JP2008157755A - Wheel bearing with sensor - Google Patents

Wheel bearing with sensor Download PDF

Info

Publication number
JP2008157755A
JP2008157755A JP2006346983A JP2006346983A JP2008157755A JP 2008157755 A JP2008157755 A JP 2008157755A JP 2006346983 A JP2006346983 A JP 2006346983A JP 2006346983 A JP2006346983 A JP 2006346983A JP 2008157755 A JP2008157755 A JP 2008157755A
Authority
JP
Japan
Prior art keywords
rolling element
rolling
phase difference
load
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006346983A
Other languages
Japanese (ja)
Inventor
Hiroshi Isobe
浩 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006346983A priority Critical patent/JP2008157755A/en
Publication of JP2008157755A publication Critical patent/JP2008157755A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wheel bearing which enables compact installation of a load sensor on a vehicle, and accurate detection of a load applied to a wheel. <P>SOLUTION: This wheel bearing 10 with a sensor is equipped with a fixed ring 1 having two rows of rolling surfaces 4A, 4B, a rotating ring 2 having rolling surfaces 5A, 5B opposite to the rolling surfaces 4A, 4B of this fixed ring 1, and a plurality of rows of rolling elements 9A, 9B interposed in between individual opposed rolling surfaces 4A (4B), 5A (5B), and rotatably supports the wheel with respect to the vehicle body. Each of the plurality of rows of elements 9A, 9B is provided with a load detection means 15A, 15B for detecting a change in load by action force between a tire and a road surface or a pre-load amount of the wheel bearing, and a rolling-element phase-difference detection means 16 for calculating the phase difference between the plurality of rows of elements 9A, 9B. Moreover, a correction means 17 is provided for correcting the output signal of the load detection means 15A by the phase difference between the rolling elements found with this detection means 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。
そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。
また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。
2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.
Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.
In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪ゲージを貼り付け、歪を検出するようにした車輪用軸受が提案されている(例えば特許文献1)。また、車輪用軸受の外輪に超音波センサを設け、転動体と転走面の接触面積により変化するエコー比より荷重を検出する車輪用軸受も提案されている(例えば特許文献2)。
特表2003−530565号公報 特開2006−145457号公報
As a response to such a request, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1). There has also been proposed a wheel bearing in which an ultrasonic sensor is provided on the outer ring of the wheel bearing and the load is detected based on an echo ratio that varies depending on the contact area between the rolling element and the rolling surface (for example, Patent Document 2).
Special table 2003-530565 gazette JP 2006-145457 A

しかし、特許文献1,2に開示された技術では、複列の転動体の公転速度が異なる場合があり、複列の転動体同士の位相変化により検出部の信号値がばらつき、正確に荷重を検出できないといった問題がある。例えば、タイヤに対して垂直方向荷重を付与し、車輪用軸受の外輪の垂直方向上面に貼った歪ゲージでその荷重を検出する場合について、図9と図10を参照して、以下に上記問題を説明する。   However, in the techniques disclosed in Patent Documents 1 and 2, the revolution speed of the double row rolling elements may be different, and the signal value of the detection unit varies due to the phase change between the double row rolling elements, and the load is accurately applied. There is a problem that it cannot be detected. For example, with respect to a case where a vertical load is applied to a tire and the load is detected by a strain gauge attached to the vertical upper surface of the outer ring of the wheel bearing, referring to FIG. 9 and FIG. Will be explained.

図9(A)は複列の転動体の位相が同じ場合のアウトボード側の転動体列、図9(B)は複列の転動体の位相が同じ場合のインボード側の転動体列、図10(A)は複列の転動体の位相がP/2(Pは転動体ピッチ。以下同じ。)ずれた場合のアウトボード側の転動体列、図10(B)は複列の転動体の位相がP/2ずれた場合のインボード側の転動体列を示す。
インボード側の歪ゲージの検出値を図9と図10で比較した場合、アウトボード側の軸受剛性が異なるため、垂直方向荷重がインボード側上部の転動体に与える影響が変わる。その結果、同じ垂直方向荷重が負荷していても歪ゲージの検出値が異なってしまう。ここでは、歪を検出する場合について説明したが、転動体と転走面の接触面積や、回転部と固定部の相対変位を測定する場合についても同等のことが言える。また、荷重の方向や検出位置が変わった場合でも同等のことが言える。
9A is an outboard side rolling element row when the phases of the double row rolling elements are the same, and FIG. 9B is an inboard side rolling element row when the phases of the double row rolling elements are the same. FIG. 10A shows the rolling element row on the outboard side when the phase of the double row rolling elements is shifted by P / 2 (P is the rolling element pitch, the same applies hereinafter), and FIG. 10B shows the double row rolling element. The in-board side rolling element row | line | column when the phase of a moving body shifted | deviated by P / 2 is shown.
When the detected value of the strain gauge on the inboard side is compared between FIG. 9 and FIG. 10, since the bearing rigidity on the outboard side is different, the influence of the vertical load on the rolling body on the inboard side changes. As a result, even if the same vertical load is applied, the detected value of the strain gauge is different. Here, the case where the strain is detected has been described, but the same can be said for the case where the contact area between the rolling element and the rolling surface and the relative displacement between the rotating portion and the fixed portion are measured. The same can be said even when the load direction or the detection position changes.

