JP2008160343A - Optical transmission method, optical transmission device, and optical transmission system - Google Patents

Optical transmission method, optical transmission device, and optical transmission system Download PDF

Info

Publication number
JP2008160343A
JP2008160343A JP2006345274A JP2006345274A JP2008160343A JP 2008160343 A JP2008160343 A JP 2008160343A JP 2006345274 A JP2006345274 A JP 2006345274A JP 2006345274 A JP2006345274 A JP 2006345274A JP 2008160343 A JP2008160343 A JP 2008160343A
Authority
JP
Japan
Prior art keywords
optical
signal
signals
frequency
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006345274A
Other languages
Japanese (ja)
Other versions
JP4860457B2 (en
Inventor
Hisao Yoshinaga
尚生 吉永
Koichi Shudo
晃一 首藤
Koichi Sano
浩一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2006345274A priority Critical patent/JP4860457B2/en
Publication of JP2008160343A publication Critical patent/JP2008160343A/en
Application granted granted Critical
Publication of JP4860457B2 publication Critical patent/JP4860457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission method, an optical transmission device, and an optical transmission system which are capable of flexibly multiplexing electric signals in an electric level or an optical level and of extending services toward the future. <P>SOLUTION: The optical transmission device edits and synthesizes input electric signals in the electric level so that frequency bands don't overlap, and uses one or more different wavelength light sources to modulate the intensity of an edited and synthesized signal and synthesizes modulation results in the optical level and transmits a synthesis result. A subscriber device receives an optical signal by an optical conversion element and separates the obtained edited and synthesized signal by a filter to obtain the input electric signals. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気レベルでの多重化及び光変調後の光レベルでの多重化を組み合わせて、複数の高周波の電気信号から光多重信号を形成し、光多重信号を伝送する光伝送方法、前記光伝送方法を実現する光送信装置及び前記光伝送方法を実現する光送信システムに関する。   The present invention combines an optical level multiplexing and an optical level multiplexing after optical modulation to form an optical multiplexed signal from a plurality of high frequency electrical signals and transmit the optical multiplexed signal, The present invention relates to an optical transmission device that realizes an optical transmission method and an optical transmission system that realizes the optical transmission method.

近年、従来のVHF/UHF帯のアナログテレビ放送に加えて、BS放送、CS放送、地上デジタル放送などの放送用高周波無線信号の各種テレビ放送サービスが個別住宅あるいは集合住宅で利用可能となってきている。これらの放送サービスは、放送用高周波無線信号を直接波として個別にアンテナで受信して視聴する場合と、放送用高周波無線信号を光信号として例えば光ファイバなどのケーブルにより配信し、家庭内テレビチューナで受信して視聴するCATV形式の場合とがある。   In recent years, in addition to conventional VHF / UHF band analog TV broadcasts, various TV broadcast services for broadcasting high-frequency radio signals such as BS broadcasts, CS broadcasts, and digital terrestrial broadcasts have become available in individual houses or apartment houses. Yes. These broadcast services are used when receiving and viewing broadcast high-frequency radio signals individually as direct waves with an antenna, and distributing broadcast high-frequency radio signals as optical signals through cables such as optical fibers, for example. There is a case of the CATV format for receiving and viewing on the Internet.

後者の光ファイバを利用したCATV形式の場合は、局から加入者宅までの間、放送用高周波無線信号をその無線周波数で、あるいは無線周波数が高すぎる場合には低周波側へ変換した中間周波数で、光変調した光信号で伝送する。加入者宅において、伝送された光信号を光−電気変換して再び無線周波数の電気信号とし、上記放送の高周波無線信号に対応するチューナ端子に入力することで、テレビの視聴が可能となる。   In the case of the CATV format using the latter optical fiber, an intermediate frequency obtained by converting a high-frequency radio signal for broadcasting from the station to the subscriber's home at the radio frequency or, if the radio frequency is too high, the low-frequency side. Then, the optical signal is transmitted as an optically modulated signal. At the subscriber's home, the transmitted optical signal is photoelectrically converted into a radio frequency electrical signal again and input to a tuner terminal corresponding to the high frequency radio signal of the broadcast, so that the television can be viewed.

さらに、携帯電話信号あるいは無線LAN信号、WiMAX信号、GPS信号などの無線周波数の通信用高周波無線信号も、サービスの広域化を目指して光ファイバに多重化して伝送することが考えられる。   Further, it is conceivable that radio frequency communication radio signals such as mobile phone signals, radio LAN signals, WiMAX signals, and GPS signals are multiplexed and transmitted on an optical fiber for the purpose of widening the service.

例えば、特許文献1には、放送用高周波無線信号を周波数多重した振幅変調信号と、通信用高周波無線信号とを多重化して光伝送する技術として、前記振幅変調信号を一括してFM変調し、通信用高周波無線信号と多重化して光伝送する光伝送装置が記載されている。特許文献1の光伝送装置は、周波数多重された振幅変調映像信号を一括してFM変調するため、混変調が少なくなり、チャネル数分のFM変調器を不要とするため低コストのシステムが構築できることが記載される。   For example, in Patent Document 1, as a technique for multiplexing and transmitting an amplitude-modulated signal obtained by frequency-multiplexing a high-frequency radio signal for broadcasting and a high-frequency radio signal for communication, the amplitude-modulated signals are collectively FM-modulated, An optical transmission device that multiplexes with a communication radio frequency radio signal and transmits the optical signal is described. Since the optical transmission device of Patent Document 1 performs FM modulation of frequency-multiplexed amplitude-modulated video signals at once, cross-modulation is reduced, and an FM modulator corresponding to the number of channels is not required, so a low-cost system is constructed. It is described that it can be done.

また、特許文献2には、複数の方式の放送用高周波無線信号を異なる波長の光信号に変換し、光多重して1本のファイバで伝送するシステムが記載されている。特許文献2のシステムは、宅内での配線形態の煩雑さを抑制でき施工性の向上が可能であることが記載される。   Patent Document 2 describes a system that converts a plurality of broadcast radio frequency radio signals into optical signals having different wavelengths, optically multiplexes them, and transmits them using a single fiber. It is described that the system of patent document 2 can suppress the complexity of the wiring form in a house and can improve workability.

さらに、特許文献3には、複数の方式の放送用高周波無線信号を多重化伝送する従来技術として、CS放送信号と地上波デジタル放送信号を局にて受信して復調し、ベースバンド信号を生成して、各々の方式のベースバンド信号をデジタル時分割多重して加入者に光伝送する技術が記載される。   Furthermore, in Patent Document 3, as a conventional technique for multiplexing and transmitting a plurality of broadcast high-frequency radio signals, a CS broadcast signal and a terrestrial digital broadcast signal are received by a station and demodulated to generate a baseband signal. Then, a technique for digitally time-division-multiplexing each type of baseband signal and optically transmitting it to a subscriber is described.

特許3339031号Patent 3339031 特開2006−074138号公報JP 2006-074138 A 特許3660174号Patent 3660174

このような放送用高周波無線信号及び通信用高周波無線信号を多重伝送する光伝送システムにおいて、電気レベルでどのように多重化するかは、高周波無線信号の信号レベル、高周波無線信号の使用周波数帯域及び高周波無線信号の光信号への最大変調度を考慮する必要がある。また、光レベルでどのように多重化するかは、光変復調器のダイナミックレンジ及び光伝送路でのファイバ分散特性を考慮する必要がある。すなわち、電気レベルで多重化するか光レベルで多重化するかは多重化する高周波無線信号に依存するため、電気レベルでの多重化又は光レベルの多重化の組合せを選択することで高周波無線信号の伝送品質及び伝送コストを最適化することができる。   In such an optical transmission system that multiplex-transmits a radio frequency radio signal for broadcasting and a radio frequency radio signal for communication, how to multiplex at the electrical level depends on the signal level of the radio frequency radio signal, the frequency band used for the radio frequency radio signal, and It is necessary to consider the maximum degree of modulation of the high-frequency wireless signal into the optical signal. In addition, it is necessary to consider the dynamic range of the optical modulator / demodulator and the fiber dispersion characteristics in the optical transmission path as to how to multiplex at the optical level. That is, whether to multiplex at the electrical level or at the optical level depends on the radio frequency radio signal to be multiplexed, so by selecting a combination of multiplexing at the electrical level or multiplexing at the optical level, the radio frequency radio signal Transmission quality and transmission cost can be optimized.

ところが、昨今は、地上デジタル放送、WiMAX、無線LAN、GPSサービス、携帯電話の新規参入など、新たな無線周波数のサービスが追加され、サービス領域の広域化を図るための光ファイバによる無線信号の伝送がますます利用されていく状況である。   However, recently, new radio frequency services such as digital terrestrial broadcasting, WiMAX, wireless LAN, GPS services, and new entry of mobile phones have been added, and wireless signal transmission using optical fibers to expand the service area. The situation is increasingly being used.

しかし、特許文献1に開示される光伝送装置は、地上波デジタル放送、CS放送、BS放送等の複数の方式の放送用高周波無線信号及び通信用高周波無線信号の異なる複数の種類の高周波無線信号を光ファイバで伝送する場合に、高周波無線信号自体の特性に応じた電気レベルでの多重化又は光レベルでの多重化を行う構造ではなく、サービスを拡大することが困難である。   However, the optical transmission device disclosed in Patent Document 1 includes a plurality of types of high-frequency radio signals for broadcasting and a plurality of types of high-frequency radio signals for communication, such as terrestrial digital broadcasting, CS broadcasting, and BS broadcasting. Is transmitted through an optical fiber, it is not a structure that performs multiplexing at the electrical level or multiplexing at the optical level according to the characteristics of the high-frequency radio signal itself, and it is difficult to expand the service.

また、特許文献2に開示されるシステムは、高周波無線信号毎に光変調素子および光受信素子が必要な構造であり、サービスを拡大すれば光変調素子及び光受信素子を増設しなければならず、回路部分のコストが増大するという困難性がある。   Further, the system disclosed in Patent Document 2 has a structure that requires an optical modulation element and an optical reception element for each high-frequency radio signal, and if the service is expanded, the optical modulation element and the optical reception element must be added. There is a difficulty that the cost of the circuit portion increases.

さらに、特許文献3に開示される技術は、局側に放送用高周波無線信号を復調する復調器が必要な構造であり、サービスを拡大すれば復調器を増設しなければならず局側のコストが増大する。さらに、サービスが拡大して多重化する放送方式が増大すると時分割多重信号の伝送速度が増大するため、加入者側装置も伝送速度の増大に対応しなければならず、加入者側装置のコストも増大するという困難性がある。   Further, the technique disclosed in Patent Document 3 has a structure that requires a demodulator that demodulates a high-frequency radio signal for broadcasting on the station side. If the service is expanded, the demodulator must be added and the cost on the station side is increased. Will increase. Furthermore, since the transmission rate of time-division multiplexed signals increases as the number of broadcasting schemes for which services are expanded and multiplexed increases, the subscriber side device must cope with the increase in transmission rate, and the cost of the subscriber side device is increased. There is also a difficulty that increases.

つまり、特許文献1から特許文献3に開示される技術は個別的に多重化に伴う課題の解決を目的としているため、構造的に将来のサービスの拡大が困難であるという課題があった。   In other words, since the techniques disclosed in Patent Document 1 to Patent Document 3 are intended to solve problems associated with multiplexing individually, there is a problem that it is difficult to expand future services structurally.

そこで、このような従来の課題を解決するため、本発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行うことができ、将来にわたるサービスの拡大を可能とする光伝送方法、光送信装置及び光伝送システムを提供することを目的とする。   Therefore, in order to solve such a conventional problem, the present invention can flexibly perform multiplexing of electric signals at the electric level or the optical level, and enables an optical transmission method and an optical transmission capable of expanding services in the future. It is an object to provide a transmission device and an optical transmission system.

前記目的を達成するために、本願第1の発明に係る光伝送方法は、光送信装置で、入力される電気信号を周波数帯域が重ならないように電気レベルで編集合成したのち、1つ以上の異なる波長光源を用いて強度変調し、それらを光レベルで合成して送信し、加入者装置で、光変換素子にて光信号を受信し、得られた編集合成信号をフィルタにより分離することで入力された電気信号を得ることとした。   In order to achieve the above object, an optical transmission method according to the first invention of the present application is an optical transmission device that edits and synthesizes input electrical signals at an electrical level so that frequency bands do not overlap, By modulating the intensity using different wavelength light sources, combining and transmitting them at the optical level, receiving the optical signal with the optical conversion element at the subscriber unit, and separating the resulting edited combined signal with a filter The input electric signal was obtained.

