JP2008157091A - Exhaust heat recovery system for internal combustion engine - Google Patents

Exhaust heat recovery system for internal combustion engine Download PDF

Info

Publication number
JP2008157091A
JP2008157091A JP2006345892A JP2006345892A JP2008157091A JP 2008157091 A JP2008157091 A JP 2008157091A JP 2006345892 A JP2006345892 A JP 2006345892A JP 2006345892 A JP2006345892 A JP 2006345892A JP 2008157091 A JP2008157091 A JP 2008157091A
Authority
JP
Japan
Prior art keywords
passage
exhaust
heat exchange
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345892A
Other languages
Japanese (ja)
Inventor
Naoki Umeda
直喜 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006345892A priority Critical patent/JP2008157091A/en
Publication of JP2008157091A publication Critical patent/JP2008157091A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery system for an internal combustion engine switching the state of passage of exhaust to surely restrict heat exchange, while promoting exchange of heat between cooling water and the exhaust of the internal combustion engine. <P>SOLUTION: The exhaust heat recovery system 1A has a heat recovery part 3 disposed in an outer periphery of an exhaust passage part 2 through which the exhaust of the internal combustion engine to flow the cooling water therein. Since an inner pipe 4 is disposed inside the exhaust passage part 2, the exhaust passage part 2 is divided into an inside passage 5 and the outside passage positioned outside the inner passage 5. A slide valve 7 is provided to switch the passage state of the exhaust passing through the exhaust passage part 2, between a heat exchange promotion state prohibiting the passage of the exhaust in the inside passage 5 and allowing the passage of exhaust in the outside passage 6, and an heat exchange restriction state allowing the passage of the exhaust in the inside passage 5 and prohibiting the passage of the exhaust in the outside passage 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気通路に導かれる排気と内燃機関の冷却水との間で熱交換を行う内燃機関の排気熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus for an internal combustion engine that exchanges heat between exhaust gas guided to an exhaust passage of the internal combustion engine and cooling water of the internal combustion engine.

内燃機関の排気の熱を回収する排気熱回収装置として、内燃機関の排気が通過する排気通過部を、冷媒を導く冷媒管に隣接する伝熱通路と、冷媒管を迂回するバイパス通路とに区分し、バイパス通路に設けられた開閉弁を開閉することにより排気の通過状態を切り替えるものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として特許文献2が存在する。特許文献1の装置は、開閉弁にてバイパス通路が閉じられたときに排気通過部に流入した排気の全てが伝熱通路へ導かれて出口から排出される。一方、そのバイパス通路が開閉弁にて開かれたときには排気通過部に流入した排気の一部がバイパス通路を経由して出口に排出されるため、排気から冷媒への熱移動量が減る。   As an exhaust heat recovery device that recovers the heat of exhaust gas from an internal combustion engine, an exhaust passage portion through which the exhaust of the internal combustion engine passes is divided into a heat transfer passage adjacent to the refrigerant pipe that guides the refrigerant and a bypass passage that bypasses the refrigerant pipe And what switches the passage state of exhaust gas by opening and closing the on-off valve provided in the bypass passage is known (patent document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention. In the device of Patent Document 1, all of the exhaust gas flowing into the exhaust passage when the bypass passage is closed by the on-off valve is guided to the heat transfer passage and is discharged from the outlet. On the other hand, when the bypass passage is opened by the on-off valve, a part of the exhaust gas flowing into the exhaust passage portion is discharged to the outlet through the bypass passage, so that the amount of heat transfer from the exhaust to the refrigerant is reduced.

特開平9−76739号公報Japanese Patent Laid-Open No. 9-76739 特開平2−104952号公報JP-A-2-104952

しかしながら、特許文献1の装置では排気から冷媒への熱移動量を減少させるためにパイパス通路が開かれても伝熱通路が閉じられずに開かれたままであるので、一部の排気は伝熱通路を通過する。そのため、熱交換を制限すべき場合でも排気から冷媒への熱移動が生じるため、冷媒の温度が予期せずに上昇するおそれがある。   However, in the apparatus of Patent Document 1, even if the bypass passage is opened in order to reduce the amount of heat transfer from the exhaust to the refrigerant, the heat transfer passage remains open without being closed. Go through the passage. For this reason, even when heat exchange should be restricted, heat transfer from the exhaust to the refrigerant occurs, and the temperature of the refrigerant may rise unexpectedly.

そこで、本発明は、内燃機関の冷却水と排気との熱交換を促進できる一方で、熱交換を確実に制限できるように排気の通過状態を切り替えることができる内燃機関の排気熱回収装置を提供することを目的とする。   Therefore, the present invention provides an exhaust heat recovery device for an internal combustion engine that can promote the heat exchange between the cooling water and the exhaust gas of the internal combustion engine and can switch the passage state of the exhaust gas so that the heat exchange can be surely limited. The purpose is to do.

本発明の内燃機関の排気熱回収装置は、内燃機関の排気が通過する排気通過部の外周に、前記内燃機関の冷却水が流れる熱回収部が配置され、前記排気通過部を通過する排気と前記熱回収部を流れる冷却水との間で熱交換を行う内燃機関の排気熱回収装置において、前記排気通過部が内側通路と前記内側通路の外側に位置する外側通路とに区分されるように前記排気通過部の入口から出口に向う方向に延びる区画壁と、前記内側通路における排気の通過を禁止し、かつ前記外側通路における排気の通過を許容する熱交換促進状態と、前記内側通路における排気の通過を許容し、かつ前記外側通路における排気の通過を禁止する熱交換制限状態との間で、前記排気通過部を通過する排気の通過状態を切り替える切替手段と、備えることにより、上述した課題を解決する(請求項1)。   In the exhaust heat recovery apparatus for an internal combustion engine according to the present invention, a heat recovery portion through which cooling water of the internal combustion engine flows is arranged on an outer periphery of an exhaust passage portion through which the exhaust of the internal combustion engine passes, and the exhaust gas passing through the exhaust passage portion In an exhaust heat recovery apparatus for an internal combustion engine that performs heat exchange with cooling water flowing through the heat recovery section, the exhaust passage section is divided into an inner passage and an outer passage located outside the inner passage. A partition wall extending in a direction from the inlet to the outlet of the exhaust passage, a heat exchange promotion state that prohibits passage of exhaust in the inner passage and allows passage of exhaust in the outer passage, and exhaust in the inner passage Switching means for switching a passage state of the exhaust gas passing through the exhaust passage portion between a heat exchange restricted state that allows passage of the exhaust gas and prohibits passage of the exhaust gas in the outer passage, To solve the problems mentioned (claim 1).

