JP2008155223A - Machining method of cubic boron nitride sintered body - Google Patents

Machining method of cubic boron nitride sintered body Download PDF

Info

Publication number
JP2008155223A
JP2008155223A JP2006344223A JP2006344223A JP2008155223A JP 2008155223 A JP2008155223 A JP 2008155223A JP 2006344223 A JP2006344223 A JP 2006344223A JP 2006344223 A JP2006344223 A JP 2006344223A JP 2008155223 A JP2008155223 A JP 2008155223A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
wavelength
laser beam
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344223A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shiraishi
浩之 白石
Shunichi Igari
俊一 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006344223A priority Critical patent/JP2008155223A/en
Publication of JP2008155223A publication Critical patent/JP2008155223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining method of cubic boron nitride sintered body, wherein efficient machining is enabled and a good cut section is obtained in cutting a pBN sintered body or an hBN sintered body. <P>SOLUTION: The method includes a groove machining process in which ultraviolet laser beams λ are emitted to a cBN sintered body 8 using thermally cracking cubic boron nitride or hexagonal boron nitride as a raw material, and a cutting process in which, after the groove machining process, cutting is performed along the groove formed in that process by imparting an external force thereto. The wavelength of the ultraviolet laser beams λ is set to 157-300 nm. The laser beams are of higher order harmonics wherein fundamental wave laser beams are made incident on the wavelength conversion element of a nonlinear optical crystal, and subjected to the wavelength conversion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、立方晶窒化ホウ素焼結体の中でもバインダー等の不純物を含まない熱分解立方晶窒化ホウ素又は六方晶窒化ホウ素を原料とした立方晶窒化ホウ素焼結体の加工方法に関する。   The present invention relates to a method for processing a cubic boron nitride sintered body using pyrolytic cubic boron nitride or hexagonal boron nitride as a raw material which does not contain impurities such as a binder among the cubic boron nitride sintered bodies.

立方晶窒化ホウ素(cBN)焼結体は、高硬度を有すると共に鉄系金属と反応しない等の優れた特性を有しているため、切削工具等に多く採用されている。このcBN焼結体は、cBNの粉末に焼結助剤(バインダー)を添加した状態で焼結させることにより製造する方法と、cBN原料である熱分解窒化ホウ素(pBN)又は六方晶窒化ホウ素(hBN)を触媒や焼結助剤を加えずにcBNに転換させながら焼結させることにより製造する方法と、が知られている。   Cubic boron nitride (cBN) sintered bodies have high hardness and are excellent in properties such as not reacting with iron-based metals, and are therefore widely used in cutting tools and the like. This cBN sintered body is manufactured by sintering with cBN powder added with a sintering aid (binder), and pyrolytic boron nitride (pBN) or hexagonal boron nitride (cBN raw material). and a method for producing hBN) by sintering it while converting it to cBN without adding a catalyst or a sintering aid.

cBN焼結体を刃先として切削工具に取り付けるために、cBN焼結体を所定形状に加工する必要があるが、従来は、放電加工法、ワイヤー切断法又はスライシングマシン加工による加工法等によってcBN焼結体の切断加工を行っている。特に、焼結助剤を添加して焼結したcBN焼結体では、導電性を有しているため、放電加工法による切断加工が採用されている。また、特許文献1では、YAGレーザ光を照射してcBN焼結体の表面に溝を形成し、外力を加えて溝に沿って切断する方法が提案されている。さらに、特許文献2では、立方晶窒化ホウ素の表面に光を照射して加工する方法において、光の波長を190nmから360nmとする技術が提案されている。   In order to attach the cBN sintered body to the cutting tool as a cutting edge, it is necessary to process the cBN sintered body into a predetermined shape. Conventionally, however, the cBN sintering is performed by an electric discharge machining method, a wire cutting method, a machining method by slicing machine processing, or the like. Cutting the ligature. In particular, a cBN sintered body that has been sintered with the addition of a sintering aid has conductivity, and therefore, cutting by an electric discharge machining method is employed. Patent Document 1 proposes a method of irradiating YAG laser light to form a groove on the surface of the cBN sintered body and applying an external force to cut along the groove. Further, Patent Document 2 proposes a technique for changing the wavelength of light from 190 nm to 360 nm in a method of processing by irradiating light on the surface of cubic boron nitride.