具体的には、本願第1の発明は、光送信装置が、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を生成する周波数再配置ステップと、前記周波数再配置ステップの後、光送信装置が、前記周波数再配置ステップで生成された前記n個の周波数調整電気信号をそのまま通過させ、又は前記周波数再配置ステップで生成された前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を生成する信号合成ステップと、前記信号合成ステップの後、光送信装置が、前記信号合成ステップで生成された前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換し、前記m個の合成光信号を多重して1つの送信光信号を生成して光伝送路に出力する光送出ステップと、前記光送出ステップの後、加入者装置が、前記光伝送路を伝搬した前記送信光信号を受光し、光電変換して受信電気信号を生成する受光ステップと、前記受光ステップ後、加入者装置が、前記受光ステップで生成された前記受信電気信号をフィルタによりm個の受信電気信号へ変換する電気信号変換ステップと、前記電気信号変換ステップの後、加入者装置が、前記電気信号変換ステップで変換された前記m個の受信電気信号からn個の出力電気信号へ分離処理を行う分離処理ステップと、を備える光伝送方法である。   Specifically, according to the first invention of the present application, when the optical transmission apparatus has at least frequency band duplication occurring in n input electrical signals (n is an integer of 1 or more), the frequency band A frequency rearrangement step of converting at least one frequency band among the overlapping input electrical signals into a frequency band unused by another input electrical signal to generate n frequency adjusted electrical signals, and the frequency rearrangement step Thereafter, the optical transmission device passes the n frequency adjustment electric signals generated in the frequency rearrangement step as they are, or out of the n frequency adjustment electric signals generated in the frequency rearrangement step. A signal combining step of combining at least two and generating m (m is an integer of 1 ≦ m ≦ n) editing combined electric signals, and after the signal combining step, the optical transmitting apparatus The m edited combined electric signals generated in step are intensity-modulated with light of any one of p wavelengths (p is an integer of 1 ≦ p ≦ m), and m combined optical signals are generated. An optical transmission step of multiplexing the m combined optical signals to generate one transmission optical signal and outputting it to an optical transmission line; and after the optical transmission step, a subscriber unit transmits the optical transmission A light receiving step of receiving the transmitted optical signal propagated through the path and photoelectrically converting it to generate a received electrical signal; and after the light receiving step, the subscriber unit filters the received electrical signal generated in the light receiving step with a filter. An electric signal converting step for converting into m received electric signals, and after the electric signal converting step, a subscriber unit converts n output electric signals from the m received electric signals converted in the electric signal converting step. Separation that separates signals And management step, an optical transmission method comprising.

前記光伝送方法は、入力電気信号を復調することなく光変調を行い、光信号を出力している。そのため、復調器が不要であり、サービスを拡大しても復調器を増やす必要がない。   The optical transmission method performs optical modulation without demodulating an input electrical signal and outputs an optical signal. Therefore, no demodulator is required, and there is no need to increase the number of demodulators even if the service is expanded.

周波数再配置ステップにおいて入力電気信号の周波数帯域を変換して周波数シフトすることができる。また、信号合成ステップで多重化可能な電気信号のグループ毎に電気信号の多重化を行うことができる。そのため、それぞれの入力電気信号の周波数帯域が重複していてそのままでは合成できないような場合又はそれぞれの入力電気信号の周波数帯域が離れていてそのままでは合成できないような場合であっても、周波数再配置ステップで入力電気信号の周波数シフトすること及び信号合成ステップで周波数再配置ステップ後の電気信号を合成することで電気レベルでの柔軟な多重化が可能となる。   In the frequency rearrangement step, the frequency band of the input electrical signal can be converted and frequency shifted. Also, the electrical signal can be multiplexed for each group of electrical signals that can be multiplexed in the signal synthesis step. Therefore, even if the frequency bands of each input electrical signal overlap and cannot be synthesized as they are, or even if the frequency bands of each input electrical signal are separated and cannot be synthesized as they are, the frequency rearrangement It is possible to perform flexible multiplexing at the electrical level by shifting the frequency of the input electrical signal in steps and synthesizing the electrical signals after the frequency rearrangement step in the signal synthesis step.

信号合成ステップの後、グループ毎に多重化した電気信号をそれぞれ光送出ステップで光信号に変換して光レベルでの多重化を行う。   After the signal synthesis step, the electrical signals multiplexed for each group are converted into optical signals in the optical transmission step, and multiplexed at the optical level.

そのため、前記光伝送方法は、サービスが拡大して入力される入力電気信号の数が増加しても、光送信装置の光変換素子及び加入者装置の光受信素子を増やすことなく、また光伝送路への負荷を増大させることなく、柔軟に対応することができる。   Therefore, the optical transmission method does not increase the optical conversion elements of the optical transmission device and the optical reception elements of the subscriber device, and the optical transmission even if the number of input electrical signals is increased by expanding the service. It is possible to respond flexibly without increasing the load on the road.

従って、本願第1の発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行うことができ、将来のサービスの拡大を可能とする光伝送方法を提供することができる。   Therefore, the first invention of the present application can provide an optical transmission method that can flexibly multiplex electric signals at an electric level or an optical level and can expand future services.

前記目的を達成するために、本願第2の発明に係る光送信装置は、入力される入力電気信号の周波数帯域が重ならないように編集合成し、1つ以上の異なる波長光源を用いて強度変調して合成光信号を出力することとした。   In order to achieve the above object, an optical transmission apparatus according to the second invention of the present application edits and synthesizes input frequency bands of input electric signals so as not to overlap, and modulates intensity using one or more different wavelength light sources. Thus, a synthesized light signal is output.

具体的には、本願第2の発明は、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、前記周波数再配置部からの前記n個の周波数調整電気信号をそのまま通過させ又は前記周波数再配置部からの前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を出力する電気信号合成部と、前記信号合成部からの前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換する電気−光変換部と、前記電気−光変換部からの前記m個の合成光信号を送信光信号として出力する光送出部と、を有する光送信装置である。   Specifically, according to the second invention of the present application, when at least frequency band overlap occurs in n input electric signals (n is an integer of 1 or more), input electric power having overlapping frequency bands is generated. A frequency rearrangement unit that converts at least one frequency band of the signals into a frequency band that is not used by another input electric signal and outputs n frequency adjustment electric signals; and the n number of frequency rearrangements from the frequency rearrangement unit The frequency adjustment electrical signals are passed as they are, or at least two of the n frequency adjustment electrical signals from the frequency rearrangement unit are synthesized, and m (m is an integer satisfying 1 ≦ m ≦ n). An electric signal combining unit that outputs an electric signal, and the m edit combined electric signals from the signal combining unit are set to any one of p wavelengths (p is an integer of 1 ≦ p ≦ m). Modulated with light to change to m composite optical signals Electrical to - the optical conversion unit, the electro - an optical transmitter having a light transmitting section that the m-number of combined optical signals from the light conversion unit and outputs as a transmission optical signal.

前記光送信装置は、入力電気信号を復調することなく光変調を行い、光信号を出力している。そのため、復調器が不要であり、サービスを拡大しても復調器を増やす必要がない。   The optical transmitter performs optical modulation without demodulating an input electrical signal and outputs an optical signal. Therefore, no demodulator is required, and there is no need to increase the number of demodulators even if the service is expanded.

周波数再配置部は入力電気信号の周波数帯域を変換して周波数シフトすることができる。また、電気信号合成部は多重化可能な電気信号のグループ毎に多重化を行うことができる。そのため、それぞれの入力電気信号の周波数帯域が重複していてそのままでは合成できないような場合又はそれぞれの入力電気信号の周波数帯域が離れていてそのままでは合成できないような場合であっても、周波数再配置部が入力電気信号の周波数シフトすること及び電気信号合成部が周波数再配置部からの周波数調整電気信号を合成することで電気レベルでの柔軟な多重化が可能となる。   The frequency rearrangement unit can shift the frequency by converting the frequency band of the input electrical signal. Further, the electrical signal synthesis unit can perform multiplexing for each group of electrical signals that can be multiplexed. Therefore, even if the frequency bands of each input electrical signal overlap and cannot be synthesized as they are, or even if the frequency bands of each input electrical signal are separated and cannot be synthesized as they are, the frequency rearrangement When the unit shifts the frequency of the input electrical signal and the electrical signal synthesis unit synthesizes the frequency adjustment electrical signal from the frequency rearrangement unit, flexible multiplexing at the electrical level becomes possible.

さらに、電気−光変換部が電気信号合成部からの編集合成電気信号をそれぞれ合成光信号に変換し、光送出部が合成光信号を多重化すれば、光レベルでの多重化がなされる。   Furthermore, if the electro-optical conversion unit converts the edited combined electric signal from the electric signal combining unit into a combined optical signal, and the optical transmission unit multiplexes the combined optical signal, multiplexing at the optical level is performed.

そのため、前記光送信装置は、サービスが拡大して入力される入力電気信号の数が増加しても、光送信装置の光変換素子及び加入者装置の光受信素子を増やすことなく、また光伝送路への負荷を増大させることなく、柔軟に対応することができる。   Therefore, even if the number of input electric signals to be input is increased due to the expansion of service, the optical transmission device does not increase the number of optical conversion elements of the optical transmission device and the optical reception element of the subscriber unit, and can perform optical transmission. It is possible to respond flexibly without increasing the load on the road.

従って、本願第2の発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行うことができ、将来のサービスの拡大を可能とする光送信装置を提供することができる。   Therefore, the second invention of the present application can provide an optical transmission apparatus that can flexibly multiplex electric signals at an electric level or an optical level and can expand future services.

前記光送信装置は、前記信号合成部からの編集合成電気信号をそれぞれ周波数変調して前記電気−光変換部へ出力する周波数変調部をさらに有することが好ましい。   It is preferable that the optical transmission device further includes a frequency modulation unit that frequency-modulates the edited combined electric signal from the signal combining unit and outputs the modulated electric signal to the electro-optical conversion unit.

前記周波数変調部は、編集合成電気信号に周波数変調を施すことで、電気−光変換部への入力信号の包絡線信号を一定化することができる。よって電気光変換素子のダイナミックレンジにより制限を受けていた個々の電気信号の変調度を大きくすることができ、電気光変換素子の非線形性による光信号の歪軽減とSN比向上とを同時に実現できる。   The frequency modulation unit can make the envelope signal of the input signal to the electro-optical conversion unit constant by performing frequency modulation on the edited combined electric signal. Therefore, it is possible to increase the degree of modulation of each electric signal that has been limited by the dynamic range of the electro-optical conversion element, and to simultaneously realize distortion reduction and SN ratio improvement due to nonlinearity of the electro-optical conversion element. .

従って、本願第2の発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行い、将来のサービスの拡大が可能であり、歪が少なくSN比の高い光信号を出力する光送信装置を提供することができる。   Accordingly, the second invention of the present application is an optical transmission device that can multiplex electrical signals flexibly at the electrical level or optical level, and can expand future services, and output optical signals with low distortion and high SN ratio. Can be provided.

本願第3の発明は、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、前記周波数再配置部からの前記n個の周波数調整電気信号を、q個(qは1≦q≦nの整数)の波長のうちのいずれかの波長の光で強度変調してn個の波長調整光信号に変換し、前記n個の波長調整光信号をそのまま通過させ又は前記n個の波長調整光信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の合成光信号を出力する光信号合成部と、前記信号合成部からの前記m個の合成光信号を送信光信号として出力する光送出部と、を有する光送信装置である。   In the third invention of the present application, when at least frequency band overlap occurs in n input electrical signals (n is an integer of 1 or more), at least one of the input electrical signals having overlapping frequency bands is present. A frequency rearrangement unit that converts one frequency band into a frequency band that is not used by another input electric signal and outputs n frequency adjustment electric signals; and the n frequency adjustment electric signals from the frequency rearrangement unit Is modulated with light of any one of q wavelengths (q is an integer of 1 ≦ q ≦ n) and converted into n wavelength adjusted optical signals, and the n wavelength adjusted optical signals are Or combining the at least two of the n wavelength-adjusted optical signals and outputting m (m is an integer of 1 ≦ m ≦ n) and outputting the combined optical signal, The m combined optical signals from the combining unit are output as transmission optical signals. A light transmitting unit for an optical transmission apparatus having a.

本願第3の発明に係る光送信装置は、周波数再配置部からの周波数調整電気信号をそれぞれ光信号に変換した後に、光信号合成部が多重化可能な光信号のグループ毎に光レベルでの多重化を行う。そのため、本願第3の発明に係る光送信装置は、本願第2の発明の光送信装置が電気レベルで行っていた多重化を光レベルで行うため、サービスが拡大して入力される入力電気信号の数が増加しても多重可能な光信号のグループにまとめることができる。   The optical transmission device according to the third aspect of the present invention converts the frequency adjustment electrical signal from the frequency rearrangement unit into an optical signal, and then converts the optical signal synthesis unit at an optical level for each group of optical signals that can be multiplexed by the optical signal synthesis unit. Multiplexing is performed. Therefore, the optical transmission device according to the third invention of the present application performs multiplexing at the optical level, which is performed by the optical transmission device of the second invention of the present application at the optical level. Even if the number of optical signals increases, it can be grouped into a group of optical signals that can be multiplexed.

