JP2008155186A - Method and apparatus for producing ozone water - Google Patents

Method and apparatus for producing ozone water Download PDF

Info

Publication number
JP2008155186A
JP2008155186A JP2006350281A JP2006350281A JP2008155186A JP 2008155186 A JP2008155186 A JP 2008155186A JP 2006350281 A JP2006350281 A JP 2006350281A JP 2006350281 A JP2006350281 A JP 2006350281A JP 2008155186 A JP2008155186 A JP 2008155186A
Authority
JP
Japan
Prior art keywords
carbon dioxide
ozone
ultrapure water
gas
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006350281A
Other languages
Japanese (ja)
Inventor
Takayuki Jizaimaru
隆行 自在丸
Isao Sawamoto
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Core Technology KK
Original Assignee
Nomura Micro Science Co Ltd
Core Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd, Core Technology KK filed Critical Nomura Micro Science Co Ltd
Priority to JP2006350281A priority Critical patent/JP2008155186A/en
Publication of JP2008155186A publication Critical patent/JP2008155186A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing ozone water, which can realize a contemplated effect with the use of a small amount of carbon dioxide without causing bubbling and, at the same time, can realize a stabler production of ozone water than in the case where ozone is dissolved in ultrapure water into which carbon dioxide has been injected. <P>SOLUTION: In a part on the downstream of ultrapure water in which carbonated water containing ozone dissolved therein has been dissolved, a predetermined amount of carbon dioxide is further dissolved in the ultrapure water. The amount of the carbon dioxide dissolved is regulated by a signal output from a carbon dioxide concentration measuring device 6, which comprises a specific resistance measuring device or a pH meter for measuring the electrical conductivity of ultrapure water and is disposed between the dissolution point and the point of use. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、通水中のオゾンの分解を抑制したオゾン水の製造方法及び製造装置に係り、さらに詳しくは、電子材料の洗浄において、オゾン濃度が高く、安定した濃度のオゾン水を供給可能なオゾン水の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing ozone water in which decomposition of ozone in running water is suppressed, and more particularly, ozone that has a high ozone concentration and can supply a stable concentration of ozone water in cleaning electronic materials. The present invention relates to a water production method and a production apparatus.

半導体用シリコン基板等の電子材料の表面から異物を取り除くためにウエット洗浄が広く行われており、近年洗浄工程の簡略化、省資源化等の要請から強い酸化力を有するオゾン水がウエット洗浄に用いられるようになってきている。   Wet cleaning has been widely used to remove foreign substances from the surface of electronic materials such as silicon substrates for semiconductors. In recent years, ozone water with strong oxidizing power has been used for wet cleaning due to demands for simplification of cleaning processes and resource saving. It has come to be used.

このようなオゾン水の製造方法としては、超純水の電解により生成するオゾンを超純水に溶解させる方法が知られている。   As such a method for producing ozone water, a method is known in which ozone generated by electrolysis of ultrapure water is dissolved in ultrapure water.

この方法では、オゾン水中の溶存オゾンは経時的に分解して酸素ガスとなるため長距離配管による移送は困難であり、このため洗浄装置等の近くにオゾン水の製造装置を配設しなければならず洗浄装置等の設計やレイアウトに制約を受ける上に、複数のユースポイントにオゾン水を供給する必要がある場合にはオゾン水の製造装置を複数設置しなければならないという問題がある。   In this method, dissolved ozone in ozone water decomposes over time and becomes oxygen gas, so it is difficult to transfer it by long-distance piping. For this reason, an apparatus for producing ozone water must be installed near the cleaning device. In addition, the design and layout of the cleaning device and the like are restricted, and there is a problem that a plurality of ozone water production apparatuses must be installed when it is necessary to supply ozone water to a plurality of use points.

オゾンが分解して酸素になるのを抑制する方法として、超純水に予め炭酸ガス(CO2 )を溶解させ、この炭酸ガスの溶解した超純水にオゾンを溶解させる方法が提案されている(特許文献1)。
特開2000−37695号公報 この方法では、超純水供給ラインにオゾン溶解装置が設置され、このオゾン溶解装置の前段において炭酸ガスが超純水供給ラインに注入される。なお、このオゾン溶解装置に供給されるオゾンは、超純水供給ラインから超純水の一部を分取ラインで分取し電解装置で電解した後、気液分離装置で分離したものである。なお、気液分離装置の液相と電解装置の電極槽とは配管によって連結されており、電解装置の電極槽で消費されただけの超純水が気液分離装置の液相を介して分取ラインから供給されている。
As a method for suppressing the decomposition of ozone into oxygen, a method has been proposed in which carbon dioxide (CO2) is dissolved in ultrapure water in advance, and ozone is dissolved in ultrapure water in which this carbon dioxide is dissolved ( Patent Document 1).
In this method, an ozone dissolving device is installed in the ultrapure water supply line, and carbon dioxide gas is injected into the ultrapure water supply line before the ozone dissolving device. In addition, the ozone supplied to this ozone dissolution apparatus is a part of ultrapure water separated from the ultrapure water supply line by the preparative line, electrolyzed by the electrolyzer, and then separated by the gas-liquid separator. . The liquid phase of the gas-liquid separator and the electrode tank of the electrolyzer are connected by a pipe, and ultrapure water only consumed in the electrode tank of the electrolyzer is separated through the liquid phase of the gas-liquid separator. It is supplied from the intake line.

しかしながら、このような従来のオゾン水の製造方法には次のような問題があった。   However, such a conventional method for producing ozone water has the following problems.

すなわち、超純水の電解装置では、炭酸水を電解しているためオゾンと炭酸ガスを溶解した超純水が生成するが、このときオゾンは酸素との混合物に20%以下、通常は10%程度含まれる成分として生成し、酸素と炭酸ガスも含んだ混合気体の分圧に相当する分だけが超純水中に溶解する。   That is, in the electrolytic device of ultrapure water, carbonated water is electrolyzed, so ultrapure water in which ozone and carbon dioxide gas are dissolved is generated. At this time, ozone is 20% or less, usually 10% in a mixture of oxygen. Only a portion corresponding to the partial pressure of the mixed gas that is generated as a component included and includes oxygen and carbon dioxide is dissolved in the ultrapure water.

すなわち、超純水の電解において、炭酸ガスの濃度を高くするとオゾンの溶解量が減少し、特に、飽和溶解度の近く(pH3.5近傍)まで溶解させると気泡の発生によるバブリング効果で、さらにオゾンの溶解量の低下が進んでしまうという問題があった。なお、炭酸ガスは、水中でイオンを生成するため正確にヘンリーの法則に従うわけではないが、炭酸ガスの溶解量が多くなると確実にオゾンの溶解量は減少する。   That is, in the electrolysis of ultrapure water, the amount of dissolved ozone decreases when the concentration of carbon dioxide gas is increased. In particular, when dissolved to near saturation saturation (around pH 3.5), the bubbling effect caused by the generation of bubbles further increases the ozone concentration. There was a problem that the amount of dissolution of the metal would decrease. Carbon dioxide does not follow Henry's law precisely because it generates ions in water, but the amount of dissolved ozone surely decreases as the amount of dissolved carbon dioxide increases.