本発明の排気熱回収装置によれば、熱交換促進状態のときには内側通路における排気の通過が禁止されて、排気通過部を流れる排気が外側通路を通過するため、熱回収部における熱交換を無駄なく行うことができる。一方、熱交換制限状態のときには外側通路における排気の通過が禁止されて、排気通過部を流れる排気が内側通路を通過するため、熱回収部における熱交換を確実に制限することができる。これにより、熱交換促進状態に切り替えられた場合には冷却水を速やかに昇温することができる。一方、熱交換制限状態に切り替えられた場合には熱交換を確実に制限できるので、オーバーヒートを防止することができる。   According to the exhaust heat recovery apparatus of the present invention, when the heat exchange is in an accelerated state, the exhaust passage in the inner passage is prohibited and the exhaust flowing through the exhaust passage portion passes through the outer passage, so that the heat exchange in the heat recovery portion is wasted. Can be done without. On the other hand, in the heat exchange restricted state, the passage of exhaust gas in the outer passage is prohibited, and the exhaust gas flowing through the exhaust passage portion passes through the inner passage, so that heat exchange in the heat recovery portion can be reliably restricted. Thereby, when it switches to the heat exchange acceleration | stimulation state, a cooling water can be heated up rapidly. On the other hand, when switched to the heat exchange restricted state, heat exchange can be reliably restricted, so that overheating can be prevented.

本発明の排気熱回収装置においては、熱交換制限状態のときに外側通路における排気の通過を禁止できるものであれば切替手段の構成に特段の制限はない。例えば、本発明の排気熱回収装置の一態様において、前記切替手段は、前記排気通過部の入口側に位置して前記外側通路を開閉できる入口側弁体と、前記排気通過部の出口側に位置して前記内側通路を開閉できる出口側弁体と、前記熱交換促進状態のときに前記入口側弁体が前記外側通路を開くとともに前記出口側弁体が前記内側通路を閉じる一方で、前記熱交換制限状態のときに前記入口側弁体が前記外側通路を閉じるとともに前記出口側弁体が前記内側通路を開くように、前記入口側弁体と前記出口側弁体とを一体移動可能に連結する連結手段と、を備えてもよい(請求項2)。この態様によれば、連結手段によって連結された入口側弁体と出口側弁体とを一体移動することにより、外側通路の開通と内側通路の閉鎖とを同時に実現できるとともに、外側通路の閉鎖と内側通路の開通とを同時に実現できる。   In the exhaust heat recovery apparatus of the present invention, there is no particular limitation on the configuration of the switching means as long as the exhaust passage in the outer passage can be prohibited in the heat exchange restricted state. For example, in one aspect of the exhaust heat recovery apparatus of the present invention, the switching means is located on the inlet side of the exhaust passage portion and is provided on the inlet side valve body that can open and close the outer passage, and on the outlet side of the exhaust passage portion. An outlet-side valve element that can be positioned to open and close the inner passage, and the inlet-side valve element opens the outer passage and the outlet-side valve element closes the inner passage when the heat exchange is promoted. The inlet-side valve body and the outlet-side valve body can be moved integrally so that the inlet-side valve body closes the outer passage and the outlet-side valve body opens the inner passage when in a heat exchange restricted state. And a connecting means for connecting (Claim 2). According to this aspect, by integrally moving the inlet side valve body and the outlet side valve body connected by the connecting means, the opening of the outer passage and the closing of the inner passage can be realized simultaneously, and the closing of the outer passage The opening of the inner passage can be realized at the same time.

この態様において、前記連結手段は、弾性変形可能な弾性部材を介在させて前記入口側弁体と前記出口側弁体とを連結してもよい(請求項3)。この場合には、熱交換促進状態において排気によって出口側弁体が押される力が増加した場合に、弾性部材が弾性変形することにより内側通路が開かれるため排気を逃がすことができる。そのため、弾性部材の弾性係数を適宜設定することにより、熱交換促進状態において許容値を超える背圧上昇を防止できるようになる。   In this aspect, the connecting means may connect the inlet side valve body and the outlet side valve body with an elastically deformable elastic member interposed therebetween (claim 3). In this case, when the force with which the outlet side valve body is pushed by the exhaust gas in the heat exchange promotion state is increased, the elastic member is elastically deformed to open the inner passage so that the exhaust gas can be released. Therefore, by appropriately setting the elastic coefficient of the elastic member, it is possible to prevent an increase in back pressure exceeding an allowable value in the heat exchange acceleration state.

本発明の排気熱回収装置の一態様において、前記切替手段は、前記熱交換促進状態のときに前記排気通過部の出口を一端部にて塞ぎ、かつ前記熱交換制限状態のときに前記排気通過部の入口を他端部にて塞ぐように前記区画壁に沿ってスライド可能な状態で設けられた筒状体と、前記筒状体の前記他端部に設けられて前記熱交換促進状態のときに前記他端部を閉じ、かつ前記熱交換制限状態のときに前記他端部を開く開閉弁と、を備え、前記筒状体の周壁部には、前記熱交換促進状態のときに前記区画壁にて開かれ、かつ前記熱交換制限状態のときに前記区画壁にて閉じられる通過孔が設けられてもよい(請求項4)。この態様によれば、筒状体をスライドさせつつ筒状体の位置に応じて開閉弁を開閉することにより、外側通路の開通と内側通路の閉鎖とを同時に実現できるとともに、外側通路の閉鎖と内側通路の開通とを同時に実現できる。   In one aspect of the exhaust heat recovery apparatus of the present invention, the switching means closes an outlet of the exhaust passage portion at one end when the heat exchange is promoted and passes the exhaust when the heat exchange is restricted. A cylindrical body provided in a slidable state along the partition wall so as to close the inlet of the part at the other end, and provided at the other end of the cylindrical body in the heat exchange promotion state. An opening / closing valve that closes the other end and opens the other end when the heat exchange is in a restricted state, and the peripheral wall of the cylindrical body has the opening when the heat exchange is promoted. A passage hole may be provided that is opened at the partition wall and closed at the partition wall when the heat exchange is restricted (claim 4). According to this aspect, by opening and closing the on-off valve according to the position of the cylindrical body while sliding the cylindrical body, the opening of the outer passage and the closing of the inner passage can be realized simultaneously, and the closing of the outer passage and The opening of the inner passage can be realized at the same time.