特開平10−118780号公報JP-A-10-118780 特開平5−330806号公報JP-A-5-330806

上記従来の技術には、以下の課題が残されている。
すなわち、導電性を有さないpBN焼結体やhBN焼結体を切断加工するには、放電加工法が適さないため、ワイヤー切断法やスライシングマシン加工による加工が採用されているが、高硬度なcBNを加工するため、砥石における砥粒の消耗が激しく、効率的な加工が困難であった。また、上記特許文献1に記載の技術では、YAGレーザ光の照射による熱加工によって溝を形成し、その後に外力によって切断するが、YAGレーザ加工による溝にチッピングが生じてしまい、外力を加えて切断してもきれいな切断面を得ることが困難であった。同様に特許文献2に記載の技術においても、例えば波長355nmのレーザ光をpBN焼結体やhBN焼結体に照射して加工を行っても、やはりチッピングが生じてしまう不都合があった。
The following problems remain in the conventional technology.
That is, since electric discharge machining is not suitable for cutting pBN sintered bodies and hBN sintered bodies that do not have electrical conductivity, machining by wire cutting or slicing machine processing is adopted. In addition, since cBN is processed, the abrasive grains in the grindstone are consumed very much, making it difficult to perform efficient processing. In the technique described in Patent Document 1, a groove is formed by thermal processing by YAG laser light irradiation and then cut by external force. However, chipping occurs in the groove by YAG laser processing, and external force is applied. It was difficult to obtain a clean cut surface even after cutting. Similarly, the technique described in Patent Document 2 also has a disadvantage that chipping occurs even when a pBN sintered body or an hBN sintered body is irradiated with a laser beam having a wavelength of 355 nm, for example.

本発明は、前述の課題に鑑みてなされたもので、pBN焼結体又はhBN焼結体の切断加工において効率的な加工が可能であると共に良好な切断面を得ることができる立方晶窒化ホウ素焼結体の加工方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. Cubic boron nitride that can be efficiently processed in a cutting process of a pBN sintered body or an hBN sintered body and can obtain a good cut surface. It aims at providing the processing method of a sintered compact.

本発明者らは、cBN材料に対するレーザ加工について鋭意研究を進めた結果、照射するレーザ光の波長とcBN表面に形成された溝の状態とに相関があることを見出した。
本発明は、前記課題を解決するために上記知見に基づいて以下の構成を採用した。すなわち、本発明の立方晶窒化ホウ素焼結体の加工方法は、熱分解立方晶窒化ホウ素又は六方晶窒化ホウ素を原料とした立方晶窒化ホウ素焼結体にレーザビームを照射して溝加工を行う工程と、前記溝加工の後に、外力を加えて前記溝加工で形成した溝に沿って切断する工程と、を有し、前記レーザビームの波長を、157nm以上300nm以下とし、前記レーザビームが、非線形光学結晶の波長変換素子内に基本波レーザビームを入射させて波長変換した高調波レーザビームであることを特徴とする。
As a result of diligent research on laser processing on cBN materials, the present inventors have found that there is a correlation between the wavelength of laser light to be irradiated and the state of grooves formed on the cBN surface.
The present invention employs the following configuration based on the above findings in order to solve the above problems. That is, the method for processing a cubic boron nitride sintered body according to the present invention performs groove processing by irradiating a laser beam to a cubic boron nitride sintered body using pyrolytic cubic boron nitride or hexagonal boron nitride as a raw material. And a step of applying an external force and cutting along the groove formed by the groove processing after the groove processing, the wavelength of the laser beam is set to 157 nm to 300 nm, and the laser beam is It is a harmonic laser beam that is wavelength-converted by making a fundamental laser beam incident on a wavelength conversion element of a nonlinear optical crystal.