一方、オゾンの分解抑制の効果は、炭酸ガス濃度を高くするほど大きくなるが、前述のとおり、炭酸ガスの濃度を高くするとオゾンの分圧が相対的に低下しさらにバブリング効果によりオゾンの溶解量が低下してしまうという問題があった。   On the other hand, the effect of suppressing the decomposition of ozone increases as the concentration of carbon dioxide increases, but as described above, the partial pressure of ozone decreases relatively when the concentration of carbon dioxide increases, and the amount of ozone dissolved due to the bubbling effect. There was a problem that would decrease.

上述したように、従来の炭酸水の電解による安定化されたオゾン水の製造方法には、ユースポイントが離れた位置にあると炭酸ガスによるオゾン安定化効果が薄れてオゾン濃度が低下してしまうという問題があった。   As described above, in the conventional method for producing stabilized ozone water by electrolysis of carbonated water, if the use point is at a distant position, the ozone stabilization effect by carbon dioxide gas is weakened and the ozone concentration is lowered. There was a problem.

また、電解時に超純水の炭酸ガス濃度を高くしてもバブリング効果によりオゾンは炭酸ガスとともに気泡となって放出されてしまい、超純水のオゾン濃度を高めることにはならない上に、洗浄時に炭酸ガスが気泡となってウェーハなどの被処理物に付着してしまうという問題があった。   Also, even if the concentration of carbon dioxide in ultrapure water is increased during electrolysis, ozone is released as bubbles along with carbon dioxide due to the bubbling effect, which does not increase the ozone concentration in ultrapure water. There has been a problem that carbon dioxide gas becomes bubbles and adheres to an object to be processed such as a wafer.

なお、炭酸ガスは、オゾンの分解を抑制する作用をする反面、水中で重炭酸イオンや炭酸イオンを生成するため正確にヘンリーの法則に従うわけではないが、多量に存在するとオゾンの分圧を小さくしてオゾンの溶解量を減少させてしまう。   Carbon dioxide gas suppresses the decomposition of ozone, but it does not strictly follow Henry's law because it generates bicarbonate ions or carbonate ions in water. However, if it is present in large quantities, it reduces the partial pressure of ozone. As a result, the amount of ozone dissolved is reduced.

本発明者は、このような従来の問題を解決すべく研究をすすめたところ、オゾン水製造用の電解装置に供給する超純水に炭酸ガスを注入して電解し、オゾンガス溶解装置から離れた下流において、炭酸ガスを超純水に追加注入することにより、長い距離にわたって高濃度の安定なオゾン水を供給できることを見出だした。   The present inventor conducted research to solve such a conventional problem. As a result, carbon dioxide was injected into ultrapure water to be supplied to an electrolyzer for producing ozone water to electrolyze it, and it was separated from the ozone gas dissolver. It was found that a high concentration of stable ozone water can be supplied over a long distance by additionally injecting carbon dioxide gas into ultrapure water downstream.

本発明は、かかる従来の問題を解消すべくなされたもので、電解時の炭酸ガス濃度をさほど高くすることなく、しかも炭酸ガスを注入した超純水中にオゾンを溶解させる場合よりも安定化されたオゾン水の製造方法及びオゾン水の製造装置を提供することを目的とする。   The present invention has been made to solve such a conventional problem, and does not increase the concentration of carbon dioxide during electrolysis, and is more stable than when ozone is dissolved in ultrapure water into which carbon dioxide has been injected. An object of the present invention is to provide a method for producing ozone water and a device for producing ozone water.

本発明のオゾン水の製造方法は、上記目的を達成するため、 炭酸ガス含有水を電解してオゾンを生成する電解工程と、前記電解工程で生成したオゾンを含む炭酸ガス含有水からオゾンと炭酸ガスを分離する気液分離工程と、前記気液分離工程で超純水から分離されたオゾンと炭酸ガスを実質的に炭酸ガスを含まない超純水供給ラインの超純水中に溶解させるオゾン・炭酸ガス溶解工程と、前記オゾン・炭酸ガス溶解工程を経た超純水中にその下流において所定量の炭酸ガスをさらに溶解させる炭酸ガス濃度調整工程とを有することを特徴としている。   In order to achieve the above object, the method for producing ozone water of the present invention electrolyzes carbon dioxide gas-containing water to generate ozone, and ozone and carbon dioxide from carbon dioxide gas-containing water containing ozone generated in the electrolysis step. Gas-liquid separation step for separating gas, and ozone for dissolving ozone and carbon dioxide separated from ultrapure water in the gas-liquid separation step in ultrapure water of an ultrapure water supply line substantially free of carbon dioxide A carbon dioxide gas dissolving step and a carbon dioxide gas concentration adjusting step for further dissolving a predetermined amount of carbon dioxide gas downstream in the ultra pure water that has passed through the ozone / carbon dioxide gas dissolving step.

より具体的には、本発明のオゾン水の製造方法は、第1の超純水供給ラインを流れる超純水に炭酸ガスを溶解させる炭酸ガス溶解工程と、前記炭酸ガスを溶解させた超純水を電解装置に供給し電解によりオゾンを生成する電解工程と、電解工程で生成したオゾンと炭酸ガスを含む超純水からオゾンと炭酸ガスとを分離する気液分離工程と、前記気液分離工程で超純水から分離されたオゾンと炭酸ガスを第2の超純水供給ラインを流れる実質的に炭酸ガスを含まない超純水中に溶解させるオゾン・炭酸ガス溶解工程と、前記オゾン・炭酸ガス溶解工程を経た超純水中にその下流において所定量の炭酸ガスをさらに溶解させる炭酸ガス濃度調整工程とを有することを特徴としている。   More specifically, the method for producing ozone water of the present invention includes a carbon dioxide gas dissolving step for dissolving carbon dioxide gas in ultra pure water flowing through the first ultra pure water supply line, and an ultra pure water in which the carbon dioxide gas is dissolved. An electrolysis step of supplying water to an electrolyzer to generate ozone by electrolysis, a gas-liquid separation step of separating ozone and carbon dioxide from ultrapure water containing ozone and carbon dioxide produced in the electrolysis step, and the gas-liquid separation Ozone / carbon dioxide dissolving step of dissolving ozone and carbon dioxide separated from ultrapure water in the step into ultrapure water substantially free of carbon dioxide flowing through the second ultrapure water supply line; And a carbon dioxide concentration adjusting step for further dissolving a predetermined amount of carbon dioxide in the downstream of the ultrapure water that has undergone the carbon dioxide dissolving step.