また、本発明の排気熱回収装置の一態様において、前記切替手段は、前記熱交換促進状態のときと前記熱交換制限状態のときとの間で相対位置が変化するように相対回転可能な状態で組み合わされた一対の板状体を含み、かつ前記排気通過部の入口側に設けられた回転弁として構成され、前記回転弁の各板状体には、前記内側通路に対応した位置に設けられる内側通過孔と前記外側通路に対応した位置に設けられる外側通過孔とが形成されており、前記回転弁は、前記熱交換促進状態のときに一方の板状体の前記内側通過孔が他方の板状体にて塞がれ、かつ各板状体の前記外側通過孔が重なり合うとともに、前記熱交換制限状態のときに各板状体の前記内側通過孔が重なり合い、かつ一方の板状体の前記外側通過孔が他方の板状体にて塞がれるように、各板状体に形成される前記内側通過孔及び前記外側通過孔のそれぞれの大きさ及び位置が設定されていてもよい(請求項5)。この態様によれば、回転弁の少なくとも一方の板状体を回転移動することにより、外側通路の開通と内側通路の閉鎖とを同時に実現できるとともに、外側通路の閉鎖と内側通路の開通とを同時に実現できる。この態様の回転弁は、排気の通過状態を切り替えるために区画壁の延びる方向に移動しないので、回転弁の搭載スペースに加えて移動のためのスペースを余分に確保する必要がない。従って、区画壁の延びる方向への寸法の増大を抑制できる利点がある。   Further, in one aspect of the exhaust heat recovery apparatus of the present invention, the switching unit is capable of relative rotation so that a relative position changes between the heat exchange promotion state and the heat exchange restriction state. And is configured as a rotary valve provided on the inlet side of the exhaust passage portion, and each plate of the rotary valve is provided at a position corresponding to the inner passage. An inner passage hole and an outer passage hole provided at a position corresponding to the outer passage, and the rotary valve is configured such that the inner passage hole of one plate-like body is the other when the heat exchange is promoted. And the outer passage holes of the respective plate-like bodies overlap with each other, and the inner passage holes of the respective plate-like bodies overlap with each other in the heat exchange restricted state, and one plate-like body. The outer passage hole is closed by the other plate-like body As may be set each of the size and position of said inner passage hole and the outer passage hole formed in each plate-like body (Claim 5). According to this aspect, by rotating and moving at least one plate-like body of the rotary valve, the opening of the outer passage and the closing of the inner passage can be realized simultaneously, and the closing of the outer passage and the opening of the inner passage are simultaneously performed. realizable. Since the rotary valve of this aspect does not move in the direction in which the partition wall extends in order to switch the exhaust passage state, it is not necessary to secure an extra space for movement in addition to the space for mounting the rotary valve. Therefore, there exists an advantage which can suppress the increase in the dimension to the direction where a partition wall is extended.

以上説明したように、本発明によれば、熱交換促進状態のときには内側通路における排気の通過が禁止されて、排気通過部を流れる排気が外側通路を通過するため、熱回収部における熱交換を無駄なく行うことができる。その一方で、熱交換制限状態のときには外側通路における排気の通過が禁止されて、排気通過部を流れる排気が内側通路を通過するため、熱回収部における熱交換を確実に制限することができる。これにより、熱交換促進状態に切り替えられた場合には冷却水を速やかに昇温することができるとともに、熱交換制限状態に切り替えられた場合には熱交換を確実に制限できる。   As described above, according to the present invention, when the heat exchange is promoted, the passage of the exhaust gas in the inner passage is prohibited, and the exhaust gas flowing through the exhaust passage portion passes through the outer passage. It can be done without waste. On the other hand, in the heat exchange restricted state, the passage of exhaust gas in the outer passage is prohibited and the exhaust gas flowing through the exhaust passage portion passes through the inner passage, so that heat exchange in the heat recovery portion can be reliably restricted. Thereby, when switched to the heat exchange promotion state, the temperature of the cooling water can be quickly raised, and when switched to the heat exchange restricted state, the heat exchange can be reliably restricted.

(第1の形態)
図1は本発明の排気熱回収装置の一形態を示し、図2は図1のII−II線に沿った断面図を示し、図3は図1のIII−III線に沿った断面図を示している。排気熱回収装置1Aは不図示の内燃機関の排気通路101に取り付けられ、その排気通路101に導かれる排気が通過する排気通過部2と、排気通過部2の外周に配置されて内燃機関の冷却水が流れる熱回収部3とを備えている。排気熱回収装置1Aは排気通過部2を通過した排気と熱回収部3を流れる冷却水との間で熱交換が行われ、熱交換後の冷却水は冷却水路102を通じて内燃機関の各部へ導かれる。
(First form)
1 shows an embodiment of the exhaust heat recovery apparatus of the present invention, FIG. 2 shows a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 shows a cross-sectional view taken along line III-III in FIG. Show. The exhaust heat recovery device 1A is attached to an exhaust passage 101 of an internal combustion engine (not shown), and is disposed on the exhaust passage portion 2 through which exhaust gas guided to the exhaust passage 101 passes, and on the outer periphery of the exhaust passage portion 2 to cool the internal combustion engine. And a heat recovery unit 3 through which water flows. In the exhaust heat recovery device 1A, heat exchange is performed between the exhaust gas that has passed through the exhaust passage section 2 and the cooling water flowing through the heat recovery section 3, and the cooling water after the heat exchange is guided to each part of the internal combustion engine through the cooling water channel 102. It is burned.

排気通過部2の内部には区画壁としての内管4が排気通過部2の入口2aから出口2bに向かう方向に延びるようにして設けられ、排気通過部2は内管4によって内側通路5とその内側通路5の外側に位置する外側通路6とに区分される。図示の形態では外側通路6が内側通路5を取り囲むように配置されている(図2及び図3参照)。   An inner pipe 4 as a partition wall is provided inside the exhaust passage portion 2 so as to extend in a direction from the inlet 2 a to the outlet 2 b of the exhaust passage portion 2, and the exhaust passage portion 2 is connected to the inner passage 5 by the inner tube 4. It is divided into an outer passage 6 positioned outside the inner passage 5. In the illustrated form, the outer passage 6 is disposed so as to surround the inner passage 5 (see FIGS. 2 and 3).

また、排気通過部2には排気の通過状態を切り替えるための切替手段としてのスライド弁7が設けられる。図4はスライド弁7の拡大斜視図である。図1〜図4に示すように、スライド弁7は排気通過部2の入口2a側に位置して外側通路6を開閉できる入口側弁体8と、排気通過部2の出口2b側に位置して内側通路5を開閉できる出口側弁体9と、入口側弁体8と出口側弁体9とを一体移動可能に連結する連結手段としての連結部材10とを備える。入口側弁体8は外側通路6を塞ぐことができる形状と大きさとを有し、出口側弁体9は内側通路5を塞ぐことができる形状と大きさとを有している。連結部材10は入口側弁体8と出口側弁体9との間隔が内管4の長手方向の寸法よりも大きくなるようにしてこれらの弁体8、9を連結する。これにより、スライド弁7は内管4に沿ってスライド可能に構成される。   The exhaust passage 2 is provided with a slide valve 7 as switching means for switching the exhaust passage state. FIG. 4 is an enlarged perspective view of the slide valve 7. As shown in FIGS. 1 to 4, the slide valve 7 is located on the inlet 2 a side of the exhaust passage portion 2 and can be opened and closed on the outer passage 6, and on the outlet 2 b side of the exhaust passage portion 2. And an outlet side valve body 9 capable of opening and closing the inner passage 5, and a connecting member 10 as a connecting means for connecting the inlet side valve body 8 and the outlet side valve body 9 so as to be integrally movable. The inlet side valve body 8 has a shape and a size capable of closing the outer passage 6, and the outlet side valve body 9 has a shape and a size capable of closing the inner passage 5. The connecting member 10 connects the valve bodies 8 and 9 such that the distance between the inlet side valve body 8 and the outlet side valve body 9 is larger than the longitudinal dimension of the inner tube 4. Thereby, the slide valve 7 is configured to be slidable along the inner tube 4.