この発明の目的は、車両にコンパクトに荷重センサを設置できて、車輪にかかる荷重を正確に検出できる車輪用軸受を提供することである。   An object of the present invention is to provide a wheel bearing capable of accurately installing a load sensor on a vehicle and accurately detecting a load applied to the wheel.

この発明のセンサ付車輪用軸受は、複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した回転輪と、対向する各転走面間に介在した複数の転動体列とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、複数の転動体列のそれぞれに対して、タイヤと路面間の作用力または車輪用軸受の予圧量による荷重の変化を検出する荷重検出手段と、複数の転動体列の位相差を算出する転動体位相差検出手段と、この転動体位相差検出手段から求めた転動体位相差より前記荷重検出手段の出力信号を補正する補正手段とを設けたことを特徴とする。
この構成によると、例えばアウトボード側およびインボード側の転動体列のそれぞれに対して、例えばタイヤと路面間の作用力による荷重の変化を荷重検出手段で検出し、前記両転動体列間の転動体位相差を転動体位相差検出手段で算出する。この転動体位相差検出手段から求めた転動体位相差より前記荷重検出手段の出力信号を補正手段で補正するので、アウトボード側とインボード側の転動体の位置関係にかかわらず、車輪にかかる荷重を正確に検出することができる。
また、荷重検出手段のほかに、転動体位相差検出手段および補正手段を設けるだけで上記の効果が得られるので、車両にコンパクトに荷重検出手段を設置できる。
The sensor-equipped wheel bearing according to the present invention includes a fixed wheel having a double-row rolling surface, a rotating wheel having a rolling surface facing the rolling surface of the fixed wheel, and each facing rolling surface. In a wheel bearing device comprising a plurality of rolling element rows interposed therebetween and rotatably supporting a wheel relative to a vehicle body, an acting force between a tire and a road surface or a wheel for each of the plurality of rolling element rows Load detecting means for detecting a change in load due to the preload amount of the bearings for rolling, a rolling element phase difference detecting means for calculating a phase difference between a plurality of rolling element rows, and a rolling element phase difference obtained from the rolling element phase difference detecting means And a correction means for correcting the output signal of the load detection means.
According to this configuration, for example, for each of the rolling body rows on the outboard side and the inboard side, for example, a load change due to the acting force between the tire and the road surface is detected by the load detection means, The rolling element phase difference is calculated by the rolling element phase difference detecting means. Since the output signal of the load detecting means is corrected by the correcting means based on the rolling element phase difference obtained from the rolling element phase difference detecting means, it is applied to the wheel regardless of the positional relationship between the rolling elements on the outboard side and the inboard side. The load can be accurately detected.
In addition to the load detection means, the above effect can be obtained only by providing the rolling element phase difference detection means and the correction means, so that the load detection means can be compactly installed in the vehicle.

この発明において、前記補正手段は、予め測定しておいた位相差に基づく荷重検出データ、または近似式を記憶した記憶手段と、前記転動体位相差検出手段から求めた転動体位相差を前記記憶手段に記憶された前記位相差に基づく荷重検出データまたは近似式と照合して荷重検出手段の出力信号を補正する補正部とを有するものであっても良い。
このように、予め測定しておいた転動体位相差に基づく荷重検出データや近似式を記憶手段に記憶させておくと、転動体位相差に基づいた荷重検出手段の出力信号の補正を容易に行うことができ、複列の転動体の位相関係がどのような場合でも正確に荷重を検出することができる。
In this invention, the correction means stores the load detection data based on the phase difference measured in advance or the storage means storing the approximate expression, and the rolling element phase difference obtained from the rolling element phase difference detection means. A correction unit that corrects an output signal of the load detection unit by comparing with load detection data or an approximate expression based on the phase difference stored in the unit may be provided.
As described above, when the load detection data or approximate expression based on the rolling element phase difference measured in advance is stored in the storage means, the output signal of the load detection means based on the rolling element phase difference can be easily corrected. The load can be accurately detected regardless of the phase relationship of the double row rolling elements.

この発明において、前記転動体位相差検出手段は、前記荷重検出手段における転動体通過時の出力変動を用いて転動体列の位相差を算出するものとしても良い。
例えば、荷重検出手段として、超音波センサや歪ゲージのような転動体通過時の出力変動が大きいセンサを用いた場合、荷重検出手段から荷重だけでなく転動体の位置も検出できるため、転動体位相差の検出を行うことができる。
In this invention, the rolling element phase difference detection means may calculate the phase difference of the rolling element row using the output fluctuation when passing through the rolling element in the load detection means.
For example, when a sensor having a large output fluctuation when passing through a rolling element such as an ultrasonic sensor or a strain gauge is used as the load detection means, not only the load but also the position of the rolling element can be detected from the load detection means. A phase difference can be detected.

この発明において、複数の転動体列のそれぞれに対し、転動体の位置を検出する転動体検出手段を更に設けても良い。
この構成の場合、転動体の位置を荷重検出手段の出力信号から検出するのではなく、別途設ける転動体検出手段で検出するので、転動体位置の検出が容易となる。また、転動体検出手段には、光や渦電流などを利用した構造の簡単なセンサを使用でき、精度も要求されないため、設置が容易である。
In this invention, you may further provide the rolling element detection means which detects the position of a rolling element with respect to each of a some rolling element row | line | column.
In the case of this configuration, the position of the rolling element is not detected from the output signal of the load detection means, but is detected by the separately provided rolling element detection means, so that the detection of the rolling element position is facilitated. The rolling element detection means can be a simple sensor having a structure utilizing light, eddy current, etc., and is not required to be accurate, so that it can be installed easily.