本発明のオゾン水の製造方法を遂行するには、炭酸ガスを溶解した超純水を電解してオゾンと炭酸ガスを生成する電解装置と、前記電解装置で生成したオゾンと炭酸ガスを含む超純水から気体成分を分離する気液分離装置と、前記気液分離装置で分離したオゾンと炭酸ガスを前記超純水供給ラインを流れる超純水中に溶解させるオゾン・炭酸ガス溶解装置と、前記超純水供給ラインの前記オゾン・炭酸ガス溶解装置より下流に配置されて前記超純水供給ラインを流れる超純水中にさらに炭酸ガスを溶解させる炭酸ガス溶解装置と、
前記炭酸ガス溶解装置より下流に配置されて前記超純水供給ラインを流れる超純水中の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、前記炭酸ガス濃度測定装置の出力信号をよって、前記炭酸ガス溶解装置への炭酸ガスの供給量を制御する炭酸ガス濃度制御装置とを有することを特徴とするオゾン水製造装置が用いられる。
In order to carry out the method for producing ozone water of the present invention, an electrolysis apparatus for electrolyzing ultrapure water in which carbon dioxide gas is dissolved to generate ozone and carbon dioxide gas, and an ultrasonium containing ozone and carbon dioxide gas produced by the electrolysis apparatus. A gas-liquid separator that separates gas components from pure water; an ozone / carbon dioxide dissolver that dissolves ozone and carbon dioxide separated by the gas-liquid separator in ultrapure water flowing through the ultrapure water supply line; A carbon dioxide gas dissolving device for further dissolving carbon dioxide gas in ultra pure water that is arranged downstream of the ozone / carbon dioxide gas dissolving device of the ultra pure water supply line and flows through the ultra pure water supply line;
The carbon dioxide concentration measuring device for measuring the concentration of carbon dioxide in ultra pure water that is arranged downstream from the carbon dioxide dissolving device and flows through the ultra pure water supply line, and the output signal of the carbon dioxide concentration measuring device, An ozone water production apparatus having a carbon dioxide concentration control device for controlling the amount of carbon dioxide supplied to the carbon dioxide dissolving device is used.

より具体的には、第1の超純水供給ラインと、第1の超純水供給ラインから分岐した第2の超純水供給ラインと、第2の超純水供給ラインを流れる超純水中に炭酸ガスを溶解させる炭酸ガス溶解手段と、第2の超純水供給ラインから供給される炭酸ガスを溶解した超純水を電解してオゾンと炭酸ガスを生成する電解装置と、前記電解装置で生成したオゾンと炭酸ガスを含む超純水から気体成分を分離する気液分離装置と、前記気液分離装置で分離したオゾンと炭酸ガスを第1の超純水供給ラインの第2の超純水供給ラインとの分岐点より下流において第1の超純水供給ラインを流れる超純水中に溶解させるオゾン・炭酸ガス溶解装置と、第1の超純水供給ラインの前記オゾン・炭酸ガス溶解装置より下流に配置されて第1の超純水供給ラインを流れる超純水中にさらに炭酸ガスを溶解させる炭酸ガス溶解装置と、前記第1の超純水供給ラインの前記炭酸ガス溶解装置より下流に配置されて第1の超純水供給ラインを流れる超純水中の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、前記炭酸ガス濃度測定装置の出力信号をよって、前記炭酸ガス溶解装置への炭酸ガスの供給量を制御する炭酸ガス濃度制御装置とを有することを特徴とするオゾン水製造装置が有利に用いられる。   More specifically, the first ultrapure water supply line, the second ultrapure water supply line branched from the first ultrapure water supply line, and the ultrapure water flowing through the second ultrapure water supply line. A carbon dioxide dissolving means for dissolving carbon dioxide therein, an electrolysis device for producing ozone and carbon dioxide by electrolyzing ultrapure water in which carbon dioxide supplied from a second ultra pure water supply line is dissolved, and the electrolysis A gas-liquid separator that separates gaseous components from ultrapure water containing ozone and carbon dioxide generated by the apparatus; and ozone and carbon dioxide separated by the gas-liquid separator are secondly supplied to the first ultrapure water supply line. An ozone / carbon dioxide dissolving device for dissolving in ultrapure water flowing through the first ultrapure water supply line downstream from the branch point with the ultrapure water supply line, and the ozone / carbonic acid in the first ultrapure water supply line First ultrapure water supply line arranged downstream from the gas dissolving device A carbon dioxide gas dissolving device that further dissolves carbon dioxide gas in the flowing ultra pure water, and an ultra flow that is arranged downstream of the carbon dioxide gas dissolving device of the first ultra pure water supply line and flows through the first ultra pure water supply line A carbon dioxide concentration measuring device for measuring the concentration of carbon dioxide in pure water, and a carbon dioxide concentration control device for controlling the amount of carbon dioxide supplied to the carbon dioxide dissolving device based on an output signal of the carbon dioxide concentration measuring device. An ozone water production apparatus characterized by having the following is advantageously used.

第1の超純水供給ラインに通水する超純水としては、比抵抗値18.2MΩcm以上、TOC濃度が1ppb以下、金属不純物が10ppt以下、シリカ:0.1ppb以下、微粒子0.05μmサイズで1〜2個/ml程度の純度の高いものが適している。   The ultrapure water that passes through the first ultrapure water supply line has a specific resistance value of 18.2 MΩcm or more, a TOC concentration of 1 ppb or less, a metal impurity of 10 ppt or less, silica: 0.1 ppb or less, and a fine particle size of 0.05 μm. A high purity of about 1 to 2 / ml is suitable.

第1の超純水供給ラインに炭酸ガスを溶解させる炭酸ガス溶解手段としては、エジェクタやPTFE製の中空糸膜装置等を使用することができる。   As the carbon dioxide dissolving means for dissolving carbon dioxide in the first ultrapure water supply line, an ejector, a hollow fiber membrane device made of PTFE, or the like can be used.

本発明に用いられる電解装置としては、例えば株式会社コアテクノロジー社から発売されている電解オゾン水製造装置を用いることができる。この電解オゾン水製造装置は、次の反応により陽極でオゾンと酸素を生成し、14〜20 重量%のオゾン濃度のオゾン水を生成することができるが、実際に超純水に溶解するのは、10重量%どまりで、過剰分はオゾンガス溶解装置から排気される。   As an electrolysis apparatus used in the present invention, for example, an electrolysis ozone water production apparatus sold by Core Technology Co., Ltd. can be used. This electrolytic ozone water production apparatus can generate ozone and oxygen at the anode by the following reaction to generate ozone water having an ozone concentration of 14 to 20% by weight, but it is actually dissolved in ultrapure water. Excess 10% by weight is exhausted from the ozone gas dissolving device.

また、第2の超純水供給ラインにオゾンと炭酸ガスとを溶解させるオゾン・炭酸ガス溶解装置としては、例えばPTFE製の中空糸膜装置が適している。PTFE製の中空糸膜装置は、オゾンと炭酸ガスとを共に超純水に溶解させることができる。このように炭酸ガスとオゾンを同時にPTFE膜を介して溶解させる方式は、炭酸ガスとオゾンとを別個に溶解させる場合よりも効果が大きく、装置の構成も簡単にすることができるので本発明に適している。   Further, as an ozone / carbon dioxide dissolving device for dissolving ozone and carbon dioxide in the second ultrapure water supply line, for example, a hollow fiber membrane device made of PTFE is suitable. The hollow fiber membrane device made of PTFE can dissolve both ozone and carbon dioxide gas in ultrapure water. Thus, the method of dissolving carbon dioxide and ozone simultaneously through the PTFE membrane is more effective than the case of separately dissolving carbon dioxide and ozone, and the configuration of the apparatus can be simplified. Is suitable.

