JP2008154324A - Braking apparatus of industrial electric drive vehicle - Google Patents

Braking apparatus of industrial electric drive vehicle Download PDF

Info

Publication number
JP2008154324A
JP2008154324A JP2006337677A JP2006337677A JP2008154324A JP 2008154324 A JP2008154324 A JP 2008154324A JP 2006337677 A JP2006337677 A JP 2006337677A JP 2006337677 A JP2006337677 A JP 2006337677A JP 2008154324 A JP2008154324 A JP 2008154324A
Authority
JP
Japan
Prior art keywords
brake
braking
regenerative
braking torque
depression amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006337677A
Other languages
Japanese (ja)
Inventor
Noritaka Ito
徳孝 伊藤
Toshio Kotaka
稔生 小鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCM Corp
Original Assignee
TCM Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCM Corp filed Critical TCM Corp
Priority to JP2006337677A priority Critical patent/JP2008154324A/en
Publication of JP2008154324A publication Critical patent/JP2008154324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a braking apparatus of industrial electric drive vehicle in which setting and structure are simple, safety is high, and recovery of regenerative energy is high. <P>SOLUTION: The braking apparatus comprises a mechanical hydraulic brake operated by a brake pedal, an inverter for controlling a travelling motor, and a vehicle controller for controlling an inverter based on the detection signal from a brake pedal stepping amount detector. The vehicle controller is arranged to perform braking with a regenerative brake torque ET increasing gradually as the stepping amount increases in a low speed brake zone T between the brake pedal off position 0 to a mechanical brake start point t based on the detection value from the stepping amount detector, and to perform braking with a mechanical brake torque MT and a regenerative brake torque ET increasing gradually as the stepping amount increases in a high speed brake zone OT exceeding the mechanical brake start point t. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ホイールローダやフォークリフト、ダンプトラックなど、特に低速回転の前後進と停止とを繰り返して行う作業走行が多い産業用電気駆動車両に適した制動装置に関する。   The present invention relates to a braking device suitable for an industrial electric drive vehicle such as a wheel loader, a forklift, a dump truck, and the like, which particularly has a lot of work traveling in which forward and backward advancement and stop of low-speed rotation are repeated.

回生(電気式)ブレーキと油圧(機械式)ブレーキとを併用した車両の制動装置において、回生制動トルクと油圧制動トルクとを、ブレーキペダルの踏み込み速度に応じて分配し、両制動トルクの総和が全制動トルクとなるように制御するものが、たとえば特許文献1に示されている。
特開平6−253406号公報
In a braking device for a vehicle that uses both a regenerative (electric) brake and a hydraulic (mechanical) brake, the regenerative braking torque and the hydraulic braking torque are distributed according to the depression speed of the brake pedal. For example, Japanese Patent Application Laid-Open No. H10-228667 discloses a control that controls the total braking torque.
JP-A-6-253406

しかしながら、特許文献1においては、
A)ブレーキペダルの踏み込み速度は、オペレータの個人差があるとともに、通常時はブレーキペダルの反力を感じながら踏み込むので、所定の反力を感じるまでは、一気に踏み込むことが多く、踏み込み速度により制動トルクを設定するのは困難を伴うこと、
B)踏み込み速度を計算して油圧ブレーキにフィードバックするため、油圧ブレーキの油圧回路に比例制御弁とブレーキ力を変更するための装置が必要で、構造が複雑になること、
C)油圧ブレーキの操作に、回生ブレーキの電気制御が関わるため、電気制御系統にトラブルが発生すると、油圧ブレーキが操作ができなくなり、安全面での対策がさらに必要となることなどの問題があった。
However, in Patent Document 1,
A) The brake pedal depressing speed varies depending on the individual operator. In normal times, the brake pedal is depressed while feeling the reaction force of the brake pedal. Therefore, the brake pedal is often depressed at a stroke until the predetermined reaction force is felt. Setting torque is difficult,
B) Since the stepping speed is calculated and fed back to the hydraulic brake, a hydraulic control circuit for the hydraulic brake and a device for changing the braking force are required, and the structure is complicated.
C) Since the operation of the hydraulic brake involves electric control of the regenerative brake, if a problem occurs in the electric control system, the hydraulic brake cannot be operated, and there are problems such as further safety measures being required. It was.

本発明は上記問題点を解決して、設定や構造が容易で、安全性が高く、低速回転の前後進と停止とを繰り返して作業走行の多い産業用電気駆動車両に適した産業用電気駆動車両の制動装置を提供することを目的とする。   The present invention solves the above-mentioned problems, and is an industrial electric drive suitable for an industrial electric drive vehicle that is easy to set and structure, has high safety, and repeats forward / backward movement and stop of low-speed rotation and frequently performs work traveling. An object of the present invention is to provide a braking device for a vehicle.

請求項1記載の発明は、ブレーキペダルにより操作されるブレーキバルブにより、圧油を駆動室に給排出して走行車輪を制動する機械式油圧ブレーキと、前記ブレーキペダルの踏み込み量を検出する踏み込み量検出器と、走行用モータを制御するインバータ装置と、前記踏み込み量検出器の検出信号に基づいてインバータ装置を制御する車両コントローラとを具備し、前記車両コントローラを、踏み込み量検出器の検出値に基づいてブレーキ踏み込み量の増加に対応して回生制動トルクを漸次増加させるように構成し、前記ブレーキバルブを、ブレーキペダルオフ位置から機械制動始点の間の踏み込み量では圧油を駆動室に供給せず、機械制動始点からの踏み込み量の増加に対応して駆動室への圧油の供給を漸次増加して機械制動トルクを増加させるように構成し、ブレーキペダルのオフ位置から機械制動始点の間のブレーキ踏み込み量で回生制動トルクを全制動トルクとし、機械制動始点以上のブレーキ踏み込み量で、回生制動トルクと機械制動トルクとの総和を全制動トルクとしたものである。   According to the first aspect of the present invention, a mechanical hydraulic brake that brakes a traveling wheel by supplying and discharging pressure oil to and from a driving chamber by a brake valve operated by a brake pedal, and a depression amount that detects a depression amount of the brake pedal A detector, an inverter device for controlling the driving motor, and a vehicle controller for controlling the inverter device based on a detection signal of the stepping amount detector, wherein the vehicle controller is set to a detection value of the stepping amount detector. Based on this, the regenerative braking torque is gradually increased in response to an increase in the brake depression amount, and the brake valve is supplied with pressure oil to the drive chamber at the depression amount from the brake pedal off position to the mechanical braking start point. In response to the increase in the amount of stepping from the mechanical braking start point, the supply of pressure oil to the drive chamber is gradually increased to increase the mechanical braking torque. The regenerative braking torque is defined as the total braking torque by the amount of brake depression between the brake pedal off position and the mechanical braking start point, and the regenerative braking torque The total is the total braking torque.