この発明において、それぞれの前記転動体検出手段は、転動体ピッチ幅の間に複数個設けても良い。この構成の場合、転動体の位置検出の時間を短縮することができる。   In the present invention, a plurality of each of the rolling element detection means may be provided between the rolling element pitch widths. In the case of this configuration, the time for detecting the position of the rolling element can be shortened.

この発明のセンサ付車輪用軸受は、複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した固定輪と、対向する各転走面間に介在した複数の転動体列とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、複数の転動体列のそれぞれに対して、タイヤと路面間の作用力または車輪用軸受の予圧量による荷重の変化を検出する荷重検出手段と、複数の転動体列の位相差を算出する転動体位相差検出手段と、この転動体位相差検出手段から求めた転動体位相差より前記荷重検出手段の出力信号を補正する補正手段とを設けたため、車両にコンパクトに荷重センサを設置できて、車輪にかかる荷重を正確に検出できる。   The sensor-equipped wheel bearing according to the present invention includes a fixed wheel having a double-row rolling surface, a fixed wheel having a rolling surface facing the rolling surface of the fixed wheel, and each facing rolling surface. In a wheel bearing device comprising a plurality of rolling element rows interposed therebetween and rotatably supporting a wheel relative to a vehicle body, an acting force between a tire and a road surface or a wheel for each of the plurality of rolling element rows Load detecting means for detecting a change in load due to the preload amount of the bearings for rolling, a rolling element phase difference detecting means for calculating a phase difference between a plurality of rolling element rows, and a rolling element phase difference obtained from the rolling element phase difference detecting means Further, since the correcting means for correcting the output signal of the load detecting means is provided, the load sensor can be installed in the vehicle in a compact manner, and the load applied to the wheel can be accurately detected.

この発明の一実施形態を図1ないし図5と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、かつ駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向外側寄りとなる側をアウトボード側と言い、車両の中央寄りとなる側をインボード側と呼ぶ。図1では、左側がアウトボード側、右側がインボード側となる。
図1のように、この車輪用軸受10は、内周に複列の転走面4A,4Bが形成された外方部材1と、これら転走面4A,4Bにそれぞれ対向する転走面5A,5Bが形成された内方部材2と、これら複列の転走面4A(4B),5A(5B)間に介在した複列の転動体3とを備える。この車輪用軸受10は、複列のアンギュラ玉軸受型とされていて、転動体3はボールからなり、各列毎に保持器6で保持されている。上記各転走面4A〜5Bは断面円弧状であり、各転走面4A〜5Bはボール接触角が背面合わせとなるように形成されている。内外の部材2,1間に形成される環状空間のアウトボード側およびインボード側の各開口端部は、それぞれ密封装置である接触式のシール7,8で密封されている。
An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. In FIG. 1, the left side is the outboard side and the right side is the inboard side.
As shown in FIG. 1, the wheel bearing 10 includes an outer member 1 having double-row rolling surfaces 4A and 4B formed on the inner periphery, and rolling surfaces 5A that face the rolling surfaces 4A and 4B, respectively. , 5B, and the double row rolling elements 3 interposed between the double row rolling surfaces 4A (4B) and 5A (5B). The wheel bearing 10 is a double-row angular ball bearing type, and the rolling elements 3 are formed of balls and are held by a cage 6 for each row. Each of the rolling surfaces 4A to 5B has an arc shape in cross section, and each of the rolling surfaces 4A to 5B is formed so that the ball contact angle is aligned with the back surface. The open end portions on the outboard side and the inboard side of the annular space formed between the inner and outer members 2 and 1 are sealed by contact-type seals 7 and 8 which are sealing devices, respectively.

外方部材1は固定輪となるものであって、その外周に形成されたフランジ1aが車体側のナックル(図示せず)にボルトで締結される。
内方部材2は回転輪となるものであって、外周に車輪取付フランジ2aを有するハブ輪2Aと、このハブ輪2Aのインボード側の外周に嵌合した別体の内輪2Bとからなり、ハブ輪2Aには等速ジョイント11の片方の継手部材となる外輪11aが連結される。ハブ輪2Aおよび内輪2Bに、各列の転走面5A,5Bがそれぞれ形成される。ハブ輪2Aは中央孔12を有し、この中央孔12に、等速ジョイント外輪11aに一体に形成されたステム13が挿通され、ステム13の先端に螺合するナット14の締め付けにより、等速ジョイント外輪11aが内方部材2に連結される。このとき、等速ジョイント外輪11aに設けられたアウトボード側に向く段面11aaが、ハブ輪2Aに圧入した内輪2Bのインボード側に向く端面に押し付けられ、等速ジョイント外輪11aとナット14とで内方部材2が幅締めされる。ハブ輪2Aの中央孔12にはスプライン溝12aが形成されており、ステム13のスプライン溝13aとスプライン嵌合する。
The outer member 1 is a fixed wheel, and a flange 1a formed on the outer periphery thereof is fastened to a knuckle (not shown) on the vehicle body side with a bolt.
The inner member 2 is a rotating wheel, and includes a hub wheel 2A having a wheel mounting flange 2a on the outer periphery, and a separate inner ring 2B fitted to the outer periphery on the inboard side of the hub wheel 2A. An outer ring 11a, which is one joint member of the constant velocity joint 11, is connected to the hub wheel 2A. Each row of rolling surfaces 5A and 5B is formed on the hub wheel 2A and the inner ring 2B. The hub wheel 2 </ b> A has a center hole 12, and a stem 13 integrally formed with the constant velocity joint outer ring 11 a is inserted into the center hole 12. The joint outer ring 11 a is connected to the inner member 2. At this time, the step surface 11aa facing the outboard provided on the constant velocity joint outer ring 11a is pressed against the end surface facing the inboard side of the inner ring 2B press-fitted into the hub wheel 2A, and the constant velocity joint outer ring 11a and the nut 14 Thus, the inner member 2 is tightened. A spline groove 12a is formed in the center hole 12 of the hub wheel 2A and is fitted to the spline groove 13a of the stem 13 by spline fitting.