本発明における炭酸ガスの溶解している超純水の炭酸ガス濃度は、比抵抗測定器又はpH計で測定可能である。   The carbon dioxide concentration of ultrapure water in which carbon dioxide is dissolved in the present invention can be measured with a specific resistance measuring instrument or a pH meter.

ちなみに、超純水の炭酸ガス濃度と比抵抗の値は図2に示すような相関性があり、炭酸ガスを溶解した超純水の比抵抗とpHの値は、図3に示すような関係にある。   Incidentally, the carbon dioxide concentration of ultrapure water and the specific resistance value have a correlation as shown in FIG. 2, and the specific resistance and pH value of ultrapure water in which carbon dioxide gas is dissolved have a relationship as shown in FIG. It is in.

このように、超純水の炭酸ガス濃度と比抵抗とは相関し、かつ炭酸ガスの飽和溶解度は本発明の対象とする範囲より非常に高いので、たとえば図4に示すような関係から、超純水の流量が一定の場合、超純水の比抵抗を測定し、これを所定の値になるように炭酸ガスの供給量をコントロールすることで、超純水中に一定濃度の炭酸ガスを溶解させることができる。   Thus, the concentration of carbon dioxide gas in ultrapure water and the specific resistance are correlated, and the saturation solubility of carbon dioxide gas is much higher than the target range of the present invention. For example, from the relationship shown in FIG. When the flow rate of pure water is constant, measure the specific resistance of ultrapure water and control the amount of carbon dioxide supplied so that it reaches a predetermined value. Can be dissolved.

本発明におけるオゾンガスの溶解された超純水の望ましい炭酸ガス濃度はpHで3.8〜4.5、好ましくは4.0〜4.4の範囲であり、これより低いとオゾン分解抑制効果が低下し、高いとオゾンの溶解度が低くなる。   The desirable carbon dioxide concentration of ultrapure water in which ozone gas is dissolved in the present invention is 3.8 to 4.5, preferably 4.0 to 4.4 in terms of pH. If it is high, the solubility of ozone is low.

本発明によれば、ユースポイントがオゾン溶解装置から離れた位置にあっても、途中でオゾン水中に炭酸ガスが追加的に溶解されるので、炭酸ガスによるオゾン安定化効果が持続しオゾン水としての機能を喪失することがない。   According to the present invention, even if the point of use is at a position away from the ozone dissolving device, carbon dioxide gas is additionally dissolved in the ozone water along the way, so that the ozone stabilization effect by the carbon dioxide gas is maintained and ozone water is used. No loss of function.

以下、本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

図1は、本発明の一実施の形態のオゾン水製造装置を示すもので、このオゾン水製造装置は、オゾン水用の実質的に炭酸ガスを含まない超純水を供給する第1の超純水供給ライン1と、オゾン水を製造する電解装置2と、第1の超純水供給ラインから分岐して電解装置2に超純水を供給する第2の超純水供給ライン3と、第2の超純水供給ライン3と下流の第1の超純水供給ライン1に炭酸ガスを供給する第1及び第2の炭酸ガス供給ライン4、5と、第1の超純水供給ライン1の第2の炭酸ガス供給ライン5による炭酸ガス注入ポイント5pより下流で超純水の炭酸ガス濃度をpH又は導電率として測定する炭酸ガス濃度測定装置6と、炭酸ガス濃度測定装置6の出力信号により第1の超純水供給ライン1に対する炭酸ガス注入量をフィードバック制御する炭酸ガス注入量制御装置7とを備えている。   FIG. 1 shows an ozone water production apparatus according to an embodiment of the present invention. This ozone water production apparatus supplies a first ultra-pure water for ozone water that contains substantially no carbon dioxide gas. A pure water supply line 1, an electrolyzer 2 for producing ozone water, a second ultrapure water supply line 3 that branches from the first ultrapure water supply line and supplies ultrapure water to the electrolyzer 2; First and second carbon dioxide gas supply lines 4 and 5 for supplying carbon dioxide gas to the second ultra pure water supply line 3 and the first ultra pure water supply line 1 downstream, and the first ultra pure water supply line A carbon dioxide concentration measuring device 6 for measuring the carbon dioxide concentration of ultrapure water as pH or conductivity downstream from the carbon dioxide injection point 5p by the first second carbon dioxide supply line 5, and an output of the carbon dioxide concentration measuring device 6 The amount of carbon dioxide injection to the first ultrapure water supply line 1 is fed by the signal. And a carbon dioxide injection rate control device 7 for back control.

第2の超純水供給ライン3を流れる超純水には、第1の炭酸ガス供給ライン4から炭酸ガス溶解装置8を介して所定の量の炭酸ガスが供給・溶解される。炭酸ガス溶解装置8は、膜を介して一方には超純水が、他方には炭酸ガスが供給されて、膜を介して超純水中に炭酸ガスが溶解される。炭酸ガスを溶解した超純水(炭酸水)は、直流電源9により駆動される電解装置2に供給される。   A predetermined amount of carbon dioxide gas is supplied / dissolved from the first carbon dioxide supply line 4 via the carbon dioxide dissolving device 8 to the ultra pure water flowing through the second ultra pure water supply line 3. The carbon dioxide gas dissolving device 8 is supplied with ultrapure water on one side through a membrane and carbon dioxide gas on the other side, and the carbon dioxide gas is dissolved in the ultrapure water through the membrane. Ultrapure water (carbonated water) in which carbon dioxide gas is dissolved is supplied to the electrolyzer 2 driven by the DC power supply 9.

電解装置2の電解ガス(オゾン、酸素、水素)発生部には、イオン交換膜2aが配置され、このイオン交換膜2aの両面にはそれぞれ多孔質の陽極物質2bと陰極物質2cが密着配置されて、供給された超純水は、イオン交換膜2aを固体電解質として電解されて、陰極側にはオゾンと酸素の混合ガスを、陰極側には水素ガスを発生させる。   An ion exchange membrane 2a is disposed in an electrolytic gas (ozone, oxygen, hydrogen) generation portion of the electrolysis apparatus 2, and a porous anode material 2b and a cathode material 2c are disposed in close contact with both surfaces of the ion exchange membrane 2a, respectively. The supplied ultrapure water is electrolyzed using the ion exchange membrane 2a as a solid electrolyte to generate a mixed gas of ozone and oxygen on the cathode side and hydrogen gas on the cathode side.

陰極側で生成した水素ガスは、気液分離装置10で気体と液体(ミスト)が分離され、水素ガス送気管11を介して排出される。なお、必要に応じて、この水素ガスを燃料電池(図示せず)へ燃料として供給し電力として回収することも可能である。   The hydrogen gas generated on the cathode side is separated into a gas and a liquid (mist) by the gas-liquid separator 10 and is discharged through the hydrogen gas supply pipe 11. If necessary, this hydrogen gas can be supplied as fuel to a fuel cell (not shown) and recovered as electric power.