前記光送信装置は、前記周波数再配置部と前記光信号合成部とを有することで、サービスが拡大して入力される入力電気信号の数が増加しても、光伝送路への負荷を増大させることなく柔軟に対応することができる。   The optical transmission device includes the frequency rearrangement unit and the optical signal synthesis unit, so that the load on the optical transmission line increases even if the number of input electrical signals to be input is increased due to service expansion. It can respond flexibly without making it.

従って、本願第3の発明は、電気信号の多重化を光レベルで柔軟に行うことができ、将来のサービスの拡大を可能とする光送信装置を提供することができる。   Therefore, the third invention of the present application can provide an optical transmission device that can flexibly multiplex electrical signals at the optical level and can expand future services.

なお、サービスの拡大で、入力電気信号の数が増加すれば、周波数再配置部からの周波数調整電気信号を光信号に変換する電気光変換素子の数は増加するが、前記電気光変換素子に要求される線形性や広帯域性は、本願第2の発明の電気―光変換部の電気光変換素子より緩和される。そのため、安価な電気光変換素子を用いることができ、全体的なコスト削減を図ることができる。   If the number of input electrical signals increases due to the expansion of services, the number of electro-optic conversion elements that convert frequency-adjusted electrical signals from the frequency rearrangement unit into optical signals increases. The required linearity and broadband characteristics are alleviated by the electro-optical conversion element of the electro-optical conversion unit according to the second aspect of the present invention. Therefore, an inexpensive electro-optical conversion element can be used, and the overall cost can be reduced.

前記目的を達成するために、本願第4の発明に係る光伝送システムは、本願第2の発明又は本願第3の発明の光送信装置が入力電気信号を多重化して光変調した送信光信号を出力し、加入者装置が送信光信号を受光して編集合成電気信号へ変換し、編集合成電気信号を分離処理することとした。   In order to achieve the above object, an optical transmission system according to a fourth invention of the present application is an optical transmission system in which an optical transmission device according to the second invention of the present application or the third invention of the present application multiplexes an input electric signal and optically modulates it Then, the subscriber device receives the transmission optical signal and converts it into an edited combined electrical signal, and separates the edited combined electrical signal.

具体的には、本願第4の発明は、本願第2の発明又は本願第3の発明に係る光送信装置と、前記光送信装置からの前記送信光信号が結合され、前記送信光信号を伝搬する光伝送路と、前記光伝送路から結合される前記送信光信号を受光してm個の受信電気信号へ変換する受光部及び前記受光部で変換された前記m個の受信電気信号をn個の出力電気信号へ分離処理する分離処理部を有する加入者装置と、を備える光伝送システムである。   Specifically, in the fourth invention of the present application, the optical transmission apparatus according to the second invention of the present application or the third invention of the present application is combined with the transmission optical signal from the optical transmission apparatus, and the transmission optical signal is propagated. An optical transmission line that receives the transmitted optical signal coupled from the optical transmission line and converts it to m received electrical signals, and the m received electrical signals converted by the light receiving unit are n And a subscriber unit having a separation processing unit that performs separation processing into individual output electrical signals.

前記光伝送システムは、本願第2の発明又は本願第3の発明の光送信装置を備えるため、本願第2の発明及び本願第3の発明の光送信装置で説明した効果と同様の効果を得ることができる。   Since the optical transmission system includes the optical transmission device of the second invention of the present application or the third invention of the present application, the same effects as those described in the optical transmission device of the second invention of the present application and the third invention of the present application are obtained. be able to.

従って、本願第4の発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行うことができ、将来のサービスの拡大を可能とする光伝送システムを提供することができる。   Therefore, the fourth invention of the present application can provide an optical transmission system that can flexibly multiplex electric signals at an electric level or an optical level and can expand future services.

前記光伝送システムにおける、前記光送信装置の前記光送出部は、前記m個の合成光信号を多重して1つの前記送信光信号を形成する光合成部を含み、前記加入者装置の前記受光部は、前記光伝送路から結合される前記送信光信号を受光する1つの光電素子及び前記光電素子から出力される電気信号を前記m個の受信電気信号へ分離するフィルタを含むことが好ましい。   In the optical transmission system, the optical transmitter of the optical transmitter includes an optical combiner that multiplexes the m combined optical signals to form one transmitted optical signal, and the light receiver of the subscriber unit Preferably includes one photoelectric element that receives the transmission optical signal coupled from the optical transmission path, and a filter that separates an electrical signal output from the photoelectric element into the m reception electrical signals.

また、前記光伝送システムにおける、前記光伝送路は、前記光送信装置から結合される前記送信光信号を前記送信光信号毎に伝搬する複数の光ファイバ及び前記光ファイバの前記加入者装置側の端部に前記送信光信号を多重して1つの光信号として出力する光合成部を含み、前記加入者装置の前記受光部は、前記光伝送路から結合される前記送信光信号を受光する1つの光電素子及び前記光電素子から出力される電気信号を前記m個の受信電気信号へ分離するフィルタを含むことが好ましい。   Further, in the optical transmission system, the optical transmission path includes a plurality of optical fibers that propagate the transmission optical signal coupled from the optical transmission apparatus for each transmission optical signal, and a subscriber apparatus side of the optical fiber. An optical combining unit that multiplexes the transmission optical signal at an end and outputs the optical signal as one optical signal, and the light receiving unit of the subscriber unit receives one of the transmission optical signals coupled from the optical transmission line. It is preferable to include a photoelectric element and a filter that separates an electrical signal output from the photoelectric element into the m received electrical signals.

前記光送出部又は前記光伝送路が前記光多重回路を含むことで、前記電気−光変換部からの合成光信号を光レベルで多重化して1つにまとめた送信光信号を加入者装置へ出力する。加入者装置の受光部において、多重化された送信光信号を一括して1つの光電素子にて光−電気変換を行い、変換後に電気レベルでフィルタにより周波数帯域ごとに分離して受信電気信号を得ているので、高価な光電素子の数を減らすことができる。   The optical transmission unit or the optical transmission line includes the optical multiplexing circuit, so that the combined optical signal from the electro-optical conversion unit is multiplexed at the optical level and combined into one transmission optical signal to the subscriber unit. Output. In the light receiving unit of the subscriber unit, the multiplexed transmission optical signals are collectively converted into optical signals by one photoelectric element, and after the conversion, the received electric signals are separated by frequency band by a filter at an electric level. Thus, the number of expensive photoelectric elements can be reduced.

従って、本願第4の発明は、電気信号の多重化を電気レベル又は光レベルで柔軟に行い将来のサービスの拡大を可能とし、加入者装置のコストを低減できる光伝送システムを提供することができる。   Therefore, the fourth invention of the present application can provide an optical transmission system that can flexibly multiplex electrical signals at the electrical level or optical level, enable future service expansion, and reduce the cost of the subscriber unit. .

合成光信号を多重化して1つにまとめた送信光信号を光伝送路に出力する光伝送システムの前記光伝送路は、前記光送信装置から結合される前記送信光信号を波長帯毎に分離する光波長分離フィルタ、前記光波長分離フィルタで波長帯毎に分離されたそれぞれの光信号を増幅する光増幅器及び前記光増幅器で増幅された光信号を多重する光合成部を含み、結合された前記送信光信号の中継をする中継局を有することが好ましい。   The optical transmission line of the optical transmission system that multiplexes the combined optical signals and outputs the combined transmission optical signals to the optical transmission line is separated for each wavelength band. An optical wavelength separation filter, an optical amplifier that amplifies each optical signal separated for each wavelength band by the optical wavelength separation filter, and an optical combining unit that multiplexes the optical signals amplified by the optical amplifier, It is preferable to have a relay station that relays the transmitted optical signal.

また、光伝送路を伝搬した送信光信号を多重して1つにまとめた光信号を加入者装置に出力する光伝送システムの前記光伝送路は、前記光ファイバ毎に光信号を増幅する光増幅器をさらに含むことが好ましい。   Further, the optical transmission line of the optical transmission system that multiplexes the transmission optical signals propagated through the optical transmission line and outputs the multiplexed optical signals to the subscriber unit is a light that amplifies the optical signal for each optical fiber. It is preferable to further include an amplifier.

送信光信号が前記光伝送路で光増幅器によって増幅されるため、長距離であっても送信光信号を伝搬することができる。従って、本願第4の発明は、電気レベル又は光レベルでの多重化を柔軟に行うことができ、将来のサービスの拡大を可能とし、遠方の加入者装置へ光信号を伝送できる光伝送システムを提供することができる。   Since the transmission optical signal is amplified by the optical amplifier in the optical transmission line, the transmission optical signal can be propagated even at a long distance. Therefore, the fourth invention of the present application provides an optical transmission system that can flexibly perform multiplexing at the electrical level or optical level, enable future service expansion, and transmit optical signals to remote subscriber units. Can be provided.

本発明によれば、電気レベル又は光レベルでの多重化を柔軟に行うことができ、将来にわたるサービスの拡大を可能とする光伝送方法、光送信装置及び光伝送システムを提供することができる。   According to the present invention, it is possible to provide an optical transmission method, an optical transmission apparatus, and an optical transmission system that can flexibly perform multiplexing at an electrical level or an optical level and can expand services in the future.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.

(実施形態1)
本実施形態は、本願第2の発明に係る光送信装置と、前記光送信装置からの前記送信光信号が結合され、前記送信光信号を伝搬する光伝送路と、前記光伝送路から結合される前記送信光信号を受光してm個の受信電気信号へ変換する受光部及び前記受光部で変換された前記m個の受信電気信号をn個の出力電気信号へ分離処理する分離処理部を有する加入者装置と、を備える本願第4の発明に係る光伝送システムである。
(Embodiment 1)
In the present embodiment, the optical transmission device according to the second invention of the present application, the transmission optical signal from the optical transmission device are combined, the optical transmission line that propagates the transmission optical signal, and the optical transmission line are combined. A light receiving unit that receives the transmitted optical signal and converts it to m received electrical signals, and a separation processing unit that separates the m received electrical signals converted by the light receiving unit into n output electrical signals. An optical transmission system according to a fourth invention of the present application.

本実施形態の光伝送システムが備える本願第2の発明の光送信装置は、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、前記周波数再配置部からの前記n個の周波数調整電気信号をそのまま通過させ又は前記周波数再配置部からの前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を出力する電気信号合成部と、前記信号合成部からの前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換する電気−光変換部と、前記電気−光変換部からの前記m個の合成光信号を送信光信号として出力する光送出部と、を有する光送信装置である。   The optical transmission apparatus according to the second invention of the present application provided in the optical transmission system according to the present embodiment is such that at least frequency band overlap occurs in the input n input electric signals (n is an integer of 1 or more). A frequency rearrangement unit that converts at least one frequency band of input electric signals having overlapping frequency bands into a frequency band that is not used by another input electric signal and outputs n frequency adjustment electric signals; and The n frequency adjustment electric signals from the rearrangement unit are passed as they are, or at least two of the n frequency adjustment electric signals from the frequency rearrangement unit are combined, and m (m is 1 ≦ m ≦ n (integer of n) electrical signal synthesizer for outputting edit synthesized electrical signal; and m (m is an integer of 1 ≦ p ≦ m) wavelengths of the m edited synthesized electrical signals from the signal synthesizer. Any of the wavelengths of light Light having an electrical-optical conversion unit that modulates the intensity into m composite optical signals, and an optical transmission unit that outputs the m composite optical signals from the electrical-optical conversion unit as transmission optical signals It is a transmission device.

図1は、本願第4の発明に係る光伝送システムの一実施例である光伝送システム500を示すブロック図である。光伝送システム500は、光送信装置1、光伝送路5及び加入者装置6を備える。図1において、矢印は信号の流れを示しており、それぞれ、入力電気信号200、周波数調整電気信号201、編集合成電気信号202、合成光信号203、送信光信号205、受信電気信号207、出力電気信号208である。   FIG. 1 is a block diagram showing an optical transmission system 500 which is an embodiment of an optical transmission system according to the fourth invention. The optical transmission system 500 includes an optical transmission device 1, an optical transmission line 5, and a subscriber device 6. In FIG. 1, the arrows indicate the flow of signals. The input electrical signal 200, the frequency adjustment electrical signal 201, the edit combined electrical signal 202, the combined optical signal 203, the transmitted optical signal 205, the received electrical signal 207, and the output electrical signal, respectively. Signal 208.