固定輪である外方部材1の外周面には、一例としてタイヤと路面間に働く作用力の変化を検出する荷重検出手段15A,15Bが、前記アウトボード側の転動体3の列9Aおよびインボード側の転動体3の列9Bのそれぞれに対して設けられている。ここでは、タイヤと路面間の作用力のうち、垂直方向荷重Fzを前記荷重検出手段15A,15Bで検出する場合を例示している。このため、図1、および図1のインボード側から見た正面図を示す図2のように、固定輪1の外周面におけるアウトボード側の転動体列9Aの位置の鉛直方向(Z軸方向)の上側面(車両に対して上側)と、鉛直方向の下側面(車両に対して下側)とに一対の荷重検出手段15A,15Aが設けられる。また、固定輪1の外周面におけるインボード側の転動体列9Bの位置の鉛直方向の上側面と、鉛直方向の下側面とにもう一対の荷重検出手段15B,15Bが設けられる。前記荷重検出手段15A,15Bとしては、例えば荷重を歪に換算して検出する歪ゲージや圧電素子が用いられる。なお、図1における車輪用軸受10の断面図は、図2におけるI−O−I矢視断面を示す。   As an example, on the outer peripheral surface of the outer member 1 that is a fixed wheel, load detecting means 15A and 15B for detecting a change in the acting force acting between the tire and the road surface are provided with the row 9A of the rolling elements 3 on the outboard side and the inboards. It is provided for each of the rows 9B of the rolling elements 3 on the board side. Here, the case where the vertical load Fz is detected by the load detection means 15A, 15B out of the acting force between the tire and the road surface is illustrated. Therefore, as shown in FIG. 1 and FIG. 2 showing a front view seen from the inboard side in FIG. 1, the vertical direction (Z-axis direction) of the position of the rolling body row 9A on the outboard side on the outer peripheral surface of the fixed ring 1 ) On the upper side (upper side with respect to the vehicle) and the lower side surface in the vertical direction (lower side with respect to the vehicle). Further, another pair of load detection means 15B, 15B is provided on the upper surface in the vertical direction and the lower surface in the vertical direction at the position of the rolling element row 9B on the inboard side on the outer peripheral surface of the fixed wheel 1. As the load detection means 15A, 15B, for example, a strain gauge or a piezoelectric element that detects a load by converting it into a strain is used. In addition, sectional drawing of the wheel bearing 10 in FIG. 1 shows the IOOI arrow cross section in FIG.

前記荷重検出手段15A,15Bは転動体位相差検出手段16に接続され、この転動体位相差検出手段16は補正手段17に接続される。図5(A),(B)は、インボード側の荷重検出手段15Bの出力信号の波形図、およびアウトボード側の荷重検出手段15Aの出力信号の波形図をそれぞれ示す。   The load detection means 15A and 15B are connected to a rolling element phase difference detection means 16, and the rolling element phase difference detection means 16 is connected to a correction means 17. FIGS. 5A and 5B show a waveform diagram of an output signal from the inboard load detection means 15B and a waveform diagram of an output signal from the outboard load detection means 15A, respectively.

前記転動体位相差検出手段16は、アウトボード側の転動体列9Aとインボード側の転動体列9Bの間の転動体3の位相差を算出するものである。具体的には、転動体位相差検出手段16では、各荷重検出手段15A,15Bにおける転動体通過時の出力変動(図5)により各転動体列9A,9Bでの転動体3の位置を把握し、インボード側とアウトボード側の出力信号変化の時間差より転動体3の位相差を算出する。この演算では、例えば、各荷重検出手段15A,15Bの出力信号をA/D変換して転動体ピッチのずれを計算する。
なお、前記転動体位相差は、転動体3の公転速度の変化や転動体3と転走面4A〜5B間での滑りの影響を受け、回転中に変化するので、前記転動体位相差検出手段16で常に転動体位相差を把握する必要がある。
The rolling element phase difference detection means 16 calculates the phase difference of the rolling elements 3 between the rolling board row 9A on the outboard side and the rolling element row 9B on the inboard side. Specifically, the rolling element phase difference detection means 16 grasps the position of the rolling element 3 in each of the rolling element rows 9A and 9B based on the output fluctuation (FIG. 5) when the load detection means 15A and 15B pass the rolling element. Then, the phase difference of the rolling element 3 is calculated from the time difference of the output signal change between the inboard side and the outboard side. In this calculation, for example, the output signals of the load detection means 15A and 15B are A / D converted to calculate the deviation of the rolling element pitch.
Since the rolling element phase difference is affected by the change in the revolution speed of the rolling element 3 and the slip between the rolling element 3 and the rolling surfaces 4A to 5B, the rolling element phase difference is detected. It is necessary to always grasp the rolling element phase difference by means 16.