図1に示すように、スライド弁7は駆動機構10にて駆動される。駆動機構10の詳細な構造の図示は省略するが、駆動機構10は駆動源としてのアクチュエータ11とアクチュエータの動力をスライド弁7に伝達する伝達機構12とを備える。図5はスライド弁7が図1の状態から図中右方向へ移動した状態を示している。図1及び図5に示すように、スライド弁7は駆動機構10によってスライドされることにより、内側通路5への排気の通過を禁止し、かつ外側通路6への排気の通過を許容する図1に示す熱交換促進状態と、内側通路5への排気の通過を許容し、かつ外側通路6への排気の通過を禁止する図5に示す熱交換制限状態との間で排気の通過状態を切り替えることができる。   As shown in FIG. 1, the slide valve 7 is driven by a drive mechanism 10. Although the detailed structure of the drive mechanism 10 is not shown, the drive mechanism 10 includes an actuator 11 as a drive source and a transmission mechanism 12 that transmits the power of the actuator to the slide valve 7. FIG. 5 shows a state in which the slide valve 7 has moved from the state of FIG. 1 to the right in the drawing. As shown in FIGS. 1 and 5, the slide valve 7 is slid by the drive mechanism 10 to prohibit passage of exhaust gas to the inner passage 5 and allow passage of exhaust gas to the outer passage 6. The exhaust passage state is switched between the heat exchange promotion state shown in FIG. 5 and the heat exchange restricted state shown in FIG. 5 that allows passage of exhaust gas to the inner passage 5 and prohibits passage of exhaust gas to the outer passage 6. be able to.

つまり、図1に示す熱交換促進状態のときには入口側弁体8が内管4の一方の端部から離れることにより外側通路6が開かれ、同時に出口側弁体9が内管4の他方の端部に接することにより内側通路5が閉じられる。そのため、図1の破線の矢印で示すように、排気通路101に導かれた排気は、排気通過部2の入口2aを経てから入口側弁体8の中央部及び外側通路6を通過して出口2bから排出される。これにより、外側通路6に隣接する熱回収部3における熱交換が促進されるため、冷却水を速やかに昇温することができる。   That is, when the heat exchange promotion state shown in FIG. 1 is established, the outer side passage 6 is opened when the inlet side valve body 8 is separated from one end of the inner pipe 4, and at the same time, the outlet side valve body 9 is The inner passage 5 is closed by contacting the end. Therefore, as indicated by the broken-line arrows in FIG. 1, the exhaust gas guided to the exhaust passage 101 passes through the inlet 2 a of the exhaust passage portion 2 and then passes through the central portion of the inlet side valve body 8 and the outer passage 6 to the outlet. It is discharged from 2b. Thereby, since heat exchange in the heat recovery unit 3 adjacent to the outer passage 6 is promoted, the temperature of the cooling water can be quickly raised.

一方、図5に示す熱交換制限状態のときには入口側弁体8が内管4の一方の端部と接することにより外側通路6が閉じられ、同時に出口側弁体9が内管4の他方の端部から離れることにより内側通路5が開かれる。そのため、図5の破線の矢印で示すように、排気通路101に導かれた排気は排気通過部2の入口2aを経てから入口側弁体8の中央部及び内側通路5を通過して、出口側弁体9の外側を回り込んで出口2bから排出される。これにより、外側通路6への排気の通過が禁止されるので、熱回収部3における熱交換が制限される。従って、冷却水の昇温が抑えられてオーバーヒートを防止することができる。   On the other hand, in the heat exchange restricted state shown in FIG. 5, the outer side passage 6 is closed by the inlet side valve body 8 coming into contact with one end of the inner pipe 4, and at the same time, the outlet side valve body 9 is moved to the other end of the inner pipe 4. The inner passage 5 is opened by moving away from the end. Therefore, as indicated by the broken-line arrows in FIG. 5, the exhaust gas guided to the exhaust passage 101 passes through the central portion of the inlet side valve element 8 and the inner passage 5 after passing through the inlet 2 a of the exhaust passage portion 2, and exits. It goes around the outside of the side valve body 9 and is discharged from the outlet 2b. Thereby, since the passage of the exhaust gas to the outer passage 6 is prohibited, heat exchange in the heat recovery unit 3 is limited. Therefore, the temperature rise of the cooling water is suppressed and overheating can be prevented.

排気熱回収装置1Aの熱交換促進状態と熱交換制限状態との切り替えは内燃機関の冷却水温に基づいて行われる。図6は制御装置13が実行する切替制御の制御ルーチンの一例を示したフローチャートである。この図に示すように、まず制御装置13はステップS1において内燃機関の冷却水温Twを取得する。冷却水温Twは冷却水路102に設けられた不図示の水温センサの出力信号に基づいて取得される。次に、ステップS2において、冷却水温Twが排気熱の回収を行う必要がない水温範囲の下限値である閾値Xよりも小さいか否かを判定する。冷却水温Twが閾値Xよりも小さい場合は排気熱の回収を行う必要があるので、ステップS3に進み、熱交換促進状態となるように駆動機構10を制御する。これにより、スライド弁7は図1の状態に切り替えられて、熱回収部3における熱交換が促進される。一方、冷却水温Twが閾値Xと等しい又はそれよりも大きい場合は排気熱の回収を行う必要がないため、ステップS4に進み、熱交換制限状態となるように駆動機構10を制御する。これにより、スライド弁7は図5の状態に切り替えられて熱回収部3における熱交換が制限されオーバーヒートが防止される。   Switching between the heat exchange promotion state and the heat exchange restriction state of the exhaust heat recovery apparatus 1A is performed based on the cooling water temperature of the internal combustion engine. FIG. 6 is a flowchart showing an example of a control routine for switching control executed by the control device 13. As shown in this figure, first, the control device 13 acquires the cooling water temperature Tw of the internal combustion engine in step S1. The cooling water temperature Tw is acquired based on an output signal of a water temperature sensor (not shown) provided in the cooling water channel 102. Next, in step S2, it is determined whether or not the cooling water temperature Tw is smaller than a threshold value X that is a lower limit value of a water temperature range in which it is not necessary to collect exhaust heat. When the cooling water temperature Tw is smaller than the threshold value X, it is necessary to recover the exhaust heat, so the process proceeds to step S3 and the drive mechanism 10 is controlled so that the heat exchange is promoted. Thereby, the slide valve 7 is switched to the state of FIG. 1, and heat exchange in the heat recovery unit 3 is promoted. On the other hand, when the cooling water temperature Tw is equal to or greater than the threshold value X, it is not necessary to recover the exhaust heat, so the process proceeds to step S4 and the drive mechanism 10 is controlled so as to enter the heat exchange restricted state. As a result, the slide valve 7 is switched to the state shown in FIG. 5, and heat exchange in the heat recovery unit 3 is limited to prevent overheating.