入力電気信号200は、高周波無線信号が図示されないアンテナ等で受信され電気信号に変換されたものである。受信する高周波無線信号の数だけ入力電気信号200が生ずる(本実施例では入力電気信号200がn個として説明する。)。高周波無線信号として地上デジタル放送信号、BSデジタル放送信号、携帯電話信号が例示される。   The input electric signal 200 is obtained by receiving a high-frequency radio signal by an antenna (not shown) and converting it into an electric signal. The number of input electric signals 200 is generated as many as the number of high-frequency radio signals to be received (this embodiment will be described assuming that there are n input electric signals 200). Examples of high-frequency radio signals include terrestrial digital broadcast signals, BS digital broadcast signals, and mobile phone signals.

光送信装置1は、周波数再配置部27、電気信号合成部28、電気−光変換部3及び光送出部4を有する。周波数再配置部27と電気信号合成部28とは信号編集合成部2に含まれる。また、加入者装置6は、受光部7及び分離処理部8を有する。   The optical transmission device 1 includes a frequency rearrangement unit 27, an electric signal synthesis unit 28, an electro-optical conversion unit 3, and an optical transmission unit 4. The frequency rearrangement unit 27 and the electrical signal synthesis unit 28 are included in the signal editing synthesis unit 2. The subscriber device 6 includes a light receiving unit 7 and a separation processing unit 8.

周波数再配置部27は、n個の入力電気信号200に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号200のうち少なくとも1つの周波数帯域を他の入力電気信号200が未使用の周波数帯域へ変換してn個の周波数調整電気信号201を出力する。ここで、「少なくとも」とは「必要があれば」の意味であり、最低限入力電気信号200に周波数帯域の重複が発生している場合には周波数帯域の変換を行うことを意味する。つまり、周波数再配置部27は、n個の入力電気信号200の周波数帯域を確認し、周波数シフトが必要な入力電気信号200があればその入力電気信号200を周波数シフトし、周波数調整電気信号201を出力する回路である。周波数再配置部27は、周波数シフトが不要の入力電気信号200には周波数シフトを行わず、入力電気信号200の周波数帯域のまま周波数調整電気信号201として出力する。   When at least frequency band overlap occurs in the n input electric signals 200, the frequency rearrangement unit 27 uses at least one frequency band of the input electric signals 200 having overlapping frequency bands as another input electric signal. 200 converts to an unused frequency band and outputs n frequency adjustment electric signals 201. Here, “at least” means “if necessary”, and means that frequency band conversion is performed when frequency band duplication occurs at least in the input electrical signal 200. That is, the frequency rearrangement unit 27 confirms the frequency band of the n input electric signals 200, and if there is an input electric signal 200 that needs to be frequency shifted, the frequency of the input electric signal 200 is shifted, and the frequency adjustment electric signal 201 is detected. Is a circuit that outputs. The frequency rearrangement unit 27 does not perform frequency shift on the input electric signal 200 that does not require frequency shift, and outputs it as the frequency adjustment electric signal 201 while maintaining the frequency band of the input electric signal 200.

例えば、入力電気信号200のうち2個の信号に周波数帯域の重複が生じていた場合、周波数再配置部27はそのうちの一つを他の入力電気信号200の周波数帯域と重複しないように周波数シフトさせる。3個以上の信号に周波数帯域の重複が生じていた場合も同様である。   For example, when two of the input electric signals 200 have overlapping frequency bands, the frequency rearrangement unit 27 performs a frequency shift so that one of them does not overlap with the frequency band of the other input electric signal 200. Let The same applies when frequency band overlap occurs in three or more signals.

また、周波数再配置部27は、入力電気信号200に周波数帯域の重複がなくても入力電気信号200を周波数シフトしてもよい。周波数シフトさせた方が後に説明する電気信号合成部28の多重化を効率的に行うことができる場合があるからである。   Further, the frequency rearrangement unit 27 may shift the frequency of the input electrical signal 200 even if the input electrical signal 200 has no overlapping frequency band. This is because there is a case where multiplexing of the electric signal synthesizing unit 28, which will be described later, can be efficiently performed when the frequency is shifted.

電気信号合成部28は、電気レベルでの多重化を行う回路であり、n個の周波数調整電気信号201をそのまま通過させ又はn個の周波数調整電気信号201のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号202を出力する。具体的には、電気信号合成部28は、入力される周波数調整電気信号201のうち多重化可能な信号を複数選出して合成し、編集合成電気信号202として出力する。電気信号合成部28は、周波数調整電気信号201のうち多重化可能な信号のグループが複数ある場合はそのグループ毎に合成を行うことができる。一方、電気信号合成部28は、入力される周波数調整電気信号201のうち多重化が不可能な信号は合成せず編集合成電気信号202として出力する。m=nの場合、多重化できる信号がなく周波数調整電気信号201をそのまま編集合成電気信号202として出力した場合である。m<nの場合は、2つ以上の周波数調整電気信号201を合成して編集合成電気信号202として出力した場合である。   The electrical signal synthesizer 28 is a circuit that performs multiplexing at the electrical level, passes the n frequency adjusted electrical signals 201 as they are, or synthesizes at least two of the n frequency adjusted electrical signals 201 and m The edit synthesized electric signals 202 (m is an integer satisfying 1 ≦ m ≦ n) are output. Specifically, the electrical signal synthesis unit 28 selects and synthesizes a plurality of signals that can be multiplexed from the input frequency adjustment electrical signal 201, and outputs the synthesized signal as an edited synthesized electrical signal 202. When there are a plurality of groups of signals that can be multiplexed in the frequency-adjusted electrical signal 201, the electrical signal synthesis unit 28 can perform synthesis for each group. On the other hand, the electric signal combining unit 28 does not synthesize a signal that cannot be multiplexed among the input frequency adjustment electric signal 201 and outputs it as an edited combined electric signal 202. In the case of m = n, there is no signal that can be multiplexed, and the frequency adjusted electric signal 201 is output as it is as the edit synthesized electric signal 202. In the case of m <n, two or more frequency adjustment electric signals 201 are combined and output as an edited combined electric signal 202.

図2は、信号編集合成部2の第1の実施例である。信号編集合成部2において、周波数再配置部27が出力する周波数調整電気信号201が電気信号合成部28に入力されるように接続されている。図2の信号編集合成部2は、4入力に対して任意の組み合わせの最大4出力を出力することができる。入力電気信号200は、まず周波数再配置部27に入力され、合成する電気信号の周波数帯域が重ならないように周波数帯域の変換がなされて電気信号合成部28に出力される。電気信号合成部28の、符号11から26はすべて同じ構成の2入力、2出力の信号合成スイッチである。図3に信号合成スイッチ11の構成および状態を示す。信号合成スイッチ11は2つの状態を有する。図3(a)は、信号線31の信号は信号線32に接続され、信号線33の信号は信号線34に接続される状態1の図である。図3(b)は、信号線31の信号は信号線32に接続され、信号線33の信号は信号線32に接続される状態2の図である。すなわち、図3(b)では信号線31の信号と信号線33の信号とが合成された信号が、信号線32に得られる。図3に示した信号合成スイッチの動作により、図2における前記信号合成スイッチ11から26の状態を設定することで、周波数調整電気信号201を多重化した編集合成電気信号202が出力される。   FIG. 2 shows a first embodiment of the signal editing / synthesizing unit 2. In the signal editing / synthesizing unit 2, the frequency adjustment electric signal 201 output from the frequency rearrangement unit 27 is connected to the electric signal combining unit 28. The signal editing / synthesizing unit 2 in FIG. 2 can output a maximum of four outputs in any combination with respect to four inputs. The input electric signal 200 is first input to the frequency rearrangement unit 27, converted in frequency band so that the frequency bands of the electric signals to be combined do not overlap, and output to the electric signal combining unit 28. Reference numerals 11 to 26 of the electric signal synthesizer 28 are 2-input and 2-output signal synthesis switches all having the same configuration. FIG. 3 shows the configuration and state of the signal synthesis switch 11. The signal synthesis switch 11 has two states. FIG. 3A is a diagram of state 1 in which the signal on the signal line 31 is connected to the signal line 32 and the signal on the signal line 33 is connected to the signal line 34. FIG. 3B is a diagram of state 2 in which the signal on the signal line 31 is connected to the signal line 32 and the signal on the signal line 33 is connected to the signal line 32. That is, in FIG. 3B, a signal obtained by combining the signal on the signal line 31 and the signal on the signal line 33 is obtained on the signal line 32. By setting the states of the signal synthesis switches 11 to 26 in FIG. 2 by the operation of the signal synthesis switch shown in FIG. 3, an edit synthesis electrical signal 202 in which the frequency adjustment electrical signal 201 is multiplexed is output.

本実施例では、4入力、最大4出力の信号編集合成部の構成を示したが、任意の入力数に対する構成も本発明に含まれることは明らかである。   In the present embodiment, the configuration of the signal editing / synthesizing unit having four inputs and a maximum of four outputs is shown. However, it is apparent that the present invention includes a configuration for an arbitrary number of inputs.

図4は、図2の信号編集合成部2の第1実施例の動作を説明する図である。信号編集合成部2に入力される入力電気信号200は4つの電気信号(電気信号40、電気信号41、電気信号42、電気信号43)からなる。図において、4つの電気信号はグラフ表示している。グラフの横軸は周波数を示し、縦軸は信号強度を示している。電気信号40から電気信号43のうち電気信号42が電気信号41と周波数帯域で重なっているので、本例では周波数再配置部27にて他の電気信号(電気信号40、電気信号41、電気信号43)の周波数帯域と重ならないように電気信号42を周波数シフトする。このように周波数シフトすることで、電気信号42も、他の電気信号と合成加算ができるようになる。なお、電気信号42を周波数シフトした後、電気信号43は他の電気信号と周波数的に重ならないが、入力レベルが小さく小振幅であるから、他の電気信号と合成せずに単独の電気信号として出力することとする。   FIG. 4 is a diagram for explaining the operation of the first embodiment of the signal editing / synthesizing unit 2 of FIG. The input electric signal 200 input to the signal editing / synthesizing unit 2 includes four electric signals (electric signal 40, electric signal 41, electric signal 42, and electric signal 43). In the figure, four electric signals are displayed in a graph. The horizontal axis of the graph indicates the frequency, and the vertical axis indicates the signal intensity. Since the electric signal 42 of the electric signal 40 to the electric signal 43 overlaps with the electric signal 41 in the frequency band, in this example, another electric signal (electric signal 40, electric signal 41, electric signal) is generated in the frequency rearrangement unit 27. 43) The frequency of the electric signal 42 is shifted so as not to overlap with the frequency band 43). By shifting the frequency in this way, the electrical signal 42 can be combined and added with other electrical signals. After the frequency shift of the electric signal 42, the electric signal 43 does not overlap with other electric signals in frequency, but the input level is small and the amplitude is small, so that the single electric signal is not synthesized with the other electric signals. Will be output.

そのため、電気信号合成部28の信号合成スイッチ11、信号合成スイッチ15、信号合成スイッチ19、信号合成スイッチ24を状態2、他の信号合成スイッチを状態1とする。信号合成スイッチを上記のように設定することで電気信号40、電気信号41、電気信号42の3つの入力電気信号が合成され、信号線71に出力される。電気信号43はそのまま信号線70に出力される。図4において、信号合成スイッチが白く示されるスイッチは図3の状態1、信号合成スイッチが黒く示されるスイッチは図3の状態2となっている。   Therefore, the signal synthesis switch 11, the signal synthesis switch 15, the signal synthesis switch 19, and the signal synthesis switch 24 of the electrical signal synthesis unit 28 are set to state 2, and the other signal synthesis switches are set to state 1. By setting the signal combining switch as described above, the three input electric signals of the electric signal 40, the electric signal 41, and the electric signal 42 are combined and output to the signal line 71. The electric signal 43 is output to the signal line 70 as it is. In FIG. 4, the switch in which the signal synthesis switch is shown in white is in state 1 in FIG. 3, and the switch in which the signal synthesis switch is shown in black is in state 2 in FIG.

図5は、電気信号合成部28の別の構成例である。信号合成スイッチ51から信号合成スイッチ53は、図3で示した2入力2出力の前記信号合成スイッチと同じものである。   FIG. 5 shows another configuration example of the electrical signal synthesis unit 28. The signal synthesis switch 51 to the signal synthesis switch 53 are the same as the signal synthesis switch having two inputs and two outputs shown in FIG.

信号合成スイッチ51には第一の電気信号と第二の電気信号が入力され、出力信号の1つは信号編集合成部2の編集合成電気信号202として、他は信号合成スイッチ52に入力される。信号合成スイッチ52には第三の電気信号と信号合成スイッチ51からの出力の一つが入力され、出力電気信号の1つは信号編集合成部2の編集合成電気信号202として、他は信号合成スイッチ53に入力される。信号合成スイッチ53には第四の電気信号と信号合成スイッチ52からの出力の一つが入力され、2つの出力は信号編集合成部2の編集合成電気信号202となる。   The signal combining switch 51 receives the first electric signal and the second electric signal, one of the output signals is input as the editing combined electric signal 202 of the signal editing combining unit 2, and the other is input to the signal combining switch 52. . The signal synthesis switch 52 receives the third electrical signal and one of the outputs from the signal synthesis switch 51. One of the output electrical signals is the edit synthesis electrical signal 202 of the signal editing synthesis unit 2, and the other is the signal synthesis switch. 53. One of the fourth electrical signal and the output from the signal synthesis switch 52 is input to the signal synthesis switch 53, and the two outputs become the edit synthesis electrical signal 202 of the signal editing synthesis unit 2.

