JP2008157634A - Curing degree measuring method for resin sheet material, and curing degree measuring instrument for resin sheet material - Google Patents

Curing degree measuring method for resin sheet material, and curing degree measuring instrument for resin sheet material Download PDF

Info

Publication number
JP2008157634A
JP2008157634A JP2006343321A JP2006343321A JP2008157634A JP 2008157634 A JP2008157634 A JP 2008157634A JP 2006343321 A JP2006343321 A JP 2006343321A JP 2006343321 A JP2006343321 A JP 2006343321A JP 2008157634 A JP2008157634 A JP 2008157634A
Authority
JP
Japan
Prior art keywords
sheet material
infrared
resin sheet
resin
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006343321A
Other languages
Japanese (ja)
Other versions
JP4862646B2 (en
Inventor
Koushi Aketo
甲志 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006343321A priority Critical patent/JP4862646B2/en
Publication of JP2008157634A publication Critical patent/JP2008157634A/en
Application granted granted Critical
Publication of JP4862646B2 publication Critical patent/JP4862646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curing degree measuring method for a resin sheet material, capable of measuring the curing degree of the resin sheet material, on the basis of the intensity of infrared rays measured by irradiating the resin sheet material fed continuously, such as, a prepreg with infrared rays that differ in the wavelength region over a plurality number of times, and is capable of measuring accurately the degree of curing, without being affected by the changes in the partial resin amount, in a sheet-like base material. <P>SOLUTION: The resin sheet material 1, containing a resin and having a sheet-like form is, successively irradiated with infrared rays L of a wavelength region of the respective absorption wavelengths of a plurality of the functional groups in the resin sheet material 1, in a state where the resin sheet material 1 is moved. The intensity of the transmitted light, transmitted through the resin sheet material 1 of the infrared rays L, or the intensity of the reflected light from the resin sheet material 1, is detected. The curing degree of the resin of the resin sheet material 1 is led out, on the basis of the intensity of the infrared rays L in the respective detected absorption wavelength. The irradiation position of the infrared rays L is moved, accompanying the movement of the resin sheet material 1, so that an identical region 9 on the resin sheet material 1 is irradiated with the infrared rays L. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プリプレグ等の樹脂シート材の硬化度を測定する硬化度測定方法及びそのための測定装置に関するものである。   The present invention relates to a curing degree measuring method for measuring the curing degree of a resin sheet material such as a prepreg and a measuring apparatus therefor.

プリント配線板の製造等に使用されるプリプレグは、エポキシ樹脂等の熱硬化性樹脂を含む組成物をシート状基材(無機又は有機の織布又は不織布)に含浸させ、加熱乾燥することにより樹脂成分を半硬化させることで作製されている。   A prepreg used for manufacturing a printed wiring board is a resin obtained by impregnating a sheet-like base material (inorganic or organic woven or non-woven fabric) with a composition containing a thermosetting resin such as an epoxy resin, and drying by heating. It is made by semi-curing the components.

プリプレグの製造にあたっては、一般的には長尺のシート状基材を連続的に搬送しながら、熱硬化性樹脂組成物に連続的に浸漬するなどしてこの熱硬化性樹脂組成物を含浸させ、更に加熱炉に連続的に通過させることで加熱乾燥して半硬化させ、更に所定寸法に切断することが行われている。   In the production of a prepreg, generally, a long sheet-like base material is continuously conveyed, and the thermosetting resin composition is impregnated by continuously immersing the thermosetting resin composition. Furthermore, it is performed by passing it continuously through a heating furnace to heat-dry and semi-harden it, and then cut it into a predetermined size.

このようなプリプレグの製造過程においては、長尺のシート状基材を連続的に搬送している間にシート状基材への熱硬化性樹脂組成物の含浸量が変化した場合、原料の性質が変動した場合、シート状基材の品質に変動が生じた場合等には、製造されたプリプレグに樹脂の硬化度の不均一が生じるおそれがある。このような不均一が生じると、プリプレグを用いて製造されるプリント配線板等の製品の品質にも影響が及ぶおそれがある。   In such a prepreg manufacturing process, when the amount of impregnation of the thermosetting resin composition into the sheet-like substrate is changed while continuously conveying the long sheet-like substrate, the properties of the raw material When there is a change, or when the quality of the sheet-like base material changes, there is a risk that the degree of curing of the resin will be uneven in the manufactured prepreg. When such non-uniformity occurs, the quality of a product such as a printed wiring board manufactured using a prepreg may be affected.

このため、プリプレグを製造する際には、得られたプリプレグにおける樹脂の硬化度を測定することで、プリプレグ中の樹脂の硬化度が均一となっていることを確認する必要がある。   For this reason, when manufacturing a prepreg, it is necessary to confirm that the degree of cure of the resin in the prepreg is uniform by measuring the degree of cure of the resin in the obtained prepreg.

このようなプリプレグの硬化度の測定方法としては、従来、特許文献1に開示されているようなものが提案されている。   As a method for measuring the degree of cure of such a prepreg, a method disclosed in Patent Document 1 has been proposed.

この従来技術では、プリプレグの製造工程において、加熱処理により得られた長尺のプリプレグを連続的に搬送しながら、このプリプレグに対して赤外線を照射し、特定の波長の赤外線吸収量を測定することにより、硬化度を測定している。   In this prior art, in the prepreg manufacturing process, while continuously transporting a long prepreg obtained by heat treatment, the prepreg is irradiated with infrared rays to measure the amount of infrared absorption at a specific wavelength. Thus, the degree of cure is measured.

すなわち、エポキシ樹脂組成物を用いてプリプレグを作製する場合、エポキシ樹脂を含浸した基材を加熱乾燥して半硬化させると、エポキシ樹脂組成物の硬化反応が進行してこの組成物中のエポキシ基の量が減少する。このため、エポキシ基の吸収波長における赤外線吸収量から、プリプレグ中のエポキシ基の量を導出することができ、これにより硬化度を測定することができる。また、併せてプリプレグ中における反応に関与しないメチル基等の吸収波長における赤外線吸収量を求めれば、このメチル基等の吸収波長の赤外線吸収量と、エポキシ基の吸収波長の赤外線吸収量とに基づき、プリプレグ中における硬化反応により消費されたエポキシ基の割合を求めることができ、これによりプリプレグの硬化度を更に正確に導出することができる。ここで、反応に関与するエポキシ樹脂の量のみから硬化度を測定する場合には、プリプレグに生じる厚みの変化や、基材を構成する繊維の粗密に起因して生じる部分的な樹脂量の変化等によって硬化度を正確に測定することは困難となるが、硬化反応に関与するエポキシ基と、硬化反応に関与しないメチル基の量とに基づいて硬化度を測定すれば、プリプレグを構成する樹脂中のエポキシ基の割合に基づいて硬化度を測定することが可能となる。   That is, when preparing a prepreg using an epoxy resin composition, when the base material impregnated with the epoxy resin is dried by heating and semi-cured, the curing reaction of the epoxy resin composition proceeds and the epoxy group in the composition is cured. The amount of decreases. For this reason, the amount of the epoxy group in the prepreg can be derived from the infrared absorption amount at the absorption wavelength of the epoxy group, and thereby the degree of curing can be measured. In addition, if the infrared absorption amount at an absorption wavelength such as a methyl group that does not participate in the reaction in the prepreg is also obtained, the infrared absorption amount at the absorption wavelength such as the methyl group and the infrared absorption amount at the absorption wavelength of the epoxy group are determined. The ratio of the epoxy groups consumed by the curing reaction in the prepreg can be determined, whereby the degree of curing of the prepreg can be derived more accurately. Here, when the degree of cure is measured only from the amount of the epoxy resin involved in the reaction, the change in the thickness that occurs in the prepreg and the partial change in the amount of resin that occurs due to the density of the fibers constituting the substrate It is difficult to accurately measure the degree of cure by, for example, but if the degree of cure is measured based on the epoxy groups involved in the curing reaction and the amount of methyl groups not involved in the curing reaction, the resin constituting the prepreg It becomes possible to measure the degree of cure based on the proportion of the epoxy group therein.

このように特定の官能基に基づく赤外線吸収量を測定するにあたっては、FT−IRを用いることもできるが、FT−IRを用いると装置コストが高くなる。また、上記硬化度の測定では測定する吸収波長が特定されている。このため、プリプレグに赤外線を照射するにあたって、特定波長域を選択的に透過させる複数種のフィルタを用いることも行われている。この場合、測定対象の吸収波長に応じたフィルタを順次選択し、このフィルタを透過した赤外線の、プリプレグを透過等した後の強度を測定することにより、所望の吸収波長における赤外線の吸光を簡便な構成で測定することができる。
特表平08−511105号公報
Thus, in measuring the infrared absorption amount based on a specific functional group, FT-IR can be used. However, using FT-IR increases the cost of the apparatus. In the measurement of the degree of curing, the absorption wavelength to be measured is specified. For this reason, when irradiating a prepreg with infrared rays, a plurality of types of filters that selectively transmit a specific wavelength region are also used. In this case, a filter corresponding to the absorption wavelength to be measured is sequentially selected, and the intensity of the infrared light transmitted through the filter after being transmitted through the prepreg is measured, whereby the absorption of the infrared light at a desired absorption wavelength can be simplified. It can be measured by configuration.
JP-T-08-511105

しかし、既述のようにプリプレグの製造工程の後段においてプリプレグの硬化度を測定する場合には、プリプレグに赤外線を照射する過程においてプリプレグは連続的に搬送されることとなる。このため、例えばエポキシ基の吸収波長を測定した後、フィルタを交換してメチル基の吸収波長を測定する場合、その間にプリプレグが移動してプリプレグにおける赤外線の照射位置が変わってしまう。この場合、既述のようにプリプレグ中には樹脂量の部分的な変化が生じ得るため、例えば樹脂量の異なる位置でエポキシ基の量とメチル基の量を測定する事態が生じてしまい、硬化度の正確な測定ができなくなるおそれがあった。   However, as described above, when the degree of cure of the prepreg is measured at a later stage of the prepreg manufacturing process, the prepreg is continuously conveyed in the process of irradiating the prepreg with infrared rays. For this reason, for example, when the absorption wavelength of the epoxy group is measured and then the filter is replaced to measure the absorption wavelength of the methyl group, the prepreg moves during that time, and the infrared irradiation position in the prepreg changes. In this case, since a partial change in the amount of resin may occur in the prepreg as described above, for example, a situation occurs in which the amount of epoxy groups and the amount of methyl groups are measured at positions where the amount of resin is different, and curing occurs. There was a risk that accurate measurement could not be performed.