請求項2記載の発明は、請求項1記載の構成において、インバータ装置に、走行用モータからの回生電力を蓄電する蓄電器を設けたものである。
請求項3記載の発明は、請求項1または2記載の構成において、車両コントローラにより、走行モータに走行車輪を拘束停止する回生制動トルクを発生する停止位置制御を行うとともに、アクセルペダルの踏み込み量に対応する駆動トルクが前記回生制動トルクを越えた時に走行モータに駆動力を与える遅延制御を行う坂道発進切換スイッチを設けたものである。
According to a second aspect of the present invention, in the configuration according to the first aspect, the inverter device is provided with a battery for storing regenerative power from the traveling motor.
According to a third aspect of the present invention, in the configuration of the first or second aspect, the vehicle controller performs stop position control for generating a regenerative braking torque that restrains and stops the traveling wheels on the traveling motor, and controls the amount of depression of the accelerator pedal. A slope start changeover switch is provided that performs delay control to give a driving force to the traveling motor when the corresponding driving torque exceeds the regenerative braking torque.

請求項1記載の発明によれば、作業走行時に油圧ブレーキを使用しないですむので、油圧ブレーキのディスクやドラム、パッドなどの制動部材の磨耗を大幅に減少させることができ、制動部材の寿命を延ばすことができる。さらに、高速回転時に回生制動を使用すると、インバータ装置や走行モータ、放熱用のブレーキ抵抗器などの回生ブレーキの構成部材を大型で大容量のものを使用する必要があるが、本発明では、低速回転時に回生制動のみを使用し、高速回転時や急ブレーキ時の全制動トルクを油圧ブレーキで補うように構成したので、回生ブレーキの構成部材を小型化することができる。さらにまた、油圧ブレーキはブレーキペダルによりブレーキバルブを介して操作され、回生ブレーキの構成部材や制御用電気回路とは独立しているので、電気系統にトラブルが発生しても、油圧ブレーキのみで車両を制動することができ、設定や構造が容易で、かつ安全性が高い。   According to the first aspect of the present invention, since it is not necessary to use the hydraulic brake during traveling, it is possible to greatly reduce the wear of the brake member such as the disc, drum and pad of the hydraulic brake, and to increase the life of the brake member. Can be extended. Furthermore, if regenerative braking is used during high-speed rotation, it is necessary to use large and large-capacity regenerative brake components such as an inverter device, a traveling motor, and a heat dissipation brake resistor. Since only the regenerative braking is used at the time of rotation, and the entire braking torque at the time of high-speed rotation or sudden braking is supplemented by the hydraulic brake, the components of the regenerative brake can be reduced in size. Furthermore, the hydraulic brake is operated by the brake pedal via the brake valve, and is independent of the regenerative brake components and the control electric circuit. Can be braked, easy to set up and structure, and high in safety.

請求項2記載の発明によれば、低速回転で前後進と停止とを繰り返す作業走行時には、ブレーキ踏み込み量がオフ位置から機械制動始点までの低速制動域で走行モータを回生制動のみで制動し、この回生制動により回収した回生電力をインバータ装置の蓄電器に蓄電して前後進に使用することで、作業走行時に高効率で回生エネルギーを回収し有効利用を図ることができる(油圧ブレーキを使用すると回生エネルギーを有効に回収できない)。   According to the second aspect of the present invention, at the time of work traveling that repeats forward / backward movement and stop at low speed rotation, the travel motor is braked only by regenerative braking in a low speed braking range from the off position to the mechanical braking start point, By storing the regenerative power collected by this regenerative braking in the accumulator of the inverter device and using it forward and backward, it is possible to collect regenerative energy with high efficiency during work travel and to make effective use of it (when using a hydraulic brake, Energy cannot be recovered effectively).

請求項3記載の発明によれば、坂道発進切換スイッチをオンし、車両コントローラにより、回生ブレーキをかけて回生制動により走行車輪を停止させる停止位置制御を行うとともに、アクセルペダルの踏み込みにより駆動力の走行車輪への伝達を遅らせる遅延制御を行うので、オペレータの判断で坂道発進スイッチを操作して、坂道発進をスムーズに行うことができる。この時、油圧ブレーキを使用しないので、制動部材の磨耗を減少させることができる。   According to the third aspect of the present invention, the hill start changeover switch is turned on, and the vehicle controller performs the stop position control to stop the traveling wheel by applying the regenerative brake and regenerative braking, and the driving force is reduced by depressing the accelerator pedal. Since the delay control for delaying the transmission to the traveling wheels is performed, it is possible to smoothly start the slope by operating the slope start switch at the operator's discretion. At this time, since the hydraulic brake is not used, wear of the braking member can be reduced.

以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
この車両は、たとえばバケットなどの作業具を作業ブームを介して回動・昇降駆動する作業装置(図示せず)を搭載したホイールローダなどの電気駆動車両であって、図2に示すように、エンジン11により発電機12と油圧ポンプ13とを駆動して、発電機12の電力により、前後の走行車輪14などを回転駆動するとともに、油圧ポンプ13の油圧により作業装置や油圧ブレーキ16などを駆動するように構成されるものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
This vehicle is, for example, an electrically driven vehicle such as a wheel loader equipped with a working device (not shown) for rotating and raising / lowering a work tool such as a bucket via a work boom, as shown in FIG. The generator 11 and the hydraulic pump 13 are driven by the engine 11, and the front and rear traveling wheels 14 and the like are driven to rotate by the power of the generator 12, and the working device and the hydraulic brake 16 are driven by the hydraulic pressure of the hydraulic pump 13. It is comprised so that it may do.