次に、図5の電気信号合成部28の動作を説明する。図5の電気信号合成部28にも、図4で説明したように周波数再配置部27から4つの電気信号(電気信号44、電気信号45、電気信号46、電気信号47)が入力される。電気信号44から電気信号47はそれぞれ前記第一の電気信号から前記第四の電気信号となる。図5では、電気信号46の周波数帯域がシフトされ、いずれの電気信号も他の電気信号の周波数帯域と重複しない。図4と同様に電気信号44から電気信号47をグラフ表示している。   Next, the operation of the electric signal synthesis unit 28 in FIG. 5 will be described. As described with reference to FIG. 4, four electric signals (electric signal 44, electric signal 45, electric signal 46, and electric signal 47) are also input from the frequency rearrangement unit 27 to the electric signal synthesis unit 28 in FIG. The electric signal 44 to the electric signal 47 are changed from the first electric signal to the fourth electric signal, respectively. In FIG. 5, the frequency band of the electrical signal 46 is shifted, and any electrical signal does not overlap with the frequency bands of other electrical signals. Similar to FIG. 4, the electrical signal 44 to the electrical signal 47 are graphically displayed.

電気信号44と電気信号45とは、図において点線で示した内部接続状態を有する状態2の信号合成スイッチ51に入力され、合成加算されて信号合成スイッチ52に出力される。信号合成スイッチ52は、図において点線で示す内部状態を有する状態1であるので、入力された電気信号44と電気信号45との合成加算信号が信号線54に出力され、電気信号46が信号合成スイッチ53に出力される。信号合成スイッチ53は、図において点線で示す内部状態を有する状態1であるので、信号合成スイッチ52から入力された電気信号46が信号線55に、また入力された電気信号47が信号線56にそれぞれ出力される。図5の電気信号合成部28と図4の電気信号合成部28に入力される4つの電気信号の周波数帯域の分布は同じであるが、それぞれ異なるパタンの編集合成電気信号202を出力する。   The electrical signal 44 and the electrical signal 45 are input to the signal synthesis switch 51 in the state 2 having the internal connection state indicated by the dotted line in the figure, and are synthesized and added to be output to the signal synthesis switch 52. Since the signal synthesis switch 52 is in the state 1 having an internal state indicated by a dotted line in the figure, a synthesized addition signal of the input electric signal 44 and the electric signal 45 is output to the signal line 54 and the electric signal 46 is signal synthesized. Output to the switch 53. Since the signal synthesis switch 53 is in state 1 having an internal state indicated by a dotted line in the figure, the electrical signal 46 input from the signal synthesis switch 52 is applied to the signal line 55, and the input electrical signal 47 is applied to the signal line 56. Each is output. Although the frequency band distributions of the four electric signals input to the electric signal synthesizing unit 28 in FIG. 5 and the electric signal synthesizing unit 28 in FIG. 4 are the same, the edited synthesized electric signals 202 having different patterns are output.

本実施例では3つの信号合成スイッチにて電気信号合成部28を構成しているが、一般的には任意のn個の入力電気信号に対して、(n−1)個の信号合成スイッチでよく、図2の実施例のn個に比べて、少ない数の信号合成スイッチにて電気信号合成部28を構成することができる。 In the present embodiment, the electric signal combining unit 28 is configured by three signal combining switches, but in general, (n−1) signal combining switches are used for any n input electric signals. well, it is possible to configure the electric signal combining unit 28 as compared with the two n of the embodiment of FIG. 2, with a small number of signal combining switch.

このように図5の実施例では、少ない数の信号合成スイッチで電気信号合成部28を実現できる。ただし、合成する電気信号を、隣合わせの位置に入力する必要がある。   As described above, in the embodiment of FIG. 5, the electrical signal synthesis unit 28 can be realized with a small number of signal synthesis switches. However, it is necessary to input the electric signal to be combined to the adjacent position.

図6は、信号編集合成部2の他の実施例である。図6において、図1から図4で説明した符号と同じ符号は同じものを示す。図2の信号編集合成部2との違いは、図6の信号編集合成部2は周波数変調部61をさらに含むことである。周波数変調部61は入力された個々の電気信号をそれぞれ周波数変調した電気信号を出力する。周波数変調部61として、例えば光ヘテロダイン法を用いた周波数変調器を使用できる(たとえば柴田他「FM一括変換方式を用いた光映像分配システム」電子情報通信学会論文誌B vol.83−B No7 pp.948−959 2000年7月)。光ヘテロダイン法を用いた周波数変調器を使用することで変調度の大きい広帯域の周波数変調信号を得ることができる。   FIG. 6 shows another embodiment of the signal editing / synthesizing unit 2. In FIG. 6, the same reference numerals as those described in FIGS. 1 to 4 denote the same components. The difference from the signal editing / synthesizing unit 2 in FIG. 2 is that the signal editing / synthesizing unit 2 in FIG. 6 further includes a frequency modulation unit 61. The frequency modulation unit 61 outputs an electric signal obtained by frequency-modulating each input electric signal. For example, a frequency modulator using an optical heterodyne method can be used as the frequency modulation unit 61 (for example, Shibata et al. “Optical video distribution system using FM batch conversion method”, IEICE Transactions B vol. 83-B No7 pp 948-959 July 2000). By using a frequency modulator using the optical heterodyne method, it is possible to obtain a wideband frequency modulation signal having a large modulation degree.

図7は、図6の信号編集合成部2の動作を説明する図である。図7において、図1から図6で使用した符号と同じ符号は同じもの又は同じ信号を示す。ただし、図7において電気信号43の信号強度は他の電気信号の信号強度と等しいとする。図4で説明したように、周波数再配置部27は電気信号42を周波数シフトする。図7の電気信号合成部28の信号合成スイッチ11、信号合成スイッチ15、信号合成スイッチ20及び信号合成スイッチ24を状態2とし、他の信号合成スイッチを状態1としている。このように信号合成スイッチを設定することで、電気信号40、電気信号41が合成加算されて信号線71に出力され、電気信号42、電気信号43が合成加算され、信号線70に出力される。信号線70および信号線71の電気信号は、周波数変調部61に入力され、周波数変調がなされて、それぞれ電気信号62および電気信号63が得られる。以上の説明のように、図6の信号編集合成部2を使用した場合、電気信号62および電気信号63が編集合成電気信号202となる。なお、図7において、電気信号62および電気信号63もグラフ表示している。   FIG. 7 is a diagram for explaining the operation of the signal editing / synthesizing unit 2 of FIG. In FIG. 7, the same reference numerals as those used in FIGS. 1 to 6 denote the same or the same signals. However, in FIG. 7, it is assumed that the signal strength of the electrical signal 43 is equal to the signal strength of other electrical signals. As described with reference to FIG. 4, the frequency rearrangement unit 27 shifts the frequency of the electric signal 42. The signal synthesis switch 11, the signal synthesis switch 15, the signal synthesis switch 20, and the signal synthesis switch 24 of the electric signal synthesis unit 28 in FIG. 7 are in state 2, and the other signal synthesis switches are in state 1. By setting the signal synthesis switch in this way, the electrical signal 40 and the electrical signal 41 are synthesized and added and output to the signal line 71, and the electrical signal 42 and the electrical signal 43 are synthesized and added and outputted to the signal line 70. . The electric signals of the signal line 70 and the signal line 71 are input to the frequency modulation unit 61 and subjected to frequency modulation to obtain an electric signal 62 and an electric signal 63, respectively. As described above, when the signal editing / synthesizing unit 2 of FIG. 6 is used, the electric signal 62 and the electric signal 63 become the editing / combining electric signal 202. In FIG. 7, the electric signal 62 and the electric signal 63 are also displayed in a graph.

このように、信号編集合成部2は、入力電気信号200の周波数帯域が重複していても電気レベルで多重化できる。   In this way, the signal editing / synthesizing unit 2 can multiplex at the electrical level even if the frequency bands of the input electrical signal 200 overlap.

電気−光変換部3は、入力されるm個(mは1≦m≦nの整数)の編集合成電気信号202を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号203に変換する。p=1の場合は同一波長の光を強度変調し、p=mの場合は編集合成電気信号202毎に波長の異なる光を強度変調している。電気−光変換部3として、p個のレーザダイオードと外部変調器とを組合せた光回路が例示される。電気−光変換部3は、レーザダイオードからの光を外部変調器で強度変調して編集合成電気信号202を合成光信号203に変換する。   The electro-optical conversion unit 3 inputs m (m is an integer of 1 ≦ m ≦ n) input composite editing electric signals 202 out of p (p is an integer of 1 ≦ p ≦ m) wavelengths. The intensity is modulated with light of any wavelength and converted into m composite optical signals 203. When p = 1, the light of the same wavelength is intensity-modulated, and when p = m, the light having a different wavelength is intensity-modulated for each editing / combining electric signal 202. An example of the electro-optical converter 3 is an optical circuit in which p laser diodes and an external modulator are combined. The electro-optical conversion unit 3 converts the intensity of the light from the laser diode with an external modulator and converts the edited combined electric signal 202 into the combined optical signal 203.

光送出部4は、m個の合成光信号203を送信光信号205として光送信装置1の外部に出力する。光送出部4は、m個の合成光信号203をそのまま送信光信号205として出力する場合と合成光信号203を光波長多重、光結合等の光レベルでの多重化をして1つの光信号にまとめ、送信光信号205として出力する場合がある。実施形態1の光送出部4は、後者の場合であり、m個の合成光信号203を多重して1つの送信光信号205を形成する光合成部を含む。   The optical transmission unit 4 outputs m combined optical signals 203 as transmission optical signals 205 to the outside of the optical transmission device 1. The optical sending unit 4 outputs a single optical signal by multiplexing m optical signals 203 as they are as transmission optical signals 205 and multiplexing the optical signals 203 at an optical level such as optical wavelength multiplexing and optical coupling. In some cases, the transmitted optical signal 205 may be output. The optical transmitter 4 of the first embodiment is the latter case, and includes an optical combiner that multiplexes m combined optical signals 203 to form one transmitted optical signal 205.

光伝送路5として光ファイバが例示できる。実施形態1の場合、光ファイバの本数は1本である。   An example of the optical transmission line 5 is an optical fiber. In the case of Embodiment 1, the number of optical fibers is one.

受光部7は、送信光信号205を受光してm個の受信電気信号207へ変換する。図8は、実施形態1の場合における受光部7の一つの構成を示す実施例である。受光部7はPDなどの光電素子80とフィルタ群81とを含む。フィルタ群81は、光信号を変調した電気信号の周波数帯域が重なっていない場合に、前記電気信号毎に分離することができる。受光部7は、入力される光信号を光電素子80で電気信号に変換し、該電気信号をフィルタ群81でm個の受信電気信号207に分離し、出力する。   The light receiving unit 7 receives the transmission light signal 205 and converts it to m reception electric signals 207. FIG. 8 is an example showing one configuration of the light receiving unit 7 in the case of the first embodiment. The light receiving unit 7 includes a photoelectric element 80 such as a PD and a filter group 81. The filter group 81 can separate each electric signal when the frequency bands of the electric signals obtained by modulating the optical signals do not overlap. The light receiving unit 7 converts the input optical signal into an electrical signal by the photoelectric element 80, and the electrical signal is separated into m received electrical signals 207 by the filter group 81 and output.

なお、光伝送路5が複数本の光ファイバで、送信光信号205が光レベルで多重化されていないm個の光信号の場合、受光部7は光ファイバの数と同数の光電素子を含む。受光部7はそれぞれの光ファイバで伝搬された光信号を対応する光電素子で受光し、m個の受信電気信号207を出力する。   When the optical transmission line 5 is a plurality of optical fibers and the transmission optical signal 205 is m optical signals that are not multiplexed at the optical level, the light receiving unit 7 includes the same number of photoelectric elements as the number of optical fibers. . The light receiving unit 7 receives the optical signal propagated through each optical fiber by the corresponding photoelectric element, and outputs m received electrical signals 207.

分離処理部8は、m個の受信電気信号207をn個の出力電気信号208へ分離処理する。なお、図6の信号編集合成部の実施例の場合は、分離処理部8には周波数変調された信号を復調するFM復調機能が入力部分に必要となる。   The separation processing unit 8 separates m received electrical signals 207 into n output electrical signals 208. In the case of the embodiment of the signal editing / synthesizing unit shown in FIG. 6, the separation processing unit 8 needs an FM demodulation function for demodulating the frequency-modulated signal at the input part.