この立方晶窒化ホウ素焼結体の加工方法では、pBN焼結体又はhBN焼結体の溝加工を行う際に照射するレーザビームの波長を157nm以上300nm以下とするので、cBN中の不純物や欠陥による吸収に対応したエネルギーを入射することで、効率的にエネルギーが吸収されて加工溝にチッピングが生じ難く、良好な切断面を得ることができる。   In this processing method of the cubic boron nitride sintered body, the wavelength of the laser beam irradiated when performing the groove processing of the pBN sintered body or the hBN sintered body is set to 157 nm or more and 300 nm or less. By making the energy corresponding to the absorption due to the incident, the energy is efficiently absorbed and chipping is hardly generated in the processed groove, and a good cut surface can be obtained.

また、波長変換素子による高調波レーザビームを用いるので、小型の装置で上記波長範囲のレーザを安定して照射することができる。   In addition, since the harmonic laser beam by the wavelength conversion element is used, it is possible to stably irradiate the laser in the above wavelength range with a small apparatus.

さらに、本発明の立方晶窒化ホウ素焼結体の加工方法は、前記基本波レーザビームが、波長1064nmであるYAGレーザの基本波であり、前記高調波レーザビームが、波長266nmであるYAGレーザの4倍波であることを特徴とする。   Furthermore, in the method for processing a cubic boron nitride sintered body according to the present invention, the fundamental laser beam is a fundamental wave of a YAG laser having a wavelength of 1064 nm, and the harmonic laser beam is a YAG laser having a wavelength of 266 nm. It is characterized by being a 4th harmonic.

また、本発明の立方晶窒化ホウ素焼結体の加工方法は、前記非線形光学結晶が、Liであることを特徴とする。 Moreover, the processing method of the cubic boron nitride sintered body of the present invention is characterized in that the nonlinear optical crystal is Li 2 B 4 O 7 .

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る立方晶窒化ホウ素焼結体の加工方法によれば、溝加工の際に照射するレーザビームの波長を157nm以上300nm以下とするので、cBNに効率的にエネルギーが吸収されて加工溝にチッピングが生じ難く、きれいな切断面を得ることができる。したがって、pBN焼結体又はhBN焼結体の切断加工において効率的な加工が可能であると共に良好な切断面を得ることができる。また、波長変換素子による高調波レーザビームを用いるので、小型の装置で上記波長範囲のレーザを安定して照射することができる。
The present invention has the following effects.
That is, according to the processing method of the cubic boron nitride sintered body according to the present invention, the wavelength of the laser beam irradiated in the groove processing is set to 157 nm or more and 300 nm or less, so that energy is efficiently absorbed by the cBN. Chipping hardly occurs in the processed groove, and a clean cut surface can be obtained. Therefore, efficient cutting is possible in the cutting of the pBN sintered body or the hBN sintered body, and a good cut surface can be obtained. In addition, since the harmonic laser beam by the wavelength conversion element is used, it is possible to stably irradiate the laser in the above wavelength range with a small apparatus.

以下、本発明に係る立方晶窒化ホウ素焼結体の加工方法の一実施形態を、図1から図4を参照しながら説明する。   Hereinafter, an embodiment of a method for processing a cubic boron nitride sintered body according to the present invention will be described with reference to FIGS. 1 to 4.

本実施形態の立方晶窒化ホウ素焼結体の加工方法は、熱分解立方晶窒化ホウ素(pBN)又は六方晶窒化ホウ素(hBN)を原料とした立方晶窒化ホウ素(cBN)焼結体にレーザビームを照射して溝加工を行う工程と、この溝加工の後に、外力を加えて溝加工で形成した溝に沿って切断する工程と、を有している。そして、本実施形態の加工方法では、上記レーザビームの波長を157nm以上300nm以下に設定している。特に、本実施形態では、波長266nmであるNd:YAGレーザの4倍波(第4高調波)を用いている。   The processing method of the cubic boron nitride sintered body of the present embodiment is a laser beam applied to a cubic boron nitride (cBN) sintered body using pyrolytic cubic boron nitride (pBN) or hexagonal boron nitride (hBN) as a raw material. And a step of cutting the groove along the groove formed by grooving by applying an external force after the grooving. And in the processing method of this embodiment, the wavelength of the said laser beam is set to 157 nm or more and 300 nm or less. In particular, in the present embodiment, a fourth harmonic (fourth harmonic) of an Nd: YAG laser having a wavelength of 266 nm is used.