(第2の形態)
次に、図7〜図9を参照して本発明の第2の形態を説明する。この形態は切替手段の形態を除き第1の形態と同一であるため、第1の形態と同一構成には同一符号を図面に付して説明を省略する。これらの図に示すように、排気熱回収装置1Bは切替手段としての円筒スライド弁21を有している。円筒スライド弁21はスライド可能な状態で内管4の内側に嵌め込まれる筒状体としての円筒体22と、排気通過部2の入口2a側に位置する円筒体22の一方(図の左方)の端部に回転可能に取り付けられた開閉弁23とを備えている(図8参照)。円筒体22は排気通過部2の入口2a及び出口2bのそれぞれを塞ぐことができ、かつ内管4の内周面との間に隙間を生じない外径を有する。円筒体22の他方(図の右方)の端部には、その周壁を貫く複数の通過孔22aが形成されている。開閉弁23は円筒体22の直線運動を弁軸回りの回転運動に変換する不図示の変換機構を介して回転駆動される。
(Second form)
Next, a second embodiment of the present invention will be described with reference to FIGS. Since this form is the same as the first form except for the form of the switching means, the same components as those in the first form are denoted by the same reference numerals in the drawings, and description thereof is omitted. As shown in these drawings, the exhaust heat recovery apparatus 1B has a cylindrical slide valve 21 as switching means. The cylindrical slide valve 21 is one of a cylindrical body 22 as a cylindrical body fitted inside the inner tube 4 in a slidable state and a cylindrical body 22 positioned on the inlet 2a side of the exhaust passage portion 2 (left side in the figure). And an opening / closing valve 23 rotatably attached to the end of the head (see FIG. 8). The cylindrical body 22 has an outer diameter that can block each of the inlet 2 a and the outlet 2 b of the exhaust passage portion 2 and that does not create a gap with the inner peripheral surface of the inner tube 4. A plurality of passage holes 22 a penetrating the peripheral wall are formed at the other end (right side of the figure) of the cylindrical body 22. The on-off valve 23 is rotationally driven via a conversion mechanism (not shown) that converts linear motion of the cylindrical body 22 into rotational motion around the valve shaft.

図9は円筒スライド弁21が図7の状態から図中左方向へ移動した状態を示している。図7及び図9に示すように、円筒スライド弁22は駆動機構10によって円筒体22がスライドされ、そのスライドに伴って通過孔22aが内管4にて開閉され、かつ開閉弁23が円筒体22の位置に応じて変換機構にて開閉される。これにより、内側通路5への排気の通過を禁止し、かつ外側通路6への排気の通過を許容する図7に示す熱交換促進状態と、内側通路5への排気の通過を許容し、かつ外側通路6への排気の通過を禁止する図9に示す熱交換制限状態との間で排気の通過状態を切り替えることができる。即ち、図7に示す熱交換促進状態のときには排気通過部2の入口2aから円筒体22の一方の端部が離れ、他方の端部に形成された通過孔22aが内管4にて開かれ、かつ開閉弁23が全閉されることにより、外側通路6が開かれると同時に内側通路5が閉じられる。そのため、図7の破線の矢印で示すように、排気通路101に導かれた排気は、排気通過部2の入口2aを経てから外側通路6を通過し、円筒体22の通過孔22aを介して円筒体22の内部へ導かれて出口2bから排出される。これにより、外側通路6に隣接する熱回収部3における熱交換が促進されるため、冷却水を速やかに昇温することができる。   FIG. 9 shows a state where the cylindrical slide valve 21 has moved from the state of FIG. 7 to the left in the drawing. As shown in FIGS. 7 and 9, the cylindrical slide valve 22 is slid by the driving mechanism 10, and the passage hole 22 a is opened and closed by the inner tube 4 along with the sliding, and the open / close valve 23 is the cylindrical body. It is opened and closed by the conversion mechanism according to the position of 22. This prohibits the passage of exhaust gas to the inner passage 5, and allows the passage of exhaust gas to the outer passage 6, and permits the passage of exhaust gas to the inner passage 5, as shown in FIG. The exhaust passage state can be switched between the heat exchange restricted state shown in FIG. 9 and prohibiting passage of the exhaust gas to the outer passage 6. That is, in the heat exchange acceleration state shown in FIG. 7, one end portion of the cylindrical body 22 is separated from the inlet 2a of the exhaust passage portion 2, and a passage hole 22a formed in the other end portion is opened in the inner tube 4. When the opening / closing valve 23 is fully closed, the outer passage 6 is opened and the inner passage 5 is closed simultaneously. Therefore, as indicated by the dashed arrow in FIG. 7, the exhaust gas guided to the exhaust passage 101 passes through the outer passage 6 after passing through the inlet 2 a of the exhaust passage portion 2, and passes through the passage hole 22 a of the cylindrical body 22. It is guided to the inside of the cylindrical body 22 and discharged from the outlet 2b. Thereby, since heat exchange in the heat recovery unit 3 adjacent to the outer passage 6 is promoted, the temperature of the cooling water can be quickly raised.

一方、図9に示す熱交換制限状態のときには排気通過部2の入口2aが円筒体22の一方の端部にて塞がれ、他方の端部に形成された通過孔22aが内管4にて閉じられ、かつ開閉弁23が全開されることにより、外側通路6が閉じられると同時に内側通路5が開かれる。そのため、図9の破線の矢印で示すように、排気通路101に導かれた排気は、排気通過部2の入口2aに位置する円筒体22の内部へ導かれて内側通路5を通過して出口2bから排出される。これにより、外側通路6への排気の通過が禁止されるので、熱回収部3における熱交換が制限される。従って、冷却水の昇温が抑えられるので、オーバーヒートを防止することができる。   On the other hand, in the heat exchange restriction state shown in FIG. 9, the inlet 2 a of the exhaust passage portion 2 is closed at one end of the cylindrical body 22, and the passage hole 22 a formed at the other end is formed in the inner tube 4. When the on-off valve 23 is fully opened, the outer passage 6 is closed and the inner passage 5 is opened at the same time. Therefore, as indicated by the broken-line arrows in FIG. 9, the exhaust gas guided to the exhaust passage 101 is guided to the inside of the cylindrical body 22 located at the inlet 2 a of the exhaust passage portion 2 and passes through the inner passage 5 to the outlet. It is discharged from 2b. Thereby, since the passage of the exhaust gas to the outer passage 6 is prohibited, heat exchange in the heat recovery unit 3 is limited. Therefore, since the temperature rise of the cooling water can be suppressed, overheating can be prevented.

(第3の形態)
次に、図10〜図15を参照して本発明の第3の形態を説明する。この形態は切替手段の形態を除き第1の形態と同一であるため、第1の形態と同一構成には同一符号を図面に付して説明を省略する。図10は熱交換促進状態の排気熱回収装置を、図13は図10のXIII−XIII線に沿った拡大断面図を、図14は熱交換制限状態の排気熱回収装置を、図15は図14のXV−XV線に沿った拡大断面図をそれぞれ示している。排気熱回収装置1Cは切替手段としての回転弁31を有している。回転弁31は相対回転可能な状態で組み合わされた一対の円板(板状体)32、33を備える。図11及び図12は各円板32、33の平面図である。図10〜図12に示すように、各円板32、33は同一直径を有し、互いに密着した状態で、排気通過部2の入口2a側に配置される。一方の円板33は内管4の端部に突き当てられた状態で固定され、他方の円板32はその中心C1と一方の円板33の中心C2とを一致させた状態で駆動機構10にて回転駆動される。
(Third form)
Next, a third embodiment of the present invention will be described with reference to FIGS. Since this form is the same as the first form except for the form of the switching means, the same components as those in the first form are denoted by the same reference numerals in the drawings, and description thereof is omitted. 10 is an exhaust heat recovery apparatus in a heat exchange accelerated state, FIG. 13 is an enlarged cross-sectional view along the line XIII-XIII in FIG. 10, FIG. 14 is an exhaust heat recovery apparatus in a heat exchange restricted state, and FIG. 14 are enlarged cross-sectional views taken along line XV-XV. The exhaust heat recovery apparatus 1C has a rotary valve 31 as switching means. The rotary valve 31 includes a pair of discs (plate bodies) 32 and 33 that are combined in a relatively rotatable state. 11 and 12 are plan views of the discs 32 and 33. FIG. As shown in FIGS. 10 to 12, the disks 32 and 33 have the same diameter and are arranged on the inlet 2 a side of the exhaust passage portion 2 in a state of being in close contact with each other. One disk 33 is fixed in a state of being abutted against the end of the inner tube 4, and the other disk 32 is in a state in which the center C 1 and the center C 2 of the one disk 33 coincide with each other. Is driven to rotate.