陽極側で生成したオゾンと酸素の混合ガスは、気液分離装置12で気体と液体(ミスト)が分離されて、送気管13によりオゾンガス溶解装置14へ送られる。なお、陽極側で生成したオゾンと酸素の混合ガスには、超純水から放出された炭酸ガスが含有されている。   The mixed gas of ozone and oxygen generated on the anode side is separated into a gas and a liquid (mist) by the gas-liquid separation device 12 and sent to the ozone gas dissolving device 14 by the air supply pipe 13. Note that the mixed gas of ozone and oxygen generated on the anode side contains carbon dioxide gas released from ultrapure water.

オゾンガス溶解装置14には、第1の超純水供給ライン1から実質的に炭酸ガスを含まない超純水が供給されており、電解装置2で生成したオゾン、酸素、炭酸ガスの混合ガスは、ここで超純水中に溶解され、溶解されなかったオゾンガス、酸素ガスは排気管15から排出される。なお、オゾンガス溶解装置14は、膜を介して、一方には気液分離装置12で分離されたオゾン、酸素、炭酸ガスの混合ガスが、他方には第1の超純水供給ライン1からの超純水が供給されて混合ガスは膜を透過して超純水中に溶解する。   The ozone gas dissolving device 14 is supplied with ultrapure water substantially free of carbon dioxide gas from the first ultrapure water supply line 1, and the mixed gas of ozone, oxygen, and carbon dioxide gas generated by the electrolysis device 2 is Here, ozone gas and oxygen gas dissolved in the ultrapure water but not dissolved are discharged from the exhaust pipe 15. The ozone gas dissolving device 14 has a mixed gas of ozone, oxygen, and carbon dioxide gas separated by the gas-liquid separation device 12 through the membrane, and the other from the first ultrapure water supply line 1 through the membrane. Ultrapure water is supplied, and the mixed gas permeates the membrane and dissolves in the ultrapure water.

オゾン、酸素、炭酸ガスの混合ガスを溶解した第1の超純水供給ライン1の超純水中には、オゾンガス溶解装置14の下流において第2の炭酸ガス供給ライン5から炭酸ガス溶解装置17を介して炭酸ガスが注入・溶解される。   In the ultrapure water of the first ultrapure water supply line 1 in which the mixed gas of ozone, oxygen, and carbon dioxide gas is dissolved, the second carbon dioxide gas supply line 5 to the carbon dioxide gas dissolver 17 is disposed downstream of the ozone gas dissolver 14. Carbon dioxide is injected and dissolved via

炭酸ガス溶解装置16により炭酸ガスの溶解された超純水は、比抵抗測定器又はpH測定器からなる炭酸ガス濃度測定装置6により溶解している炭ガス量が測定され、その出力信号により、第2の炭酸ガス供給ライン5に設けた炭酸ガス流量制御弁17が制御される。すなわち、炭酸ガス量が設定値より高い場合には炭酸ガス流量制御弁17が絞られ、炭酸ガス量が設定値より低い場合には炭酸ガス流量制御弁18が開放されて超純水中の炭酸ガス濃度が一定濃度範囲にあるように制御される。   In the ultrapure water in which carbon dioxide gas is dissolved by the carbon dioxide gas dissolving device 16, the amount of dissolved carbon gas is measured by the carbon dioxide concentration measuring device 6 comprising a specific resistance measuring device or a pH measuring device. A carbon dioxide flow rate control valve 17 provided in the second carbon dioxide supply line 5 is controlled. That is, when the carbon dioxide gas amount is higher than the set value, the carbon dioxide flow rate control valve 17 is throttled, and when the carbon dioxide gas amount is lower than the set value, the carbon dioxide gas flow rate control valve 18 is opened and the carbon dioxide gas in the ultrapure water is opened. The gas concentration is controlled to be in a certain concentration range.

このようにして製造されたオゾンガスと炭酸ガスを溶解した超純水は、オゾン濃度計18でオゾン濃度が測定されて下流のユースポイントに供給される。   The ultrapure water in which the ozone gas and the carbon dioxide gas thus produced are dissolved is measured by the ozone concentration meter 18 and supplied to a downstream use point.

次に本発明の一実施例について説明する。
(実施例1)
この実施例に使用したオゾン水製造装置は、図1に示した装置を模擬したものであり、使用した超純水及び実験条件は次の通りである。
Next, an embodiment of the present invention will be described.
(Example 1)
The ozone water production apparatus used in this example simulates the apparatus shown in FIG. 1, and the ultrapure water used and the experimental conditions are as follows.

すなわち、超純水としては、比抵抗値18.0MΩcm以上(20℃、TOC濃度:1ppb以下、金属不純物:10ppt以下、シリカ:0.1ppb以下、微粒子:0.05μmサイズ1〜2個/ml)を使用した。この超純水の第2の超純水供給ライン3における流量は10L/min、電解装置2入口での圧力は、0.2kg/cm2である。 That is, the ultrapure water has a specific resistance value of 18.0 MΩcm or more (20 ° C., TOC concentration: 1 ppb or less, metal impurities: 10 ppt or less, silica: 0.1 ppb or less, fine particles: 0.05 μm, size 1 to 2 / ml. )It was used. The flow rate in the second ultrapure water supply line 3 of this ultrapure water is 10 L / min, and the pressure at the inlet of the electrolyzer 2 is 0.2 kg / cm 2 .

また、オゾンガス溶解装置14と炭酸ガス溶解装置16間は、50mのPFAチューブ1/2サイズで接続した。   Further, the ozone gas dissolving device 14 and the carbon dioxide gas dissolving device 16 were connected with a PFA tube 1/2 size of 50 m.

なお、電解装置2としては、株式会社コアテクノロジー社製の電解装置を使用し、炭酸ガス溶解装置8、17としては、簡易PTFEエジェクタを、オゾンガス溶解装置14としてはPTFE製中空糸膜装置を使用した。   In addition, as the electrolysis apparatus 2, an electrolysis apparatus manufactured by Core Technology Co., Ltd. is used, a simple PTFE ejector is used as the carbon dioxide gas dissolving apparatuses 8 and 17, and a PTFE hollow fiber membrane apparatus is used as the ozone gas dissolving apparatus 14. did.

また、オゾン水の減衰状況を見るために、オゾン濃度計19以外に、オゾンガス溶解装置14の出口側にPFAチューブ1/2サイズを50m接続してその先に別のオゾン水濃度計を設置した(図示せず)。   In addition to the ozone concentration meter 19, in addition to the ozone concentration meter 19, a 50 m PFA tube 1/2 size was connected to the outlet side of the ozone gas dissolving device 14, and another ozone water concentration meter was installed beyond that. (Not shown).