上記レーザビームは、非線形光学結晶の波長変換素子内に基本波レーザビームを入射させて波長変換した高調波レーザビームが用いられる。さらに、上記基本波レーザビームは、波長1064nmであるNd:YAGレーザの基本波を用い、上記高調波レーザビームは、上述したように波長266nmであるNd:YAGレーザの4倍波(第4高調波)を用いている。   As the laser beam, a harmonic laser beam is used in which a fundamental wave laser beam is incident on a wavelength conversion element of a nonlinear optical crystal and wavelength-converted. Further, the fundamental laser beam uses a fundamental wave of an Nd: YAG laser having a wavelength of 1064 nm, and the harmonic laser beam is a fourth harmonic (fourth harmonic) of an Nd: YAG laser having a wavelength of 266 nm as described above. Wave).

この加工方法における上記溝加工は、以下のレーザ加工装置を用いて行う。このレーザ加工装置は、図1に示すように、波長266nmの紫外レーザビームλを発生させる紫外レーザ発振機1と、紫外レーザビームλを所定光路に導くミラー等の光学部品2と、光学部品2で導かれた紫外レーザビームλを一点に集光させる対物レンズ3と、集光点に加工対象物であるcBN焼結体8を載置しNC制御されたXYステージ4と、を備えている。   The groove processing in this processing method is performed using the following laser processing apparatus. As shown in FIG. 1, the laser processing apparatus includes an ultraviolet laser oscillator 1 that generates an ultraviolet laser beam λ having a wavelength of 266 nm, an optical component 2 such as a mirror that guides the ultraviolet laser beam λ to a predetermined optical path, and an optical component 2. The objective lens 3 for condensing the ultraviolet laser beam λ guided in step 1 at one point, and the NC control XY stage 4 on which the cBN sintered body 8 as a processing object is placed at the condensing point. .

上記紫外レーザ発振機1は、基本波レーザビーム(波長1064nm)を発生させるNd:YAGレーザ5と、基本波レーザビームの2倍波を発生させるSHG結晶(波長変換素子)6と、さらに高調波レーザビームとして4倍波(波長266nm)を発生させるFHG結晶(波長変換素子)7と、を備えている。なお、SHG結晶6は、非線形光学結晶であるLBO(LiB)結晶を用い、FHG結晶7は、非線形光学結晶であるLB4(Li:四ホウ酸リチウム単結晶)結晶を用いている。
このレーザ加工装置では、XYステージ4と同期を取りながら紫外レーザ発振機1から紫外レーザビームλが照射されてcBN焼結体8の表面に溝加工が施される。
The ultraviolet laser oscillator 1 includes an Nd: YAG laser 5 that generates a fundamental laser beam (wavelength 1064 nm), an SHG crystal (wavelength conversion element) 6 that generates a second harmonic of the fundamental laser beam, and a harmonic. And an FHG crystal (wavelength conversion element) 7 that generates a fourth harmonic (wavelength 266 nm) as a laser beam. The SHG crystal 6 uses an LBO (LiB 3 O 5 ) crystal that is a nonlinear optical crystal, and the FHG crystal 7 is an LB4 (Li 2 B 4 O 7 : lithium tetraborate single crystal) crystal that is a nonlinear optical crystal. Is used.
In this laser processing apparatus, the surface of the cBN sintered body 8 is grooved by being irradiated with an ultraviolet laser beam λ from the ultraviolet laser oscillator 1 while synchronizing with the XY stage 4.