また、このような事態が発生しないように、プリプレグを所望の寸法に切断した後、静置した状態で上記測定を行うことも考えられるが、硬化度測定のための別工程が必要となって生産効率が低下してしまい、またプリプレグの製造後、硬化度の測定までの間にタイムラグが生じてしまい、硬化度に異常をきたした場合に即時に製造工程の点検、調整を行うことができないという問題がある。   In order to prevent such a situation from occurring, it may be possible to perform the above measurement after the prepreg is cut to a desired dimension and then left standing, but a separate process for measuring the degree of curing is required. Production efficiency will decrease, and there will be a time lag between the production of the prepreg and the measurement of the degree of cure, and if the degree of cure is abnormal, inspection and adjustment of the production process cannot be performed immediately. There is a problem.

本発明は上記の点に鑑みて為されたものであり、連続的に搬送されるプリプレグ等の樹脂シート材に対して、複数回に亘って波長域の異なる赤外線を照射することで測定される赤外線の強度に基づいて樹脂シート材の硬化度を測定することができ、且つシート状基材における部分的な樹脂量の変化に影響されることなく正確な硬化度の測定を行うことができる樹脂シート材の硬化度測定方法及びそのための樹脂シート材の硬化度測定装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and is measured by irradiating a resin sheet material such as a prepreg continuously conveyed with infrared rays having different wavelength ranges over a plurality of times. Resin that can measure the degree of cure of a resin sheet material based on the intensity of infrared rays and can accurately measure the degree of cure without being affected by a partial change in the amount of resin in the sheet-like substrate It is an object of the present invention to provide a method for measuring the degree of cure of a sheet material and an apparatus for measuring the degree of cure of a resin sheet material therefor.

本発明に係る樹脂シート材1の硬度測定方法は、樹脂を含みシート状の形態を有する樹脂シート材1を移動させた状態で、樹脂シート材中の複数の官能基の各吸収波長の波長域の赤外線Lを順次照射し、前記赤外線Lの樹脂シート材1を透過した透過光又は樹脂シート材1から反射した反射光の強度を検出し、検出された各吸収波長における赤外線Lの強度に基づいて、樹脂シート材1の樹脂の硬化度を導出する樹脂シート材1の硬化度測定方法であって、前記赤外線Lの照射位置を樹脂シート材1の移動に伴って移動させることにより、樹脂シート材1上の同一の領域9に赤外線Lが照射されるようにすることを特徴とする。   The hardness measuring method of the resin sheet material 1 according to the present invention is a wavelength range of each absorption wavelength of a plurality of functional groups in the resin sheet material in a state in which the resin sheet material 1 containing a resin and having a sheet-like form is moved. Infrared light L is sequentially irradiated, and the intensity of the transmitted light transmitted through the resin sheet material 1 of the infrared light L or the reflected light reflected from the resin sheet material 1 is detected, and based on the detected intensity of the infrared light L at each absorption wavelength. A method of measuring the degree of cure of the resin sheet material 1 for deriving the degree of cure of the resin of the resin sheet material 1, wherein the resin sheet material 1 is moved by moving the irradiation position of the infrared ray L as the resin sheet material 1 moves. The infrared ray L is irradiated to the same region 9 on the material 1.

請求項2に係る発明は、請求項1において、上記複数の官能基が、樹脂の硬化反応に関与する官能基と、樹脂の硬化反応に関与しない官能基であることを特徴とする。   The invention according to claim 2 is characterized in that, in claim 1, the plurality of functional groups are a functional group involved in a resin curing reaction and a functional group not involved in a resin curing reaction.

請求項3に係る樹脂シート材1の硬化度測定装置は、
樹脂を含みシート状の形態を有する樹脂シート材1を移動させる基材移動手段と、
赤外線Lを基材に照射させる赤外線照射手段2と、
透過波長域が異なる複数のフィルタ4を具備する赤外線波長選択手段3と、
前記赤外線照射手段2から照射され、前記赤外線波長選択手段2のいずれかのフィルタ4を透過した後、樹脂シート材1を透過した赤外線Lの透過光又は樹脂シート材1から反射した赤外線Lの反射光を受光して、電気信号に変換する赤外線受光手段5と、
前記電気信号を演算処理して樹脂シート材1の樹脂の硬化度を導出する硬化度導出手段6とを具備し、
上記赤外線照射手段2及び赤外線受光手段5とを、樹脂シート材1上で赤外線Lが同一の領域9に照射されるように、この樹脂シート材1の移動と同期して移動させる駆動手段を具備し、
上記赤外線波長選択手段3における複数のフィルタ4が、赤外線照射手段2の移動に伴って赤外線照射手段2から照射される赤外線Lの経路上に順次配置されるように配列されていることを特徴とする。
The apparatus for measuring the degree of cure of the resin sheet material 1 according to claim 3 comprises:
Base material moving means for moving the resin sheet material 1 containing a resin and having a sheet-like form;
Infrared irradiation means 2 for irradiating the base material with infrared L;
Infrared wavelength selection means 3 including a plurality of filters 4 having different transmission wavelength ranges;
Irradiated from the infrared irradiating means 2, transmitted through one of the filters 4 of the infrared wavelength selecting means 2, and then transmitted through the resin sheet material 1 or reflected from the resin sheet material 1. Infrared receiving means 5 for receiving light and converting it into an electrical signal;
A degree-of-curing degree deriving means 6 for deriving the degree of curing of the resin of the resin sheet material 1 by calculating the electric signal;
Drive means for moving the infrared irradiation means 2 and the infrared light receiving means 5 in synchronism with the movement of the resin sheet material 1 so that the same region 9 is irradiated with the infrared rays L on the resin sheet material 1 is provided. And
The plurality of filters 4 in the infrared wavelength selection unit 3 are arranged so as to be sequentially arranged on the path of the infrared L irradiated from the infrared irradiation unit 2 as the infrared irradiation unit 2 moves. To do.

請求項4に係る樹脂シート材1の硬化度測定装置は、
樹脂を含みシート状の形態を有する樹脂シート材1を移動させる基材移動手段と、
赤外線Lを基材に向けて照射する赤外線照射手段2と、
透過波長域が異なる複数のフィルタ4を具備すると共に前記赤外線照射手段2と基材との間の赤外線Lの照射経路上に配置されるフィルタ4の種類を変更する赤外線波長選択手段3と、
前記赤外線照射手段2から照射された赤外線Lの樹脂シート材1を透過した透過光又は樹脂シート材1から反射した反射光を受光して、電気信号に変換する赤外線受光手段5と、
前記電気信号を演算処理して樹脂シート材1の樹脂の硬化度を導出する硬化度導出手段6とを具備し、
上記赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を、前記樹脂シート材1上における赤外線Lが照射される領域9が同一位置となるように、この樹脂シート材1の移動と同期して移動させる駆動手段を具備することを特徴とする。
An apparatus for measuring the degree of cure of the resin sheet material 1 according to claim 4 is:
Base material moving means for moving the resin sheet material 1 containing a resin and having a sheet-like form;
Infrared irradiation means 2 for irradiating infrared L toward the substrate;
An infrared wavelength selection unit 3 that includes a plurality of filters 4 having different transmission wavelength ranges and changes the type of the filter 4 disposed on the irradiation path of the infrared L between the infrared irradiation unit 2 and the substrate;
Infrared light receiving means 5 that receives the transmitted light that has passed through the resin sheet material 1 of infrared light L that has been irradiated from the infrared light irradiation means 2 or the reflected light that has been reflected from the resin sheet material 1 and converts it into an electrical signal;
A degree-of-curing degree deriving means 6 for deriving the degree of curing of the resin of the resin sheet material 1 by calculating the electric signal;
The infrared irradiation means 2, the infrared wavelength selection means 3, and the infrared light reception means 5 are synchronized with the movement of the resin sheet material 1 so that the region 9 irradiated with the infrared rays L on the resin sheet material 1 is at the same position. And driving means for moving it.

請求項5に係る発明は、請求項3において、
上記駆動手段が、赤外線波長選択手段3及び赤外線受光手段5を基材の移動方向に移動させた後、逆方向に移動させてこの赤外線波長選択手段3及び赤外線受光手段5を初期位置に復帰させるものであることを特徴とする。
The invention according to claim 5 is the invention according to claim 3,
The driving means moves the infrared wavelength selection means 3 and the infrared light receiving means 5 in the moving direction of the base material, and then moves them in the reverse direction to return the infrared wavelength selection means 3 and the infrared light receiving means 5 to the initial positions. It is characterized by being.

請求項6に係る発明は、請求項4において、上記駆動手段が、赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を基材の移動方向に移動させた後、逆方向に移動させてこの赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を初期位置に復帰させるものであることを特徴とする。   The invention according to claim 6 is the invention according to claim 4, wherein the driving means moves the infrared irradiation means 2, the infrared wavelength selection means 3 and the infrared light receiving means 5 in the moving direction of the base material and then in the reverse direction. The lever irradiating means 2, the infrared wavelength selecting means 3 and the infrared receiving means 5 are returned to their initial positions.

請求項7に係る発明は、請求項3乃至6のいずれか一項において、上記硬化度導出手段6が、樹脂シート材1中の樹脂の硬化反応に関与する官能基の吸収波長の赤外線Lの強度と、樹脂の硬化反応に関与しない官能基の吸収波長の赤外線Lの強度との比に基づいて、樹脂シート材1における樹脂の硬化度を導出するものであることを特徴とする。   The invention according to claim 7 is the infrared ray L having the absorption wavelength of the functional group involved in the curing reaction of the resin in the resin sheet material 1 according to any one of claims 3 to 6. It is characterized in that the degree of cure of the resin in the resin sheet material 1 is derived based on the ratio between the strength and the intensity of the infrared rays L of the absorption wavelength of the functional group not involved in the resin curing reaction.