前記補正手段17は、前記転動体位相差検出手段16から求めた転動体位相差より、例えば前記荷重検出手段15Aの出力信号を補正することで、アウトボード側の転動体列9Aの位置での垂直方向荷重Fzを算出する。すなわち、例えば、アウトボード側の転動体列9Aにおいて転動体3が荷重検出手段15Aの設置位置を通過するタイミングで、その転動体列9Aの位置での荷重Fzを測定する場合、インボード側の転動体列9Bにおける転動体3の位置によって、荷重検出手段15Aの出力値が変わるため、その変動を補正手段17で補正するものである。   The correcting means 17 corrects, for example, the output signal of the load detecting means 15A from the rolling element phase difference obtained from the rolling element phase difference detecting means 16, so that the position of the rolling element row 9A on the outboard side is corrected. A vertical load Fz is calculated. That is, for example, when measuring the load Fz at the position of the rolling element row 9A at the timing when the rolling element 3 passes the installation position of the load detecting means 15A in the rolling body row 9A on the outboard side, Since the output value of the load detection means 15A varies depending on the position of the rolling element 3 in the rolling element row 9B, the fluctuation is corrected by the correction means 17.

この補正手段17は、図3にブロック図で示すように、このセンサ付車輪用軸受を搭載した車両のユーザによる車両運転よりも前に予め測定しておいた転動体位相差に基づく荷重検出データを補正テーブルとして記憶した記憶手段18と、荷重検出手段15Aの出力信号を補正する補正部19とを有する。
図4は、前記記憶手段18における補正テーブルの一例を示す。この補正テーブルでは、アウトボード側の転動体列9Aに対する荷重検出手段15Aの荷重検出値A1,A2,A3…が並ぶ行と、転動体位相差の各値0°,2°,4°…が並ぶ列とでテーブルが構成され、各荷重検出値A1,A2,A3…に対応する列の領域に、各位相差0°,2°,4°…での予め実測された荷重Fzが補正後の値としてそれぞれ記載されている。
補正部19は、前記荷重検出手段15Aの荷重検出値と、前記転動体位相差検出手段16で求めた転動体位相差とを前記記憶手段18の補正テーブルで照合することで、荷重検出手段15Aの検出値を補正する。なお、前記補正テーブルに記載されていないデータ(例えば、図4の例では、位相差7.5°などのデータ)については、線形補間などの近似式により算出すれば良い。
As shown in the block diagram of FIG. 3, the correcting means 17 is load detection data based on the rolling element phase difference measured in advance before the vehicle operation by the user of the vehicle equipped with the sensor-equipped wheel bearing. Is stored as a correction table, and a correction unit 19 that corrects the output signal of the load detection unit 15A.
FIG. 4 shows an example of the correction table in the storage means 18. In this correction table, the row of the load detection values A1, A2, A3,... Of the load detection means 15A for the rolling body row 9A on the outboard side, and the rolling element phase difference values 0 °, 2 °, 4 °, etc. A table is composed of the aligned rows, and the load Fz measured in advance at each phase difference of 0 °, 2 °, 4 °,... Is corrected in the row region corresponding to each load detection value A1, A2, A3,. Each is listed as a value.
The correction unit 19 collates the load detection value of the load detection unit 15A and the rolling element phase difference obtained by the rolling element phase difference detection unit 16 with the correction table of the storage unit 18 to thereby determine the load detection unit 15A. The detected value is corrected. Note that data not described in the correction table (for example, data such as a phase difference of 7.5 ° in the example of FIG. 4) may be calculated by an approximate expression such as linear interpolation.

例えば、前記荷重検出手段15Aの荷重検出値がA1で、前記転動体位相差検出手段16で求めた転動体位相差が6°であるとすると、補正部19は、記憶手段18の補正テーブルの荷重検出値A1の列と位相差6°の行が交差する位置に記憶された実測荷重値を、荷重検出値A1を補正した値として読み出す。これにより、アウトボード側とインボード側の転動体3の位置関係にかかわらず、車輪にかかる荷重(ここでは垂直方向荷重Fz)を正確に検出することができる。   For example, assuming that the load detection value of the load detection means 15A is A1 and the rolling element phase difference obtained by the rolling element phase difference detection means 16 is 6 °, the correction unit 19 stores the correction table 19 in the correction table of the storage means 18. The actually measured load value stored at the position where the row of the load detection value A1 and the row having the phase difference of 6 ° intersect is read as a value obtained by correcting the load detection value A1. Thereby, regardless of the positional relationship between the rolling elements 3 on the outboard side and the inboard side, it is possible to accurately detect the load (here, the vertical load Fz) applied to the wheel.