また、本実施形態の加工方法を行う他のレーザ加工装置としては、図2に示すように、紫外レーザ発振機1と、紫外レーザビームλを所定光路に導くエクスパンダー等の光学部品12と、紫外レーザビームλをX,Y方向にスキャンさせるガルバノスキャナ13と、スキャンされる紫外レーザビームλを一点に集光させるFθレンズ14と、集光点にcBN焼結体8を載置しステップ移動可能なステージ15と、を備えている。
このレーザ加工装置では、Fθレンズ14でcBN焼結体8の所定領域に溝加工が施されると、ステージ15をステップ的に移動させて次の加工が施される。
Further, as another laser processing apparatus for performing the processing method of the present embodiment, as shown in FIG. 2, an ultraviolet laser oscillator 1, an optical component 12 such as an expander for guiding the ultraviolet laser beam λ to a predetermined optical path, The galvano scanner 13 for scanning the ultraviolet laser beam λ in the X and Y directions, the Fθ lens 14 for condensing the scanned ultraviolet laser beam λ at one point, and the cBN sintered body 8 placed at the condensing point are moved stepwise. And a possible stage 15.
In this laser processing apparatus, when a groove is formed in a predetermined region of the cBN sintered body 8 by the Fθ lens 14, the stage 15 is moved stepwise to perform the next processing.

本実施形態の加工方法における加工条件は、例えばNd:YAGレーザの4倍波(第4高調波)として出力1W、繰り返し10kHzのパルスレーザを用い、走査速度30mm/s、走査回数2パス、ワーク上での紫外レーザビームλのパワー0.7W、レンズの焦点距離100mmとする。   The processing conditions in the processing method of the present embodiment include, for example, a pulse laser having an output of 1 W and a repetition rate of 10 kHz as a fourth harmonic (fourth harmonic) of an Nd: YAG laser, a scanning speed of 30 mm / s, a scanning frequency of 2 passes, and a workpiece. The power of the ultraviolet laser beam λ is 0.7 W and the focal length of the lens is 100 mm.

なお、上記加工条件のうち走査速度を変えた場合の加工溝の深さを測定した結果を、図3に示す。この図からわかるように、走査速度が遅いほど加工溝が深くなる。また、上記加工条件のうち走査速度だけでなく走査回数も変えた場合の加工溝の深さを測定した結果を、図4に示す。この図からわかるように、走査速度が遅いほど、また走査回数が多いほど加工溝が深くなる。なお、いずれもX軸方向及びY軸方向についてそれぞれ溝加工を行った。   In addition, the result of having measured the depth of the processing groove at the time of changing scanning speed among the said processing conditions is shown in FIG. As can be seen from this figure, the slower the scanning speed, the deeper the processing groove. FIG. 4 shows the result of measuring the depth of the processed groove when not only the scanning speed but also the number of scans is changed among the above processing conditions. As can be seen from this figure, the processed groove becomes deeper as the scanning speed is slower and the number of times of scanning is larger. In each case, groove processing was performed in each of the X-axis direction and the Y-axis direction.

cBNの基礎吸収端(バンドギャップ)は、約8eVと言われ、波長で言えば155nm程度である。したがって、この波長より大きなエネルギーの光を照射すれば、吸収されて加工が始まると考えられる。従来、YAGレーザの3倍波である波長355nmのレーザ光を照射する加工では、上記基礎吸収端に達しないエネルギーであり、多光子吸収による加工となり、多くのエネルギーを入射しないと加工が進まず、そのためにチッピングが生じやすくなると考えられる。   The basic absorption edge (band gap) of cBN is said to be about 8 eV, and is about 155 nm in terms of wavelength. Therefore, if light with an energy larger than this wavelength is irradiated, it is considered that the light is absorbed and processing starts. Conventionally, in processing that irradiates a laser beam having a wavelength of 355 nm, which is a third harmonic wave of a YAG laser, the energy does not reach the fundamental absorption edge, and processing is due to multiphoton absorption, and processing does not proceed unless much energy is incident. Therefore, it is considered that chipping is likely to occur.