請求項1に係る発明によれば、樹脂シート材1を移動させた状態で、樹脂シート材1中の複数の官能基の各吸収波長の波長域の赤外線Lを順次照射し、透過光又は反射光の強度を検出して、各吸収波長における赤外線Lの強度に基づいて、樹脂シート材1の樹脂の硬化度を導出するにあたり、赤外線Lの照射位置を樹脂シート材1の移動に伴って移動させることにより、樹脂シート材1上の同一の領域9に赤外線Lが照射されるようにすることで、樹脂シート材1が移動しているにもかかわらず樹脂シート材1上の同一位置における複数の官能基の吸収波長での赤外線Lの強度を検出することができ、樹脂シート材1の厚みの変化等による部分的な樹脂量の変化による影響を受けることなく、樹脂シート材1の硬化度を測定することができるものである。   According to the first aspect of the invention, in the state where the resin sheet material 1 is moved, the infrared rays L in the wavelength ranges of the respective absorption wavelengths of the plurality of functional groups in the resin sheet material 1 are sequentially irradiated to transmit or reflect light. In detecting the intensity of light and deriving the degree of curing of the resin of the resin sheet material 1 based on the intensity of the infrared L at each absorption wavelength, the irradiation position of the infrared L is moved with the movement of the resin sheet material 1. By causing the same region 9 on the resin sheet material 1 to be irradiated with infrared rays L, a plurality of the same regions 9 on the resin sheet material 1 are moved despite the resin sheet material 1 being moved. The intensity of the infrared ray L at the absorption wavelength of the functional group of the resin sheet material 1 can be detected, and the degree of cure of the resin sheet material 1 is not affected by a partial change in the resin amount due to a change in the thickness of the resin sheet material 1. Can be measured In the is.

請求項2に係る発明によれば、樹脂シート材1における硬化反応に関与しない官能基の量は硬化の前後で変化せず、一方、硬化反応に関与する官能基の量は硬化反応の進行により減少することから、これら各官能基の吸収波長の赤外線Lの強度に基づけば、樹脂シート材1における樹脂量の部分的な変化による影響を更に排除して、更に正確に硬化度を測定することができるものである。   According to the invention of claim 2, the amount of the functional group that does not participate in the curing reaction in the resin sheet material 1 does not change before and after the curing, while the amount of the functional group that participates in the curing reaction depends on the progress of the curing reaction. Since it decreases, based on the intensity of the infrared ray L of the absorption wavelength of each of these functional groups, the effect of the partial change in the resin amount in the resin sheet material 1 is further eliminated, and the degree of curing is measured more accurately. It is something that can be done.

請求項3に係る発明によれば、樹脂シート材1を移動させた状態で、樹脂シート材1中の複数の官能基の各吸収波長の波長域の赤外線Lを順次照射し、透過光又は反射光の強度を検出して、各吸収波長における赤外線Lの強度に基づいて、樹脂シート材1の樹脂の硬化度を導出するにあたり、赤外線照射手段2と赤外線受光手段5とを樹脂シート材1の移動と同期して移動させることで、樹脂シート材1上の同一の領域9に赤外線Lが照射されるようにすることができると共にこの移動に伴って同時に樹脂シート材1に照射される赤外線Lの波長域を順次変更することができ、樹脂シート材1が移動しているにもかかわらず樹脂シート材1上の同一位置における複数の官能基の吸収波長での赤外線Lの強度を検出することができ、樹脂シート材1の厚みの変化等による部分的な樹脂量の変化による影響を受けることなく、樹脂シート材1の硬化度を測定することができるものである。   According to the third aspect of the invention, in the state where the resin sheet material 1 is moved, the infrared rays L in the wavelength regions of the respective absorption wavelengths of the plurality of functional groups in the resin sheet material 1 are sequentially irradiated to transmit or reflect light. In detecting the intensity of light and deriving the degree of curing of the resin of the resin sheet material 1 based on the intensity of the infrared ray L at each absorption wavelength, the infrared irradiation means 2 and the infrared light receiving means 5 are connected to the resin sheet material 1. By moving in synchronization with the movement, it is possible to irradiate the same region 9 on the resin sheet material 1 with the infrared rays L, and at the same time, the infrared rays L irradiated to the resin sheet material 1 with this movement. Can detect the intensity of infrared rays L at the absorption wavelength of a plurality of functional groups at the same position on the resin sheet material 1 even though the resin sheet material 1 is moving. Resin sheet Without being affected by changes in partial amount of resin due to changes in the first thickness, it is capable of measuring the degree of cure of the resin sheet 1.

請求項4に係る発明によれば、樹脂シート材1を移動させた状態で、樹脂シート材中の複数の官能基の各吸収波長の波長域の赤外線Lを順次照射し、透過光又は反射光の強度を検出して、各吸収波長における赤外線Lの強度に基づいて、樹脂シート材1の樹脂の硬化度を導出するにあたり、赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を樹脂シート材1の移動と同期して移動させると共に、赤外線波長選択手段3によって赤外線照射手段2と基材との間の赤外線Lの照射経路上に配置されるフィルタ4の種類を順次変更することで、樹脂シート材1上の同一の領域9に赤外線Lが照射されるようにすることができると共にこの移動に伴って同時に樹脂シート材1に照射される赤外線Lの波長域を順次変更することができ、樹脂シート材1が移動しているにもかかわらず樹脂シート材1上の同一位置における複数の官能基の吸収波長での赤外線Lの強度を検出することができ、樹脂シート材1の厚みの変化等による部分的な樹脂量の変化による影響を受けることなく、樹脂シート材1の硬化度を測定することができるものである。   According to the invention which concerns on Claim 4, in the state which moved the resin sheet material 1, the infrared rays L of the wavelength range of each absorption wavelength of the some functional group in a resin sheet material are irradiated sequentially, and transmitted light or reflected light In order to derive the curing degree of the resin of the resin sheet material 1 based on the intensity of the infrared ray L at each absorption wavelength, the infrared irradiation means 2, the infrared wavelength selection means 3 and the infrared light reception means 5 are used as the resin. By moving the sheet material 1 in synchronization with the movement of the sheet material 1, the infrared wavelength selection unit 3 sequentially changes the type of the filter 4 arranged on the irradiation path of the infrared L between the infrared irradiation unit 2 and the substrate. The infrared ray L can be irradiated to the same region 9 on the resin sheet material 1 and the wavelength region of the infrared ray L irradiated to the resin sheet material 1 simultaneously with this movement can be changed sequentially. Can Although the fat sheet material 1 is moving, it is possible to detect the intensity of the infrared rays L at the absorption wavelengths of a plurality of functional groups at the same position on the resin sheet material 1, and the change in the thickness of the resin sheet material 1. The degree of cure of the resin sheet material 1 can be measured without being affected by a partial change in the resin amount due to the above.

請求項5に係る発明によれば、一旦硬化度の測定を終了した後、赤外線照射手段2及び赤外線受光手段5を初期位置に復帰させることで、再び測定を開始することができるようにすることができ、樹脂シート材1に対して連続的に硬化度の測定を行うことができるものである。   According to the fifth aspect of the invention, after the measurement of the degree of curing is once completed, the measurement can be started again by returning the infrared irradiation means 2 and the infrared light receiving means 5 to the initial positions. The degree of cure can be continuously measured for the resin sheet material 1.

請求項6に係る発明によれば、一旦硬化度の測定を終了した後、赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を初期位置に復帰させることで、再び測定を開始することができるようにすることができ、樹脂シート材1に対して連続的に硬化度の測定を行うことができるものである。   According to the invention of claim 6, after the measurement of the degree of cure is once completed, the measurement is started again by returning the infrared irradiation means 2, the infrared wavelength selection means 3 and the infrared light receiving means 5 to the initial positions. The degree of cure can be continuously measured for the resin sheet material 1.

請求項7に係る発明によれば、樹脂シート材1における硬化反応に関与しない官能基の量は硬化の前後で変化せず、一方、硬化反応に関与する官能基の量は硬化反応の進行により減少することから、これら各官能基の吸収波長の赤外線Lの強度に基づけば、樹脂シート材1における樹脂量の部分的な変化による影響を更に排除して、更に正確に硬化度を測定することができるものである。   According to the invention which concerns on Claim 7, the quantity of the functional group which does not participate in the curing reaction in the resin sheet material 1 does not change before and after curing, while the amount of the functional group which participates in the curing reaction is due to the progress of the curing reaction. Since it decreases, based on the intensity of the infrared ray L of the absorption wavelength of each of these functional groups, the effect of the partial change in the resin amount in the resin sheet material 1 is further eliminated, and the degree of curing is measured more accurately. It is something that can be done.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明における硬化度の測定対象である樹脂シート材1は、樹脂を含むと共にシート状の形態を有するものであり、特に熱硬化性樹脂組成物のワニスをシート状基材に含浸させ、加熱乾燥することにより樹脂成分を半硬化させて得られるプリプレグを挙げることができる。前記シート状基材としては、無機又は有機の織布又は不織布を挙げることができる。その他、樹脂を含みシート状の形態を有するものであれば、本発明を適用し得る。樹脂シート材1がプリプレグである場合における熱硬化性樹脂組成物は、プリプレグの製造に用いられているエポキシ樹脂組成物等の適宜のものを用いることができる。   The resin sheet material 1 to be measured for the degree of cure in the present invention includes a resin and has a sheet-like form. In particular, the sheet-like base material is impregnated with a varnish of a thermosetting resin composition, and is heated and dried. By doing so, a prepreg obtained by semi-curing the resin component can be mentioned. As said sheet-like base material, an inorganic or organic woven fabric or a nonwoven fabric can be mentioned. In addition, the present invention can be applied as long as it contains a resin and has a sheet-like form. As the thermosetting resin composition in the case where the resin sheet material 1 is a prepreg, an appropriate one such as an epoxy resin composition used for manufacturing a prepreg can be used.

樹脂シート材1は枚葉状のものであっても良く、長尺なものでも良い。プリプレグの製造工程においてプリプレグの硬化度を測定する場合には、このプリプレグの製造工程の後段において、枚葉状に切断される前の長尺のプリプレグの硬化度を測定することができる。以下、プリプレグの硬化度を測定する場合を例に挙げて本発明を説明する。   The resin sheet material 1 may be a single wafer or may be long. When the degree of cure of the prepreg is measured in the prepreg manufacturing process, the degree of cure of the long prepreg before being cut into sheets can be measured at a later stage of the prepreg manufacturing process. Hereinafter, the present invention will be described by taking as an example the case of measuring the degree of cure of a prepreg.