図1の光伝送システム500は、光送信装置が、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を生成する周波数再配置ステップと、前記周波数再配置ステップの後、光送信装置が、前記周波数再配置ステップで生成された前記n個の周波数調整電気信号をそのまま通過させ、又は前記周波数再配置ステップで生成された前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を生成する信号合成ステップと、前記信号合成ステップの後、光送信装置が、前記信号合成ステップで生成された前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換し、前記m個の合成光信号を多重して1つの送信光信号を生成して光伝送路に出力する光送出ステップと、前記光送出ステップの後、加入者装置が、前記光伝送路を伝搬した前記送信光信号を受光し、光電変換して受信電気信号を生成する受光ステップと、前記受光ステップ後、加入者装置が、前記受光ステップで生成された前記受信電気信号をフィルタによりm個の受信電気信号へ変換する電気信号変換ステップと、前記電気信号変換ステップの後、加入者装置が、前記電気信号変換ステップで変換された前記m個の受信電気信号からn個の出力電気信号へ分離処理を行う分離処理ステップと、を備える光伝送方法で、入力される高周波無線信号を加入者へ配信する。   The optical transmission system 500 in FIG. 1 has frequency band overlap when the optical transmission apparatus has at least frequency band overlap in n input (n is an integer of 1 or more) input electrical signals. A frequency rearrangement step of converting at least one frequency band of the input electric signal into a frequency band that is not used by another input electric signal to generate n frequency adjustment electric signals; and after the frequency rearrangement step, An optical transmission device passes the n frequency adjustment electric signals generated in the frequency rearrangement step as they are, or at least two of the n frequency adjustment electric signals generated in the frequency rearrangement step And m (m is an integer satisfying 1 ≦ m ≦ n) to generate an edit combined electric signal, and after the signal combining step, the optical transmission apparatus The m edited combined electric signals generated in step are intensity-modulated with light of any one of p wavelengths (p is an integer of 1 ≦ p ≦ m), and m combined optical signals are generated. An optical transmission step of multiplexing the m combined optical signals to generate one transmission optical signal and outputting it to an optical transmission line; and after the optical transmission step, a subscriber unit transmits the optical transmission A light receiving step of receiving the transmitted optical signal propagated through the path and photoelectrically converting it to generate a received electrical signal; and after the light receiving step, the subscriber unit filters the received electrical signal generated in the light receiving step with a filter. An electric signal converting step for converting into m received electric signals, and after the electric signal converting step, a subscriber unit converts n output electric signals from the m received electric signals converted in the electric signal converting step. Separation that separates signals And management step, in the optical transmission method comprising, delivery to subscribers high-frequency radio signals to be inputted.

n個の入力電気信号200は送信部1の信号編集合成部2に入力される。入力電気信号200は、信号編集合成部2の周波数再配置部27で周波数帯域が変換され(周波数再配置ステップ)、電気信号合成部28で電気的に信号の合成加算処理がなされて信号数がm(m≦n)の周波数的に重ならない信号に変換され出力される(信号合成ステップ)。ここで、mがnより小さくなる場合は、電気レベルの多重化がなされて、2つ以上の電気信号を一つの電気信号に合成する場合である。さらに電気−光変換部3にてm個の送信電気信号は、それぞれ光信号に変換されて、光送出部4から光伝送路5に送出される(光送出ステップ)。実施形態1の場合、光送出ステップは波長多重により1本のファイバ上で光信号を伝送するが、個々の光信号を個別の光ファイバで伝送する場合もある。   The n input electric signals 200 are input to the signal editing / synthesizing unit 2 of the transmission unit 1. The frequency band of the input electric signal 200 is converted by the frequency rearrangement unit 27 of the signal editing / synthesizing unit 2 (frequency rearrangement step). It is converted to a signal that does not overlap in frequency with m (m ≦ n) and output (signal synthesis step). Here, when m is smaller than n, the electrical level is multiplexed and two or more electrical signals are combined into one electrical signal. Further, the m electrical transmission signals are converted into optical signals by the electrical-optical conversion unit 3 and transmitted from the optical transmission unit 4 to the optical transmission line 5 (optical transmission step). In the case of the first embodiment, the optical transmission step transmits an optical signal on one fiber by wavelength multiplexing. However, there are cases in which individual optical signals are transmitted on individual optical fibers.

光伝送路5からの光信号は、加入者装置6に入り、受光部7で1個の受光素子により受信され(受光ステップ)、受信後にフィルタによりm個の受信電気信号に変換される(電気信号変換ステップ)。前記m個の受信電気信号は、分離処理部8で信号周波数の変換、多重化された電気信号をフィルタにより分離処理を行い(分離処理ステップ)、n個の出力電気信号を出力する。   An optical signal from the optical transmission line 5 enters the subscriber unit 6 and is received by the light receiving unit 7 by one light receiving element (light receiving step), and after reception, is converted into m received electric signals by the filter (electrical). Signal conversion step). The m received electrical signals are subjected to signal frequency conversion and separation processing by the filter by the separation processing unit 8 (separation processing step), and n output electrical signals are output.

光伝送システム500は、入力電気信号200の数が増加しても、信号編集合成部2で電気レベルの多重化するため、編集合成電気信号202の数を減らすことができる。その後、光伝送システム500は、編集合成電気信号202を電気−光変換部3で合成光信号203に変換し、光送出部4で光レベルの多重化を行っている。そのため、光伝送システム500は、電気信号の多重化を電気レベル又は光レベルで柔軟に行うことができ、将来にわたるサービスの拡大を可能とする。   In the optical transmission system 500, even if the number of input electric signals 200 increases, the signal editing / synthesizing unit 2 multiplexes the electric levels, so that the number of editing / combining electric signals 202 can be reduced. Thereafter, in the optical transmission system 500, the edited combined electric signal 202 is converted into the combined optical signal 203 by the electro-optical converting unit 3, and the optical transmission unit 4 performs optical level multiplexing. Therefore, the optical transmission system 500 can flexibly multiplex electric signals at an electric level or an optical level, and can expand services in the future.

(実施形態2)
図1の光伝送システム500における光伝送路5の距離が長い場合、前記光伝送路は、前記光送信装置から結合される前記送信光信号を波長帯毎に分離する光波長分離フィルタ、前記光波長分離フィルタで波長帯毎に分離されたそれぞれの光信号を増幅する光増幅器及び前記光増幅器で増幅された光信号を多重する光合成部を含み、結合された前記送信光信号の中継をする中継局を有してもよい。
(Embodiment 2)
When the distance of the optical transmission path 5 in the optical transmission system 500 of FIG. 1 is long, the optical transmission path is an optical wavelength separation filter that separates the transmission optical signal coupled from the optical transmission apparatus for each wavelength band, the optical An optical amplifier that amplifies each optical signal separated for each wavelength band by a wavelength separation filter, and an optical combining unit that multiplexes the optical signals amplified by the optical amplifier, and relays the combined transmission optical signal You may have a station.

図10は、実施形態2の光伝送システム500における光伝送路5の構成例を示す図であり、電気−光変換部3、光送出部4、光伝送路5及び受光部7のみを示し、他を省略している。図10において、図1から図8で使用した符号と同じ符号は同じもの及び同じ信号を示す。図10の光伝送路5と図1の光伝送路5との違いは、図10の光伝送路5が送信光信号205を中継する中継部92を有していることである。   FIG. 10 is a diagram illustrating a configuration example of the optical transmission path 5 in the optical transmission system 500 according to the second embodiment, and illustrates only the electro-optical conversion unit 3, the light transmission unit 4, the optical transmission path 5, and the light receiving unit 7. Others are omitted. 10, the same reference numerals as those used in FIGS. 1 to 8 denote the same components and the same signals. The difference between the optical transmission line 5 in FIG. 10 and the optical transmission line 5 in FIG. 1 is that the optical transmission line 5 in FIG. 10 has a relay unit 92 that relays the transmission optical signal 205.

電気−光変換部3において、m個の電気信号はそれぞれ異なる波長λ1からλmまでの電気光変換素子82から84で光強度変調された合成光信号203は、光送出部4の光合成部87にて波長多重がなされ、1本の光ファイバに出力される。   In the electro-optical conversion unit 3, the m optical signals are subjected to light intensity modulation by the electro-optical conversion elements 82 to 84 having different wavelengths λ 1 to λ m, and the combined optical signal 203 is transmitted to the light combining unit 87 of the light transmission unit 4. Wavelength multiplexing is then performed and output to a single optical fiber.

光伝送路5の中継部92は、入力された送信光信号205を増幅する。例えば、入力された送信光信号205は波長分離部88にて長波長帯の光信号と短波長帯の光信号に分離される。一例としての分離光信号は、1.3μm帯の短波長光信号と1.5μm帯の長波長帯の光信号である。前記短波長帯の光信号と長波長帯の光信号は、個別の光増幅器89および光増幅器90で増幅され、出力光信号は光合成部91にて波長多重される。光送信装置1と加入者装置6との距離に応じて、中継部92の数を定める。送信光信号205は中継部92を経由して加入者装置6に到達する。そのため、加入者装置6では実施形態1で説明したように送信光信号205を受光して出力電気信号208を出力する。   The relay unit 92 of the optical transmission line 5 amplifies the input transmission optical signal 205. For example, the input transmission optical signal 205 is separated into a long wavelength band optical signal and a short wavelength band optical signal by the wavelength separation unit 88. As an example, the separated optical signal is a 1.3 μm band short wavelength optical signal and a 1.5 μm band long wavelength optical signal. The optical signal in the short wavelength band and the optical signal in the long wavelength band are amplified by the individual optical amplifier 89 and the optical amplifier 90, and the output optical signal is wavelength-multiplexed by the optical combining unit 91. The number of relay units 92 is determined according to the distance between the optical transmission device 1 and the subscriber device 6. The transmission optical signal 205 reaches the subscriber device 6 via the relay unit 92. Therefore, the subscriber device 6 receives the transmission optical signal 205 and outputs the output electrical signal 208 as described in the first embodiment.

従って、実施形態2の光伝送システム500は、実施形態1の光伝送システム500と同様の効果を得ることができる。   Therefore, the optical transmission system 500 of the second embodiment can obtain the same effects as the optical transmission system 500 of the first embodiment.

(実施形態3)
図1の光伝送システム500において、光送出部4が光合成部を含まず、光伝送路5に合成光信号203をそのまま送信光信号205として出力する場合、前記光伝送路は、前記光送信装置から結合される前記送信光信号を前記送信光信号毎に伝搬する複数の光ファイバ及び前記光ファイバの前記加入者装置側の端部に前記送信光信号を多重して1つの光信号として出力する光合成部を含み、前記加入者装置の前記受光部は、前記光伝送路から結合される前記送信光信号を受光する1つの光電素子及び前記光電素子から出力される電気信号を前記m個の受信電気信号へ分離するフィルタを含んでもよい。
(Embodiment 3)
In the optical transmission system 500 of FIG. 1, when the optical transmission unit 4 does not include an optical combining unit and outputs the combined optical signal 203 as it is to the optical transmission line 5 as the transmission optical signal 205, the optical transmission line is the optical transmission device. A plurality of optical fibers that propagate the transmission optical signals combined for each transmission optical signal, and the transmission optical signals are multiplexed on the end of the optical fiber on the subscriber unit side and output as one optical signal A light combining unit, wherein the light receiving unit of the subscriber unit receives one of the photoelectric elements that receive the transmission optical signal coupled from the optical transmission path and the m signals received from the photoelectric elements. A filter that separates into electrical signals may be included.

図9は、実施形態3の光伝送システム500における光伝送路5の構成例を示す図であり、電気−光変換部3、光送出部4、光伝送路5及び受光部7のみを示し、他を省略している。図9において、図1から図8で使用した符号と同じ符号は同じもの及び同じ信号を示す。図9の光伝送路5と図1の光伝送路5との違いは、図9の光伝送路5が複数の光ファイバと送信光信号205を多重化する光合成部86とを含んでいることである。光合成部86は光伝送路5と加入者装置6との接合部の直前付近にある。   FIG. 9 is a diagram illustrating a configuration example of the optical transmission path 5 in the optical transmission system 500 according to the third embodiment, and illustrates only the electro-optical conversion unit 3, the light transmission unit 4, the optical transmission path 5, and the light receiving unit 7. Others are omitted. 9, the same reference numerals as those used in FIGS. 1 to 8 denote the same components and the same signals. 9 is different from the optical transmission line 5 in FIG. 1 in that the optical transmission line 5 in FIG. 9 includes a plurality of optical fibers and an optical combining unit 86 for multiplexing the transmission optical signal 205. It is. The light combining unit 86 is in the vicinity of the junction between the optical transmission line 5 and the subscriber unit 6.