次に操作について説明する。
この実施例のオゾン水製造装置において、第1の超純水供給ライン1に超純水0.05L/minで流しながら、炭酸ガスを、炭酸ガス(99.9%以上)供給圧力1.0kg/cm2 (0.8kg/cm2 でも有効)の条件で溶解させ、この炭酸ガスを溶解した超純水を電解装置2に供給した。この炭酸ガスを溶解した超純水は、電解装置2において電解によりオゾンを生成し(オゾン発生量12g/hr)、生成したオゾンと炭酸ガスを溶解する超純水は、気液分離装置12に送られオゾン、炭酸ガス(及び酸素)が分離され、このオゾンと炭酸ガスの混合ガスはオゾンガス溶解装置14に送られ第1の超純水供給ライン1を圧力60kPa、1.5L/minで流れる実質的に炭酸ガスを含まない超純水中に溶解された。なお、第2の超純水供給ライン3の超純水の流量と第1の超純水供給ライン1の超純水の流量比は、0.05:1.5=1:30である。
Next, the operation will be described.
In the ozone water production apparatus of this example, carbon dioxide gas was supplied to the first ultra pure water supply line 1 at a flow rate of 0.05 L / min, and carbon dioxide was supplied at a carbon dioxide (99.9% or higher) supply pressure of 1.0 kg. The solution was dissolved under the conditions of / cm 2 (also effective at 0.8 kg / cm 2 ), and ultrapure water in which the carbon dioxide gas was dissolved was supplied to the electrolysis apparatus 2. The ultrapure water in which the carbon dioxide gas is dissolved generates ozone by electrolysis in the electrolysis device 2 (ozone generation amount 12 g / hr), and the ultrapure water in which the generated ozone and carbon dioxide gas are dissolved is supplied to the gas-liquid separation device 12. The ozone and carbon dioxide gas (and oxygen) are separated, and the mixed gas of ozone and carbon dioxide gas is sent to the ozone gas dissolving device 14 and flows through the first ultrapure water supply line 1 at a pressure of 60 kPa and 1.5 L / min. It was dissolved in ultrapure water substantially free of carbon dioxide. In addition, the flow ratio of the ultrapure water in the second ultrapure water supply line 3 to the ultrapure water in the first ultrapure water supply line 1 is 0.05: 1.5 = 1: 30.

次に、第1の超純水供給ライン(PFAチューブ)1中のオゾンと炭酸ガスが溶解された超純水のオゾン濃度を、オゾンガス溶解装置出口から10m下流で測定した。   Next, the ozone concentration of ultrapure water in which ozone and carbon dioxide in the first ultrapure water supply line (PFA tube) 1 were dissolved was measured 10 m downstream from the ozone gas dissolving device outlet.

なお、以下に実施例との対比のために示した各比較例のうち、比較例1は、第1、第2の超純水供給ラインを流れる超純水のいずれにも炭酸ガスを溶解させなかった場合、比較例2は、第2の超純水供給ラインに炭酸ガスを超純水の流量1.5 l/min、供給圧力1.0kg/cm2 の条件で溶解させた場合、比較例3は、第2の超純水供給ラインだけに超純水の流量1.5 l/min以下、炭酸ガスを供給圧力1.0kg/cm2 の条件で溶解させ、その下流で一部を分取して第1の超純水供給ラインに流した場合の例である。 Of the comparative examples shown below for comparison with the examples, in Comparative Example 1, carbon dioxide is dissolved in both ultrapure water flowing through the first and second ultrapure water supply lines. In the case where there was no carbon dioxide gas in the second ultrapure water supply line, a comparison was made when carbon dioxide was dissolved at a flow rate of ultrapure water of 1.5 l / min and a supply pressure of 1.0 kg / cm 2. In Example 3, only the second ultrapure water supply line was dissolved under the conditions of a flow rate of ultrapure water of 1.5 l / min or less and carbon dioxide gas at a supply pressure of 1.0 kg / cm 2 , and a part thereof was downstream. It is an example at the time of fractionating and flowing to the 1st ultrapure water supply line.

比較例1の炭酸添加がない状態では、30mg/Lのオゾン水濃度であるが、装置を出てから、50mの距離を送水すると、3〜8mg/Lの間で値が推移し、減衰率は、81.7±8.3%となった。   In the state without the addition of carbonic acid in Comparative Example 1, the ozone water concentration was 30 mg / L, but when the water was fed a distance of 50 m after leaving the apparatus, the value changed between 3 and 8 mg / L, and the attenuation rate Was 81.7 ± 8.3%.

比較例2の例では、オゾン水濃度が、60mg/Lと飛躍的に向上しており、かつ50m先におけるオゾン水濃度も45〜52mg/Lの間であり、減衰率も19.2±5.8%と非常に安定している。   In the example of Comparative Example 2, the ozone water concentration is dramatically improved to 60 mg / L, the ozone water concentration at 50 m ahead is between 45 to 52 mg / L, and the attenuation rate is 19.2 ± 5. Very stable at 8%.

比較例2のオゾン水はpH5であり、図3、図4のグラフからpH5の場合、溶解している炭酸ガスの量は、約10mg/Lであるので、流量が10L/minであるこの例では、炭酸ガスの合計注入量は、100mg/minとなる。   The ozone water of Comparative Example 2 has a pH of 5, and in the case of pH 5 from the graphs of FIGS. 3 and 4, the amount of dissolved carbon dioxide gas is about 10 mg / L, and thus the flow rate is 10 L / min. Then, the total injection amount of carbon dioxide gas is 100 mg / min.

ちなみに、実施例1の場合は、測定したpHが4.3なので、そのときの炭酸ガス注入量は約260mg/Lであり、流量が、10L/minであるから、トータルの注入量は、2600mg/minとなる。   Incidentally, in the case of Example 1, since the measured pH is 4.3, the carbon dioxide gas injection amount at that time is about 260 mg / L, and the flow rate is 10 L / min. Therefore, the total injection amount is 2600 mg. / Min.

したがって、比較例2のオゾン水を実施例1のオゾン水と同じオゾン量とするためには、差分である2500mg/Lの炭酸量を注入する必要であり、実際に不足分に相当する炭酸ガス2500mg/分添加したところ、オゾン水濃度は58mg/Lとなった。   Therefore, in order to set the ozone water of Comparative Example 2 to the same ozone amount as that of Example 1, it is necessary to inject a carbon dioxide amount of 2500 mg / L which is the difference, and the carbon dioxide gas actually corresponding to the shortage When 2500 mg / min was added, the concentration of ozone water was 58 mg / L.

なお、炭酸ガスの理論飽和溶解度は約1,500mg/Lであるので、実施例1の程度の炭酸ガスの添加では飽和することはない。   Since the theoretical saturation solubility of carbon dioxide is about 1,500 mg / L, the addition of carbon dioxide as in Example 1 does not saturate.

このように、本発明の実施例によれば、50m先でのオゾン水濃度は53〜57mg/Lの間で推移し、減衰率も6±2.6%であり、比較例1、2と比べて顕著な効果が認められた。

Figure 2008155186
Thus, according to the Example of this invention, the ozone water density | concentration in 50m ahead changes between 53-57 mg / L, and an attenuation factor is 6 +/- 2.6%, A significant effect was observed.
Figure 2008155186

本発明の一実施例の構成を示す構成図。The block diagram which shows the structure of one Example of this invention. 超純水中の炭酸ガス濃度と比抵抗との関係を示すグラフ。The graph which shows the relationship between the carbon dioxide density in ultrapure water and specific resistance. 炭酸ガスを溶解した超純水の比抵抗とpHの関係を示すグラフ。The graph which shows the relationship between the specific resistance of ultrapure water which melt | dissolved the carbon dioxide gas, and pH. 所定の流量の超純水を一定の比抵抗とするために必要な炭酸ガス溶解量を示すグラフ。The graph which shows the amount of carbon dioxide dissolution required in order to make the ultrapure water of a predetermined flow volume into a fixed specific resistance.