樹脂シート材1の硬化度測定装置は、基材移動手段、赤外線照射手段2、赤外線波長選択手段3、赤外線受光手段5及び硬化度導出手段6を具備する。   The apparatus for measuring the degree of cure of the resin sheet material 1 comprises a substrate moving means, an infrared irradiation means 2, an infrared wavelength selection means 3, an infrared light receiving means 5, and a cure degree deriving means 6.

図1及び図2は、硬化度測定装置の第一の実施形態を示す。   1 and 2 show a first embodiment of a curing degree measuring apparatus.

基材移動手段は樹脂シート材1を移動させるものであり、このとき樹脂シート材1はその面方向に沿って移動される。樹脂シート材1が長尺である場合には、基材移動手段はこの樹脂シート材1を長手方向に沿って連続的に搬送する。この基材移動手段は、図示はしないが、例えばプリプレグの製造工程におけるシート状基材やプリプレグを搬送する搬送ロール等にて形成することができる。   The substrate moving means moves the resin sheet material 1, and at this time, the resin sheet material 1 is moved along the surface direction. When the resin sheet material 1 is long, the base material moving means continuously conveys the resin sheet material 1 along the longitudinal direction. Although not shown, this base material moving means can be formed by, for example, a sheet-like base material in a prepreg manufacturing process or a transport roll for transporting the prepreg.

赤外線照射手段2としては、赤外線Lをビーム状に照射する適宜の赤外線L発振器を挙げることができる。赤外線照射手段2は、樹脂シート材1の一面と間隔をあけて対向するように配置し、この樹脂シート材1の一面に向けて赤外線Lを照射するように配設することができる。   As the infrared irradiation means 2, an appropriate infrared L oscillator that irradiates the infrared L in a beam shape can be exemplified. The infrared irradiating means 2 can be disposed so as to face one surface of the resin sheet material 1 with a space therebetween, and can be disposed so as to irradiate infrared light L toward one surface of the resin sheet material 1.

赤外線波長選択手段3としては、透過波長域が異なる複数のフィルタ4を具備するものが設けられる。前記フィルタ4としては、特定の赤外線Lの特定の波長域を選択的に透過させるバンドパスフィルタ4を挙げることができる。赤外線波長選択手段3は、赤外線照射手段2と樹脂シート材1との間の赤外線Lの照射経路上に配設され、この赤外線波長選択手段3は、複数のフィルタ4が樹脂シート材1の移動方向に沿って配列するように支持している。   As the infrared wavelength selection means 3, there is provided one having a plurality of filters 4 having different transmission wavelength ranges. Examples of the filter 4 include a band-pass filter 4 that selectively transmits a specific wavelength region of a specific infrared ray L. The infrared wavelength selection means 3 is disposed on the irradiation path of the infrared L between the infrared irradiation means 2 and the resin sheet material 1, and the infrared wavelength selection means 3 has a plurality of filters 4 that move the resin sheet material 1. It supports so that it may arrange along a direction.

上記フィルタ4としては、測定対象の樹脂シート材1における特定の官能基の吸収波長を選択的に透過するものが設けられる。このとき、樹脂シート材1中における樹脂の硬化反応に関与する官能基(以下、活性官能基という)の吸収波長を中心とした波長域を選択的に透過するフィルタ4と、樹脂の硬化反応に関与しない官能基(以下、不活性官能基という)の吸収波長を中心とした波長域を選択的に透過するフィルタ4を設ける。吸収波長は各官能基の吸光度のピーク値の波長を選択することができる。   As said filter 4, what selectively permeate | transmits the absorption wavelength of the specific functional group in the resin sheet material 1 of a measuring object is provided. At this time, the filter 4 that selectively transmits a wavelength region centered on the absorption wavelength of a functional group (hereinafter referred to as an active functional group) involved in the resin curing reaction in the resin sheet material 1 and the resin curing reaction. A filter 4 that selectively transmits a wavelength region centering on an absorption wavelength of a functional group that does not participate (hereinafter referred to as an inert functional group) is provided. As the absorption wavelength, the wavelength of the absorbance peak value of each functional group can be selected.

この複数のフィルタ4としては、熱硬化性樹脂の樹脂組成を変更した場合にも対応できるように、各種の官能基の吸収波長の波長域を選択的に透過するものを複数設けることができる。このとき同時に測定される官能基についてのフィルタ4は、一列に並んで設けられるようにする。また、同じ列に他の官能基の吸収波長を透過するフィルタ4を併せて設けても良い。また、図示の例ではフィルタ4を二列に亘って設けているが、このようにフィルタ4を複数列設ける場合には、熱硬化性樹脂組成物の組成の変更に応じ、各列には同時に測定される官能基の吸収波長の波長域を選択的に透過するフィルタ4を設けるようにする。   As the plurality of filters 4, a plurality of filters that selectively transmit the wavelength ranges of the absorption wavelengths of various functional groups can be provided so as to cope with the case where the resin composition of the thermosetting resin is changed. At this time, the filters 4 for the functional groups that are simultaneously measured are arranged in a line. Moreover, you may provide the filter 4 which permeate | transmits the absorption wavelength of another functional group in the same row | line | column together. Further, in the illustrated example, the filters 4 are provided in two rows. However, when the filters 4 are provided in a plurality of rows as described above, each row is simultaneously provided in accordance with a change in the composition of the thermosetting resin composition. A filter 4 that selectively transmits the wavelength range of the absorption wavelength of the functional group to be measured is provided.

活性官能基と、不活性官能基とは、樹脂シート材1を形成するために用いる熱硬化性樹脂組成物の組成に依存するが、例えばビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂等を含むエポキシ樹脂組成物の場合は前者の官能基としてエポキシ基を、後者の官能基としてベンゼン環を挙げることができる。   The active functional group and the inactive functional group depend on the composition of the thermosetting resin composition used for forming the resin sheet material 1, but include, for example, an epoxy resin including a bisphenol type epoxy resin or a novolac type epoxy resin. In the case of a composition, an epoxy group can be mentioned as the former functional group, and a benzene ring can be mentioned as the latter functional group.

赤外線受光手段5は、赤外線Lを受光して電気信号に変換する適宜の受光素子にて形成することができる。この赤外線受光手段5は、上記赤外線照射手段2から照射された赤外線Lが樹脂シート材1の一面に到達した後、この樹脂シート材1を透過した透過光や、樹脂シート材1で反射された反射光を受光するように設けられる。図1に示す例では赤外線受光手段5は樹脂シート材1の赤外線照射手段2が設けられている側とは反対側の面と対向して、透過光を受光する位置に配設されている。図2に示す例では赤外線受光手段5は樹脂シート材1の赤外線照射手段2が設けられている側と同じ側に、反射光を受光する位置に配設されており、このとき赤外線照射手段2は樹脂シート材1の一面に斜め方向に赤外線Lを照射し、この樹脂シート材1の一面側における反射光の軌跡上で赤外線受光手段5が反射光を受光するようになっている。   The infrared light receiving means 5 can be formed by an appropriate light receiving element that receives the infrared light L and converts it into an electrical signal. In this infrared light receiving means 5, after the infrared rays L emitted from the infrared irradiation means 2 reach one surface of the resin sheet material 1, the transmitted light transmitted through the resin sheet material 1 or reflected by the resin sheet material 1. It is provided so as to receive the reflected light. In the example shown in FIG. 1, the infrared light receiving means 5 is disposed at a position for receiving transmitted light, facing the surface of the resin sheet material 1 opposite to the side on which the infrared irradiation means 2 is provided. In the example shown in FIG. 2, the infrared light receiving means 5 is disposed on the same side as the side on which the infrared irradiation means 2 of the resin sheet material 1 is provided at a position for receiving the reflected light. Irradiates one surface of the resin sheet material 1 with an infrared ray L in an oblique direction, and the infrared light receiving means 5 receives the reflected light on the locus of the reflected light on one surface side of the resin sheet material 1.

ここで、樹脂シート材1と赤外線受光手段5との間の赤外線Lの経路上には、集光レンズ7を設けることにより、赤外線受光手段5が前記集光レンズ7にて集光された赤外線Lを受光して検知できるようにすることが望ましい。この場合、樹脂シート材1を透過又は反射することで赤外線Lが不均一に拡散した場合であっても、この拡散した赤外線Lを集光して受光することで赤外線Lの拡散の影響を低減し、測定結果を平均化して正確な測定を行うことができる。   Here, by providing a condenser lens 7 on the path of the infrared ray L between the resin sheet material 1 and the infrared ray receiver 5, the infrared ray receiver 5 collects the infrared ray collected by the condenser lens 7. It is desirable that L can be received and detected. In this case, even if the infrared rays L are diffused non-uniformly by transmitting or reflecting the resin sheet material 1, the diffused infrared rays L are collected and received to reduce the influence of the diffusion of the infrared rays L. In addition, the measurement results can be averaged to perform accurate measurement.

硬化度導出手段6は、赤外線受光手段5にて生成された電気信号が入力され、この電気信号を演算処理して樹脂シート材1の樹脂の硬化度を導出する。この硬化度導出手段6は、CPU、ROM、RAM等から構成される適宜のマイクロコンピュータで構成することができる。この硬化度導出手段6による硬化度を導出するための処理動作については後述する。   The curing degree deriving unit 6 receives the electrical signal generated by the infrared light receiving unit 5 and calculates the degree of curing of the resin of the resin sheet material 1 by calculating the electrical signal. The degree-of-curing degree derivation means 6 can be composed of an appropriate microcomputer composed of a CPU, ROM, RAM and the like. The processing operation for deriving the degree of cure by the degree of cure deriving means 6 will be described later.