このように、このセンサ付車輪用軸受10では、アウトボード側およびインボード側の転動体列9A,9Bのそれぞれに対して、タイヤと路面間の作用力による荷重の変化を荷重検出手段15A,15Bで検出し、前記両転動体列9A,9B間の転動体位相差を転動体位相差検出手段16で算出し、この転動体位相差検出手段16から求めた転動体位相差より前記荷重検出手段15Aの出力信号を補正手段19で補正するようにしたので、アウトボード側とインボード側の転動体3の位置関係にかかわらず、車輪にかかる荷重(例えば垂直方向荷重Fz)を正確に検出することができる。
また、荷重検出手段15A,15Bのほかに、転動体位相差検出手段16および補正手段17を設けるだけで上記の効果が得られるので、車両にコンパクトに荷重検出手段15A,15Bを設置でき、量産性に優れたものとでき、コスト低減が図れる。
Thus, in this sensor-equipped wheel bearing 10, the load detection means 15A, the change in load due to the acting force between the tire and the road surface is respectively applied to the rolling board rows 9A, 9B on the outboard side and the inboard side. 15B, the rolling element phase difference between the rolling element rows 9A, 9B is calculated by the rolling element phase difference detecting means 16, and the load detection is performed from the rolling element phase difference obtained from the rolling element phase difference detecting means 16. Since the output signal of the means 15A is corrected by the correction means 19, the load (for example, vertical load Fz) applied to the wheels is accurately detected regardless of the positional relationship between the rolling elements 3 on the outboard side and the inboard side. can do.
In addition to the load detection means 15A and 15B, the above effect can be obtained only by providing the rolling element phase difference detection means 16 and the correction means 17, so that the load detection means 15A and 15B can be installed compactly in the vehicle. It is possible to reduce the cost.

また、この実施形態では、前記補正手段17が、転動体位相差に基づく荷重検出データまたは近似式を記憶した記憶手段18と、前記転動体位相差検出手段16から求めた転動体位相差を前記記憶手段18に記憶された荷重検出データまたは近似式と照合して荷重検出手段15Aの出力信号を補正する補正部19とを有するものとしているので、転動体位相差に基づいた荷重検出手段15Aの出力信号の補正を容易に行うことができ、複列の転動体3の位相関係がどのような場合でも正確に荷重を検出することができる。   In this embodiment, the correcting means 17 stores the load detection data based on the rolling element phase difference or the approximate expression and the rolling element phase difference obtained from the rolling element phase difference detecting means 16. Since it has the correction | amendment part 19 which collates with the load detection data or approximate expression memorize | stored in the memory | storage means 18, and correct | amends the output signal of the load detection means 15A, it is the load detection means 15A based on a rolling element phase difference. The output signal can be easily corrected, and the load can be accurately detected regardless of the phase relationship of the double row rolling elements 3.

この実施形態では、荷重検出手段15A,15Bとして歪ゲージを用い、荷重を歪に換算して検出しているが、歪以外の検出方法として、回転部(回転輪2A)と固定部(固定輪2B)の相対変位や、転動体3と転走面4A〜5Bの接触面積などを検出するものであっても良い。超音波センサや歪ゲージなどにより局所的な歪みや接触面積を検出する方法であれば、転動体3が被検出部を通過するときに出力信号が大きく変化するため特に有効である。また、荷重検出手段15A,15Bは、各転動体列9A,9Bに対して上下に2つ設けたが、その個数をさらに増やしても良い。   In this embodiment, strain gauges are used as the load detection means 15A and 15B, and the load is detected by converting it into strain. However, as a detection method other than strain, a rotating part (rotating wheel 2A) and a fixed part (fixed wheel) are used. The relative displacement of 2B) or the contact area between the rolling element 3 and the rolling surfaces 4A to 5B may be detected. A method of detecting a local strain or contact area with an ultrasonic sensor or a strain gauge is particularly effective because the output signal changes greatly when the rolling element 3 passes through the detected portion. Moreover, although two load detection means 15A and 15B were provided up and down with respect to each rolling element row | line 9A and 9B, you may increase the number further.

また、この実施形態では、タイヤと路面間の作用力を検出する場合について説明したが、車輪用軸受10の予圧量による荷重を検出する場合にも同様に適用できる。   Moreover, although this embodiment demonstrated the case where the action force between a tire and a road surface was detected, it is applicable similarly, also when detecting the load by the amount of preload of the wheel bearing 10. FIG.

図6および図7は、この発明の他の実施形態を示す。この実施形態は、先の実施形態のセンサ付車輪用軸受10において、アウトボード側およびインボード側の転動体列9A,9Bのそれぞれに対して、転動体3の位置を検出する転動体検出手段20A,20Bをさらに設けたものである。この場合、アウトボード側の転動体列9Aに対する転動体検出手段20Aは、車輪用軸受10の断面図を示す図6、およびアウトボード側の転動体列9Aの断面図を示す図7(A)のように、外方部材1の内周面における上位置で転動体列9Aのアウトボード側の隣接位置に配置される。また、インボード側の転動体列9Bに対する転動体検出手段20Bは、図6およびインボード側の転動体列9Bの断面図を示す図7(B)のように、外方部材1の内周面における上位置で転動体列9Bのインボード側の隣接位置に配置される。   6 and 7 show another embodiment of the present invention. This embodiment is a rolling element detection means for detecting the position of the rolling element 3 with respect to each of the rolling board rows 9A and 9B on the outboard side and the inboard side in the sensor-equipped wheel bearing 10 of the previous embodiment. 20A and 20B are further provided. In this case, the rolling element detection means 20A for the rolling body row 9A on the outboard side is shown in FIG. 6 showing a sectional view of the wheel bearing 10, and FIG. 7A showing a sectional view of the rolling body row 9A on the outboard side. Thus, it arrange | positions in the adjacent position by the side of the outboard of rolling-element row | line | column 9A in the upper position in the internal peripheral surface of the outward member 1. FIG. Further, the rolling element detection means 20B for the inboard side rolling element row 9B is shown in FIG. 6 and FIG. 7B showing a sectional view of the inboard side rolling element row 9B. It arrange | positions in the adjacent position by the side of the inboard of rolling-element row | line | column 9B in the upper position in a surface.