しかしながら、超高圧、高温下で合成されたcBN(pBNやhBN)は、その発光特性において250〜300nm付近に不純物あるいは欠陥によるブロードな発光ピークが見られる。このため、本実施形態のように照射するレーザビームの波長を157nm以上300nm以下とすることにより、上記cBNの不純物準位や欠陥の吸収を介して加工が行われると考えられる。したがって、本実施形態では、cBN中の不純物や欠陥の吸収に対応した波長157nm以上300nm以下のエネルギーを入射することで、効率的にエネルギーが吸収されて加工溝にチッピングが生じ難く、良好な切断面を得ることができる。
また、本実施形態では、波長変換素子による高調波レーザビームを用いるので、小型の装置で上記波長範囲のレーザを安定して照射することができる。
However, cBN (pBN and hBN) synthesized under ultrahigh pressure and high temperature has a broad emission peak due to impurities or defects in the vicinity of 250 to 300 nm in its emission characteristics. For this reason, it is considered that the processing is performed through absorption of the cBN impurity levels and defects by setting the wavelength of the irradiated laser beam to 157 nm to 300 nm as in the present embodiment. Therefore, in this embodiment, when energy having a wavelength of 157 nm or more and 300 nm or less corresponding to the absorption of impurities and defects in cBN is incident, the energy is efficiently absorbed and chipping does not easily occur in the processed groove, and the cutting is excellent. You can get a plane.
In this embodiment, since the harmonic laser beam by the wavelength conversion element is used, the laser in the above wavelength range can be stably irradiated with a small apparatus.

次に、上記実施形態によって実際にcBNを加工した際の加工状態について図5及び図6を参照して説明する。
レーザビームの波長を4倍波(波長266nm)とした場合の加工状態を図5に示すと共に、比較例としてレーザビームの波長を3倍波(波長355nm)とした場合の加工状態を図6に示す。
図5及び図6からわかるように、比較例では、加工溝に顕著なチッピングが多く発生しているのに対し、本実施例では、チッピングの無い非常にきれいな直線状の加工溝が得られている。
Next, the processing state when cBN is actually processed according to the above embodiment will be described with reference to FIGS.
FIG. 5 shows a processing state when the wavelength of the laser beam is a fourth harmonic (wavelength 266 nm), and FIG. 6 shows a processing state when the wavelength of the laser beam is a third harmonic (wavelength 355 nm) as a comparative example. Show.
As can be seen from FIGS. 5 and 6, in the comparative example, a lot of significant chipping occurs in the machining groove, whereas in this example, a very clean linear machining groove without chipping is obtained. Yes.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、レーザ光源としてNd:YAGレーザ5の第4高調波を用いたが、その他のレーザであっても構わない。例えば、Nd:YVOレーザ(波長1064nm)の第4高調波(266nm)、Nd:YLFレーザ(波長1047nm)の第4高調波(262nm)、Ndをドープしたその他の固体レーザの第4高調波、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、Fエキシマレーザ(波長157nm)、その他の非線形光学を利用した和周波による上記波長範囲の紫外レーザなどが適用可能である。 For example, in the above embodiment, the fourth harmonic of the Nd: YAG laser 5 is used as the laser light source, but other lasers may be used. For example, the fourth harmonic (266 nm) of an Nd: YVO 4 laser (wavelength 1064 nm), the fourth harmonic (262 nm) of an Nd: YLF laser (wavelength 1047 nm), and the fourth harmonic of another solid-state laser doped with Nd. A KrF excimer laser (wavelength 248 nm), an ArF excimer laser (wavelength 193 nm), an F 2 excimer laser (wavelength 157 nm), an ultraviolet laser in the above-mentioned wavelength range by the sum frequency using other nonlinear optics, and the like are applicable.