前記走行車輪14は、走行モータ15により減速機を介してそれぞれ回転駆動され、車両コントローラ31により図4のインバータ装置32を介して走行モータ15が駆動制御される。また各走行車輪14には、アクスルにブレーキディスクやブレーキパッドなどの制動部材を介して制動する機械式の油圧ブレーキ16が設けられるとともに、車両コントローラ31によりインバータ装置32を介して回生制動する回生ブレーキが設けられ、これら油圧ブレーキ16と回生ブレーキとにより各走行車輪14がそれぞれ制動される。   The traveling wheels 14 are each driven to rotate by a traveling motor 15 via a speed reducer, and the traveling motor 15 is driven and controlled by a vehicle controller 31 via an inverter device 32 in FIG. Each traveling wheel 14 is provided with a mechanical hydraulic brake 16 that brakes the axle via a brake member such as a brake disk or a brake pad, and a regenerative brake that is regeneratively braked via an inverter device 32 by a vehicle controller 31. The traveling wheels 14 are braked by the hydraulic brake 16 and the regenerative brake, respectively.

図3に示すように、油圧ブレーキ16を操作するブレーキ用油圧回路21には、油圧ポンプ13により供給される圧油を溜めるブレーキ用アキュムレータ22と、運転席に設けられたブレーキペダル23により操作されてブレーキ用アキュムレータ22の圧油を油圧ブレーキ16に供給、排出するブレーキバルブ(流量制御弁)24とを具備し、油圧ブレーキ16にはブレーキバルブ24から圧油が給排出される単動形シリンダの駆動室16aを有し、この駆動室16aにより単動形シリンダを作動しブレーキパッドを介してブレーキディスクを加圧して油圧ブレーキ16を作動する。単動形シリンダには、駆動室16aからの圧油を排出する拘束用ばね16bが設けられている。また前記ブレーキペダル23には、踏み込み量を検出するたとえばポテンショメーターからなる踏み込み位置検出器(踏み込み量検出器)25が設けられている。   As shown in FIG. 3, the brake hydraulic circuit 21 that operates the hydraulic brake 16 is operated by a brake accumulator 22 that accumulates the pressure oil supplied by the hydraulic pump 13 and a brake pedal 23 provided in the driver's seat. And a brake valve (flow control valve) 24 for supplying and discharging the pressure oil of the brake accumulator 22 to and from the hydraulic brake 16, and the hydraulic brake 16 is a single-acting cylinder to which pressure oil is supplied and discharged from the brake valve 24. The drive chamber 16a is operated, a single-acting cylinder is operated by the drive chamber 16a, and the brake disc is pressurized via the brake pad to operate the hydraulic brake 16. The single acting cylinder is provided with a restraining spring 16b that discharges the pressure oil from the drive chamber 16a. The brake pedal 23 is provided with a stepping position detector (stepping amount detector) 25 comprising a potentiometer for detecting the stepping amount.

図4に示すように、発電機12から走行モータ15に電力を供給するインバータ装置32は、サイリスタコンバータを2組用いた可逆コンバータにより構成されており、コンバータ部33と平滑回路部34とインバータ部35と、サイリスタとコイルからなる整流回路36aを介して回生電力を蓄電するキャパシタ(蓄電器)36と、キャパシタ36が過充電された時に回生電力を消費するための放熱用の冷却ファン付制動用抵抗器37とを具備し、回生制動時の回生電力をキャパシタ36に蓄電して走行時に使用することができる。そして、車両コントローラ31からインバータ部35に走行モータ15を走行駆動制御および回生制動制御する制御信号が出力される。   As shown in FIG. 4, the inverter device 32 that supplies electric power from the generator 12 to the traveling motor 15 includes a reversible converter using two sets of thyristor converters, and includes a converter unit 33, a smoothing circuit unit 34, and an inverter unit. 35, a capacitor (capacitor) 36 for accumulating regenerative power via a rectifier circuit 36a composed of a thyristor and a coil, and a braking resistor with a cooling fan for radiating heat for consuming the regenerative power when the capacitor 36 is overcharged The regenerative electric power at the time of regenerative braking can be stored in the capacitor 36 and used during traveling. Then, the vehicle controller 31 outputs a control signal for controlling the driving drive and the regenerative braking of the traveling motor 15 to the inverter unit 35.

図5に示すように、車両コントローラ31には、前記踏み込み位置検出器25と、前進−中立−後進および速度モードを切り替える走行方向切換レバー41と、加速・減速を行うアクセルペダル42と、旋回を設定するための操舵ハンドル43と、坂道発進時などに使用する坂道発進切換スイッチ44と、各アクスルの油圧ブレーキ16に一体に設けられた駐車ブレーキを操作する駐車ブレーキスイッチ45と、エンジン速度切換スイッチ47と、その他運転準備・解消スイッチなどのスイッチ類からそれぞれ入力信号が入力される。またこの車両コントローラ31の操作出力信号が、インバータ装置32のインバータ部35と、エンジンコントローラ46や表示ランプなどにそれぞれ出力される。   As shown in FIG. 5, the vehicle controller 31 includes a turning position detector 25, a travel direction switching lever 41 that switches between forward-neutral-reverse and speed modes, an accelerator pedal 42 that performs acceleration / deceleration, and turning. A steering handle 43 for setting, a slope start changeover switch 44 used when starting a slope, a parking brake switch 45 for operating a parking brake provided integrally with the hydraulic brake 16 of each axle, and an engine speed changeover switch 47 and other switches such as operation preparation / cancellation switches are input. The operation output signal of the vehicle controller 31 is output to the inverter unit 35 of the inverter device 32, the engine controller 46, a display lamp, and the like.