光伝送路5の距離が長い場合、さらに前記光伝送路は、前記光ファイバ毎に光信号を増幅する光増幅器をさらに含んでもよい。   When the distance of the optical transmission line 5 is long, the optical transmission line may further include an optical amplifier that amplifies an optical signal for each optical fiber.

電気−光変換部3において、m個の電気信号はそれぞれ異なる波長λ1からλmまでの電気光変換素子82から84で光強度変調された合成光信号203は、光送出部4によりm本の光ファイバにそれぞれ結合される。   In the electro-optical conversion unit 3, the m optical signals are subjected to light intensity modulation by the electro-optical conversion elements 82 to 84 having different wavelengths λ1 to λm. Each is coupled to a fiber.

それぞれの光ファイバに結合された送信光信号205は、光伝送路5にて伝送距離に応じて光増幅器85により増幅がなされて伝送される。送信光信号205は加入者装置6の受光部7では1個の光電素子にて受信するため、光伝送路5の光合成部86で多重化される。多重化された光信号は受光部7にて受光される。そのため、加入者装置6では実施形態1で説明したように送信光信号205を受光して出力電気信号208を出力する。従って、実施形態3の光伝送システム500は、実施形態1の光伝送システム500と同様の効果を得ることができる。   The transmission optical signal 205 coupled to each optical fiber is amplified and transmitted by the optical amplifier 85 according to the transmission distance in the optical transmission line 5. The transmission optical signal 205 is received by one photoelectric element in the light receiving unit 7 of the subscriber device 6, and is multiplexed by the light combining unit 86 of the optical transmission path 5. The multiplexed optical signal is received by the light receiving unit 7. Therefore, the subscriber device 6 receives the transmission optical signal 205 and outputs the output electrical signal 208 as described in the first embodiment. Therefore, the optical transmission system 500 of the third embodiment can obtain the same effects as the optical transmission system 500 of the first embodiment.

(実施形態4)
本願第4の発明に係る光伝送システムが備える光送信装置は、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、前記周波数再配置部からの前記n個の周波数調整電気信号を、q個(qは1≦q≦nの整数)の波長のうちのいずれかの波長の光で強度変調してn個の波長調整光信号に変換し、前記n個の波長調整光信号をそのまま通過させ又は前記n個の波長調整光信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の合成光信号を出力する光信号合成部と、前記信号合成部からの前記m個の合成光信号を送信光信号として出力する光送出部と、を有する光送信装置であってもよい。
(Embodiment 4)
The optical transmission device included in the optical transmission system according to the fourth invention of the present application has a frequency band when at least frequency band overlap occurs in n input electrical signals (n is an integer of 1 or more). A frequency rearrangement unit that converts at least one frequency band among the overlapping input electric signals into a frequency band that is not used by another input electric signal and outputs n frequency adjustment electric signals, and the frequency rearrangement unit The n frequency-adjusted electric signals from the light are intensity-modulated with light of any one of q wavelengths (q is an integer of 1 ≦ q ≦ n) and converted into n wavelength-adjusted optical signals. The n wavelength adjustment optical signals are passed as they are, or at least two of the n wavelength adjustment optical signals are combined, and m (m is an integer of 1 ≦ m ≦ n) combined optical signals. An optical signal combining unit to output, and a signal from the signal combining unit An optical transmitting section for outputting m number of the combined light signal as a transmitted optical signal may be an optical transmission apparatus having a.

本実施形態は、本願第4の発明に係る光伝送システムの他の実施例である。図11に本実施形態の光伝送システム510を示すブロック図を示す。図11において、図1から図10で使用した符号と同じ符号は同じもの及び同じ信号を示す。光伝送システム510と図1の光伝送システム500との違いは、光送信装置1ではなく光送信装置101であることである。   The present embodiment is another example of the optical transmission system according to the fourth invention of the present application. FIG. 11 is a block diagram showing the optical transmission system 510 of this embodiment. In FIG. 11, the same reference numerals as those used in FIGS. 1 to 10 denote the same components and the same signals. The difference between the optical transmission system 510 and the optical transmission system 500 of FIG. 1 is that the optical transmission apparatus 101 is not the optical transmission apparatus 1.

光送信装置101と図1の光送信装置1との違いは、信号編集合成部2が信号編集合成部102であること及び電気−光変換部3を有していないことである。   The difference between the optical transmitter 101 and the optical transmitter 1 of FIG. 1 is that the signal editing / synthesizing unit 2 is the signal editing / synthesizing unit 102 and does not have the electro-optical converting unit 3.

図12は、信号編集合成部102の実施例である。信号編集合成部102と図2の信号編集合成部2との違いは、周波数再配置部27の後段に周波数再配置部27の出力毎に電気−光変換部121が備えられていること及び電気信号合成部28の代替に光信号合成部128が備えられていることである。   FIG. 12 shows an embodiment of the signal editing / synthesizing unit 102. The difference between the signal editing / synthesizing unit 102 and the signal editing / synthesizing unit 2 in FIG. 2 is that an electrical-to-optical conversion unit 121 is provided for each output of the frequency rearrangement unit 27 in the subsequent stage of the frequency rearrangement unit 27. An optical signal synthesis unit 128 is provided as an alternative to the signal synthesis unit 28.

電気−光変換部121は、n個の周波数調整電気信号201を、q個(qは1≦q≦nの整数)の波長のうちのいずれかの波長の光で強度変調してn個の波長調整光信号301に変換する。電気−光変換部121として電気−光変換部3で説明した光回路が例示できる。   The electro-optical conversion unit 121 modulates the intensity of the n frequency-adjusted electric signals 201 with light of any one of q wavelengths (q is an integer of 1 ≦ q ≦ n), and outputs n frequency-adjusted electric signals 201. It converts into the wavelength adjustment optical signal 301. As the electro-optical converter 121, the optical circuit described in the electro-optical converter 3 can be exemplified.

光信号合成部128は、n個の波長調整光信号301をそのまま通過させ又はn個の波長調整光信号301のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の合成光信号203を出力する。光信号合成部128は、図2及び図4で説明した電気信号合成部28のように波長調整光信号301の中から多重化できる光信号を合成する。そのため、信号編集合成部102はサービスが拡大して入力される入力電気信号の数が増加しても多重可能な光信号のグループにまとめることができ、合成光信号203の数を減らすことができる。   The optical signal combining unit 128 passes the n wavelength adjustment optical signals 301 as they are or combines at least two of the n wavelength adjustment optical signals 301, and m (m is an integer of 1 ≦ m ≦ n). The combined optical signal 203 is output. The optical signal synthesizer 128 synthesizes an optical signal that can be multiplexed from the wavelength-adjusted optical signal 301 as in the electrical signal synthesizer 28 described with reference to FIGS. Therefore, the signal editing / synthesizing unit 102 can multiplex the optical signals into groups that can be multiplexed even if the number of input electrical signals that are input by expanding the service increases, and the number of combined optical signals 203 can be reduced. .

信号編集合成部102からの合成光信号203は、光送出部4を介して送信光信号205として光伝送路5へ出力される。加入者装置6では実施形態1で説明したように送信光信号205を受光して出力電気信号208を出力する。   The combined optical signal 203 from the signal editing / combining unit 102 is output to the optical transmission line 5 as the transmission optical signal 205 via the optical transmission unit 4. The subscriber device 6 receives the transmission optical signal 205 and outputs the output electrical signal 208 as described in the first embodiment.

従って、光伝送システム510は、電気信号の多重化を光レベルで柔軟に行うことができ、将来にわたるサービスの拡大を可能とする。   Therefore, the optical transmission system 510 can flexibly multiplex electrical signals at the optical level, and enables future service expansion.

周波数調整電気信号201を個別の電気−光変換部121により光変調を行うことで、使用する電気光変換素子の数は増加するが、電気−光変換部121に要求される線形性や広帯域性は、電気レベルで多重を行った後の電気−光変換を行う電気−光変換部3の電気光変換素子より緩和される。そのため、安価な電気光変換素子を用いることができ、全体的なコスト削減を図ることができる。   Although the number of electro-optical conversion elements to be used is increased by optically modulating the frequency-adjusted electric signal 201 by the individual electro-optical conversion unit 121, the linearity and broadband characteristics required for the electro-optical conversion unit 121 are increased. Is relaxed from the electro-optic conversion element of the electro-optic conversion unit 3 that performs electro-optic conversion after multiplexing at the electrical level. Therefore, an inexpensive electro-optical conversion element can be used, and the overall cost can be reduced.

本発明に係る光伝送方法は、光ファイバ等の光導波路を用いて多重化した光信号を配信するだけでなく、複数の電気信号を多重化する無線信号としても利用できる。   The optical transmission method according to the present invention can be used not only for distributing an optical signal multiplexed using an optical waveguide such as an optical fiber but also as a radio signal for multiplexing a plurality of electrical signals.

本発明の一実施形態に係る光伝送システムの構成例を示す図である。It is a figure which shows the structural example of the optical transmission system which concerns on one Embodiment of this invention. 信号編集合成部の第1実施例を示す図である。It is a figure which shows 1st Example of a signal edit synthetic | combination part. 電気信号合成スイッチの構成および状態を示す図である。It is a figure which shows the structure and state of an electric signal synthetic | combination switch. 信号編集合成部の第1実施例の動作例を示す図である。It is a figure which shows the operation example of 1st Example of a signal edit synthetic | combination part. 電気信号合成部の別の構成例および動作例を示す図である。It is a figure which shows another structural example and operation example of an electric signal synthetic | combination part. 信号編集合成部の第2実施例を示す図である。It is a figure which shows 2nd Example of a signal edit synthetic | combination part. 信号編集合成部の第2実施例の動作例を示す図である。It is a figure which shows the operation example of 2nd Example of a signal edit synthetic | combination part. 受光部の一実施例を示す図である。It is a figure which shows one Example of a light-receiving part. 光伝送路の一構成例を示す図である。It is a figure which shows one structural example of an optical transmission line. 光伝送路の別の構成例を示す図である。It is a figure which shows another structural example of an optical transmission line. 本発明の他の実施形態に係る光伝送システムの構成例を示す図である。It is a figure which shows the structural example of the optical transmission system which concerns on other embodiment of this invention. 信号編集合成部の第3実施例を示す図である。It is a figure which shows 3rd Example of a signal edit synthetic | combination part.

符号の説明Explanation of symbols

1、101 光送信装置
2、102 信号編集合成部
3、121 電気−光変換部
4 光送出部
5 光伝送路
6 加入者装置
7 受光部
8 分離処理部
11〜26、51、52、53 信号合成スイッチ
111〜126 光スイッチ
27 周波数再配置部
28 電気信号合成部
128 光信号合成部
31〜34、54、55、56、70、71 信号線
40〜47、62、63 電気信号
61 周波数変調部
80 光電素子
81 フィルタ群
82、83、84 電気光変換素子
85、89、90 光増幅器
86、87、91 光合成部
88 波長分離部
92 中継部
200 入力電気信号
201 周波数調整電気信号
202 編集合成電気信号
203 合成光信号
205 送信光信号
207 受信電気信号
208 出力電気信号
301 波長調整光信号
500、510 光伝送システム
DESCRIPTION OF SYMBOLS 1,101 Optical transmission apparatus 2,102 Signal edit combining part 3,121 Electrical-optical conversion part 4 Optical transmission part 5 Optical transmission line 6 Subscriber apparatus 7 Light receiving part 8 Separation processing parts 11-26, 51, 52, 53 Signal Synthesis switches 111 to 126 Optical switch 27 Frequency rearrangement unit 28 Electrical signal synthesis unit 128 Optical signal synthesis units 31 to 34, 54, 55, 56, 70, 71 Signal lines 40 to 47, 62, 63 Electrical signal 61 Frequency modulation unit 80 Photoelectric element 81 Filter group 82, 83, 84 Electro-optical conversion elements 85, 89, 90 Optical amplifiers 86, 87, 91 Optical synthesis unit 88 Wavelength separation unit 92 Relay unit 200 Input electrical signal 201 Frequency adjustment electrical signal 202 Editing / synthesis electrical signal 203 Combined Optical Signal 205 Transmitted Optical Signal 207 Received Electrical Signal 208 Output Electrical Signal 301 Wavelength Adjustment Optical Signal 500, 510 Optical Transmission System

Claims (9)