図11に示すように、円板32には外側通路6に対応する位置に8つの外側通過孔32aが周方向に並ぶように形成されるとともに、内側通路5に対応する位置に4つの内側通過孔32bが周方向に並ぶように形成される。一方、図12に示すように、円板33にも外側通過孔33aと内側通過孔33bとがそれぞれ形成されるが、円板33は外側通過孔33aに対する内側通過孔33bの配置が図11の円板32に関するその配置を基準として45°ずれている。そして、図11及び図12の向きで各円板32、33を重ねた場合に、円板32の外側通過孔32aと円板33の外側通過孔33aとが重なり合うと同時に、円板33の内側通過孔33bが円板32にて塞がれ、かつ図11の円板32を図示の位置から45°回転させた状態で各円板32、33を重ねた場合には、円板32の内側通過孔32bと円板33の内側通過孔33bとが重なり合うと同時に、円板33の外側通過孔33aが円板32にて塞がれるように各通過孔32a、33a、32b、33bの大きさ及び位置がそれぞれ設定されている(図13及び図15を参照)。   As shown in FIG. 11, the disk 32 is formed with eight outer passage holes 32 a aligned in the circumferential direction at positions corresponding to the outer passage 6, and four inner passages at positions corresponding to the inner passage 5. The holes 32b are formed so as to be aligned in the circumferential direction. On the other hand, as shown in FIG. 12, an outer passage hole 33a and an inner passage hole 33b are also formed in the disc 33, but the arrangement of the inner passage hole 33b with respect to the outer passage hole 33a in the disc 33 is as shown in FIG. The disc 32 is shifted by 45 ° with respect to its arrangement. 11 and 12, when the discs 32 and 33 are overlapped, the outer passage hole 32a of the disc 32 and the outer passage hole 33a of the disc 33 overlap, and at the same time, the inner side of the disc 33. When the through holes 33b are closed by the disk 32 and the disks 32 and 33 are stacked with the disk 32 of FIG. The size of each of the passage holes 32 a, 33 a, 32 b, and 33 b is such that the outer passage hole 33 a of the disk 33 is closed by the disk 32 at the same time as the passage hole 32 b and the inner passage hole 33 b of the disk 33 overlap. And position are set respectively (see FIGS. 13 and 15).

これにより、図10及び図13に示した熱交換促進状態のときには、内側通路5が閉じられると同時に外側通路6が開かれることになるため、図10の破線の矢印で示すように、排気通路101に導かれた排気は排気通過部2の入口2aを経てから、互いに重なり合った外側通過孔32a、33aを介して外側通路6に導かれて、出口2bから排出される。これにより、外側通路6に隣接する熱回収部3における熱交換が促進されるため、冷却水を速やかに昇温することができる。一方、図14及び図15に示した熱交換制限状態のときには、内側通路5が開かれると同時に外側通路6が閉じられることになるため、図10の破線の矢印で示すように、排気通路101に導かれた排気は排気通過部2の入口2aを経てから、互いに重なり合った内側通過孔32b、33bを介して内側通路5に導かれ、出口2bから排出される。これにより、外側通路6への排気の通過が禁止されるので、熱回収部3における熱交換が制限されてオーバーヒートを防止することができる。   Accordingly, in the heat exchange acceleration state shown in FIGS. 10 and 13, the inner passage 5 is closed and the outer passage 6 is opened at the same time. Therefore, as shown by the dashed arrow in FIG. The exhaust gas guided to 101 passes through the inlet 2a of the exhaust passage portion 2, and then is guided to the outer passage 6 through the mutually overlapping outer passage holes 32a and 33a, and is discharged from the outlet 2b. Thereby, since heat exchange in the heat recovery unit 3 adjacent to the outer passage 6 is promoted, the temperature of the cooling water can be quickly raised. On the other hand, in the heat exchange restriction state shown in FIGS. 14 and 15, the inner passage 5 is opened and the outer passage 6 is closed at the same time, so that the exhaust passage 101 is shown as indicated by the dashed arrow in FIG. 10. Exhaust gas led to the exhaust passage 2 passes through the inlet 2a of the exhaust passage 2 and is then led to the inner passage 5 through the inner passage holes 32b and 33b overlapping each other, and is discharged from the outlet 2b. Thereby, since the passage of the exhaust gas to the outer passage 6 is prohibited, heat exchange in the heat recovery unit 3 is limited, and overheating can be prevented.

本発明は上記の各形態に限定されず、本発明の要旨の範囲内で種々の形態にて実施できる。図1に示した第1の形態のスライド弁7は、連結部材10にて入口側弁体8と出口側弁体9とを連結したが、図16に示すように、連結部材10に弾性変形可能なコイルばね等の弾性部材41を取り付けて入口側弁体8と出口側弁体9とを連結して本発明に係る連結手段を構成してもよい。これにより、入口側弁体8と出口側弁体9との間に弾性部材41が介在するため、図1に示した熱交換促進状態において排気によって出口側弁体9が押される力が増加した場合には弾性部材41が弾性変形して出口側弁体9が内管4の端部から離れることにより、排気を逃がすことができる。図16の形態においては弾性部材41の弾性係数を適宜設定することで、熱交換促進状態において許容値を超える背圧上昇を防止できるようになる。また、入口側弁体8の外周にシールリング等の密閉性を向上させるシール部材を装着してもよい。   The present invention is not limited to the above embodiments, and can be implemented in various forms within the scope of the gist of the present invention. The slide valve 7 of the first embodiment shown in FIG. 1 connects the inlet side valve body 8 and the outlet side valve body 9 with the connecting member 10, but elastically deforms to the connecting member 10 as shown in FIG. 16. A connecting means according to the present invention may be configured by attaching an elastic member 41 such as a possible coil spring and connecting the inlet side valve body 8 and the outlet side valve body 9. Thereby, since the elastic member 41 is interposed between the inlet side valve body 8 and the outlet side valve body 9, the force with which the outlet side valve body 9 is pushed by the exhaust in the heat exchange promotion state shown in FIG. 1 is increased. In this case, the elastic member 41 is elastically deformed and the outlet side valve body 9 is separated from the end portion of the inner tube 4 so that the exhaust can be released. In the form of FIG. 16, by appropriately setting the elastic coefficient of the elastic member 41, it is possible to prevent an increase in back pressure exceeding an allowable value in the heat exchange accelerated state. In addition, a seal member that improves the sealing performance such as a seal ring may be attached to the outer periphery of the inlet side valve body 8.