この電気駆動車両の回生ブレーキと油圧ブレーキ16について説明する。
図1(a)に示すように、ブレーキペダル23が踏み込まれて踏み込み位置検出器25によりブレーキ踏み込み量がオフ位置0から機械制動始点tまで低速制御域T内で増加すると、車両コントローラ31ではインバータ部35を制御して、ブレーキ踏み込み量の増加に対応して回生制動トルクETを漸次増加させて各走行モータ15に回生ブレーキをかけ、走行車輪14を制動する。この低速制御域T内で、ブレーキバルブ24は閉鎖位置に保持され、油圧ブレーキ16を作動しない。次いで機械制動始点tからブレーキ踏み込み量が増加する高速制動域OTになると、車両コントローラ31ではインバータ部35を制御し、踏み込み量の増加に対応して回生制動トルクETをさらに漸次増加させ、各走行モータ15にそれぞれ回生ブレーキをかけ走行車輪14を制動する。同時にブレーキバルブ24では、ブレーキ踏み込み量の増加に対応してブレーキ用アキュムレータ22の圧油を駆動室16aに漸次増加して供給し、油圧ブレーキ16の機械制動トルクMTを漸次増大させて走行車輪14を制動する。
The regenerative brake and hydraulic brake 16 of this electrically driven vehicle will be described.
As shown in FIG. 1 (a), when the brake pedal 23 is depressed and the depression position detector 25 increases the brake depression amount from the off position 0 to the mechanical braking start point t within the low speed control region T, the vehicle controller 31 The unit 35 is controlled so that the regenerative braking torque ET is gradually increased in response to an increase in the brake depression amount, the regenerative brake is applied to each traveling motor 15, and the traveling wheel 14 is braked. Within this low speed control region T, the brake valve 24 is held in the closed position and the hydraulic brake 16 is not operated. Next, when the high-speed braking range OT in which the brake depression amount increases from the mechanical braking start point t, the vehicle controller 31 controls the inverter unit 35 to further gradually increase the regenerative braking torque ET corresponding to the increase in the depression amount. A regenerative brake is applied to each motor 15 to brake the traveling wheel 14. At the same time, the brake valve 24 gradually increases and supplies the pressure oil of the brake accumulator 22 to the drive chamber 16a in response to an increase in the brake depression amount, and gradually increases the mechanical braking torque MT of the hydraulic brake 16 to increase the traveling wheel 14. Brake.

このように、ブレーキ踏み込み量がオフ位置0から機械制動始点tまでの低速制動域Oでは、回生ブレーキのみが作動されて走行車輪14を制動し、ブレーキ踏み込み量が機械制動始点tを越える高速制動域OTになると、車両コントローラ31により回生ブレーキが作動されると同時に油圧ブレーキ16が作動されて、走行車輪14が大きい制動力で制動される。したがって、低速制動域Tでは回生制動トルクETが全制動トルクATとなり、高速制動域OTになると、回生制動トルクETに加えて機械制動トルクMTが補充され、回生制動トルクETと機械制動トルクMTとの総和が全制動トルクATとなる。   Thus, in the low-speed braking range O where the brake depression amount is from the off position 0 to the mechanical braking start point t, only the regenerative brake is actuated to brake the traveling wheel 14 and the braking depression amount exceeds the mechanical braking start point t. In the range OT, the regenerative brake is activated by the vehicle controller 31 and the hydraulic brake 16 is activated at the same time, and the traveling wheel 14 is braked with a large braking force. Accordingly, the regenerative braking torque ET becomes the total braking torque AT in the low speed braking range T, and when the high speed braking range OT is reached, the mechanical braking torque MT is supplemented in addition to the regenerative braking torque ET, and the regenerative braking torque ET and the mechanical braking torque MT Is the total braking torque AT.

ここで、機械制動始点tは、ブレーキ踏み込み量が全ストロークとなる最大全制動トルクATmaxの0.25〜0.4倍の範囲が適している。これは最大全制動トルクATmaxの0.25倍未満では、油圧ブレーキ16の使用頻度が多くなり過ぎて制動部材の磨耗量も多く、また回生エネルギーの回収効率も低いからであり、0.4倍を越えると、高速での制動回数が増えて回生制動トルクを増大させる分、インバータ装置32などを大型化する必要があり設備コストが嵩むからである。さらに機械制動始点tの好適値は、最大全制動トルクATmaxの0.3〜0.35倍の範囲である。このように、ブレーキ踏み込み量がオフ位置0から機械制動始点tまでの低速制動域Tで、低速回転で前後進と停止とを繰り返す作業走行時における全制動トルクが回生制動だけで行われるように設定されている。   Here, the mechanical braking start point t is suitably in the range of 0.25 to 0.4 times the maximum total braking torque ATmax at which the brake depression amount is the full stroke. This is because when the maximum brake torque ATmax is less than 0.25 times, the frequency of use of the hydraulic brake 16 is excessive, the wear amount of the brake member is large, and the recovery efficiency of the regenerative energy is low. This is because the number of times of braking at high speed increases and the regenerative braking torque is increased, so that it is necessary to increase the size of the inverter device 32 and the like, which increases the equipment cost. Further, a preferable value of the mechanical braking start point t is in a range of 0.3 to 0.35 times the maximum total braking torque ATmax. In this way, in the low-speed braking region T where the brake depression amount is from the off position 0 to the mechanical braking start point t, the entire braking torque during the operation traveling that repeats forward / reverse and stop at low-speed rotation is performed only by regenerative braking. Is set.