この実施形態では、転動体位相差検出手段16での転動体列9A,9B間の転動体位相差の算出は、前記転動体検出手段20A,20Bの出力信号に基づき行われるが、前記荷重検出手段15A,15Bの出力信号を併用しても良い。その他の構成は先の実施形態の場合と同様である。転動体検出手段20A,20Bとしては、例えば、光や渦電流を利用した変位センサを用いることが考えられるが、特に検出方法については限定するものではない。また、転動体検出手段20A,20Bの個数や設置場所についても限定しない。   In this embodiment, the rolling element phase difference detection means 16 calculates the rolling element phase difference between the rolling element rows 9A and 9B based on the output signals of the rolling element detection means 20A and 20B. The output signals of the means 15A and 15B may be used in combination. Other configurations are the same as those in the previous embodiment. As the rolling element detection means 20A and 20B, for example, a displacement sensor using light or eddy current can be used, but the detection method is not particularly limited. Further, the number of rolling element detection means 20A and 20B and the installation location are not limited.

この実施形態の場合、荷重検出手段15A,15Bの出力信号からではなく、別途設けられる転動体検出手段20A,20Bで転動体3の位置を検出できるので、転動体3の位置の検出が容易となる。また、転動体検出手段20A,20Bには、光や渦電流などを利用した構造の簡単なセンサを使用でき、精度も要求されないため、設置が容易である。   In the case of this embodiment, since the position of the rolling element 3 can be detected not by the output signals of the load detection means 15A and 15B but by the separately provided rolling element detection means 20A and 20B, the position of the rolling element 3 can be easily detected. Become. Further, since the rolling element detection means 20A and 20B can use a simple sensor having a structure utilizing light, eddy current, etc., and accuracy is not required, the installation is easy.

図8は、図6および図7に示した実施形態における転動体検出手段20A,20Bの他の配置例を示す。この例では、アウトボード側およびインボード側の各転動体列9A,9Bに対して、転動体ピッチ間に複数の転動体検出手段20A,20Bを設けたものである。その他の構成は、図6および図7に示す実施形態の場合と同様である。
このように転動体ピッチ間に複数の転動体検出手段20A,20Bを設けることにより、各転動体列9A,9Bにおける転動体3の位置検出の時間を短縮することができる。
FIG. 8 shows another arrangement example of the rolling element detection means 20A and 20B in the embodiment shown in FIGS. In this example, a plurality of rolling element detection means 20A, 20B are provided between the rolling element pitches for the rolling element rows 9A, 9B on the outboard side and the inboard side. Other configurations are the same as those of the embodiment shown in FIGS.
Thus, by providing a plurality of rolling element detection means 20A, 20B between the rolling element pitches, the time for detecting the position of the rolling element 3 in each of the rolling element rows 9A, 9B can be shortened.

この発明の一実施形態に係るセンサ付車輪用軸受の構成図である。It is a lineblock diagram of the wheel bearing with a sensor concerning one embodiment of this invention. 同車輪用軸受をインボード側から見た正面図である。It is the front view which looked at the bearing for the wheels from the inboard side. 同車輪用軸受におけるセンサの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the sensor in the wheel bearing. 同センサにおける記憶手段の補正テーブルの一例の構成図である。It is a block diagram of an example of the correction table of the memory | storage means in the sensor. 同センサの荷重検出手段の出力信号の波形図である。It is a wave form diagram of the output signal of the load detection means of the sensor. この発明の他の実施形態に係るセンサ付車輪用軸受の構成図である。It is a block diagram of the sensor-equipped wheel bearing which concerns on other embodiment of this invention. (A)は同車輪用軸受におけるアウトボード側の転動体列での転動体検出手段の配置例の断面図、(B)はインボード側の転動体列での転動体検出手段の配置例の断面図である。(A) is sectional drawing of the example of arrangement | positioning of the rolling element detection means in the rolling body row | line | column on the outboard side in the wheel bearing, (B) is the example of arrangement | positioning of rolling element detection means in the rolling body row | line | column in an inboard side. It is sectional drawing. (A)は同車輪用軸受におけるアウトボード側の転動体列での転動体検出手段の他の配置例の断面図、(B)はインボード側の転動体列での転動体検出手段の他の配置例の断面図である。(A) is sectional drawing of the other example of arrangement | positioning of the rolling-element detection means in the rolling-element row | line | column on the outboard side in the bearing for the wheels, (B) is other rolling-element detection means in the rolling-element row | line | column on the inboard side. It is sectional drawing of the example of arrangement | positioning. 従来例におけるアウトボード側およびインボード側の転動体列間で転動体位相差が無い場合の説明図である。It is explanatory drawing in case there is no rolling element phase difference between the rolling element row | line | columns of the outboard side and inboard side in a prior art example. 従来例におけるアウトボード側およびインボード側の転動体間で転動体位相差がある場合の説明図である。It is explanatory drawing in case there exists a rolling element phase difference between the rolling elements of the outboard side and inboard side in a prior art example.