図7に示す第2の形態では、内管4の内側に円筒体22を嵌め込んでいるが、これとは反対に内管4の外側に円筒体22を嵌め込むように構成してもよい。また、図10に示す第3の形態では、入口側の円板32を回転させて出口側の円板33を固定しているが、これとは反対に入口側の円板32を固定して出口側の円板33を回転させてもよい。また、各円板32、33を回転させてもよい。また、各円板32、33に形成される通過孔32a、32b、33a、33bの形状、大きさ、位置、数には特に制限はなく、図示の形態と同等の機能を発揮する限りこれらは適宜に設定することができる。   In the second embodiment shown in FIG. 7, the cylindrical body 22 is fitted inside the inner tube 4, but on the contrary, the cylindrical body 22 may be fitted outside the inner tube 4. . Further, in the third embodiment shown in FIG. 10, the disk 32 on the inlet side is rotated to fix the disk 33 on the outlet side. On the contrary, the disk 32 on the inlet side is fixed. The disk 33 on the outlet side may be rotated. Further, each of the disks 32 and 33 may be rotated. Moreover, there is no restriction | limiting in particular in the shape of the passage holes 32a, 32b, 33a, 33b formed in each disk 32, 33, a position, and a number, As long as the same function as the form of illustration is exhibited, these are It can be set appropriately.

本発明の排気熱回収装置の一形態を示した図。The figure which showed one form of the exhaust heat recovery apparatus of this invention. 図1のII−II線に沿った断面図。Sectional drawing along the II-II line of FIG. 図1のIII−III線に沿った断面図。Sectional drawing along the III-III line of FIG. 図1のスライド弁の拡大斜視図。The expansion perspective view of the slide valve of FIG. 図1のスライド弁が図1の状態から図中右方向へ移動した状態を示した図。The figure which showed the state which the slide valve of FIG. 1 moved to the right direction in the figure from the state of FIG. 制御装置が実行する切替制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of the switching control which a control apparatus performs. 第2の形態に係る熱交換促進状態の排気熱回収装置を示した図。The figure which showed the exhaust-heat-heat recovery apparatus of the heat exchange promotion state which concerns on a 2nd form. 図7の円筒スライド弁の拡大斜視図。The expansion perspective view of the cylindrical slide valve of FIG. 図7の円筒スライド弁が図7の状態から図中左方向へ移動した熱交換制限状態の排気熱回収装置を示した図。The figure which showed the exhaust-heat recovery apparatus of the heat exchange restriction | limiting state which the cylindrical slide valve of FIG. 7 moved to the left direction in the figure from the state of FIG. 第3の形態に係る熱交換促進状態の排気熱回収装置を示した図。The figure which showed the exhaust heat recovery apparatus of the heat exchange acceleration state which concerns on a 3rd form. 回転弁の一方の円板を示した平面図。The top view which showed one disk of the rotary valve. 回転弁の他方の円板を示した平面図。The top view which showed the other disc of the rotary valve. 図10のXIII−XIII線に沿った拡大断面図。The expanded sectional view along the XIII-XIII line of FIG. 第3の形態に係る熱交換制限状態の排気熱回収装置を示した図。The figure which showed the exhaust heat recovery apparatus of the heat exchange restriction | limiting state which concerns on a 3rd form. 図14のXV−XV線に沿った拡大断面図。The expanded sectional view along the XV-XV line of FIG. 第1の形態に係るスライド弁の変形例を示した図。The figure which showed the modification of the slide valve which concerns on a 1st form.

符号の説明Explanation of symbols

1A〜1C 排気熱回収装置
2 排気通過部
2a 入口
2b 出口
3 熱回収部
4 内管(区画壁)
5 内側通路
6 外側通路
7 スライド弁(切替手段)
8 入口側弁体
9 出口側弁体
10 連結部材(連結手段)
21 円筒スライド弁(切替手段)
22 円筒体(筒状部材)
22a 通過孔
23 開閉弁
31 回転弁(切替手段)
32 円板(板状体)
32a 外側通過孔
32b 内側通過孔
33 円板(板状体)
33a 外側通過孔
33b 内側通過孔
41 弾性部材
1A to 1C Exhaust heat recovery device 2 Exhaust passage part 2a Inlet 2b Outlet 3 Heat recovery part 4 Inner pipe (partition wall)
5 Inner passage 6 Outer passage 7 Slide valve (switching means)
8 Inlet side valve element 9 Outlet side valve element 10 Connecting member (connecting means)
21 Cylindrical slide valve (switching means)
22 Cylindrical body (tubular member)
22a passage hole 23 on-off valve 31 rotary valve (switching means)
32 disc (plate)
32a Outer passage hole 32b Inner passage hole 33 Disc (plate-like body)
33a Outer passage hole 33b Inner passage hole 41 Elastic member

Claims (5)