また、産業用電気駆動車両には、低速で間欠的に停止と前進または後進を繰り返すことにより、荷などの対象物に精度良く接近するのに使用されるインチングスイッチが設けられている(たとえば特開2001−245406)。このインチングスイッチのない場合には、左右に設けられたブレーキペダルとアクセルペダルを交互に操作して間欠的に前後進を行うため、油圧ブレーキと走行モータとが同時に作動されてブレーキの発熱・磨耗と燃料の消費が同時に行われてエネルギーの浪費状態となる。これを防止するための従来のインチングスイッチは、ブレーキペダルを操作している時に、走行モータの駆動力を作用させないように制御するものである。   In addition, an industrial electric drive vehicle is provided with an inching switch that is used to accurately approach an object such as a load by intermittently stopping and moving forward or backward at low speeds (for example, a special feature). Open 2001-245406). In the absence of this inching switch, the brake pedal and accelerator pedal provided on the left and right are operated alternately to move back and forth intermittently. And fuel is consumed at the same time, resulting in a waste of energy. In order to prevent this, the conventional inching switch controls so that the driving force of the travel motor does not act when the brake pedal is operated.

本発明の産業用電気駆動車両では、低速時に使用するブレーキペダル23のオフ位置0から機械制動始点tまでを、回生ブレーキでカバーするので、ブレーキペダル23とアクセルペダル42とを同時に踏んだ場合には、ブレーキペダル23が優先されて走行モータ15が回生制動され、ブレーキペダル23がオフ位置0となりアクセルペダル42が踏み込まれると、走行モータ15が駆動される。そしてブレーキペダル23とアクセルペダル42とが交互に踏み込まれても、ブレーキと走行モータ15とが同時に作動されることはない。   In the industrial electric drive vehicle of the present invention, the regenerative brake covers the off position 0 of the brake pedal 23 used at low speed to the mechanical braking start point t. Therefore, when the brake pedal 23 and the accelerator pedal 42 are stepped on simultaneously. The brake motor 23 is prioritized and the travel motor 15 is regeneratively braked. When the brake pedal 23 is in the off position 0 and the accelerator pedal 42 is depressed, the travel motor 15 is driven. Even when the brake pedal 23 and the accelerator pedal 42 are alternately depressed, the brake and the traveling motor 15 are not simultaneously operated.

ところで、図1(a)(b)では、ブレーキ踏み込み量の変化に伴う全制動トルクATの変化率が、低速制動域Tで小さく、高速制動域OTで大きく、機械制動始点tで低い折れ線形となっている。これは、作業走行時を含む低速走行時に、オペレータが低速制動域Tでブレーキペダル23を通常感覚で操作し、高速制動域OTで初めて急ブレーキをかけるような大きい加圧力でブレーキペダル23の操作することになるため、低速制動域Tと高速制動域OTとでオペレータの操作感覚に問題は生じることはない。もちろん、図1(c)に示すように、回生制動トルクETを、仮想線や破線で示すように制御して、ブレーキ踏み込み量の変化に伴う低速制動域Tと高速制動域OTの全制動トルクATの変化率を一定とすることもできる。   By the way, in FIGS. 1A and 1B, the rate of change of the total braking torque AT accompanying the change in the brake depression amount is small in the low-speed braking region T, large in the high-speed braking region OT, and low at the mechanical braking start point t. It has become. This is because the operator operates the brake pedal 23 in a normal manner in the low-speed braking region T and operates the brake pedal 23 with such a large pressure that the brake is applied for the first time in the high-speed braking region OT during low-speed traveling including work traveling. Therefore, there is no problem in the operator's sense of operation between the low-speed braking area T and the high-speed braking area OT. Of course, as shown in FIG. 1 (c), the regenerative braking torque ET is controlled as indicated by a virtual line or a broken line, and the total braking torque in the low speed braking area T and the high speed braking area OT according to the change in the brake depression amount. The rate of change of AT can also be made constant.

また、坂道発進などで車両がずり下がることなく発進できる技術が、たとえば特開平7−322404に提案されている。この技術では、走行モータの回転数と回転方向と、走行方向切換レバーによる進行方向指令が反対である時に、自動的に拘束停止状態とするものである。しかし、上記従来例では、意図的に走行方向切換レバーを切り替えることなく、自重で車両をずり下げて位置調整することができない(自動的に拘束停止される)。本発明では、坂道発進切換スイッチ44を設け、これをオペレータが任意にオンすることにより、走行車輪14を拘束停止するように構成している。   Further, for example, Japanese Patent Application Laid-Open No. 7-322404 proposes a technique that allows a vehicle to start without falling down when starting on a slope. In this technique, when the rotational speed and rotation direction of the traveling motor and the traveling direction command by the traveling direction switching lever are opposite, the restraint stop state is automatically set. However, in the above conventional example, the vehicle cannot be lowered by its own weight without intentionally switching the traveling direction switching lever (the position is not automatically stopped). In the present invention, a slope start changeover switch 44 is provided, and the traveling wheel 14 is restrained and stopped when the operator arbitrarily turns it on.

すなわち、この坂道発進切換スイッチ44をオンすることにより、車両コントローラ31では、走行車輪14の停止位置制御が行われる。車両コントローラ31からコンバータ部33に停止指令が出力され、走行モータ15からフィードバックされる回転方向と回転速度に基づいて、走行モータ15の回転速度が0となるように回生制動トルクを発生させ、これにより坂道で車両を拘束停止させる。アクセルぺダル42が操作されると、踏み込み量に応じて出力される駆動トルクの指令値が回生制動トルクを超えると、回生ブレーキが解除され走行車輪14が回転駆動される遅延制御を行い、これにより坂道発進がスムーズに行われる。なお、機械制動始点tではほぼ10%前後の勾配で停止させる回生制動トルクETであり、この停止位置制御では、機械制動始点tを越える回生制動トルクETを発生して回生ブレーキのみで車両を停止する。   That is, by turning on this slope start changeover switch 44, the vehicle controller 31 performs stop position control of the traveling wheels 14. A stop command is output from the vehicle controller 31 to the converter unit 33, and based on the rotational direction and rotational speed fed back from the traveling motor 15, regenerative braking torque is generated so that the rotational speed of the traveling motor 15 becomes zero. To restrain the vehicle on the slope. When the accelerator pedal 42 is operated, when the command value of the drive torque output according to the depression amount exceeds the regenerative braking torque, the regenerative brake is released and the traveling wheel 14 is rotationally driven to perform delay control. As a result, the slope starts smoothly. The mechanical braking start point t is a regenerative braking torque ET that stops at a gradient of about 10%. In this stop position control, the regenerative braking torque ET exceeding the mechanical braking start point t is generated and the vehicle is stopped only by the regenerative brake. To do.