符号の説明Explanation of symbols

1……第1の超純水供給ライン
2……電解装置
2a…イオン交換膜
2b…電極の陽極
2c…電極の陰極
3……第2の超純水供給ライン
4……第1の炭酸ガス供給ライン
5……第2の炭酸ガス供給ライ
5P……炭酸ガス注入ポイント
6……炭酸ガス濃度測定装置
7……炭酸ガス注入量制御装置
8……炭酸ガス溶解装置
9……直流電源
10、12……気液分離装置
11……水素ガス排気管
13……送気管
14……オゾンガス溶解装置配管
15……排気管
16……炭酸ガス溶解装置
17……炭酸ガス流量制御弁
18……オゾン水濃度計
DESCRIPTION OF SYMBOLS 1 ... 1st ultrapure water supply line 2 ... Electrolyzer 2a ... Ion exchange membrane 2b ... Electrode anode 2c ... Electrode cathode 3 ... 2nd ultrapure water supply line 4 ... 1st carbon dioxide Supply line 5 …… Second carbon dioxide supply line 5P …… Carbon dioxide injection point 6 …… Carbon dioxide concentration measuring device 7… Carbon dioxide injection control device 8… Carbon dioxide melting device 9 …… DC power supply 10, 12 ... Gas-liquid separator 11 ... Hydrogen gas exhaust pipe 13 ... Air supply pipe 14 ... Ozone gas dissolving apparatus pipe 15 ... Exhaust pipe 16 ... Carbon dioxide gas dissolving apparatus 17 ... Carbon dioxide gas flow control valve 18 ... Ozone Water concentration meter

Claims (8)

炭酸ガス含有水を電解してオゾンを生成する電解工程と、
前記電解工程で生成したオゾンを含む炭酸ガス含有水から気体成分を分離する気液分離工程と、
前記気液分離工程で超純水から分離された気体成分を実質的に炭酸ガスを含まない超純水供給ラインの超純水中に溶解させるオゾン・炭酸ガス溶解工程と、
前記オゾン・炭酸ガス溶解工程を経た超純水中にその下流において所定量の炭酸ガスをさらに溶解させる炭酸ガス濃度調整工程と
を有することを特徴とするオゾン水の製造方法。
An electrolysis process for producing ozone by electrolyzing water containing carbon dioxide;
A gas-liquid separation step of separating a gas component from carbon dioxide-containing water containing ozone generated in the electrolysis step;
An ozone / carbon dioxide gas dissolving step of dissolving the gas component separated from the ultrapure water in the gas-liquid separation step in ultrapure water of an ultrapure water supply line substantially free of carbon dioxide gas;
And a carbon dioxide concentration adjusting step of further dissolving a predetermined amount of carbon dioxide in the ultrapure water that has passed through the ozone / carbon dioxide dissolution step.
第1の超純水供給ラインから分岐した第2の超純水供給ラインを流れる超純水中に炭酸ガスを溶解させる炭酸ガス溶解工程と、
前記炭酸ガスを溶解し超純水を電解装置に供給し電解してオゾンを生成する電解工程と、
電解工程で生成したオゾンと炭酸ガスを含む超純水から気体成分を分離する気液分離工程と、
前記気液分離工程で超純水から分離されたオゾンと炭酸ガスを第1の超純水供給ラインの前記第2の超純水供給ラインとの分岐点より下流を流れる超純水中に溶解させるオゾン・炭酸ガス溶解工程と、
前記オゾン・炭酸ガス溶解工程を経た超純水中にその下流において所定量の炭酸ガスをさらに溶解させる炭酸ガス濃度調整工程と
を有することを特徴とするオゾン水の製造方法。
A carbon dioxide gas dissolving step of dissolving carbon dioxide gas in ultra pure water flowing through a second ultra pure water supply line branched from the first ultra pure water supply line;
An electrolysis step of dissolving the carbon dioxide gas and supplying ultrapure water to an electrolyzer to generate ozone by electrolysis;
A gas-liquid separation step for separating gaseous components from ultrapure water containing ozone and carbon dioxide generated in the electrolysis step;
The ozone and carbon dioxide gas separated from the ultrapure water in the gas-liquid separation step is dissolved in ultrapure water flowing downstream from the branch point of the first ultrapure water supply line with the second ultrapure water supply line. Ozone and carbon dioxide gas dissolving process,
And a carbon dioxide concentration adjusting step of further dissolving a predetermined amount of carbon dioxide in the ultrapure water that has passed through the ozone / carbon dioxide dissolution step.
前記炭酸ガス濃度調整工程における炭酸ガスを溶解させるポイントとユースポイント間に炭酸ガス濃度測定装置が配置され、前記炭酸ガス濃度調整工程における炭酸ガスの溶解量は、前記炭酸ガス濃度測定装置の出力信号によって制御されることを特徴とする請求項1又は2記載のオゾン水の製造方法。   A carbon dioxide concentration measuring device is disposed between the point where the carbon dioxide gas is dissolved in the carbon dioxide concentration adjusting step and a use point, and the amount of carbon dioxide dissolved in the carbon dioxide concentration adjusting step is an output signal of the carbon dioxide concentration measuring device. The method for producing ozone water according to claim 1, wherein the ozone water is controlled by the method. 前記炭酸ガス濃度測定装置による炭酸ガス濃度の測定は、測定対象の超純水の電気伝導度又はpHの測定により行なわれることを特徴とする請求項1乃至3のいずれか1項記載のオゾン水の製造方法。   The ozone water according to any one of claims 1 to 3, wherein the measurement of the carbon dioxide concentration by the carbon dioxide concentration measuring device is performed by measuring the electric conductivity or pH of the ultrapure water to be measured. Manufacturing method. 超純水へのオゾン及び/又は炭酸ガスの溶解は、エジェクタ又は膜を用いて行われることを特徴とする請求項1乃至4のいずれか1項記載のオゾン水の製造方法。   The method for producing ozone water according to any one of claims 1 to 4, wherein the ozone and / or carbon dioxide gas is dissolved in the ultrapure water using an ejector or a membrane. 炭酸ガスを溶解した超純水を電解してオゾンと炭酸ガスを生成する電解装置と、
前記電解装置で生成したオゾンと炭酸ガスを含む超純水から気体成分を分離する気液分離装置と、
前記気液分離装置で分離したオゾンと炭酸ガスを前記超純水供給ラインを流れる超純水中に溶解させるオゾン・炭酸ガス溶解装置と、
前記超純水供給ラインの前記オゾン・炭酸ガス溶解装置より下流に配置されて前記超純水供給ラインを流れる超純水中にさらに炭酸ガスを溶解させる炭酸ガス溶解装置と、
前記炭酸ガス溶解装置より下流に配置されて前記超純水供給ラインを流れる超純水中の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、
前記炭酸ガス濃度測定装置の出力信号をよって、前記炭酸ガス溶解装置への炭酸ガスの供給量を制御する炭酸ガス濃度制御装置と
を有することを特徴とするオゾン水製造装置。
An electrolyzer that generates ozone and carbon dioxide by electrolyzing ultrapure water in which carbon dioxide is dissolved;
A gas-liquid separator that separates gaseous components from ultrapure water containing ozone and carbon dioxide produced by the electrolyzer;
An ozone / carbon dioxide dissolving device for dissolving ozone and carbon dioxide separated in the gas-liquid separator in ultra pure water flowing through the ultra pure water supply line;
A carbon dioxide gas dissolving device for further dissolving carbon dioxide gas in ultra pure water that is arranged downstream of the ozone / carbon dioxide gas dissolving device of the ultra pure water supply line and flows through the ultra pure water supply line;
A carbon dioxide concentration measuring device for measuring the concentration of carbon dioxide in ultra pure water that is arranged downstream of the carbon dioxide dissolving device and flows through the ultra pure water supply line;
An apparatus for producing ozone water, comprising: a carbon dioxide concentration controller that controls a supply amount of carbon dioxide to the carbon dioxide dissolving device based on an output signal of the carbon dioxide concentration measuring device.
第1の超純水供給ラインと、
第1の超純水供給ラインから分岐した第2の超純水供給ラインと、
第2の超純水供給ラインを流れる超純水中に炭酸ガスを溶解させる炭酸ガス溶解手段と、
第2の超純水供給ラインから供給される炭酸ガスを溶解した超純水を電解してオゾンと炭酸ガスを生成する電解装置と、
前記電解装置で生成したオゾンと炭酸ガスを含む超純水から気体成分を分離する気液分離装置と、
前記気液分離装置で分離したオゾンと炭酸ガスを第1の超純水供給ラインの第2の超純水供給ラインとの分岐点より下流において第1の超純水供給ラインを流れる超純水中に溶解させるオゾン・炭酸ガス溶解装置と、
第1の超純水供給ラインの前記オゾン・炭酸ガス溶解装置より下流に配置されて第1の超純水供給ラインを流れる超純水中にさらに炭酸ガスを溶解させる炭酸ガス溶解装置と、
前記第1の超純水供給ラインの前記炭酸ガス溶解装置より下流に配置されて第1の超純水供給ラインを流れる超純水中の炭酸ガス濃度を測定する炭酸ガス濃度測定装置と、
前記炭酸ガス濃度測定装置の出力信号をよって、前記炭酸ガス溶解装置への炭酸ガスの供給量を制御する炭酸ガス濃度制御装置と
を有することを特徴とするオゾン水製造装置。
A first ultrapure water supply line;
A second ultrapure water supply line branched from the first ultrapure water supply line;
Carbon dioxide dissolving means for dissolving carbon dioxide in ultra pure water flowing through the second ultra pure water supply line;
An electrolyzer that generates ozone and carbon dioxide by electrolyzing ultrapure water in which carbon dioxide supplied from a second ultrapure water supply line is dissolved;
A gas-liquid separator that separates gaseous components from ultrapure water containing ozone and carbon dioxide produced by the electrolyzer;
The ultrapure water that flows through the first ultrapure water supply line downstream of the branch point between the first ultrapure water supply line and the second ultrapure water supply line of ozone and carbon dioxide separated by the gas-liquid separator. Ozone / carbon dioxide dissolving device to be dissolved in,
A carbon dioxide gas dissolving device that is disposed downstream of the ozone / carbon dioxide gas dissolving device of the first ultra pure water supply line and further dissolves carbon dioxide gas in ultra pure water flowing through the first ultra pure water supply line;
A carbon dioxide concentration measuring device for measuring the concentration of carbon dioxide in ultrapure water that is arranged downstream of the carbon dioxide gas dissolving device in the first ultra pure water supply line and flows through the first ultra pure water supply line;
An apparatus for producing ozone water, comprising: a carbon dioxide concentration controller that controls a supply amount of carbon dioxide to the carbon dioxide dissolving device based on an output signal of the carbon dioxide concentration measuring device.
炭酸ガス濃度測定装置が、比抵抗測定器又はpH計である請求項6又は7記載のオゾン水製造装置。   The apparatus for producing ozone water according to claim 6 or 7, wherein the carbon dioxide concentration measuring device is a specific resistance measuring device or a pH meter.
JP2006350281A 2006-12-26 2006-12-26 Method and apparatus for producing ozone water Withdrawn JP2008155186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350281A JP2008155186A (en) 2006-12-26 2006-12-26 Method and apparatus for producing ozone water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350281A JP2008155186A (en) 2006-12-26 2006-12-26 Method and apparatus for producing ozone water