また、SHG結晶6及びFHG結晶7として用いた非線形光学結晶としては、上記LBOやLB4以外のもの、例えばBBO(β−BaB)、KTP(KTiOPO)、CLBO (CsLiB10)等を用いても構わない。なお、上記実施形態のように、長尺化がしやすく、高い変換効率とウォークオフによるビーム変形との両方が得られるLB4結晶が好ましい。 The nonlinear optical crystals used as the SHG crystal 6 and the FHG crystal 7 are other than the above LBO and LB4, for example, BBO (β-BaB 2 O 4 ), KTP (KTiOPO 4 ), CLBO (CsLiB 6 O 10 ). Etc. may be used. Note that, as in the above-described embodiment, an LB4 crystal that is easy to be elongated and has both high conversion efficiency and beam deformation by walk-off is preferable.

本発明に係る一実施形態の立方晶窒化ホウ素焼結体の加工方法で用いるレーザ加工装置を示す概略的な構成図である。It is a schematic block diagram which shows the laser processing apparatus used with the processing method of the cubic boron nitride sintered compact of one Embodiment concerning this invention. 本実施形態の立方晶窒化ホウ素焼結体の加工方法で用いる他のレーザ加工装置を示す概略的な構成図である。It is a schematic block diagram which shows the other laser processing apparatus used with the processing method of the cubic boron nitride sintered compact of this embodiment. 本実施形態の立方晶窒化ホウ素焼結体の加工方法において、走査速度を変えた場合の溝深さを示すグラフである。It is a graph which shows the groove depth at the time of changing the scanning speed in the processing method of the cubic boron nitride sintered compact of this embodiment. 本実施形態の立方晶窒化ホウ素焼結体の加工方法において、走査速度だけでなく走査回数を変えた場合の溝深さを示すグラフである。In the processing method of the cubic boron nitride sintered compact of this embodiment, it is a graph which shows the groove depth at the time of changing not only scanning speed but the frequency | count of scanning. 本発明に係る実施例の立方晶窒化ホウ素焼結体の加工方法による加工溝の拡大写真である。It is an enlarged photograph of the processing groove by the processing method of the cubic boron nitride sintered compact of the example concerning the present invention. 本発明に係る比較例の立方晶窒化ホウ素焼結体の加工方法による加工溝の拡大写真である。It is an enlarged photograph of the processing groove | channel by the processing method of the cubic boron nitride sintered compact of the comparative example which concerns on this invention.

符号の説明Explanation of symbols

1…紫外レーザ発振機、6…SHG結晶、7…FHG結晶、8…cBN(立方晶窒化ホウ素)焼結体、λ…紫外レーザビーム   DESCRIPTION OF SYMBOLS 1 ... Ultraviolet laser oscillator, 6 ... SHG crystal, 7 ... FHG crystal, 8 ... cBN (cubic boron nitride) sintered compact, (lambda) ... Ultraviolet laser beam

Claims (3)

熱分解立方晶窒化ホウ素又は六方晶窒化ホウ素を原料とした立方晶窒化ホウ素焼結体にレーザビームを照射して溝加工を行う工程と、
前記溝加工の後に、外力を加えて前記溝加工で形成した溝に沿って切断する工程と、を有し、
前記レーザビームの波長を、157nm以上300nm以下とし、
前記レーザビームが、非線形光学結晶の波長変換素子内に基本波レーザビームを入射させて波長変換した高調波レーザビームであることを特徴とする立方晶窒化ホウ素焼結体の加工方法。
Grooving by irradiating a laser beam to a cubic boron nitride sintered body using pyrolytic cubic boron nitride or hexagonal boron nitride as a raw material;
A step of cutting along the groove formed by the groove processing by applying an external force after the groove processing;
The wavelength of the laser beam is 157 nm to 300 nm,
A method for processing a cubic boron nitride sintered body, wherein the laser beam is a harmonic laser beam obtained by making a fundamental wave laser beam incident on a wavelength conversion element of a nonlinear optical crystal and converting the wavelength.
前記基本波レーザビームが、波長1064nmであるYAGレーザの基本波であり、前記高調波レーザビームが、波長266nmであるYAGレーザの4倍波であることを特徴とする請求項1に記載の立方晶窒化ホウ素焼結体の加工方法。   The cubic laser beam according to claim 1, wherein the fundamental laser beam is a fundamental wave of a YAG laser having a wavelength of 1064 nm, and the harmonic laser beam is a fourth harmonic of a YAG laser having a wavelength of 266 nm. A method for processing a sintered boron nitride sintered body. 前記非線形光学結晶が、Liであることを特徴とする請求項1又は2に記載の立方晶窒化ホウ素焼結体の加工方法。 The method for processing a cubic boron nitride sintered body according to claim 1, wherein the nonlinear optical crystal is Li 2 B 4 O 7 .
JP2006344223A 2006-12-21 2006-12-21 Machining method of cubic boron nitride sintered body Pending JP2008155223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344223A JP2008155223A (en) 2006-12-21 2006-12-21 Machining method of cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344223A JP2008155223A (en) 2006-12-21 2006-12-21 Machining method of cubic boron nitride sintered body