上記実施の形態によれば、ブレーキ踏み込み量がオフ位置0から機械制動始点tの低速制動域T内では回生制動のみを行い、低速制動域Tでは、低速回転で前後進と停止とを繰り返す作業走行が行われる。これにより、走行モータ15を回生制動して、回収した回生電力をインバータ装置32のキャパシタ36に蓄電し、この回生電力を走行モータ15の前後進の駆動に使用することで、高効率でエネルギーを回収して有効利用することができる。なお、作業走行時に油圧ブレーキ16が使用されると、回生エネルギーを有効に回収できない。   According to the above embodiment, only regenerative braking is performed within the low-speed braking area T where the brake depression amount is from the off position 0 to the mechanical braking start point t, and in the low-speed braking area T, the operation of repeating forward / reverse and stop at low-speed rotation is performed. Driving is performed. As a result, the traveling motor 15 is regeneratively braked, the recovered regenerative power is stored in the capacitor 36 of the inverter device 32, and this regenerative power is used for driving the traveling motor 15 in the forward and backward directions, so that energy can be efficiently generated. It can be recovered and used effectively. If the hydraulic brake 16 is used during work travel, regenerative energy cannot be recovered effectively.

また低速制動域Tで油圧ブレーキ16を使用しないですむので、油圧ブレーキ16の制動部材の磨耗を大幅に減少させることができ、制動部材の寿命を延ばすことができる。
さらに、高速制動域OTで回生制動のみで制動しようとすると、インバータ装置32や走行モータ15、放熱用の制動用抵抗器37などを大型で大容量のものを使用する必要があるが、本発明では、低速回転域Tでは回生制動トルクETのみで制動し、高速回転域OTで回生制動トルクETを油圧ブレーキ16による機械制動トルクMTで補うので、より確実な制動が可能となり、制動装置を大型化する必要がない。
Further, since it is not necessary to use the hydraulic brake 16 in the low-speed braking region T, the wear of the braking member of the hydraulic brake 16 can be greatly reduced, and the life of the braking member can be extended.
Furthermore, when braking is performed only by regenerative braking in the high-speed braking range OT, it is necessary to use a large-sized and large-capacity inverter device 32, travel motor 15, and heat-dissipating braking resistor 37. In the low-speed rotation region T, braking is performed only with the regenerative braking torque ET, and the regenerative braking torque ET is supplemented with the mechanical braking torque MT by the hydraulic brake 16 in the high-speed rotation region OT. There is no need to

さらにまた、坂道発切換進スイッチ44により、車両コントローラ31により停止位置制御と遅延制御とを行うので、任意時にオペレータの判断で電気駆動車両の坂道発進をスムーズに行うことができ、油圧ブレーキ16を使用しないので、制動部材の磨耗を減少させることができる。   Furthermore, since the stop position control and the delay control are performed by the vehicle controller 31 by the slope start switch 44, the slope of the electrically driven vehicle can be smoothly started at the discretion of the operator at any time. Since it is not used, the wear of the braking member can be reduced.

また油圧ブレーキ16のブレーキ用油圧回路21と、回生ブレーキの制御用の電気回路とが互いに独立して設置されることから、電気系統にトラブルが発生しても、ブレーキペダル23によりブレーキバルブ24を介して油圧ブレーキ16を操作することができ、車両を安全に停止することができる。   In addition, since the brake hydraulic circuit 21 of the hydraulic brake 16 and the electric circuit for controlling the regenerative brake are installed independently of each other, even if a trouble occurs in the electric system, the brake valve 24 is operated by the brake pedal 23. The hydraulic brake 16 can be operated via the vehicle, and the vehicle can be stopped safely.

図6は、産業用電気駆動車両の他の実施の形態における走行モータの給電回路図を示したもので、キャパシタ36を削除したものである。これにより、回生ブレーキによる回生電力を、放熱用の冷却ファン付制動抵抗器37により消費するように構成される。この実施の形態によれば、先の実施の形態に比較して、回生電力を有効に利用することができないものの、他の効果を同様に奏することができる。   FIG. 6 shows a power supply circuit diagram of a traveling motor in another embodiment of the industrial electric drive vehicle, in which the capacitor 36 is omitted. Thereby, it is comprised so that the regenerative electric power by regenerative braking may be consumed by the braking resistor 37 with a cooling fan for thermal radiation. According to this embodiment, the regenerative power cannot be effectively used as compared with the previous embodiment, but other effects can be similarly achieved.

本発明に係る産業用電気駆動車両の制動装置の実施の形態におけるブレーキペダルの踏み込み量と制動トルクの関係を示すグラフで、(a)は第1例のブレーキ踏み込み量と、回生制動トルクおよび機械制動トルクの関係を示し、(b)は第1例の全制動トルクを示し、(c)は第2例のブレーキ踏み込み量と、回生制動トルクおよび機械制動トルクならびに全制動トルクの関係を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a relationship between a brake pedal depression amount and a braking torque in an embodiment of a braking device for an industrial electric drive vehicle according to the present invention, in which (a) shows a brake depression amount, a regenerative braking torque, and a machine in a first example; (B) shows the total braking torque of the first example, and (c) shows the relationship between the brake depression amount of the second example, the regenerative braking torque, the mechanical braking torque, and the total braking torque. 産業用電気駆動車両の概略構成図である。It is a schematic block diagram of an industrial electric drive vehicle. ブレーキ用油圧回路図である。It is a hydraulic circuit diagram for brakes. 走行モータの給電回路図である。It is a power supply circuit diagram of a travel motor. 産業用電気駆動車両の制御構成図である。It is a control block diagram of an industrial electric drive vehicle. 産業用電気駆動車両の他の実施の形態を示す走行モータの給電回路図である。It is the electric power feeding circuit diagram of the traveling motor which shows other embodiment of an industrial electric drive vehicle.