本実施形態では、上記赤外線照射手段2及び赤外線受光手段5の配置位置を移動させる駆動手段が設けられている。駆動手段は適宜のアクチュエータで構成することができる。このとき赤外線照射手段2及び赤外線受光手段5は前記駆動手段により、樹脂シート材1の搬送方向に沿って移動し、且つ、樹脂シート材1の移動と同期して、すなわち樹脂シート材1の移動方向と同一方向に同一速度で、移動可能に形成する。   In the present embodiment, driving means for moving the arrangement positions of the infrared irradiation means 2 and the infrared light receiving means 5 is provided. The driving means can be constituted by an appropriate actuator. At this time, the infrared irradiation means 2 and the infrared light receiving means 5 are moved along the conveying direction of the resin sheet material 1 by the driving means, and in synchronization with the movement of the resin sheet material 1, that is, the movement of the resin sheet material 1. It is formed to be movable at the same speed in the same direction as the direction.

このとき、樹脂シート材1に向けて赤外線Lを照射した状態で、樹脂シート材1を移動させると、樹脂シート材1の移動に伴って樹脂シート材1上の赤外線Lの到達位置も移動し、結果、赤外線照射手段2及び赤外線受光手段5が基材の移動方向と同一方向に移動している間は、樹脂シート材1上の同一領域9に赤外線Lが到達し、その透過光又は反射光が赤外線受光手段5により受光されるようになっている。また、赤外線照射手段2及び赤外線受光手段5が樹脂シート材1の移動方向に移動している間は、赤外線Lの軌跡が赤外線波長選択手段3の後端のフィルタ4から前端のフィルタ4まで順次通過するようになっている。ここで、図示のように赤外線波長選択手段3にフィルタ4が二列設けられている場合には、赤外線波長選択手段3は基材の搬送方向と直交する方向に移動可能に形成し、いずれか一方の列のフィルタ4において前記のように赤外線Lの軌跡が後端のフィルタ4から前端のフィルタ4まで順次通過するようになっている。また、赤外線照射手段2と赤外線受光手段5は、照射される赤外線Lの軌跡が前端のフィルタ4まで到達したら、駆動手段により樹脂シート材1の移動方向と反対方向に移動して初期状態に復帰し、再び駆動手段により樹脂シート材1の移動方向に移動可能となる。   At this time, when the resin sheet material 1 is moved in a state in which the infrared ray L is irradiated toward the resin sheet material 1, the arrival position of the infrared light L on the resin sheet material 1 also moves with the movement of the resin sheet material 1. As a result, while the infrared irradiation means 2 and the infrared light receiving means 5 are moving in the same direction as the movement direction of the base material, the infrared rays L reach the same region 9 on the resin sheet material 1 and the transmitted light or reflection thereof. Light is received by the infrared light receiving means 5. Further, while the infrared irradiation means 2 and the infrared light receiving means 5 are moving in the moving direction of the resin sheet material 1, the locus of the infrared L is sequentially from the rear end filter 4 to the front end filter 4 of the infrared wavelength selection means 3. It has come to pass. Here, when two filters 4 are provided in the infrared wavelength selection means 3 as shown in the figure, the infrared wavelength selection means 3 is formed so as to be movable in a direction orthogonal to the conveyance direction of the substrate. In the filter 4 in one row, the locus of the infrared rays L sequentially passes from the rear end filter 4 to the front end filter 4 as described above. The infrared irradiation means 2 and the infrared light receiving means 5 are moved in the direction opposite to the moving direction of the resin sheet material 1 by the driving means when the locus of the irradiated infrared rays L reaches the filter 4 at the front end to return to the initial state. Then, it can be moved again in the moving direction of the resin sheet material 1 by the driving means.

また、この硬化度測定装置における赤外線照射手段2、赤外線波長選択手段3、赤外線受光手段5、及びこれらの間の赤外線Lの経路で構成される光学系の周囲には、カバーを設けることが好ましい。この場合、外乱光の影響を低減して測定誤差の発生を抑制し、正確な測定を行うようにすることができる。   Moreover, it is preferable to provide a cover around the optical system constituted by the infrared irradiation means 2, the infrared wavelength selection means 3, the infrared light receiving means 5, and the infrared ray L route therebetween in this curing degree measuring apparatus. . In this case, it is possible to reduce the influence of disturbance light and suppress the occurrence of measurement errors, so that accurate measurement can be performed.

このように構成される硬化度測定装置の動作を説明する。   The operation of the curing degree measuring apparatus configured as described above will be described.

樹脂シート材1が基材移動手段にて移動している状態で、駆動手段により赤外線照射手段2と赤外線受光手段5とを樹脂シート材1の移動と同期するようにしてこの樹脂シート材1の移動方向へと移動させる。集光レンズ7を設けている場合には、駆動手段によりこの集光レンズ7も同様に移動させる。このとき、赤外線照射手段2は赤外線Lを連続的に照射していても良いが、赤外線Lの軌跡上に特定のフィルタ4が配置された状態となったときにのみ、赤外線Lをパルス状に照射しても良い。前記特定のフィルタ4とは、熱硬化性樹脂組成物中の、活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4と、不活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4とを意味する。   In a state where the resin sheet material 1 is moved by the base material moving means, the infrared irradiation means 2 and the infrared light receiving means 5 are synchronized with the movement of the resin sheet material 1 by the driving means. Move in the direction of movement. When the condensing lens 7 is provided, the condensing lens 7 is similarly moved by the driving means. At this time, the infrared irradiation means 2 may continuously irradiate the infrared ray L, but only when the specific filter 4 is placed on the locus of the infrared ray L, the infrared ray L is pulsed. It may be irradiated. The specific filter 4 is a filter 4 that selectively transmits a wavelength range including the absorption wavelength of the active functional group in the thermosetting resin composition, and a wavelength range that includes the absorption wavelength of the inert functional group. Means a filter 4 that is transparently transmitted.

このとき、赤外線受光手段5は、赤外線照射手段2と共に移動しながら、樹脂シート材1を反射した反射光、又は樹脂シート材1を透過した透過光を、受光する。   At this time, the infrared light receiving means 5 receives reflected light reflected from the resin sheet material 1 or transmitted light transmitted through the resin sheet material 1 while moving together with the infrared irradiation means 2.

赤外線受光手段5は、受光した光を電気信号に変換して、硬化度導出手段6に伝達する。硬化度導出手段6は、前記電気信号に基づき、上記各特定のフィルタ4を通過した赤外線Lの透過光又は反射光の強度を導出する。   The infrared light receiving means 5 converts the received light into an electrical signal and transmits it to the curing degree deriving means 6. The curing degree deriving means 6 derives the intensity of the transmitted light or reflected light of the infrared light L that has passed through each of the specific filters 4 based on the electrical signal.

このとき、活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4を透過した赤外線Lを樹脂シート材1に照射した場合の、上記透過光又は反射光の強度(以下、活性官能基受光強度という)は、樹脂シート材1中の活性官能基の量に依存する。また、不活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4を透過した赤外線Lを樹脂シート材1に照射した場合の、上記透過光又は反射光の強度(以下、不活性官能基受光強度という)は、樹脂シート材1中の不活性官能基の量に依存する。   At this time, the intensity of the transmitted light or reflected light (hereinafter referred to as the active sensor) when the resin sheet material 1 is irradiated with the infrared ray L that has passed through the filter 4 that selectively transmits the wavelength region including the absorption wavelength of the active functional group. The group received light intensity) depends on the amount of active functional groups in the resin sheet material 1. Further, the intensity of the transmitted light or reflected light (hereinafter referred to as inactive) when the resin sheet material 1 is irradiated with the infrared ray L that has passed through the filter 4 that selectively transmits the wavelength region including the absorption wavelength of the inert functional group. The functional group light-receiving intensity) depends on the amount of the inert functional group in the resin sheet material 1.

ここで、樹脂中の不活性官能基の量は樹脂の硬化反応が進行しても反応の前後で変化はしないが、活性反応基の量は樹脂の硬化反応が進行するのに伴って減少する。このため、樹脂の硬化が進むと不活性官能基の量に対する活性反応基の量の割合が小さくなる。そのため、硬化度導出手段6は、上記活性官能基受光強度と、不活性官能基受光強度に基づいて、硬化度を導出することができる。具体的な硬化度の導出方法は適宜のものとすることができるが、例えば、硬化度導出手段6は、不活性官能基受光強度に対する活性官能基受光強度の比を導出し、この比の値から、予め設定されている不活性官能基受光強度に対する活性官能基受光強度の比と硬化度との間の相関関係を参照して、硬化度を導出することができる。   Here, the amount of the inactive functional group in the resin does not change before and after the reaction even if the curing reaction of the resin proceeds, but the amount of the active reactive group decreases as the curing reaction of the resin proceeds. . For this reason, as the curing of the resin proceeds, the ratio of the amount of active reactive groups to the amount of inactive functional groups decreases. Therefore, the curing degree deriving means 6 can derive the curing degree based on the active functional group light receiving intensity and the inert functional group light receiving intensity. Although a specific method for deriving the degree of cure can be set as appropriate, for example, the degree of cure deriving means 6 derives a ratio of the active functional group received light intensity to the inert functional group received light intensity, and the value of this ratio From the above, the degree of cure can be derived by referring to the correlation between the ratio of the active functional group light-receiving intensity to the preset inert functional group light-receiving intensity and the degree of curing.

不活性官能基受光強度に対する活性官能基受光強度の比と硬化度との間の相関関係は適宜の手法で導出したものを予め硬化度導出手段6に記憶させることができる。例えば予め硬化度をそれぞれ異ならせた複数の樹脂シート材1について、上記と同様にして活性官能基受光強度と不活性官能基受光強度とを測定し、その結果に基づいて、不活性官能基受光強度に対する活性官能基受光強度の比と硬化度との相関関係を表す相関表や関係式を導出しておく。そして、この相関表や関係式を硬化度導出手段6に記憶させておき、これに基づいて樹脂シート材1の硬化度を導出するようにする。   The correlation between the ratio of the active functional group light-receiving intensity to the inactive functional group light-receiving intensity and the degree of curing can be stored in advance in the degree-of-curing degree deriving means 6 as derived from an appropriate technique. For example, the active functional group light receiving intensity and the inert functional group light receiving intensity are measured in the same manner as described above for a plurality of resin sheet materials 1 having different degrees of curing in advance, and based on the results, the light receiving of the inactive functional group is received. A correlation table and a relational expression representing the correlation between the ratio of the active functional group light-receiving intensity to the intensity and the degree of curing are derived. Then, the correlation table and the relational expression are stored in the curing degree deriving means 6 so that the curing degree of the resin sheet material 1 is derived based on this.