Publications (1)

Publication Number Publication Date
JP2008155223A true JP2008155223A (en) 2008-07-10

Family

ID=39656716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344223A Pending JP2008155223A (en) 2006-12-21 2006-12-21 Machining method of cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP2008155223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529973A (en) * 2016-08-25 2019-10-17 コヒーレント カイザースラウテルン ゲーエムベーハー Modular UV pulsed laser source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330806A (en) * 1992-05-26 1993-12-14 Sumitomo Electric Ind Ltd Method for machining cubic boron nitride
JP2006123004A (en) * 2004-09-29 2006-05-18 Mitsubishi Materials Corp Laser processing method and laser processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330806A (en) * 1992-05-26 1993-12-14 Sumitomo Electric Ind Ltd Method for machining cubic boron nitride
JP2006123004A (en) * 2004-09-29 2006-05-18 Mitsubishi Materials Corp Laser processing method and laser processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529973A (en) * 2016-08-25 2019-10-17 コヒーレント カイザースラウテルン ゲーエムベーハー Modular UV pulsed laser source
JP7018433B2 (en) 2016-08-25 2022-02-10 コヒーレント カイザースラウテルン ゲーエムベーハー Modular UV pulsed laser source

Similar Documents

Publication Publication Date Title
TWI389759B (en) Laser processing method and laser processing device
KR101081613B1 (en) Method for scribing fragile material and apparatus for scribing fragile material
CN102470484B (en) Laser processing device and laser processing
Lopez et al. Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors
JP2007331983A (en) Scribing method for glass
JP4142694B2 (en) Laser processing method
JP6065518B2 (en) Cutting tool manufacturing method and manufacturing apparatus
JP2007237210A (en) Laser beam machining method and apparatus
JP2007076077A (en) Laser beam cutting method for fully cutting brittle material and apparatus for the method
Patel et al. Parametric investigation in co2 laser cutting quality of hardox-400 materials
CN100591458C (en) Laser processing method and laser processing apparatus
JP2008155223A (en) Machining method of cubic boron nitride sintered body
JP2006167809A (en) Laser beam machining method
JPH05330806A (en) Method for machining cubic boron nitride
JP2009167070A (en) Processing method of diamond and processing device of diamond
Singh et al. Laser micromachining of semiconductor materials
JP2006015359A (en) Laser beam machining apparatus and laser beam machining method
Wyszyński et al. Application of DPSS Nd: YAG (532nm) laser for precise machining of diamond
Holtz et al. Development of high power laser ablation process for polycrystalline diamond polishing-Part 1: Fundamental understanding of PCD ultra-short pulsed laser ablation
Wyszyński Some aspects of optical instrumentation design for precise laser machining
JP2006082232A (en) Laser processing method
Scalbert et al. Development of high power laser ablation process for polycrystalline diamond polishing: Part 1. Fundamental understanding of PCD ultra-short pulsed laser ablation
Savriama et al. Laser micro-cutting of wide band gap materials
Patel et al. High speed micromachining with high power UV laser
Toenshoff et al. Speed-rate improvement for microcutting of thin silicon with femtosecond laser pulses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111019