符号の説明Explanation of symbols

ET 回生制動トルク
MT 機械制動トルク
AT 全制動トルク
t 機械制動始点
T 低速制動域
OT 高速制動域
11 エンジン
12 発電機
14 走行車輪
15 走行モータ
16 油圧ブレーキ
16a 駆動室
21 ブレーキ用油圧回路
22 ブレーキ用アキュムレータ
23 ブレーキペダル
24 ブレーキバルブ
25 踏み込み位置検出器
31 車両コントローラ
32 インバータ装置
35 インバータ部
36 キャパシタ(蓄電器)
37 制動抵抗器
42 アクセルペダル
44 坂道発進切換スイッチ
ET Regenerative braking torque MT Mechanical braking torque AT Total braking torque t Mechanical braking start point T Low speed braking range OT High speed braking range 11 Engine 12 Generator 14 Traveling wheel 15 Traveling motor 16 Hydraulic brake 16a Drive chamber 21 Brake hydraulic circuit 22 Brake accumulator 23 Brake pedal 24 Brake valve 25 Depressed position detector 31 Vehicle controller 32 Inverter device 35 Inverter unit 36 Capacitor (capacitor)
37 Braking resistor 42 Accelerator pedal 44 Slope start changeover switch

Claims (3)

ブレーキペダルにより操作されるブレーキバルブにより、圧油を駆動室に給排出して走行車輪を制動する機械式油圧ブレーキと、
前記ブレーキペダルの踏み込み量を検出する踏み込み量検出器と、
走行用モータを制御するインバータ装置と、
前記踏み込み量検出器の検出信号に基づいてインバータ装置を制御する車両コントローラとを具備し、
前記車両コントローラを、踏み込み量検出器の検出値に基づいてブレーキ踏み込み量の増加に対応して回生制動トルクを漸次増加させるように構成し、
前記ブレーキバルブを、ブレーキペダルオフ位置から機械制動始点の間の踏み込み量では圧油を駆動室に供給せず、機械制動始点からの踏み込み量の増加に対応して駆動室への圧油の供給を漸次増加して機械制動トルクを増加させるように構成し、
ブレーキペダルのオフ位置から機械制動始点の間のブレーキ踏み込み量で回生制動トルクを全制動トルクとし、機械制動始点以上のブレーキ踏み込み量で、回生制動トルクと機械制動トルクとの総和を全制動トルクとした
産業用電気駆動車両の制動装置。
A mechanical hydraulic brake that brakes the traveling wheel by supplying and discharging pressure oil to the drive chamber by a brake valve operated by a brake pedal;
A depression amount detector for detecting the depression amount of the brake pedal;
An inverter device for controlling the driving motor;
A vehicle controller for controlling the inverter device based on a detection signal of the depression amount detector,
The vehicle controller is configured to gradually increase the regenerative braking torque in response to an increase in the brake depression amount based on a detection value of the depression amount detector,
Pressure oil is not supplied to the drive chamber when the brake valve is depressed from the brake pedal off position to the mechanical braking start point, and pressure oil is supplied to the drive chamber in response to an increase in the depression amount from the mechanical braking start point. Is configured to gradually increase the mechanical braking torque,
The regenerative braking torque is the total braking torque based on the brake depression amount between the brake pedal off position and the mechanical braking start point, and the sum of the regenerative braking torque and the mechanical braking torque is the total braking torque when the brake depression amount is greater than or equal to the mechanical braking start point. Industrial electric drive vehicle braking device.
インバータ装置に、走行用モータからの回生電力を蓄電する蓄電器を設けた
請求項1記載の産業用電気駆動車両の制動装置。
The braking device for an industrial electric drive vehicle according to claim 1, wherein the inverter device is provided with a capacitor for storing regenerative electric power from the traveling motor.
車両コントローラにより、走行モータに走行車輪を拘束停止する回生制動トルクを発生する停止位置制御を行うとともに、アクセルペダルの踏み込み量に対応する駆動トルクが前記回生制動トルクを越えた時に走行モータに駆動力を与える遅延制御を行う坂道発進切換スイッチを設けた
請求項1または2記載の産業用電気駆動車両の制動装置。
The vehicle controller performs stop position control for generating regenerative braking torque that restrains and stops the traveling wheels on the traveling motor, and when the driving torque corresponding to the depression amount of the accelerator pedal exceeds the regenerative braking torque, the driving force is applied to the traveling motor. The brake device for an industrial electric drive vehicle according to claim 1 or 2, further comprising a slope start changeover switch for performing a delay control for giving a delay.
JP2006337677A 2006-12-15 2006-12-15 Braking apparatus of industrial electric drive vehicle Pending JP2008154324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337677A JP2008154324A (en) 2006-12-15 2006-12-15 Braking apparatus of industrial electric drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337677A JP2008154324A (en) 2006-12-15 2006-12-15 Braking apparatus of industrial electric drive vehicle

Publications (1)

Publication Number Publication Date
JP2008154324A true JP2008154324A (en) 2008-07-03

Family

ID=39655941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337677A Pending JP2008154324A (en) 2006-12-15 2006-12-15 Braking apparatus of industrial electric drive vehicle

Country Status (1)