図3,4は、硬化度測定装置の第二の実施形態を示す。   3 and 4 show a second embodiment of the curing degree measuring apparatus.

図示の実施形態では、基材移動手段、赤外線照射手段2、赤外線受光手段5及び硬化度導出手段6としては、第一の実施形態と同様のものが設けられている。   In the illustrated embodiment, the substrate moving means, the infrared irradiation means 2, the infrared light receiving means 5, and the curing degree deriving means 6 are the same as those in the first embodiment.

また、赤外線波長選択手段3は、樹脂シート材1の一面に対して直交する方向の回転駆動軸8を有する円盤状に形成され、前記回転駆動軸8を中心とする円周に沿って複数のフィルタ4が支持されている。このフィルタ4は図示の例では回転駆動軸8を中心とする二つの同心円の円周に沿ってそれぞれ列設されている。   The infrared wavelength selection means 3 is formed in a disk shape having a rotation drive shaft 8 in a direction orthogonal to one surface of the resin sheet material 1, and a plurality of infrared wavelength selection means 3 are arranged along a circumference around the rotation drive shaft 8. A filter 4 is supported. In the example shown in the figure, the filters 4 are arranged along the circumference of two concentric circles around the rotation drive shaft 8.

このフィルタ4としては第一の実施形態と同様のものが設けられる。このとき、図示の例では一方の同心円の円周に沿って列設されたフィルタ4と他方の同心円の円周に沿って列設されたフィルタ4とは、それぞれ同時に測定される官能基の吸収波長の波長域を選択的に透過するフィルタ4を設けるようにする。   This filter 4 is the same as that of the first embodiment. At this time, in the example shown in the drawing, the filter 4 arranged along the circumference of one concentric circle and the filter 4 arranged along the circumference of the other concentric circle respectively absorb the functional groups measured simultaneously. A filter 4 that selectively transmits the wavelength range of the wavelength is provided.

この赤外線波長選択手段3は、赤外線照射手段2と樹脂シート材1との間の赤外線Lの照射経路に、いずれかのフィルタ4が配置されるように配設される。また、赤外線照射手段2に対する赤外線波長選択手段3の配置位置を変更することで、二つの同心円の円周に沿って列設された各フィルタ4のうち、一方の同心円の円周に沿って配置されたフィルタ4が赤外線Lの照射経路に配置された状態と、他方の同心円の円周に沿って配置されたフィルタ4が赤外線Lの照射経路に配置された状態とに切り替えることができる。   The infrared wavelength selection means 3 is arranged so that any one of the filters 4 is arranged in the irradiation path of the infrared L between the infrared irradiation means 2 and the resin sheet material 1. Further, by changing the arrangement position of the infrared wavelength selection means 3 with respect to the infrared irradiation means 2, the filters 4 arranged along the circumference of two concentric circles are arranged along the circumference of one concentric circle. It is possible to switch between the state in which the filter 4 is arranged in the irradiation path of the infrared ray L and the state in which the filter 4 arranged along the other concentric circle is arranged in the irradiation path of the infrared ray L.

本実施形態では、上記赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5の配置位置を移動させる駆動手段が設けられている。駆動手段は適宜のアクチュエータで構成することができる。このとき赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5は前記駆動手段により、樹脂シート材1の搬送方向に沿って移動し、且つ、樹脂シート材1の移動と同期して、すなわち樹脂シート材1の移動方向と同一方向に同一速度で、移動可能に形成する。また、この赤外線波長選択手段3は、前記のように赤外線照射手段2及び赤外線受光手段5と共に移動しながら、回転駆動軸8を中心に一定の角速度で回転駆動するように形成されている。   In the present embodiment, driving means for moving the arrangement positions of the infrared irradiation means 2, the infrared wavelength selection means 3, and the infrared light reception means 5 is provided. The driving means can be constituted by an appropriate actuator. At this time, the infrared irradiation means 2, the infrared wavelength selection means 3, and the infrared light receiving means 5 are moved along the conveying direction of the resin sheet material 1 by the driving means, and are synchronized with the movement of the resin sheet material 1, that is, The resin sheet material 1 is formed to be movable in the same direction as the moving direction at the same speed. Further, the infrared wavelength selection means 3 is formed to rotate at a constant angular velocity around the rotation drive shaft 8 while moving together with the infrared irradiation means 2 and the infrared light receiving means 5 as described above.

このとき、樹脂シート材1に向けて赤外線Lを照射した状態で、樹脂シート材1を移動させると、樹脂シート材1の移動に伴って樹脂シート材1上の赤外線Lの到達位置も移動し、結果、赤外線照射手段2及び赤外線受光手段5が基材の移動方向と同一方向に移動している間は、樹脂シート材1上の同一領域9に赤外線Lが到達し、その透過光又は反射光が赤外線受光手段5により受光されるようになっている。また、この間、赤外線波長選択手段3が回転駆動軸8を中心に一定の角速度で回転駆動することにより、赤外線Lの軌跡が赤外線波長選択手段3の一つの円周上にある複数のフィルタ4を順次通過するようになっている。ここで、図示のように赤外線波長選択手段3にフィルタ4が二つの同心円の円周にそれぞれ設けられている場合には、赤外線波長選択手段3の配置位置を既述のように赤外線照射手段2に対して移動させることで、いずれか一方の同心円の円周のフィルタ4において前記のように赤外線Lの軌跡がこの同心円の円周上のフィルタ4を順次通過するようになっている。また、赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5は、赤外線Lの軌跡が一方の同心円の円周上のフィルタ4を全て通過したら、駆動手段により樹脂シート材1の移動方向と反対方向に移動して初期状態に復帰し、再び駆動手段により樹脂シート材1の移動方向に移動可能となる。   At this time, when the resin sheet material 1 is moved in a state in which the infrared ray L is irradiated toward the resin sheet material 1, the arrival position of the infrared light L on the resin sheet material 1 also moves with the movement of the resin sheet material 1. As a result, while the infrared irradiation means 2 and the infrared light receiving means 5 are moving in the same direction as the movement direction of the base material, the infrared rays L reach the same region 9 on the resin sheet material 1 and the transmitted light or reflection thereof. Light is received by the infrared light receiving means 5. Further, during this time, the infrared wavelength selection means 3 is driven to rotate at a constant angular velocity around the rotation drive shaft 8, so that a plurality of filters 4 whose locus of the infrared L is on one circumference of the infrared wavelength selection means 3 can be obtained. Pass through sequentially. Here, when the filter 4 is provided on the circumference of two concentric circles in the infrared wavelength selection means 3 as shown in the figure, the arrangement position of the infrared wavelength selection means 3 is determined as described above. As described above, the locus of the infrared rays L sequentially passes through the filter 4 on the circumference of the concentric circle as described above. Further, the infrared irradiation means 2, the infrared wavelength selection means 3, and the infrared light receiving means 5 are arranged so that the driving direction of the resin sheet material 1 is determined by the driving means when the locus of the infrared rays L passes through the filter 4 on the circumference of one concentric circle. It moves in the opposite direction, returns to the initial state, and can be moved again in the moving direction of the resin sheet material 1 by the driving means.

他の構成は、第一の実施形態と同様とすることができる。   Other configurations can be the same as those of the first embodiment.

このように構成される硬化度測定装置の動作を説明する。   The operation of the curing degree measuring apparatus configured as described above will be described.

樹脂シート材1が基材移動手段にて移動している状態で、駆動手段により赤外線照射手段2、赤外線波長選択手段3及び赤外線受光手段5を樹脂シート材1の移動と同期するようにしてこの樹脂シート材1の移動方向へと移動させると共に、赤外線波長選択手段3を回転駆動させる。このとき、赤外線受光手段5は赤外線Lを連続的に照射していても良いが、赤外線Lの軌跡上に特定のフィルタ4が配置された状態となったときにのみ、赤外線Lをパルス状に照射しても良い。前記特定のフィルタ4とは、熱硬化性樹脂組成物中の、活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4と、不活性官能基の吸収波長を含む波長域を選択的に透過するフィルタ4とを意味する。   In a state where the resin sheet material 1 is moved by the base material moving means, the driving means causes the infrared irradiation means 2, the infrared wavelength selection means 3 and the infrared light receiving means 5 to synchronize with the movement of the resin sheet material 1. While moving the resin sheet material 1 in the moving direction, the infrared wavelength selection means 3 is driven to rotate. At this time, the infrared light receiving means 5 may continuously irradiate the infrared ray L, but only when the specific filter 4 is placed on the locus of the infrared ray L, the infrared ray L is pulsed. It may be irradiated. The specific filter 4 is a filter 4 that selectively transmits a wavelength range including the absorption wavelength of the active functional group in the thermosetting resin composition, and a wavelength range that includes the absorption wavelength of the inert functional group. Means a filter 4 that is transparently transmitted.

このとき、赤外線受光手段5は、赤外線照射手段2と共に移動しながら、樹脂シート材1を反射した反射光、又は樹脂シート材1を透過した透過光を、受光する。   At this time, the infrared light receiving means 5 receives reflected light reflected from the resin sheet material 1 or transmitted light transmitted through the resin sheet material 1 while moving together with the infrared irradiation means 2.

赤外線受光手段5は、受光した光を電気信号に変換して、硬化度導出手段6に伝達する。硬化度導出手段6は、前記電気信号に基づき、第一の実施形態の場合と同様にして樹脂シート材1の硬化度を測定する。   The infrared light receiving means 5 converts the received light into an electrical signal and transmits it to the curing degree deriving means 6. The curing degree deriving means 6 measures the curing degree of the resin sheet material 1 in the same manner as in the first embodiment based on the electrical signal.

上記各実施形態のようにして樹脂シート材1の硬化度を測定すると、樹脂シート材1に生じる厚みの変化等による部分的な樹脂量の変化などに影響されることなく、樹脂シート材1の硬化度を正確に測定することができる。殊に、樹脂シート材1を移動させながら硬化度を測定するにあたって、樹脂シート材1における赤外線Lが照射される領域9を同一の領域9とすることができるため、樹脂シート材1における同一の領域9における活性官能基と不活性官能基の量に基づく硬化度の測定を行うことができ、樹脂シート材1における樹脂量の部分的な変化の影響を著しく排除することができる。   When the degree of cure of the resin sheet material 1 is measured as in each of the above embodiments, the resin sheet material 1 is not affected by a partial change in the resin amount due to a change in thickness or the like generated in the resin sheet material 1. The degree of cure can be accurately measured. In particular, when measuring the degree of cure while moving the resin sheet material 1, the region 9 irradiated with the infrared rays L in the resin sheet material 1 can be the same region 9, and therefore the same in the resin sheet material 1. The degree of cure can be measured based on the amounts of active functional groups and inactive functional groups in the region 9, and the influence of partial changes in the resin amount in the resin sheet material 1 can be remarkably eliminated.