符号の説明Explanation of symbols

1…外方部材(固定輪)
2…内方部材(回転輪)
3…転動体
4A,4B,5A,5B…転走面
9A,9B…転動体列
10…センサ付車輪用軸受
15A,15B…荷重検出手段
16…転動体位相差検出手段
17…補正手段
18…記憶手段
19…補正部
20A,20B…転動体検出手段
1. Outer member (fixed ring)
2 ... Inward member (rotating wheel)
3 ... rolling elements 4A, 4B, 5A, 5B ... rolling surfaces 9A, 9B ... rolling element train 10 ... sensor-equipped wheel bearings 15A, 15B ... load detection means 16 ... rolling element phase difference detection means 17 ... correction means 18 ... Storage means 19 ... correction units 20A, 20B ... rolling element detection means

Claims (5)

複列の転走面が形成された固定輪と、この固定輪の転走面と対向する転走面を形成した回転輪と、対向する各転走面間に介在した複数の転動体列とを備え、車体に対して車輪を回転自在に支持する車輪用軸受装置において、
複数の転動体列のそれぞれに対して、タイヤと路面間の作用力または車輪用軸受の予圧量による荷重の変化を検出する荷重検出手段と、複数の転動体列の位相差を算出する転動体位相差検出手段と、この転動体位相差検出手段から求めた転動体位相差より前記荷重検出手段の出力信号を補正する補正手段とを設けたことを特徴とするセンサ付車輪用軸受。
A stationary wheel having a double row of rolling surfaces, a rotating wheel having a rolling surface opposite to the rolling surface of the fixed wheel, and a plurality of rolling element rows interposed between the opposing rolling surfaces; In the wheel bearing device for supporting the wheel rotatably with respect to the vehicle body,
For each of a plurality of rolling element rows, load detecting means for detecting a change in load due to an acting force between a tire and a road surface or a preload amount of a wheel bearing, and a rolling element for calculating a phase difference between the plurality of rolling element rows A sensor-equipped bearing for a wheel, comprising: a phase difference detection means; and a correction means for correcting an output signal of the load detection means from a rolling element phase difference obtained from the rolling element phase difference detection means.
請求項1において、前記補正手段は、位相差に基づく荷重検出データまたは近似式を記憶した記憶手段と、前記転動体位相差検出手段から求めた転動体位相差を前記記憶手段に記憶された前記位相差に基づく荷重検出データまたは近似式と照合して荷重検出手段の出力信号を補正する補正部とを有するセンサ付車輪用軸受。   The correction means according to claim 1, wherein the correction means stores load detection data or approximate expression based on a phase difference, and the rolling element phase difference obtained from the rolling element phase difference detection means is stored in the storage means. A sensor-equipped wheel bearing comprising: a correction unit that corrects an output signal of the load detection means by comparing with load detection data based on a phase difference or an approximate expression. 請求項1または請求項2において、前記転動体位相差検出手段は、前記荷重検出手段における転動体通過時の出力変動を用いて転動体列の位相差を算出するものとしたセンサ付車輪用軸受。   3. The sensor-equipped wheel bearing according to claim 1 or 2, wherein the rolling element phase difference detecting means calculates a phase difference of the rolling element row by using an output fluctuation when the load detecting means passes through the rolling elements. . 請求項1ないし請求項3のいずれか1項において、複数の転動体列のそれぞれに対し、転動体の位置を検出する転動体検出手段を更に設けたセンサ付車輪用軸受。   4. The sensor-equipped wheel bearing according to claim 1, further comprising a rolling element detection unit that detects a position of the rolling element for each of the plurality of rolling element arrays. 請求項4において、それぞれの前記転動体検出手段は、転動体ピッチ幅の間に複数個設けたセンサ付車輪用軸受。
5. The sensor-equipped wheel bearing according to claim 4, wherein each of the rolling element detection means is provided between the rolling element pitch widths.
JP2006346983A 2006-12-25 2006-12-25 Wheel bearing with sensor Pending JP2008157755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346983A JP2008157755A (en) 2006-12-25 2006-12-25 Wheel bearing with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346983A JP2008157755A (en) 2006-12-25 2006-12-25 Wheel bearing with sensor

Publications (1)

Publication Number Publication Date
JP2008157755A true JP2008157755A (en) 2008-07-10

Family

ID=39658820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346983A Pending JP2008157755A (en) 2006-12-25 2006-12-25 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP2008157755A (en)

Similar Documents

Publication Publication Date Title
US8864382B2 (en) Preload measuring device for double row rolling bearing unit
JP4864441B2 (en) Wheel bearing with sensor
JP2007292158A (en) Wheel bearing with sensor
JP2007155629A (en) Bearing for wheel with sensor
JP2007239848A (en) Bearing for wheel with sensor
JP2007071280A (en) Wheel bearing with sensor
JP4727209B2 (en) Wheel bearing with sensor
JP2007057299A (en) Wheel bearing with sensor
JP4925625B2 (en) Wheel bearing with sensor
JP2008190706A (en) Wheel bearing with sensor
JP2007057259A (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2007078615A (en) Bearing with sensor for wheel
JP4862440B2 (en) Preload measuring device for double row rolling bearing unit
JP2008051283A (en) Wheel bearing with sensor
JP2007057257A (en) Wheel bearing with sensor
JP2008157755A (en) Wheel bearing with sensor
JP2005321236A (en) Load measuring device of rolling bearing unit
JP2008215977A (en) Wheel bearing with sensor
JP2008174067A (en) Wheel bearing with sensor
JP2007071652A (en) Wheel bearing with sensor
JP4911967B2 (en) Wheel bearing with sensor
JP4925770B2 (en) Wheel bearing with sensor
JP2007078597A (en) Bearing with sensor for wheel
JP2008249566A (en) Sensor-attached wheel bearing