Country Link
JP (1) JP2008154324A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041915A (en) * 2008-08-04 2010-02-18 Dr Ing Hcf Porsche Ag Vehicle having at least one electric machine which operates as generator
JP2012105386A (en) * 2010-11-08 2012-05-31 Nissan Motor Co Ltd Control apparatus for preventing rolling back of electrically driven vehicle upon start-up thereof
WO2013084358A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車 株式会社 Vehicle control device
JP2013522499A (en) * 2010-05-25 2013-06-13 サンドビク マイニング アンド コンストラクション オサケ ユキチュア Rock drilling rig and positioning method thereof
CN103935251A (en) * 2014-04-30 2014-07-23 杭州明果教育咨询有限公司 Control method of maximum energy recovery when electric vehicle brakes
CN103946053A (en) * 2011-11-22 2014-07-23 Ntn株式会社 Electric vehicle
CN104309489A (en) * 2014-09-27 2015-01-28 奇瑞汽车股份有限公司 System and method for controlling regenerative brake device of electric vehicle
JP2015063271A (en) * 2013-09-26 2015-04-09 日立建機株式会社 Hybrid work vehicle
JPWO2013183764A1 (en) * 2012-06-07 2016-02-01 クラリオン株式会社 Energy estimation device, vehicle information system, server device
US20160082843A1 (en) * 2013-03-26 2016-03-24 Continental Automotive Gmbh Method For Operating A Regenerative Braking Device Of A Motor Vehicle And Regenerative Braking Device For A Motor Vehicle
EP2444275A3 (en) * 2010-10-19 2016-12-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor torque control device
JP2020153158A (en) * 2019-03-20 2020-09-24 日立建機株式会社 Wheel loader

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185203A (en) * 1990-11-19 1992-07-02 Toyota Autom Loom Works Ltd Controller of motor-driven vehicle
JPH07203602A (en) * 1993-12-29 1995-08-04 Toyota Motor Corp Braking equipment of electric vehicle
JPH09130911A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Drive controller for electric automobile
JPH09298803A (en) * 1996-05-02 1997-11-18 Toyota Motor Corp Hybrid vehicle
JP2008120157A (en) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd Braking device for working vehicle and working vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04185203A (en) * 1990-11-19 1992-07-02 Toyota Autom Loom Works Ltd Controller of motor-driven vehicle
JPH07203602A (en) * 1993-12-29 1995-08-04 Toyota Motor Corp Braking equipment of electric vehicle
JPH09130911A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Drive controller for electric automobile
JPH09298803A (en) * 1996-05-02 1997-11-18 Toyota Motor Corp Hybrid vehicle
JP2008120157A (en) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd Braking device for working vehicle and working vehicle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8181726B2 (en) 2008-08-04 2012-05-22 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Vehicle having at least one electric machine which can be operated as a generator
JP2010041915A (en) * 2008-08-04 2010-02-18 Dr Ing Hcf Porsche Ag Vehicle having at least one electric machine which operates as generator
JP2013522499A (en) * 2010-05-25 2013-06-13 サンドビク マイニング アンド コンストラクション オサケ ユキチュア Rock drilling rig and positioning method thereof
EP2444275A3 (en) * 2010-10-19 2016-12-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Motor torque control device
US8876658B2 (en) 2010-11-08 2014-11-04 Nissan Motor Co., Ltd. Control apparatus for preventing rolling back of an electrically driven vehicle upon start-up thereof
JP2012105386A (en) * 2010-11-08 2012-05-31 Nissan Motor Co Ltd Control apparatus for preventing rolling back of electrically driven vehicle upon start-up thereof
CN103946053B (en) * 2011-11-22 2016-04-20 Ntn株式会社 Electronlmobil
CN103946053A (en) * 2011-11-22 2014-07-23 Ntn株式会社 Electric vehicle
WO2013084358A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車 株式会社 Vehicle control device
CN103974866A (en) * 2011-12-09 2014-08-06 丰田自动车株式会社 Vehicle control device
US9902390B2 (en) 2011-12-09 2018-02-27 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JPWO2013183764A1 (en) * 2012-06-07 2016-02-01 クラリオン株式会社 Energy estimation device, vehicle information system, server device
US20160082843A1 (en) * 2013-03-26 2016-03-24 Continental Automotive Gmbh Method For Operating A Regenerative Braking Device Of A Motor Vehicle And Regenerative Braking Device For A Motor Vehicle
JP2015063271A (en) * 2013-09-26 2015-04-09 日立建機株式会社 Hybrid work vehicle
CN103935251A (en) * 2014-04-30 2014-07-23 杭州明果教育咨询有限公司 Control method of maximum energy recovery when electric vehicle brakes
CN104309489A (en) * 2014-09-27 2015-01-28 奇瑞汽车股份有限公司 System and method for controlling regenerative brake device of electric vehicle
JP2020153158A (en) * 2019-03-20 2020-09-24 日立建機株式会社 Wheel loader
JP7085510B2 (en) 2019-03-20 2022-06-16 日立建機株式会社 Wheel loader

Similar Documents

Publication Publication Date Title
JP2008154324A (en) Braking apparatus of industrial electric drive vehicle
JP2008201391A (en) Forward/backward movement switching device of electric drive type cargo handling vehicle
US11491880B2 (en) System and method for controlling a vehicle
JP5836272B2 (en) Method and system for controlling the drive direction of an electrically driven machine
JP7212233B2 (en) System and method for controlling a vehicle
CN104843009B (en) Vehicle descending accessory system, method and the vehicle comprising the system
US20130057053A1 (en) Braking System for an Off-Highway Machine Involving Electric Retarding Integrated with Service Brakes
US9944198B2 (en) Vehicle
JP5560797B2 (en) Work vehicle traveling device
JP6501069B2 (en) Vehicle regenerative control system
EP2799629B1 (en) Emergency stop method for hybrid construction equipment and brake control device
JP2010201987A (en) Drive control device of hybrid vehicle
JP2019115226A (en) Control device, control method and control system for electric vehicle
JP5485504B2 (en) Hybrid work vehicle
JP3295048B2 (en) Traveling drive for industrial vehicles
JP4015445B2 (en) Operation control device for wheel type construction machine
JP2009184647A (en) Driving control device for parallel-hybrid vehicle
US8490760B2 (en) Brake cooling fluid diverter for an off-highway machine
JP6575953B2 (en) System and method for brake system verification
JPWO2018085324A5 (en)
JP6002105B2 (en) Hybrid work vehicle
JP2006232014A (en) Braking device for vehicle
JP3935035B2 (en) Motor control method for electric vehicle
JP2013500223A (en) Hoist system and method
CN217649425U (en) Electric-hydraulic composite braking system of heavy-duty electric forklift

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101