このように硬化度を測定するにあたっては、赤外線照射手段2と赤外線受光手段5(第二の実施形態の場合は更に赤外線波長選択手段3)を樹脂シート材1の移動方向に沿って移動させながら測定を行った後、これらを逆方向に移動させて初期の状態に復帰させ、再び同様に硬化度の測定を行うことができる。このように硬化度の測定を繰り返し行うことにより、樹脂シート材1の硬化度を連続的にモニターすることができ、この硬化度に異常が生じた場合に速やかに樹脂シートの製造工程の点検、調整等を行うことができる。   In measuring the degree of curing in this manner, the infrared irradiation means 2 and the infrared light receiving means 5 (in the case of the second embodiment, further infrared wavelength selection means 3) are moved along the moving direction of the resin sheet material 1. After the measurement, these can be moved in the opposite direction to return to the initial state, and the degree of cure can be measured again in the same manner. By repeatedly measuring the degree of cure in this way, the degree of cure of the resin sheet material 1 can be continuously monitored, and when an abnormality occurs in the degree of cure, the inspection of the resin sheet manufacturing process is promptly performed. Adjustments can be made.

また、このような硬化度測定装置は、定期的に動作検査を行い、必要に応じてメンテナンスを行うことが好ましい。   Moreover, it is preferable that such a degree-of-curing degree measurement apparatus performs an operation | movement inspection regularly and performs a maintenance as needed.

例えば、赤外線照射手段2の光源が劣化した場合には、赤外線受光手段5にて検出される信号のS/N比が悪化するため、この光源の劣化の有無を定期的に検査することが好ましい。この場合、例えば樹脂シート材1が存在しない状態で、赤外線照射手段2から照射される赤外線Lを赤外線受光手段5にて受光した場合に検出される受光強度が、基準値(例えば、最低限必要なS/N比を得るために必要とされる受光強度)に満たない場合には、赤外線照射手段2の光源が劣化したものとして、光源の交換等のメンテナンスを行うようにする。   For example, when the light source of the infrared irradiating means 2 deteriorates, the S / N ratio of the signal detected by the infrared light receiving means 5 deteriorates. Therefore, it is preferable to periodically inspect for the deterioration of the light source. . In this case, for example, in the state where the resin sheet material 1 does not exist, the received light intensity detected when the infrared light L irradiated from the infrared light irradiation unit 2 is received by the infrared light reception unit 5 is a reference value (for example, a minimum required). If the received light intensity required for obtaining a high S / N ratio is not satisfied, it is assumed that the light source of the infrared irradiation means 2 has deteriorated, and maintenance such as replacement of the light source is performed.

このとき、例えば赤外線照射手段2から照射される赤外線Lを、赤外線波長選択手段3における全てのフィルタ4を順次通過させ、この各フィルタ4を通過した赤外線Lを赤外線受光手段5により受光するようにしても良い。この場合、各フィルタ4を通過した赤外線Lの受光強度の平均値を導出し、この平均値が、基準値(例えば、最低限必要なS/N比を得るために必要とされる受光強度の平均値)に満たない場合には、赤外線照射手段2の光源が劣化したものとして、光源の交換等のメンテナンスを行うようにしても良い。   At this time, for example, the infrared rays L emitted from the infrared irradiation means 2 are sequentially passed through all the filters 4 in the infrared wavelength selection means 3, and the infrared rays L that have passed through the filters 4 are received by the infrared light receiving means 5. May be. In this case, an average value of the received light intensity of the infrared ray L that has passed through each filter 4 is derived, and this average value is used as a reference value (for example, the received light intensity required to obtain the minimum required S / N ratio). If it is less than the average value), the light source of the infrared irradiation means 2 may be deteriorated, and maintenance such as replacement of the light source may be performed.

また、赤外線波長選択手段3のフィルタ4に汚れが付着した場合には、フィルタ4における赤外線Lの透過率が変化し、正確な測定は困難となる。このため、前記フィルタ4の汚れの有無も定期的に検査することが好ましい。この場合、例えば樹脂シートが存在しない状態で、赤外線照射手段2から照射される赤外線Lを、赤外線波長選択手段3における全てのフィルタ4を順次通過させ、この各フィルタ4を通過した赤外線Lを赤外線受光手段5により受光する。そして、各フィルタ4を通過した赤外線Lの受光強度の強度比を導出し、この強度比が、基準値(例えば予め赤外線照射手段2の光源に劣化が生じていない状態で測定された前記強度比)と一致しない場合には、フィルタ4に汚れが付着しているものと判定する。この場合、フィルタ4の清掃や交換等のメンテナンスを行う。   In addition, when dirt is attached to the filter 4 of the infrared wavelength selection means 3, the transmittance of the infrared L in the filter 4 changes, and accurate measurement becomes difficult. For this reason, it is preferable to periodically inspect the filter 4 for contamination. In this case, for example, in the absence of a resin sheet, the infrared rays L emitted from the infrared ray irradiation means 2 are sequentially passed through all the filters 4 in the infrared wavelength selection means 3, and the infrared rays L that have passed through the filters 4 are infrared rays. Light is received by the light receiving means 5. And the intensity ratio of the received light intensity of the infrared ray L that has passed through each filter 4 is derived, and this intensity ratio is the reference value (for example, the intensity ratio measured in advance in a state where the light source of the infrared irradiation means 2 has not deteriorated). ), It is determined that the filter 4 is contaminated. In this case, maintenance such as cleaning and replacement of the filter 4 is performed.

本発明の第一の実施形態の一例を示す概略図である。It is the schematic which shows an example of 1st embodiment of this invention. 本発明の第一の実施形態の他例を示す概略図である。It is the schematic which shows the other examples of 1st embodiment of this invention. 本発明の第二の実施形態の一例を示す概略図である。It is the schematic which shows an example of 2nd embodiment of this invention. 本発明の第二の実施形態の他例を示す概略図である。It is the schematic which shows the other example of 2nd embodiment of this invention.

符号の説明Explanation of symbols

1 樹脂シート材
2 赤外線照射手段
3 赤外線波長選択手段
4 フィルタ
5 赤外線受光手段
6 硬化度導出手段
9 領域
L 赤外線
DESCRIPTION OF SYMBOLS 1 Resin sheet material 2 Infrared irradiation means 3 Infrared wavelength selection means 4 Filter 5 Infrared light reception means 6 Curing degree derivation means 9 Area | region L Infrared

Claims (7)