内燃機関の排気が通過する排気通過部の外周に、前記内燃機関の冷却水が流れる熱回収部が配置され、前記排気通過部を通過する排気と前記熱回収部を流れる冷却水との間で熱交換を行う内燃機関の排気熱回収装置において、
前記排気通過部が内側通路と前記内側通路の外側に位置する外側通路とに区分されるように前記排気通過部の入口から出口に向う方向に延びる区画壁と、前記内側通路における排気の通過を禁止し、かつ前記外側通路における排気の通過を許容する熱交換促進状態と、前記内側通路における排気の通過を許容し、かつ前記外側通路における排気の通過を禁止する熱交換制限状態との間で、前記排気通過部を通過する排気の通過状態を切り替える切替手段と、備えることを特徴とする内燃機関の排気熱回収装置。
A heat recovery part through which the cooling water of the internal combustion engine flows is arranged on the outer periphery of the exhaust passage part through which the exhaust of the internal combustion engine passes, and between the exhaust gas that passes through the exhaust passage part and the cooling water that flows through the heat recovery part In an exhaust heat recovery device for an internal combustion engine that performs heat exchange,
A partition wall extending in a direction from the inlet to the outlet of the exhaust passage portion so that the exhaust passage portion is divided into an inner passage and an outer passage located outside the inner passage; and passage of exhaust gas in the inner passage. Between a heat exchange acceleration state that prohibits and allows passage of exhaust gas in the outer passage, and a heat exchange restriction state that permits passage of exhaust gas in the inner passage and prohibits passage of exhaust gas in the outer passage. An exhaust heat recovery apparatus for an internal combustion engine, comprising: switching means for switching a passage state of the exhaust gas passing through the exhaust passage portion.
前記切替手段は、前記排気通過部の入口側に位置して前記外側通路を開閉できる入口側弁体と、前記排気通過部の出口側に位置して前記内側通路を開閉できる出口側弁体と、前記熱交換促進状態のときに前記入口側弁体が前記外側通路を開くとともに前記出口側弁体が前記内側通路を閉じる一方で、前記熱交換制限状態のときに前記入口側弁体が前記外側通路を閉じるとともに前記出口側弁体が前記内側通路を開くように、前記入口側弁体と前記出口側弁体とを一体移動可能に連結する連結手段と、を備えることを特徴とする請求項1に記載の内燃機関の排気熱回収装置。   The switching means is located on the inlet side of the exhaust passage part and is capable of opening and closing the outer passage, and is located on the outlet side of the exhaust passage part and is capable of opening and closing the inner passage. The inlet valve body opens the outer passage when the heat exchange is promoted and the outlet valve body closes the inner passage, while the inlet valve body is the heat exchanger when the heat exchange is restricted. Connection means for connecting the inlet-side valve body and the outlet-side valve body so as to be integrally movable so that the outer-side passage is closed and the outlet-side valve body opens the inner passage. Item 2. An exhaust heat recovery apparatus for an internal combustion engine according to Item 1. 前記連結手段は、弾性変形可能な弾性部材を介在させて前記入口側弁体と前記出口側弁体とを連結することを特徴とする請求項2に記載の内燃機関の排気熱回収装置。   The exhaust heat recovery apparatus for an internal combustion engine according to claim 2, wherein the connecting means connects the inlet side valve body and the outlet side valve body with an elastically deformable elastic member interposed therebetween. 前記切替手段は、前記熱交換促進状態のときに前記排気通過部の出口を一端部にて塞ぎ、かつ前記熱交換制限状態のときに前記排気通過部の入口を他端部にて塞ぐように前記区画壁に沿ってスライド可能な状態で設けられた筒状体と、前記筒状体の前記他端部に設けられて前記熱交換促進状態のときに前記他端部を閉じ、かつ前記熱交換制限状態のときに前記他端部を開く開閉弁と、を備え、
前記筒状体の周壁部には、前記熱交換促進状態のときに前記区画壁にて開かれ、かつ前記熱交換制限状態のときに前記区画壁にて閉じられる通過孔が設けられていることを特徴とする請求項1に記載の内燃機関の排気熱回収装置。
The switching means closes the outlet of the exhaust passage part at one end when the heat exchange is promoted, and closes the inlet of the exhaust passage part at the other end when the heat exchange is restricted. A cylindrical body provided in a slidable manner along the partition wall; and provided at the other end of the cylindrical body and closing the other end when the heat exchange is promoted; and An on-off valve that opens the other end when the exchange is restricted, and
The peripheral wall portion of the cylindrical body is provided with a passage hole that is opened by the partition wall when the heat exchange is promoted and is closed by the partition wall when the heat exchange is restricted. The exhaust heat recovery device for an internal combustion engine according to claim 1.
前記切替手段は、前記熱交換促進状態のときと前記熱交換制限状態のときとの間で相対位置が変化するように相対回転可能な状態で組み合わされた一対の板状体を含み、かつ前記排気通過部の入口側に設けられた回転弁として構成され、前記回転弁の各板状体には、前記内側通路に対応した位置に設けられる内側通過孔と前記外側通路に対応した位置に設けられる外側通過孔とが形成されており、
前記回転弁は、前記熱交換促進状態のときに一方の板状体の前記内側通過孔が他方の板状体にて塞がれ、かつ各板状体の前記外側通過孔が重なり合うとともに、前記熱交換制限状態のときに各板状体の前記内側通過孔が重なり合い、かつ一方の板状体の前記外側通過孔が他方の板状体にて塞がれるように、各板状体に形成される前記内側通過孔及び前記外側通過孔のそれぞれの大きさ及び位置が設定されていることを特徴とする請求項1に記載の内燃機関の排気熱回収装置。
The switching means includes a pair of plate-like bodies combined in a relatively rotatable state so that a relative position changes between the heat exchange promotion state and the heat exchange restriction state, and It is configured as a rotary valve provided on the inlet side of the exhaust passage part, and each plate-like body of the rotary valve is provided at an inner passage hole provided at a position corresponding to the inner passage and at a position corresponding to the outer passage. Formed with an outer passage hole,
The rotary valve is configured such that when the heat exchange is promoted, the inner passage hole of one plate-like body is closed by the other plate-like body, and the outer passage holes of the respective plate-like bodies are overlapped, Formed in each plate-like body so that the inner passage holes of each plate-like body overlap and the outer passage holes of one plate-like body are blocked by the other plate-like body when in a heat exchange restricted state 2. The exhaust heat recovery apparatus for an internal combustion engine according to claim 1, wherein sizes and positions of the inner passage hole and the outer passage hole are set.
JP2006345892A 2006-12-22 2006-12-22 Exhaust heat recovery system for internal combustion engine Pending JP2008157091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345892A JP2008157091A (en) 2006-12-22 2006-12-22 Exhaust heat recovery system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345892A JP2008157091A (en) 2006-12-22 2006-12-22 Exhaust heat recovery system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008157091A true JP2008157091A (en) 2008-07-10

Family

ID=39658289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345892A Pending JP2008157091A (en) 2006-12-22 2006-12-22 Exhaust heat recovery system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008157091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150072077A (en) * 2013-12-19 2015-06-29 현대자동차주식회사 Engine warm-up device for vehicle
US9074506B2 (en) 2013-09-16 2015-07-07 Hyundai Motor Company Structure for operating system for utilizing exhaust heat of vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074506B2 (en) 2013-09-16 2015-07-07 Hyundai Motor Company Structure for operating system for utilizing exhaust heat of vehicle
KR20150072077A (en) * 2013-12-19 2015-06-29 현대자동차주식회사 Engine warm-up device for vehicle
KR101976499B1 (en) 2013-12-19 2019-05-10 현대자동차 주식회사 Engine warm-up device for vehicle

Similar Documents

Publication Publication Date Title
US9394813B2 (en) Exhaust-gas heat exchanger
JP5696031B2 (en) Exhaust heat recovery device
ES2331852T3 (en) BY-PASS VALVE AND INTEGRATED EGR.
JP6467191B2 (en) Rotary exhaust heat recovery device
JP2009002239A (en) Egr cooler
JPWO2006090725A1 (en) Exhaust heat recovery device
JP5222977B2 (en) Waste heat recovery device
JP6725204B2 (en) Exhaust heat recovery device
KR20180025145A (en) Bypass valve
CN110366654B (en) Control valve
US9964075B2 (en) Exhaust-gas heat exchanger with bypass pipe
JP6423262B2 (en) Exhaust heat recovery device
JP2007247638A (en) Exhaust heat recovery device
KR101123161B1 (en) Exhaust heat recovery apparatus
KR20180134767A (en) Exhaust heat recovery and acoustic valve
JP2008157091A (en) Exhaust heat recovery system for internal combustion engine
JP7037963B2 (en) Control valve
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP4451319B2 (en) Double tube heat exchanger
JP2006299942A (en) Heat exchanger with bypass change over valve
JP2017166403A (en) Exhaust heat recovery device
EP2227646A1 (en) Valve arrangement
JP2019078392A (en) Fluid control valve device
US20170343302A1 (en) Heat exchanger
JP2011214526A (en) Exhaust heat recovery device