Publications (1)

Publication Number Publication Date
JP2008155186A true JP2008155186A (en) 2008-07-10

Family

ID=39656688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350281A Withdrawn JP2008155186A (en) 2006-12-26 2006-12-26 Method and apparatus for producing ozone water

Country Status (1)

Country Link
JP (1) JP2008155186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520609A (en) * 2008-05-19 2011-07-21 エンテグリース,インコーポレイテッド Gasification system and method for creating a gas-free solution in a liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520609A (en) * 2008-05-19 2011-07-21 エンテグリース,インコーポレイテッド Gasification system and method for creating a gas-free solution in a liquid

Similar Documents

Publication Publication Date Title
JP6734621B2 (en) Ozone water supply method and ozone water supply device
US8999069B2 (en) Method for producing cleaning water for an electronic material
US20110147227A1 (en) Acid separation by acid retardation on an ion exchange resin in an electrochemical system
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
WO2011097468A2 (en) Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US5114549A (en) Method and apparatus for treating water using electrolytic ozone
JP2007243113A (en) Production method, production device, and washing device for gas dissolution washing water
JP3201781B2 (en) Ozone production method
JP2019178356A (en) Hydrogen production apparatus and hydrogen production process
US7491302B2 (en) Electrolytic gas generation method and electrolytic gas generation device
JP2007301541A (en) Slightly acidic electrolyzed water generation method and apparatus
JP3720292B2 (en) Production method and production apparatus for ozone water
JP2008155186A (en) Method and apparatus for producing ozone water
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JP2005186067A (en) Ozone-containing ultrapure water supply method and apparatus
TW202319587A (en) Alkaline electrolysis arrangement with deaerator and method therefor
JP2011058010A (en) Method for electrolyzing sulfuric acid
KR101627497B1 (en) Genertion System and method of carbonated water and carbonated hydrogen water
JPH11138182A (en) Ozonized ultrapure water feeder
JP3748765B2 (en) Electrolytic gas generation method and electrolytic gas generator
JP2019178357A (en) Hydrogen production apparatus and hydrogen production process
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
JP4097778B2 (en) Gas dissolved cleaning water supply piping
JP2006145141A (en) Method and device for manufacturing ozone ice
JPH11267652A (en) Method of generating ozone water and hydrogen water, and device therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302