樹脂を含みシート状の形態を有する樹脂シート材を移動させた状態で、この樹脂シート材中の複数の官能基の各吸収波長の波長域の赤外線を順次照射し、前記赤外線の樹脂シート材を透過した透過光又は樹脂シート材から反射した反射光の強度を検出し、検出された各吸収波長における赤外線の強度に基づいて、樹脂シート材の樹脂の硬化度を導出する樹脂シート材の硬化度測定方法であって、
前記赤外線の照射位置を樹脂シート材の移動に伴って移動させることにより、樹脂シート材上の同一の領域に赤外線が照射されるようにすることを特徴とする樹脂シート材の硬化度測定方法。
In a state where the resin sheet material including a resin and having a sheet-like shape is moved, infrared rays in the wavelength regions of the respective absorption wavelengths of the plurality of functional groups in the resin sheet material are sequentially irradiated, and the infrared resin sheet material is used. The degree of cure of the resin sheet material that detects the intensity of the transmitted light or the reflected light reflected from the resin sheet material, and derives the degree of cure of the resin of the resin sheet material based on the detected infrared intensity at each absorption wavelength A measuring method,
A method for measuring the degree of cure of a resin sheet material, characterized in that the infrared rays are irradiated to the same region on the resin sheet material by moving the infrared irradiation position with the movement of the resin sheet material.
上記複数の官能基が、樹脂の硬化反応に関与する官能基と、樹脂の硬化反応に関与しない官能基であることを特徴とする請求項1に記載の樹脂シート材の硬化度測定方法。   The method for measuring the degree of cure of a resin sheet material according to claim 1, wherein the plurality of functional groups are a functional group involved in a resin curing reaction and a functional group not involved in a resin curing reaction. 樹脂を含みシート状の形態を有する樹脂シート材を移動させる基材移動手段と、
赤外線を基材に照射させる赤外線照射手段と、
透過波長域が異なる複数のフィルタを具備する赤外線波長選択手段と、
前記赤外線照射手段から照射され、前記赤外線波長選択手段のいずれかのフィルタを透過した後、樹脂シート材を透過した赤外線の透過光又は樹脂シート材から反射した赤外線の反射光を受光して、電気信号に変換する赤外線受光手段と、
前記電気信号を演算処理して樹脂シート材の樹脂の硬化度を導出する硬化度導出手段とを具備し、
上記赤外線照射手段及び赤外線受光手段を、樹脂シート材上で赤外線が同一の領域に照射されるように、この樹脂シート材の移動と同期して移動させる駆動手段を具備し、
上記赤外線波長選択手段における複数のフィルタが、赤外線照射手段の移動に伴って赤外線照射手段から照射される赤外線の経路上に順次配置されるように配列されていることを特徴とする樹脂シート材の硬化度測定装置。
Base material moving means for moving a resin sheet material containing a resin and having a sheet-like form;
An infrared irradiation means for irradiating the substrate with infrared rays;
An infrared wavelength selection means comprising a plurality of filters having different transmission wavelength ranges;
After receiving from the infrared irradiation means and passing through any filter of the infrared wavelength selection means, the infrared light transmitted through the resin sheet material or the infrared reflected light reflected from the resin sheet material is received, Infrared light receiving means for converting into signals,
A degree of cure derivation means for computing the electrical signal to derive the degree of cure of the resin of the resin sheet material;
The infrared irradiation means and the infrared light receiving means are provided with a driving means for moving the resin sheet material in synchronization with the movement of the resin sheet material so that infrared rays are irradiated on the same region on the resin sheet material,
A plurality of filters in the infrared wavelength selection means are arranged so as to be sequentially arranged on an infrared path irradiated from the infrared irradiation means as the infrared irradiation means moves. Curing degree measuring device.
樹脂を含みシート状の形態を有する樹脂シート材を移動させる基材移動手段と、
赤外線を基材に向けて照射する赤外線照射手段と、
透過波長域が異なる複数のフィルタを具備すると共に前記赤外線照射手段と基材との間の赤外線の照射経路上に配置されるフィルタの種類を変更する赤外線波長選択手段と、
前記赤外線照射手段から照射された赤外線の樹脂シート材を透過した透過光又は樹脂シート材から反射した反射光を受光して、電気信号に変換する赤外線受光手段と、
前記電気信号を演算処理して樹脂シート材の樹脂の硬化度を導出する硬化度導出手段とを具備し、
上記赤外線照射手段、赤外線波長選択手段及び赤外線受光手段を、前記樹脂シート材上における赤外線が照射される領域が同一位置となるように、この樹脂シート材の移動と同期して移動させる駆動手段を具備することを特徴とする樹脂シート材の硬化度測定装置。
Base material moving means for moving a resin sheet material containing a resin and having a sheet-like form;
An infrared irradiation means for irradiating infrared rays toward the substrate;
Infrared wavelength selection means that comprises a plurality of filters having different transmission wavelength ranges and changes the type of filter disposed on the infrared irradiation path between the infrared irradiation means and the substrate;
Infrared light receiving means for receiving transmitted light transmitted through the infrared resin sheet material irradiated from the infrared irradiation means or reflected light reflected from the resin sheet material, and converting it into an electrical signal;
A degree of cure derivation means for computing the electrical signal to derive the degree of cure of the resin of the resin sheet material;
Drive means for moving the infrared irradiation means, infrared wavelength selection means, and infrared light receiving means in synchronization with the movement of the resin sheet material so that the region irradiated with infrared rays on the resin sheet material is at the same position. An apparatus for measuring the degree of cure of a resin sheet material, comprising:
上記駆動手段が、赤外線波長選択手段及び赤外線受光手段を基材の移動方向に移動させた後、逆方向に移動させてこの赤外線波長選択手段及び赤外線受光手段を初期位置に復帰させるものであることを特徴とする請求項3に記載の樹脂シート材の硬化度測定装置。   The driving means moves the infrared wavelength selection means and the infrared light receiving means in the moving direction of the base material, and then moves them in the reverse direction to return the infrared wavelength selection means and the infrared light receiving means to the initial positions. The degree-of-curing measurement apparatus for a resin sheet material according to claim 3. 上記駆動手段が、赤外線照射手段、赤外線波長選択手段及び赤外線受光手段を基材の移動方向に移動させた後、逆方向に移動させてこの赤外線照射手段、赤外線波長選択手段及び赤外線受光手段を初期位置に復帰させるものであることを特徴とする請求項4に記載の樹脂シート材の硬化度測定装置。   The driving means moves the infrared irradiation means, the infrared wavelength selection means and the infrared light reception means in the moving direction of the base material, and then moves them in the reverse direction to initialize the infrared irradiation means, the infrared wavelength selection means and the infrared light reception means. The apparatus for measuring the degree of cure of a resin sheet material according to claim 4, wherein the apparatus is returned to a position. 上記硬化度導出手段が、樹脂シート材中の樹脂の硬化反応に関与する官能基の吸収波長の赤外線の強度と、樹脂の硬化反応に関与しない官能基の吸収波長の赤外線の強度との比に基づいて、樹脂シート材における樹脂の硬化度を導出するものであることを特徴とする請求項3乃至6のいずれか一項に記載の樹脂シート材の硬化度測定装置。   The degree of cure derivation means is a ratio between the infrared intensity of the absorption wavelength of the functional group involved in the resin curing reaction in the resin sheet material and the infrared intensity of the absorption wavelength of the functional group not involved in the resin curing reaction. 7. The resin sheet material curing degree measuring apparatus according to claim 3, wherein the resin sheet material curing degree is derived based on the resin sheet material.
JP2006343321A 2006-12-20 2006-12-20 Resin sheet material curing degree measuring device Active JP4862646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343321A JP4862646B2 (en) 2006-12-20 2006-12-20 Resin sheet material curing degree measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343321A JP4862646B2 (en) 2006-12-20 2006-12-20 Resin sheet material curing degree measuring device

Publications (2)

Publication Number Publication Date
JP2008157634A true JP2008157634A (en) 2008-07-10
JP4862646B2 JP4862646B2 (en) 2012-01-25

Family

ID=39658719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343321A Active JP4862646B2 (en) 2006-12-20 2006-12-20 Resin sheet material curing degree measuring device

Country Status (1)

Country Link
JP (1) JP4862646B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197099A (en) * 2009-02-23 2010-09-09 Panasonic Electric Works Co Ltd Prepreg curing measuring method
JP2013515963A (en) * 2009-12-29 2013-05-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gas measurement module with a shortened optical path micro-spectrometer used in therapeutic settings
JP2013231666A (en) * 2012-04-27 2013-11-14 Sekisui Engineering Co Ltd Detection device
US20130306872A1 (en) * 2012-05-15 2013-11-21 Palo Alto Research Center Incorporated Low-cost measurement system for photopolymer film polymerization monitoring
JP2014512539A (en) * 2011-04-19 2014-05-22 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Online determination method for the curing state of glass fiber products
AT514344A1 (en) * 2013-05-15 2014-12-15 Berndorf Band Gmbh Process for producing a film or a film
JPWO2013128707A1 (en) * 2012-02-29 2015-07-30 株式会社村田製作所 Measuring device for measuring the characteristics of the object to be measured
CN110376144A (en) * 2019-07-19 2019-10-25 业成科技(成都)有限公司 Curing degree detection device
JP2019215232A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562552B (en) * 2018-05-31 2020-12-15 台州市台环环境检测科技有限公司 High-precision spectrophotometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321338A (en) * 1988-06-23 1989-12-27 Mazda Motor Corp Measurement of styrene content in resin material sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321338A (en) * 1988-06-23 1989-12-27 Mazda Motor Corp Measurement of styrene content in resin material sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197099A (en) * 2009-02-23 2010-09-09 Panasonic Electric Works Co Ltd Prepreg curing measuring method
JP2013515963A (en) * 2009-12-29 2013-05-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gas measurement module with a shortened optical path micro-spectrometer used in therapeutic settings
US9201002B2 (en) 2009-12-29 2015-12-01 Koninklijke Philips N.V. Gas measurement module for use in therapeutic settings having a microspectrometer with a shortened optical path
JP2014512539A (en) * 2011-04-19 2014-05-22 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Online determination method for the curing state of glass fiber products
JPWO2013128707A1 (en) * 2012-02-29 2015-07-30 株式会社村田製作所 Measuring device for measuring the characteristics of the object to be measured
JP2013231666A (en) * 2012-04-27 2013-11-14 Sekisui Engineering Co Ltd Detection device
US20130306872A1 (en) * 2012-05-15 2013-11-21 Palo Alto Research Center Incorporated Low-cost measurement system for photopolymer film polymerization monitoring
US9211695B2 (en) * 2012-05-15 2015-12-15 Palo Alto Research Center Incorporated Low-cost measurement system for photopolymer film polymerization monitoring
AT514344A1 (en) * 2013-05-15 2014-12-15 Berndorf Band Gmbh Process for producing a film or a film
AT514344B1 (en) * 2013-05-15 2015-02-15 Berndorf Band Gmbh Process for producing a film or a film
US10183422B2 (en) 2013-05-15 2019-01-22 Berndorf Band Gmbh Method for producing a foil or a film
JP2019215232A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
WO2019239651A1 (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
JP7059818B2 (en) 2018-06-12 2022-04-26 オムロン株式会社 Evaluation device and evaluation method
CN110376144A (en) * 2019-07-19 2019-10-25 业成科技(成都)有限公司 Curing degree detection device
CN111505459A (en) * 2020-05-09 2020-08-07 东方电气集团东方电机有限公司 Insulation aging evaluation method for generator stator winding

Also Published As

Publication number Publication date
JP4862646B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4862646B2 (en) Resin sheet material curing degree measuring device
JP2015138963A5 (en)
US7710558B2 (en) Automated online measurement of glass part geometry
KR102194694B1 (en) Integrated inspection system using thermography and laser ultrasonic in 3D printing process and 3D printing system having the same
US8904874B2 (en) Ultrasonic transmitting and receiving device for thickness and/or grammage measurement
JP2013544675A (en) Method and system for identification of decorator components and selection and adjustment thereof
US8079457B2 (en) Device for feeding boards to crosscut saws
JP2014178249A (en) Film manufacturing method, film manufacturing process monitoring device and film inspection method
JP6164603B2 (en) Nondestructive inspection equipment
KR20220082905A (en) A device for introducing a pattern using radiation on a wound endless substrate
JP2017054032A (en) Optical device and laser processing apparatus
KR101776708B1 (en) Device for inspecting graphene board
IT201800010374A1 (en) METHOD AND AUTOMATIC MEASURING SYSTEM FOR MEASURING PHYSICAL AND DIMENSIONAL PARAMETERS OF COMBINED ARTICLES.
JPH11503827A (en) Opto-electronic metrology device for inspection of linear dimensions
CN114760969A (en) Mass measurement method and mass measurement device
EP2480877A2 (en) Method and apparatus for on-line web property measurement
WO2009072968A1 (en) Method and arrangement for log classification
JP5826578B2 (en) Image acquisition device
CN113906349A (en) Calibration system and drawing device
JP6823448B2 (en) Laser light irradiation method, laser light irradiation device, and manufacturing method of sheet fused body
WO2018079649A1 (en) Method and device for measuring width of gap in reinforced fiber laminate
KR20190123826A (en) Mirror mount assmebly and laser apparatus having the same
JP2012251808A (en) Inspection image acquisition device, pattern inspection device, and inspection image acquisition method
JP6600543B2 (en) Method for manufacturing absorbent article
JP7122951B2 (en) Processing method by laser beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4862646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3