光送信装置が、入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を生成する周波数再配置ステップと、
前記周波数再配置ステップの後、光送信装置が、前記周波数再配置ステップで生成された前記n個の周波数調整電気信号をそのまま通過させ、又は前記周波数再配置ステップで生成された前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を生成する信号合成ステップと、
前記信号合成ステップの後、光送信装置が、前記信号合成ステップで生成された前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換し、前記m個の合成光信号を多重して1つの送信光信号を生成して光伝送路に出力する光送出ステップと、
前記光送出ステップの後、加入者装置が、前記光伝送路を伝搬した前記送信光信号を受光し、光電変換して受信電気信号を生成する受光ステップと、
前記受光ステップ後、加入者装置が、前記受光ステップで生成された前記受信電気信号をフィルタによりm個の受信電気信号へ変換する電気信号変換ステップと、
前記電気信号変換ステップの後、加入者装置が、前記電気信号変換ステップで変換された前記m個の受信電気信号からn個の出力電気信号へ分離処理を行う分離処理ステップと、
を備える光伝送方法。
When at least frequency band duplication occurs in the input electric signals of n (n is an integer of 1 or more), at least one frequency among the input electric signals having overlapping frequency bands is received by the optical transmission device. A frequency rearrangement step of converting the band to a frequency band that is not used by other input electric signals to generate n frequency-adjusted electric signals;
After the frequency rearrangement step, the optical transmission device passes the n frequency adjustment electrical signals generated in the frequency rearrangement step as they are, or the n frequencies generated in the frequency rearrangement step. A signal synthesis step of synthesizing at least two of the adjusted electrical signals and generating m (m is an integer of 1 ≦ m ≦ n) edit synthesis electrical signals;
After the signal synthesizing step, the optical transmission device is one of p (p is an integer of 1 ≦ p ≦ m) wavelengths of the m edited synthesized electric signals generated in the signal synthesizing step. An optical transmission step of modulating the intensity with light having a wavelength of m to convert it into m composite optical signals, multiplexing the m composite optical signals to generate one transmission optical signal, and outputting it to the optical transmission line;
After the light transmission step, the subscriber unit receives the transmission optical signal propagated through the optical transmission line, photoelectrically converts it to generate a received electrical signal, and
After the light receiving step, the subscriber device converts the received electrical signal generated in the light receiving step into m received electrical signals by a filter; and
After the electrical signal conversion step, the subscriber device performs a separation process from the m received electrical signals converted in the electrical signal conversion step to n output electrical signals;
An optical transmission method comprising:
入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、
前記周波数再配置部からの前記n個の周波数調整電気信号をそのまま通過させ又は前記周波数再配置部からの前記n個の周波数調整電気信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の編集合成電気信号を出力する電気信号合成部と、
前記信号合成部からの前記m個の編集合成電気信号を、p個(pは1≦p≦mの整数)の波長のうちのいずれかの波長の光で強度変調してm個の合成光信号に変換する電気−光変換部と、
前記電気−光変換部からの前記m個の合成光信号を送信光信号として出力する光送出部と、
を有する光送信装置。
When at least frequency band overlap occurs in n input electrical signals (n is an integer equal to or greater than 1), at least one frequency band of the input electrical signals having overlapping frequency bands is input to another input signal. A frequency rearrangement unit that converts an electrical signal into an unused frequency band and outputs n frequency-adjusted electrical signals;
The n frequency adjustment electrical signals from the frequency rearrangement unit are passed as they are, or at least two of the n frequency adjustment electrical signals from the frequency rearrangement unit are combined, and m (m is 1 An electrical signal synthesis unit that outputs an edit synthesis electrical signal of ≦ m ≦ n),
The m synthesized synthesized electric signals from the signal synthesizing unit are intensity-modulated with light of any one of p wavelengths (p is an integer of 1 ≦ p ≦ m), and m synthesized lights. An electro-optical converter that converts the signal into a signal;
A light transmission unit that outputs the m combined optical signals from the electro-optical conversion unit as a transmission optical signal;
An optical transmitter having
前記信号合成部からの編集合成電気信号をそれぞれ周波数変調して前記電気−光変換部へ出力する周波数変調部をさらに有することを特徴とする請求項2に記載の光送信装置。   The optical transmission device according to claim 2, further comprising a frequency modulation unit that modulates the frequency of each of the edited combined electric signals from the signal combining unit and outputs the modulated electric signals to the electro-optical conversion unit. 入力されるn個(nは1以上の整数)の入力電気信号に少なくとも周波数帯域の重複が発生している場合に、周波数帯域の重複する入力電気信号のうち少なくとも1つの周波数帯域を他の入力電気信号が未使用の周波数帯域へ変換してn個の周波数調整電気信号を出力する周波数再配置部と、
前記周波数再配置部からの前記n個の周波数調整電気信号を、q個(qは1≦q≦nの整数)の波長のうちのいずれかの波長の光で強度変調してn個の波長調整光信号に変換し、前記n個の波長調整光信号をそのまま通過させ又は前記n個の波長調整光信号のうち少なくとも2つを合成し、m個(mは1≦m≦nの整数)の合成光信号を出力する光信号合成部と、
前記信号合成部からの前記m個の合成光信号を送信光信号として出力する光送出部と、
を有する光送信装置。
When at least frequency band overlap occurs in n input electrical signals (n is an integer equal to or greater than 1), at least one frequency band of the input electrical signals having overlapping frequency bands is input to another input signal. A frequency rearrangement unit that converts an electrical signal into an unused frequency band and outputs n frequency-adjusted electrical signals;
The n frequency-adjusted electric signals from the frequency rearrangement unit are intensity-modulated with light of any one of q wavelengths (q is an integer of 1 ≦ q ≦ n), and n wavelengths Convert to an adjusted optical signal, pass the n wavelength adjusted optical signals as they are, or synthesize at least two of the n wavelength adjusted optical signals, m (m is an integer of 1 ≦ m ≦ n) An optical signal combining unit that outputs a combined optical signal of
An optical transmission unit that outputs the m combined optical signals from the signal combining unit as transmission optical signals;
An optical transmitter having
請求項2から4に記載のいずれかの光送信装置と、
前記光送信装置からの前記送信光信号が結合され、前記送信光信号を伝搬する光伝送路と、
前記光伝送路から結合される前記送信光信号を受光してm個の受信電気信号へ変換する受光部及び前記受光部で変換された前記m個の受信電気信号をn個の出力電気信号へ分離処理する分離処理部を有する加入者装置と、
を備える光伝送システム。
An optical transmission device according to any one of claims 2 to 4,
An optical transmission path through which the transmission optical signal from the optical transmission device is combined and propagates the transmission optical signal;
A light receiving unit that receives the transmission optical signal coupled from the optical transmission path and converts it into m received electrical signals, and the m received electrical signals converted by the light receiving unit into n output electrical signals. A subscriber unit having a separation processing unit for separation processing;
An optical transmission system comprising:
前記光送信装置の前記光送出部は、前記m個の合成光信号を多重して1つの前記送信光信号を形成する光合成部を含み、
前記加入者装置の前記受光部は、前記光伝送路から結合される前記送信光信号を受光する1つの光電素子及び前記光電素子から出力される電気信号を前記m個の受信電気信号へ分離するフィルタを含むことを特徴とする請求項5に記載の光伝送システム。
The optical transmitter of the optical transmitter includes an optical combiner that multiplexes the m combined optical signals to form one of the transmitted optical signals,
The light receiving unit of the subscriber unit separates one photoelectric element that receives the transmission optical signal coupled from the optical transmission path and an electric signal output from the photoelectric element into the m reception electric signals. The optical transmission system according to claim 5, further comprising a filter.
前記光伝送路は、前記光送信装置から結合される前記送信光信号を波長帯毎に分離する光波長分離フィルタ、前記光波長分離フィルタで波長帯毎に分離されたそれぞれの光信号を増幅する光増幅器及び前記光増幅器で増幅された光信号を多重する光合成部を含み、結合された前記送信光信号の中継をする中継局を有することを特徴とする請求項6に記載の光伝送システム。   The optical transmission line amplifies the optical wavelength separation filter that separates the transmission optical signal coupled from the optical transmission device for each wavelength band, and the optical signals separated for each wavelength band by the optical wavelength separation filter. The optical transmission system according to claim 6, further comprising an optical amplifier and an optical combining unit that multiplexes the optical signal amplified by the optical amplifier, and a relay station that relays the combined transmission optical signal. 前記光伝送路は、前記光送信装置から結合される前記送信光信号を前記送信光信号毎に伝搬する複数の光ファイバ及び前記光ファイバの前記加入者装置側の端部に前記送信光信号を多重して1つの光信号として出力する光合成部を含み、
前記加入者装置の前記受光部は、前記光伝送路から結合される前記送信光信号を受光する1つの光電素子及び前記光電素子から出力される電気信号を前記m個の受信電気信号へ分離するフィルタを含むことを特徴とする請求項5に記載の光伝送システム。
The optical transmission path includes a plurality of optical fibers that propagate the transmission optical signal coupled from the optical transmission apparatus for each transmission optical signal, and the transmission optical signal at an end of the optical fiber on the subscriber unit side. Including a light combining unit that multiplexes and outputs as one optical signal,
The light receiving unit of the subscriber unit separates one photoelectric element that receives the transmission optical signal coupled from the optical transmission path and an electric signal output from the photoelectric element into the m reception electric signals. The optical transmission system according to claim 5, further comprising a filter.
前記光伝送路は、前記光ファイバ毎に光信号を増幅する光増幅器をさらに含むことを特徴とする請求項8に記載の光伝送システム。   The optical transmission system according to claim 8, wherein the optical transmission path further includes an optical amplifier that amplifies an optical signal for each of the optical fibers.
JP2006345274A 2006-12-22 2006-12-22 Optical transmission method, optical transmitter, and optical transmission system Expired - Fee Related JP4860457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345274A JP4860457B2 (en) 2006-12-22 2006-12-22 Optical transmission method, optical transmitter, and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345274A JP4860457B2 (en) 2006-12-22 2006-12-22 Optical transmission method, optical transmitter, and optical transmission system

Publications (2)

Publication Number Publication Date
JP2008160343A true JP2008160343A (en) 2008-07-10
JP4860457B2 JP4860457B2 (en) 2012-01-25

Family

ID=39660786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345274A Expired - Fee Related JP4860457B2 (en) 2006-12-22 2006-12-22 Optical transmission method, optical transmitter, and optical transmission system

Country Status (1)

Country Link
JP (1) JP4860457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127572A (en) * 2015-01-08 2016-07-11 富士通株式会社 Transmission device, transmitter and transmission method
CN115208472A (en) * 2022-06-24 2022-10-18 中航光电科技股份有限公司 Data transmission system and data sending and receiving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245803A (en) * 2005-03-01 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Digital broadcasting signal transmitting system, its transmitting processor and receiving processor
JP2008158133A (en) * 2006-12-22 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator circuit and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245803A (en) * 2005-03-01 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Digital broadcasting signal transmitting system, its transmitting processor and receiving processor
JP2008158133A (en) * 2006-12-22 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Optical modulator circuit and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127572A (en) * 2015-01-08 2016-07-11 富士通株式会社 Transmission device, transmitter and transmission method
CN115208472A (en) * 2022-06-24 2022-10-18 中航光电科技股份有限公司 Data transmission system and data sending and receiving method

Also Published As

Publication number Publication date
JP4860457B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4184474B2 (en) OPTICAL TRANSMISSION SYSTEM AND OPTICAL TRANSMITTING DEVICE AND OPTICAL RECEIVING DEVICE USED FOR THE SAME
US5771111A (en) Optical network
US4183054A (en) Digital, frequency-translated, plural-channel, vestigial sideband television communication system
JP3133597B2 (en) Optical transmission cable broadcasting system
US20070212073A1 (en) Apparatus, System And Method For Optical Signal Transmission
US6058227A (en) Method and apparatus for an opto-electronic circuit switch
JPH1022930A (en) Method and device for optical transmission of subcarrier multiplex signal
JP4860457B2 (en) Optical transmission method, optical transmitter, and optical transmission system
CN1922805B (en) Optical transporting apparatus, optical transmission system, optical transporting method, and optical transmission method
JP2002050985A (en) Hybrid transmission method and joint reception system using the method
US20080253776A1 (en) Optical Signal Receiver
JP3339031B2 (en) Optical transmission equipment
JP3371355B2 (en) Modulation system conversion circuit and optical signal transmission device
JPH08274711A (en) Optical transmission equipment, reception device, and cable television system
JP2006287433A (en) Fm modulation method, fm modulation apparatus, and optical transmission system
JPS63148724A (en) Television image signal multiplex transmission method in catv system
JP4691330B2 (en) Broadcast and communication fusion distribution system
JP5428092B2 (en) Optical terminal unit and optical transmission system
JPH07107328A (en) Common audio visual facilities and branch amplifier
JP3396421B2 (en) Multiplex optical transmission equipment
JPH09284219A (en) Transmission system
US9241199B2 (en) Announcement broadcasting system, announcement broadcasting optical receiver used for the announcement broadcasting system, cable television broadcasting system, and optical receiver used for the cable television broadcasting system
JPS6010825A (en) Optical transceiver
KR19990005227A (en) Analog cable TV (CATV) system with telephone service
JPH04280521A (en) Optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R150 Certificate of patent or registration of utility model

Ref document number: 4860457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees