraday's law of electromagnetic induction. The direction of this current always changes due to the fluctuation of the magnetic field due to the moving magnetic field, but the direction of the electromagnetic force is always the same direction and is generated in a certain direction, for example, downward. That is, by forming a downward moving magnetic field, a current flowing in the circumferential direction is generated in the vicinity of the wall surface of the molten metal mold 2, that is, at a position where the lines of magnetic force penetrate the mold 2 and the solidified shell 4 in the radial direction. For example, at the P1 position in FIG. 3A, a current from the back side to the near side in the figure is generated, and at the P2 position, a current from the near side to the back side in the figure is generated. A downward electromagnetic force F is generated from the Fleming's left-hand rule by the moving magnetic field and the current generated in the molten metal 1. The direction of the current generated in the conductive liquid 1 is reversed depending on the location, but the winding directions of the A, B, C coil 3 and the X, Y, Z coil 3 are also reversed. Electromagnetic force F is generated.

このため、溶融金属1には軸方向への電磁力Fが発生する同時にこの電磁力の周方向並びに軸方向への移動が生じるため、溶融金属1に対して軸方向の電磁力と周方向の電磁力とが合成された斜め方向の推力が働いて、一定方向即ち斜め下方向の流れを溶融金属1に起こさせる。この凝固シェルの内側の面に沿った流れはその後反転して上昇流となり、凝固シェルの中央で液面へ向けて上昇すると共に液面で再び凝固シェルの壁面側へ反転して凝固シェルの壁面に沿った下降流となって循環する対流を起こす。この対流は、軸方向への移動を主成分とするが、周方向への回転成分を伴うので、軸方向と周方向とを同時に撹拌する螺旋状の流れとなる。この場合には、未凝固の溶融金属に対して軸方向の電磁力と周方向の磁界の移動とで中心に向かう強力な螺旋状の流れが溶融導電性物質に働いて攪拌することから、結晶成長の制御が可能となる。例えば、等軸樹枝状晶を増し、最終凝固位置の溶質元素の偏析を多数の等軸晶間に分散することが可能となる。しかも、固まりかけたところに液体金属をぶっつけて結晶粒を砕くことにより結晶粒を細かくすることができる。回転磁界による撹拌は、周辺ほど強く、中心に向かうほど弱くなる。しかし、境界面で衝突させることで、結晶粒の微細化と均一化が可能となる。   For this reason, since the electromagnetic force F in the axial direction is generated in the molten metal 1 and this electromagnetic force is moved in the circumferential direction and in the axial direction at the same time, the axial electromagnetic force and the circumferential direction of the molten metal 1 are increased. A slanting direction thrust combined with the electromagnetic force works to cause the molten metal 1 to flow in a certain direction, that is, a slanting downward direction. The flow along the inner surface of the solidified shell then reverses to become an upward flow, rises toward the liquid level at the center of the solidified shell, and reverses again to the wall surface side of the solidified shell at the liquid level. Causing convection to circulate as a downward flow along. This convection has a movement in the axial direction as a main component, but is accompanied by a rotation component in the circumferential direction, and thus becomes a spiral flow in which the axial direction and the circumferential direction are simultaneously stirred. In this case, a strong spiral flow toward the center of the unsolidified molten metal due to the axial electromagnetic force and the movement of the circumferential magnetic field acts on the molten conductive material and stirs. Growth can be controlled. For example, it becomes possible to increase equiaxed dendrites and disperse segregation of solute elements at the final solidification position among a number of equiaxed crystals. Moreover, the crystal grains can be made fine by crushing the crystal grains by hitting the liquid metal with the liquid metal. Agitation by a rotating magnetic field is stronger toward the periphery and weaker toward the center. However, the crystal grains can be made finer and uniform by colliding at the boundary surface.

ここで、鋳型2の周壁付近あるいは凝固シェル4の内壁面において溶融金属1に対して下降流が生じ、鋳型2あるいは凝固シェル4の中央部において溶融金属1に対して上昇流が生じると共に軸方向移動磁界が同時に周方向にも移動することに起因する回転運動によって溶融金属1の液面が鋳型2の中央部において凹む。この結果、溶融金属1の液面は鋳型2の半径方向に亘ってほぼ均一となりほぼ平坦に保持されるので、軸方向移動磁界発生コイル3に対して大電流を投入して溶融金属1に対して大きな運動を発生させても、溶融金属1が鋳型2から溢れ出ることがない。   Here, a downward flow is generated with respect to the molten metal 1 in the vicinity of the peripheral wall of the mold 2 or the inner wall surface of the solidified shell 4, and an upward flow is generated with respect to the molten metal 1 in the central portion of the mold 2 or the solidified shell 4. The liquid surface of the molten metal 1 is recessed at the center of the mold 2 due to the rotational movement caused by the movement of the moving magnetic field in the circumferential direction at the same time. As a result, the liquid level of the molten metal 1 is substantially uniform over the radial direction of the mold 2 and is kept almost flat. Therefore, a large current is supplied to the axially moving magnetic field generating coil 3 to the molten metal 1. Even if a large movement is generated, the molten metal 1 does not overflow from the mold 2.

しかも、本発明の装置は、磁界の発生を溶融金属1の回転運動に比して大きな抵抗が生ずる軸方向の運動を主とし、軸方向運動を損なうことなく得た回転運動を重畳させることができ、溶融金属1に対して強力かつ均一な撹拌を与えることができる。   In addition, the apparatus of the present invention can mainly superimpose the rotational motion obtained without impairing the axial motion, with the generation of the magnetic field mainly consisting of the axial motion in which a large resistance is generated compared to the rotational motion of the molten metal 1. It is possible to give strong and uniform stirring to the molten metal 1.

軸方向移動磁界発生コイル3によって凝固シェル4内に軸方向移動磁界を形成することにより、凝固シェル4の周壁近傍においては、電磁誘導により溶融状態の導電性物質たとえば溶融金属に流れる電流との間に軸方向の電磁力を形成して周壁近傍の溶融状態の金属に軸方向の運動を与える。同時に、各リング3a〜3fの軸心Oa〜Ofを凝固シェル4の中心軸(例えば垂線)Ovに対して傾斜させると共に各リング3a〜3fの軸心Oa〜Ofが凝固シェル4(あるいは連続鋳造用鋳型2)の周方向並びに軸方向に間隔をあけて順次ずらして配置することによって、凝固シェル4内に侵入する磁場が周方向に回転しながら軸方向下側へ移動することとなる。つまり、凝固シェル4の近傍の溶融状態にある導電性物質1内においては、軸方向移動磁界発生リング3a〜3fによって発生する磁界がコイル軸Oa〜Ofの傾きによって垂直成分と水平成分とを有し、垂直成分が垂直方向(軸方向)の移動磁界として作用する一方、水平成分が水平面を周方向に回転させる磁界として作用する。このため、垂直成分と周方向の回転成分を合成する螺旋流の移動磁界7が生成される。この螺旋状の移動磁界7と電磁誘導により溶融状態の導電性物質たとえば溶融金属1に流れる電流との間で、垂直成分と回転成分を有する電磁力が形成され、凝固シェル近傍の溶融金属1にはらせん状の運動が与えられる。なお、本実施形態では、移動磁界の移動方向は、鋳型2の上から下へ向かう軸方向移動の例を挙げている。   By forming an axially moving magnetic field in the solidified shell 4 by the axially moving magnetic field generating coil 3, in the vicinity of the peripheral wall of the solidified shell 4, there is a gap between the current flowing in the molten conductive material such as molten metal by electromagnetic induction. An electromagnetic force in the axial direction is formed on the metal to impart axial motion to the molten metal in the vicinity of the peripheral wall. At the same time, the axes Oa to Of of the rings 3a to 3f are inclined with respect to the center axis (for example, a perpendicular line) Ov of the solidified shell 4, and the axes Oa to Of of the rings 3a to 3f are solidified shell 4 (or continuous casting). By sequentially shifting the casting mold 2) in the circumferential direction and the axial direction at intervals, the magnetic field entering the solidified shell 4 moves downward in the axial direction while rotating in the circumferential direction. In other words, in the conductive material 1 in the molten state in the vicinity of the solidified shell 4, the magnetic field generated by the axial moving magnetic field generating rings 3a to 3f has a vertical component and a horizontal component due to the inclination of the coil axes Oa to Of. The vertical component acts as a moving magnetic field in the vertical direction (axial direction), while the horizontal component acts as a magnetic field that rotates the horizontal plane in the circumferential direction. For this reason, a spiral flow magnetic field 7 is generated that combines the vertical component and the circumferential rotation component. An electromagnetic force having a vertical component and a rotational component is formed between the spiral moving magnetic field 7 and a current flowing in the molten conductive material such as the molten metal 1 by electromagnetic induction, and the molten metal 1 in the vicinity of the solidified shell is formed in the molten metal 1. Spiral movement is given. In this embodiment, the moving magnetic field is moved in the axial direction from the top to the bottom of the mold 2.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態では、磁場の移動方向・電磁力の向きを下向きに想定した場合について主に説明したが、場合によっては磁場の移動方向を上向きに設定することも可能である。磁場の移動方向に関係なく、同様の攪拌効果が得られ、電磁力の上向きと下向きの選択は要求される条件によって適宜選択される。さらに、本実施形態では鋳型2の周りにコイルを配置するようにしているが、それに限られるものではなく、溶融状態の導電性物質が固まり始め凝固を完了するまでの間に電磁撹拌を行えば足りることから、凝固シェル4に囲われ内部に溶融状態の導電性物質1が存在する領域であれば上述の設置箇所に限られず電磁撹拌を必要とする任意の箇所の周りに配置するようにしても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the case where the moving direction of the magnetic field and the direction of the electromagnetic force are assumed to be downward has been mainly described, but in some cases, the moving direction of the magnetic field can be set upward. The same stirring effect can be obtained regardless of the direction of movement of the magnetic field, and the upward and downward selection of electromagnetic force is appropriately selected according to the required conditions. Furthermore, in the present embodiment, the coil is arranged around the mold 2, but the present invention is not limited to this. If the molten conductive material starts to solidify and solidifies, electromagnetic stirring is performed. Therefore, as long as it is a region surrounded by the solidified shell 4 and containing the conductive material 1 in a molten state, the region is not limited to the above-described installation location, and is arranged around any location requiring electromagnetic stirring. Also good.

また、本実施形態では、連続鋳造用鋳型2及びその下流側の凝固シェル4に包まれて溶融状態の導電性物質1が流下する二次冷却帯の付近を主に電磁撹拌を与えるようにしているが、場合によってはターンディシュあるいはターンディシュと鋳型との間の浸浸ノズルの部分で電磁撹拌を与えるようにして、強力な撹拌による初晶の微粒化と均一化を達成するようにしても良い。   Further, in this embodiment, electromagnetic stirring is mainly applied in the vicinity of the secondary cooling zone where the molten conductive material 1 flows down and is surrounded by the continuous casting mold 2 and the solidified shell 4 on the downstream side. However, in some cases, electromagnetic stirring is applied to the turn dish or the immersion nozzle portion between the turn dish and the mold, so that the primary crystal can be atomized and homogenized by strong stirring. good.

また、本実施形態では、滑らかな磁場の空間分布を発生する三相交流コイルを用いて通電の切り替えによって磁界を回転させることにより軸方向の移動磁場を回転させるようにしているが、交流磁場・交流コイルであれば2相コイルでも実施可能である。さらに、本実施形態では、軸方向移動磁界発生リング3として三相交流コイルを用いているが、これに特に限られるものでなく、永久磁石を用い、この永久磁石を鋳型2の中心あるいは流れの中心を中心として回転させるようにしても良い。この場合には、複数のリング状のマグネット3a〜3fを、各リングの軸心Oa〜Ofが撹拌領域の中心軸即ち凝固シェルの軸心Ovに対して傾斜させると共に各リングの軸心Oa〜Ofが凝固シェルの周方向並びに軸方向に間隔をあけて順次ずらして配置された状態で図示していない連結シャフトなどで連結固定され、凝固シェルの軸心Ovに対する各リングの傾きと周方向並びに軸方向へのずれを保持したまま、マグネットを凝固シェル周りに回転させるように設けられる。この場合には、マグネットを回転させるだけで軸方向移動磁界が同時に周方向にも移動する。ここで、マグネットとしては通常の永久磁石でも高温超電導マグネットから成る高温超伝導磁石でも実施可能であるが、好ましくは高温超電導マグネットから成る高温超伝導磁石の使用である。   In the present embodiment, the moving magnetic field in the axial direction is rotated by rotating the magnetic field by switching the energization using a three-phase AC coil that generates a smooth magnetic field spatial distribution. If it is an AC coil, it can be implemented with a two-phase coil. Furthermore, in the present embodiment, a three-phase AC coil is used as the axially moving magnetic field generating ring 3, but this is not particularly limited, and a permanent magnet is used, and this permanent magnet is used as the center of the mold 2 or the flow. You may make it rotate centering on a center. In this case, the ring-shaped magnets 3a to 3f are inclined with respect to the center axis Oa to Of of the stirring region, that is, the axis Ov of the solidified shell, and the axis Oa to each ring. Of is fixedly connected by a connecting shaft (not shown) in a state where the OF is sequentially shifted in the circumferential direction and the axial direction of the solidified shell, and the inclination and circumferential direction of each ring with respect to the axis Ov of the solidified shell, The magnet is provided to rotate around the solidified shell while maintaining the axial deviation. In this case, the axial movement magnetic field moves in the circumferential direction at the same time only by rotating the magnet. Here, the magnet can be a normal permanent magnet or a high-temperature superconducting magnet composed of a high-temperature superconducting magnet, but preferably a high-temperature superconducting magnet composed of a high-temperature superconducting magnet is used.

また、本実施形態では、撹拌対象となる溶融状態の導電性物質としてはステンレス鋼を例に挙げているが、場合によっては鋳鉄や鋼、あるいはアルミニウムや銅などの非鉄金属などを連続鋳造する場合にも適用できることは言うまでもない。また、溶融状態の導電性物質を周囲を冷却しながら垂直方向あるいは場合によっては水平方向にローラなどで引き出しながら直接一定の形状を有する成形物に連続的に成形する方法において適用することも可能である。   In this embodiment, the molten conductive material to be agitated is exemplified by stainless steel, but depending on the case, cast iron or steel, or non-ferrous metal such as aluminum or copper is continuously cast. Needless to say, it can also be applied. It is also possible to apply the method in which a molten conductive material is continuously molded directly into a molded product having a certain shape while being pulled out by a roller or the like in the vertical direction or in some cases in the horizontal direction while cooling the surroundings. is there.

本発明にかかる電磁撹拌式連続鋳造装置の電磁撹拌用コイルの実施形態の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of embodiment of the coil for electromagnetic stirring of the electromagnetic stirring type continuous casting apparatus concerning this invention. 電磁撹拌式連続鋳造装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of an electromagnetic stirring type continuous casting apparatus. 電磁力発生装置として三相交流コイルを用いた場合の図1に示す6個のコイルの通電の位相関係と磁力線の発生の仕方を示す原理図であり、(A)は三相交流コイルを便宜上軸方向に重ねた状態で示す断面図、(B)は三相交流コイルの位相差を示す図、(C)は三相交流コイルの電気的な配置を示す図である。FIG. 2 is a principle diagram showing a phase relationship of energization of the six coils shown in FIG. 1 and a method of generating magnetic lines when a three-phase AC coil is used as an electromagnetic force generator, and FIG. Sectional drawing shown in the state where it piled up on the axial direction, (B) is a figure which shows the phase difference of a three-phase alternating current coil, (C) is a figure which shows the electrical arrangement | positioning of a three-phase alternating current coil.

符号の説明Explanation of symbols

1 溶融金属(溶融状態にある導電性物質)
2 鋳型
3(3a〜3f) 軸方向移動磁界発生コイル
4 凝固シェル
7 溶融金属の螺旋流
1 Molten metal (conductive substance in the molten state)
2 Mold 3 (3a-3f) Axial moving magnetic field generating coil 4 Solidified shell 7 Spiral flow of molten metal

Claims (7)

溶融状態の導電性物質を鋳型で周囲から冷却して凝固シェルを形成し、溶融状態の導電性物質を前記凝固シェルに包んだ状態で鋳型から引き出して二次冷却帯で冷却しながら成形物とする連続鋳造方法において、前記溶融状態の導電性物質が固まり始めて凝固を完了するまでの間に、前記凝固シェルの内方の溶融状態の導電性物質に対して前記凝固シェルの軸方向に移動する複数の軸方向移動磁界を互いに前記凝固シェルの軸に対して傾斜させると共に前記凝固シェルの周方向かつ軸方向に間隔をあけて順次ずらして印加され、前記軸方向移動磁界を前記凝固シェルの周りに回転させて電磁撹拌するものである連続鋳造方法。 A molten conductive material is cooled from the periphery with a mold to form a solidified shell, and the molten conductive material is wrapped in the solidified shell and drawn from the mold and cooled in a secondary cooling zone. In the continuous casting method, the molten conductive material moves in the axial direction of the solidified shell with respect to the molten conductive material inside the solidified shell until solidification is completed after the molten conductive material starts to solidify. A plurality of axially moving magnetic fields are applied to each other with an inclination relative to the axis of the solidified shell and sequentially shifted at intervals in the circumferential direction and the axial direction of the solidified shell, and the axially moving magnetic field is applied around the solidified shell. A continuous casting method in which the magnetic stirrer is rotated by rotating. 溶融状態の導電性物質を鋳型で周囲から冷却して凝固シェルを形成し、溶融状態の導電性物質が前記凝固シェルに包まれた状態で鋳型から引き出され、さらに二次冷却帯で冷却されながら成形物とされる連続鋳造装置において、前記溶融状態の導電性物質が固まり始め凝固を完了するまでの間の全域あるいはいずれかの領域で前記凝固シェルを包囲しかつ前記凝固シェルの内方の溶融状態の導電性物質に対して前記凝固シェルの軸方向に磁力線を発生させる軸方向移動磁界発生リングが、各リングの軸心を前記中心軸に対して傾斜させると共に各リングの軸心が前記凝固シェルの周方向並びに軸方向に間隔をあけて順次ずらして配置され、前記軸方向移動磁界発生リングによって前記凝固シェルで囲まれた溶融状態の導電性物質に軸方向の電磁力がつくられると同時にその軸方向移動磁界が前記凝固シェルの周りを回転することを特徴とする連続鋳造装置。 The molten conductive material is cooled from the periphery with a mold to form a solidified shell, and the molten conductive material is drawn from the mold in a state of being wrapped in the solidified shell, and further cooled in the secondary cooling zone. In a continuous casting apparatus to be a molded product, the molten conductive material surrounds the solidified shell in any region or any region until solidification starts and solidification is completed. An axially moving magnetic field generating ring that generates magnetic lines of force in the axial direction of the solidified shell with respect to the conductive material in a state inclines the axis of each ring with respect to the central axis, and the axis of each ring is solidified An electric current in the axial direction is applied to the molten conductive material, which is sequentially shifted at intervals in the circumferential direction and the axial direction of the shell, and surrounded by the solidified shell by the axially moving magnetic field generating ring. Continuous casting apparatus axially traveling magnetic field at the same time a force is created which is characterized in that rotate around the said solidified shell. 前記軸方向移動磁界発生リングは、電磁コイルであり、通電によって軸方向移動磁界が前記凝固シェルの周りに回転する請求項2記載の電磁撹拌装置。 The electromagnetic stirrer according to claim 2, wherein the axially moving magnetic field generating ring is an electromagnetic coil, and the axially moving magnetic field rotates around the solidified shell when energized. 前記電磁コイルは3相交流コイルであり、順方向巻きのコイルと逆向き巻きのコイルを使って隣り合うコイル間に60°の位相差を設けたものである請求項3記載の電磁撹拌装置。 The electromagnetic stirrer according to claim 3, wherein the electromagnetic coil is a three-phase AC coil, and a phase difference of 60 ° is provided between adjacent coils by using a forward winding coil and a reverse winding coil. 前記軸方向移動磁界発生リングは永久磁石であり、当該リングそのものを流れの中心軸を中心として回転させることにより軸方向移動磁界が前記凝固シェルの周りに回転するものである請求項2記載の電磁撹拌装置。 3. The electromagnetic wave according to claim 2, wherein the axially moving magnetic field generating ring is a permanent magnet, and the axially moving magnetic field rotates around the solidified shell by rotating the ring itself about the central axis of the flow. Stirring device. 前記軸方向移動磁界発生リングは、高温超伝導磁石である請求項5記載の電磁攪拌装置。 The electromagnetic stirrer according to claim 5, wherein the axially moving magnetic field generating ring is a high-temperature superconducting magnet. 前記軸方向移動磁界発生リングはその軸心を円周方向に60°ずつずらし、6つのリングで1周することを特徴とする請求項2から6のいずれか1つに記載の電磁撹拌装置。 The electromagnetic stirrer according to any one of claims 2 to 6, wherein the axially moving magnetic field generating ring has its axis shifted by 60 ° in the circumferential direction and makes one turn with six rings.
JP2006351576A 2006-12-27 2006-12-27 Electromagnetic stirring device Expired - Fee Related JP4859661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351576A JP4859661B2 (en) 2006-12-27 2006-12-27 Electromagnetic stirring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351576A JP4859661B2 (en) 2006-12-27 2006-12-27 Electromagnetic stirring device

Publications (2)

Publication Number Publication Date
JP2008161884A true JP2008161884A (en) 2008-07-17
JP4859661B2 JP4859661B2 (en) 2012-01-25

Family

ID=39692048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351576A Expired - Fee Related JP4859661B2 (en) 2006-12-27 2006-12-27 Electromagnetic stirring device

Country Status (1)

Country Link
JP (1) JP4859661B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103263A (en) * 1979-01-30 1980-08-07 Cem Comp Electro Mec Electromagnetic induction device for generating spiral field
JPS60234757A (en) * 1984-05-04 1985-11-21 Mitsubishi Heavy Ind Ltd Electromagnetic stirrer in mold
JPH11226710A (en) * 1998-02-19 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold
JPH11320051A (en) * 1998-05-20 1999-11-24 Nippon Steel Corp Continuous casting apparatus and continuous casting method
JP2001179409A (en) * 1999-12-24 2001-07-03 Kobe Steel Ltd Electromagnetic agitation stirring apparatus
JP2002120053A (en) * 2000-10-11 2002-04-23 Nippon Steel Corp Method for continuously casting molten metal and its continuous casting apparatus
JP2004501770A (en) * 2000-06-27 2004-01-22 エービービー エービー Method and apparatus for continuous casting of metal using mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103263A (en) * 1979-01-30 1980-08-07 Cem Comp Electro Mec Electromagnetic induction device for generating spiral field
JPS60234757A (en) * 1984-05-04 1985-11-21 Mitsubishi Heavy Ind Ltd Electromagnetic stirrer in mold
JPH11226710A (en) * 1998-02-19 1999-08-24 Nippon Steel Corp Electromagnetic stirring method in mold
JPH11320051A (en) * 1998-05-20 1999-11-24 Nippon Steel Corp Continuous casting apparatus and continuous casting method
JP2001179409A (en) * 1999-12-24 2001-07-03 Kobe Steel Ltd Electromagnetic agitation stirring apparatus
JP2004501770A (en) * 2000-06-27 2004-01-22 エービービー エービー Method and apparatus for continuous casting of metal using mold
JP2002120053A (en) * 2000-10-11 2002-04-23 Nippon Steel Corp Method for continuously casting molten metal and its continuous casting apparatus

Also Published As

Publication number Publication date
JP4859661B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4648851B2 (en) Electromagnetic stirring device
CA2410806C (en) Method and apparatus for magnetically stirring a thixotropic metal slurry
US7735544B2 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
US8101119B2 (en) Electromagnetic stirrer
JP5688449B2 (en) Stirring roll for slab continuous casting machine
JPS589752A (en) Method and device for manufacturing semi-solid slurry, efficiency thereof is improved
KR102354306B1 (en) electronic stirrer
JPH10146650A (en) Aluminum melting furnace with stirring device, molten aluminum stirring device and method for stirring molten aluminum
JPH07207351A (en) Method for melting conductive material in low- temperature crucible type induction melting furnace, and melting surface therefor
US4484615A (en) Electro-magnetic stirring
CN109338146B (en) Solenoid electromagnetic stirrer with control ring
EP2594351A1 (en) Molding device for continuous casting equipped with stirring device
JP4134310B2 (en) Electromagnetic stirring device and electromagnetic stirring method
JP3131513B2 (en) Stirring method of molten metal in continuous casting
JP2942361B2 (en) Electromagnetic device for continuous casting mold
JP4859661B2 (en) Electromagnetic stirring device
CN112689543B (en) Electromagnetic stirring device, stirring method, mould and casting machine for casting aluminium or aluminium alloy in mould
CN111842821A (en) Electromagnetic treatment method for melt cast by aluminum alloy flow table
JP2010162588A (en) Continuous casting method for magnesium alloy
RU2237542C1 (en) Apparatus for electromagnetic agitation of liquid core of ingot in mold
GB2079195A (en) Stirring Molten Metal in a Casting Mould
JPS58199651A (en) Method and device for promoting agitation of substance, which is made contain in vessel and melt
JP2002263800A (en) Apparatus and system for controlling fluidity of molten metal
JPH01138045A (en) Apparatus for manufacturing metallic slurry
WO2023033637A1 (en) A device for non-contact induction of flow in electrically conductive liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees