JP2008153751A - Normalization method and receiver of soft decision signal - Google Patents

Normalization method and receiver of soft decision signal Download PDF

Info

Publication number
JP2008153751A
JP2008153751A JP2006337056A JP2006337056A JP2008153751A JP 2008153751 A JP2008153751 A JP 2008153751A JP 2006337056 A JP2006337056 A JP 2006337056A JP 2006337056 A JP2006337056 A JP 2006337056A JP 2008153751 A JP2008153751 A JP 2008153751A
Authority
JP
Japan
Prior art keywords
soft decision
decision signal
value
amplitude
mode value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006337056A
Other languages
Japanese (ja)
Other versions
JP4905108B2 (en
Inventor
Mitsuo Kobayashi
三夫 小林
Junya Mikami
純矢 三上
Toshiharu Miyazaki
俊治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006337056A priority Critical patent/JP4905108B2/en
Publication of JP2008153751A publication Critical patent/JP2008153751A/en
Application granted granted Critical
Publication of JP4905108B2 publication Critical patent/JP4905108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a normalization method and a receiver of soft decision signals capable of achieving high reception performance with a small number of bits. <P>SOLUTION: The normalization method comprises: a demodulation means 11 for performing a soft judgement demodulation of reception signals; a mode value detection means 17 for detecting a mode value of signal amplitude based on frequency distribution of amplitude of a soft judgement signal sequence Lj between decoding unit sections of output of the demodulation means; a normalization means 13 for normalizing the amplitude of the soft judgement signal sequence Lj with the detected mode value as a reference; and a decoding means 14 for decoding reception data based on the soft judgement signal sequence after the normalization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は軟判定信号の正規化方法および受信装置に関し、更に詳しくは、復調器出力の軟判定信号を正規化して復号器に加えるための軟判定信号の正規化方法および受信装置に関する。本発明は移動通信システムにおけるQAM等の多値変調方式の下で軟判定誤り訂正復号を行う受信装置に適用して好適である。   The present invention relates to a soft decision signal normalization method and a receiving apparatus, and more particularly to a soft decision signal normalization method and a receiving apparatus for normalizing a soft decision signal output from a demodulator and applying it to a decoder. The present invention is suitable for application to a receiving apparatus that performs soft decision error correction decoding under a multi-level modulation scheme such as QAM in a mobile communication system.

軟判定信号に基づき誤り訂正復号を行う受信装置では、多値QAMの採用や、厳しいフェージング環境へ適応するために、信号処理への広範なダイナミックレンジが要求される。ダイナミックレンジの拡大は、即ち、ビット精度の拡大につながり、回路規模の増大を招く。   A receiving apparatus that performs error correction decoding based on a soft decision signal requires a wide dynamic range for signal processing in order to adopt multi-level QAM and adapt to a severe fading environment. The expansion of the dynamic range leads to the expansion of the bit accuracy, and the circuit scale increases.

図9は多値変調方式の一例を示す図で、16QAM復調の概念を示している。16QAMでは送信シンボル(符号点)を構成する4ビットデータ「0000」〜「1111」をビットb0,b2と、ビットb1,b3の2グループに分けて符号化し、送信すると共に、これを受信した復調部における軟判定復調は、I,Q軸からの距離を表すレベル1の軟判定と、i.q軸(但し、i.q軸は受信I,Q信号の振幅平均値から決まる)からの距離を表すレベル2の軟判定との2段階に分けて行われる。例えば符号点「0000」の軟判定復調をI軸でみると、レベル1の軟判定出力は「3a」で、かつレベル2の軟判定出力は「a」であり、また符号点「0001」の軟判定復調をI軸でみると、レベル1の軟判定出力は[a]で、かつレベル2の軟判定出力も[a」である。   FIG. 9 is a diagram showing an example of the multi-level modulation method, and shows the concept of 16QAM demodulation. In 16QAM, 4-bit data “0000” to “1111” constituting a transmission symbol (code point) is encoded by being divided into two groups of bits b0 and b2 and bits b1 and b3, and transmitted and demodulated. Soft-decision demodulation at level 1 includes level 1 soft-decision representing the distance from the I and Q axes, and i. The determination is performed in two steps: a soft decision of level 2 representing a distance from the q axis (where the i.q axis is determined from the average amplitude value of the received I and Q signals). For example, when the soft decision demodulation of code point “0000” is viewed on the I axis, the soft decision output at level 1 is “3a”, the soft decision output at level 2 is “a”, and the soft decision output at code point “0001” is When the soft decision demodulation is viewed on the I axis, the soft decision output at level 1 is [a] and the soft decision output at level 2 is also [a].

図10に各種多値変調方式における尤度ヒストグラムを示す。横軸は2を底とする対数尤度比LLR(Log-likelihood ratio) 、縦軸は相対度数である。各グラフは高SNR条件の下で各種変調方式に応じた典型的な形をしている。図10(A)のQPSKの場合は、レベル1の判定しか行わないので、尤度の絶対値をI(又はQ)軸で見ると、その分布は単一のピークを中心にして雑音等による広がりを持ったものになる。この場合の尤度の平均値Avは分布の略中央に位置する。図10(B)の16QAMの場合は、レベル1,2の2つの判定を行うため、尤度分布には2つのピークが現れる。レベル1の判定では振幅aと3aの判定が1/2の割合で発生し、レベル2の判定では全てが振幅aの判定となるため、振幅aの発生頻度は75%、振幅3aの発生頻度は25%の割合となる。この場合の平均値Avは2つのピークの略中間に位置する。同様にして64QAMの場合は図9(C)のような分布になり、平均値Avはこれらのピークの略中間に位置する。   FIG. 10 shows likelihood histograms in various multilevel modulation schemes. The horizontal axis is a log-likelihood ratio (LRR) with a base of 2, and the vertical axis is a relative frequency. Each graph has a typical shape corresponding to various modulation schemes under high SNR conditions. In the case of QPSK in FIG. 10 (A), only the determination of level 1 is performed. Therefore, when the absolute value of likelihood is viewed on the I (or Q) axis, the distribution is due to noise or the like with a single peak as the center. It becomes something with a spread. In this case, the average likelihood Av is located at the approximate center of the distribution. In the case of 16QAM in FIG. 10B, two determinations of level 1 and level 2 are performed, so that two peaks appear in the likelihood distribution. In the determination of level 1, the determination of amplitudes a and 3a occurs at a ratio of 1/2, and in the determination of level 2, all are determinations of amplitude a. Therefore, the generation frequency of amplitude a is 75% and the generation frequency of amplitude 3a. Is a ratio of 25%. In this case, the average value Av is located approximately in the middle of the two peaks. Similarly, in the case of 64QAM, the distribution is as shown in FIG. 9C, and the average value Av is located approximately in the middle of these peaks.

従って、これらの尤度(振幅)分布をカバーするのに必要なダイナミックレンジは、フェージングや雑音による広がりのみならず、各種変調方式に固有の広がりも存在しており、多値数が増すほど広いダイナミックレンジが必要となる。また、尤度分布と平均値との位置関係も多値数に応じて異なってくる。従って、このような軟判定復調出力をそのまま復号器に入力すると、演算回路やメモリの規模が大きくなるため、軟判定信号を正規化してビット数を削減することによりダイナミックレンジを絞り込むことが行われる。   Therefore, the dynamic range necessary to cover these likelihood (amplitude) distributions has not only the spread due to fading and noise, but also the spread inherent to various modulation schemes, and the wider the number of multi-values, the wider A dynamic range is required. Also, the positional relationship between the likelihood distribution and the average value varies depending on the number of multivalues. Therefore, if such a soft decision demodulated output is input to the decoder as it is, the scale of the arithmetic circuit and the memory becomes large, so that the dynamic range is narrowed down by normalizing the soft decision signal and reducing the number of bits. .

従来は、特許文献1,2に示す如く、入力の軟判定信号系列の平均値に基づき該平均値と一定の関係にある基準値を作成し、該基準値を使用して前記軟判定信号系列を除算(正規化)するのが一般的であった。以下、具体的に説明する。   Conventionally, as shown in Patent Documents 1 and 2, a reference value having a fixed relationship with the average value is created based on an average value of an input soft decision signal sequence, and the soft decision signal sequence is generated using the reference value. It was common to divide (normalize). This will be specifically described below.

図11は従来の受信装置の要部構成を示す図である。図において、入力のA/D変換された受信信号は復調回路51で軟判定復調され、出力の軟判定信号系列L(j=1,2
,…J)は一旦メモリ52に記憶される。一方、これらの軟判定信号Ljは絶対値回路55で絶対値化され、更に平均値検出回路56で復号単位区間(コードブロック単位又はフレーム単位)Jにおける軟判定信号系列の振幅の平均値Xが求められる。基準値作成回路57ではこの平均値Xを所定の設定値Aで除算して基準値B(=X/A )を作成し、更に、正規化回路53ではメモリ52から読み出した各軟判定信号Lを基準値Bで除算して正規化する。そして、FEC(Forward Error Correction)復号回路54は正規化後の軟判定信号(=L/B)に基づいて受信データの誤り訂正復号を行う。
特開2004−260713号公報 特開2002−232302号公報
FIG. 11 is a diagram illustrating a main configuration of a conventional receiving apparatus. In the figure, an input A / D converted received signal is soft-decision demodulated by a demodulation circuit 51, and an output soft-decision signal sequence L j (j = 1, 2).
,... J) are temporarily stored in the memory 52. On the other hand, these soft decision signals Lj are converted into absolute values by the absolute value circuit 55, and the average value X of the amplitude of the soft decision signal sequence in the decoding unit section (code block unit or frame unit) J is further obtained by the average value detection circuit 56. Desired. The reference value creating circuit 57 divides this average value X by a predetermined set value A to create a reference value B (= X / A). Further, the normalizing circuit 53 reads each soft decision signal L read from the memory 52. Normalize by dividing j by the reference value B. An FEC (Forward Error Correction) decoding circuit 54 performs error correction decoding on the received data based on the normalized soft decision signal (= L j / B).
JP 2004-260713 A Japanese Patent Laid-Open No. 2002-232302

しかし、平均値は、変調方式を固定しても、厳しいマルチパスフェージングによる振幅変動の影響を受けて、少なからず変動してしまう。この振幅変動による影響は、移動体が高速移動し、かつ変動周期が復号単位区間に対して相対的に短くなる場合に顕著になる。また、近年は無線信号の広帯域化が進んでおり、この場合は、マルチパスによる周波数選択性フェージングによっても激しい振幅変動が起こる。   However, even if the modulation method is fixed, the average value fluctuates not a little due to the influence of amplitude fluctuation due to severe multipath fading. The influence due to the amplitude fluctuation becomes significant when the moving body moves at a high speed and the fluctuation cycle becomes relatively short with respect to the decoding unit section. In recent years, wireless signals have become wider in bandwidth, and in this case, severe amplitude fluctuations also occur due to frequency selective fading due to multipath.

係る状況の下、平均値を基準として出来るだけ多くの復調信号を復号器(ダイナミックレンジ)に入れたいが、平均値はフェージングの影響を受けて比較的大きく変動してしまうため、ダイナミックレンジに入らない信号も沢山出てくる。一定のダイナミックレンジを上/下にスライドさせる方法もあるが、平均値では尤度分布の変動パターンを捉えることができないため、特に入力信号の下限側をカバーするのが困難になる。   Under such circumstances, we want to put as many demodulated signals as possible into the decoder (dynamic range) based on the average value. However, since the average value fluctuates greatly due to the influence of fading, it falls within the dynamic range. A lot of no signal comes out. Although there is a method of sliding a certain dynamic range up / down, it is difficult to cover the lower limit side of the input signal in particular because the average value cannot capture the variation pattern of the likelihood distribution.

この様に、平均値では、尤度分布の特徴を捉えることが出来ない場合があるため、変調方式とフェージングによって信号の度数分布が広がったような場合には、平均値が度数分布のピークに対してずれることになり、制限ビット数内に切り出した正規化結果の信号振幅が「0」になったり、振幅上限での尤度がクリップされて判定値の張り付きが起こる。   In this way, since the average value may not capture the characteristics of the likelihood distribution, if the frequency distribution of the signal widens due to the modulation method and fading, the average value becomes the peak of the frequency distribution. Therefore, the signal amplitude of the normalized result cut out within the limited number of bits becomes “0”, or the likelihood at the upper limit of the amplitude is clipped, and the determination value is stuck.

振幅が「0」になる頻度が大きい場合は、判定不能信号の増大であり、信号が送信されていないことと同じ意味となる。従って復号性能が大幅に劣化してしまう。一方、クリップされる頻度が大きい場合は、硬判定に近い状態となるが、復号回路にとってはSN比の劣化だけであり影響は小さい。一方、振幅「0」の信号の発生は、SN比の劣化のみならず、符号化率の上昇、組織符号の場合は組織ビットの欠落を招き、性能劣化に与える影響が大きい。このように、平均値に基づく正規化では、重要な信号レンジを外した正規化が行われてしまうことがあり、この損失により受信性能が著しく劣化してしまうことがあった。   When the frequency at which the amplitude becomes “0” is large, it is an increase in the indeterminable signal, which means that the signal is not transmitted. Accordingly, the decoding performance is greatly deteriorated. On the other hand, when the frequency of clipping is high, the state is close to a hard decision, but for the decoding circuit, only the SN ratio is degraded and the influence is small. On the other hand, the generation of a signal with an amplitude of “0” not only deteriorates the SN ratio, but also increases the coding rate, and in the case of systematic codes, causes systematic bits to be lost, and has a large effect on performance degradation. As described above, in normalization based on the average value, normalization outside the important signal range may be performed, and reception performance may be significantly deteriorated due to this loss.

本発明は上記従来技術の問題点に鑑みなされたものであり、その目的とするところは、少ないビット数で、高い受信性能が得られる軟判定信号の正規化方法および受信装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a soft decision signal normalization method and a receiving apparatus that can obtain high reception performance with a small number of bits. is there.

本発明の第1の態様による軟判定信号の正規化方法は、復調器出力の軟判定信号を正規化する軟判定信号の正規化方法であって、復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出し、該検出した最頻値を基準として前記軟判定信号系列の正規化を行うものである。   A soft decision signal normalization method according to a first aspect of the present invention is a soft decision signal normalization method for normalizing a soft decision signal output from a demodulator, and includes a frequency distribution of soft decision signal amplitudes in a decoding unit interval. The mode value of the signal amplitude is detected based on the above, and the soft decision signal sequence is normalized based on the detected mode value.

図10に多値変調方式における尤度分布のヒストグラムを示す。上記の如く平均値Avは受信信号の振幅変動(ダイナミックレンジ)を評価する上で比較的に良い指標ではあるが、変調方式(多値数)やマルチパスフェージングによって各振幅の分布パターンとの間の位置関係が少なからず変化するため、必ずしも受信環境をよく反映した指標とは言えない。   FIG. 10 shows a histogram of likelihood distribution in the multi-level modulation method. As described above, the average value Av is a relatively good index for evaluating the amplitude fluctuation (dynamic range) of the received signal. However, the average value Av may vary between each amplitude distribution pattern by the modulation method (multi-level number) or multipath fading. Since the positional relationship of these changes considerably, it is not necessarily an index that well reflects the reception environment.

この点、図示の如く、最頻値Moは、変調方式によらずいつも振幅頻度の一番大きいところに落ち着くため、変調方式(多値数)の相違による影響を受けないばかりか、マルチパスフェージング等により受信振幅が大きく変動しても、常に受信レベルの最頻値(大勢)を良く反映している。   In this respect, as shown in the figure, the mode Mo is always settled at the highest amplitude frequency regardless of the modulation method, so that it is not affected by the difference in the modulation method (multi-value number), and multipath fading. Even if the reception amplitude largely fluctuates due to the above, etc., the mode value (large number) of the reception level is always well reflected.

また、一般に軟判定信号による復号利得は、軟判定信号の原点付近のレベル分解能に大きく依存するところ、例えばQAM方式の最頻値Moはいつも振幅の低いところに現れるため、これに基づき入力の軟判定信号を正規化しても、原点付近に比較的高いレベル分解能を維持できる。一方、低い方のレベル分解能を優先した結果、高い方の信号レベルがクリップされたとしても、正規化後の軟判定信号が復号利得に与える影響は小さい。従って、クリップによる劣化をある程度許容しながら、0信号の発生を抑える方法が有効であり、本発明によりダイナミックレンジのレベル合わせに最頻値を利用することで、受信品質を大幅に改善できると共に、正規化後の軟判定信号のビット数を削減できる。   In general, the decoding gain due to the soft decision signal greatly depends on the level resolution near the origin of the soft decision signal. For example, the mode value Mo of the QAM method always appears at a low amplitude, and based on this, the soft input signal is softened. Even if the determination signal is normalized, a relatively high level resolution can be maintained near the origin. On the other hand, as a result of giving priority to the lower level resolution, even if the higher signal level is clipped, the influence of the normalized soft decision signal on the decoding gain is small. Therefore, a method of suppressing the generation of 0 signal while allowing a certain degree of degradation due to clipping is effective. By using the mode value for level adjustment of the dynamic range according to the present invention, reception quality can be greatly improved, The number of bits of the soft decision signal after normalization can be reduced.

本発明の第2の態様では、2進数からなる軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる2のべき乗値を最頻値とする。従って、簡単な構成と処理で、最頻値を効率よく検出できる。   In the second aspect of the present invention, the soft decision signal amplitudes composed of binary numbers are classified in units of powers of 2, and the maximum distribution is included based on the frequency distribution of the soft decision signal amplitudes included in each class. The power value is the mode value. Therefore, the mode value can be detected efficiently with a simple configuration and processing.

本発明の第3の態様による受信装置は、受信信号を軟判定復調する復調手段と、
前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出する最頻値検出手段と、前記検出した最頻値を基準として前記軟判定信号系列の正規化を行う正規化手段と、前記正規化後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えるものである。
A receiving apparatus according to a third aspect of the present invention includes a demodulating means for soft-decision demodulating a received signal;
A mode value detecting means for detecting a mode value of the signal amplitude based on a frequency distribution of the soft decision signal amplitude in the decoding unit section of the output of the demodulating means; and a mode value of the soft decision signal sequence based on the detected mode value The image processing apparatus includes a normalization unit that performs normalization and a decoding unit that decodes received data based on the normalized soft decision signal sequence.

本発明の第4の態様では、最頻値検出手段は、2進数からなる各軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる階級の2のべき乗値を最頻値とする。   In the fourth aspect of the present invention, the mode detection means classifies each soft decision signal amplitude consisting of binary numbers in units of powers of 2, and based on the frequency distribution of the soft decision signal amplitude included in each class. The power of 2 of the class including the maximum distribution is defined as the mode value.

本発明の第5の態様では、最頻値検出手段は、2のべき乗を単位とする階級別に設けた複数のカウンタと、各カウンタの計数制御を行う制御手段とを備え、
前記制御手段は、復号単位区間の初期段階で各カウンタに0又は最大値をセットしてその後のカウント出力を監視すると共に、各軟判定信号の入力に伴って、該軟判定信号振幅が含まれなかった階級の各2のべき乗に対応するカウンタのみをカウントアップ又はカウントダウンし、かつ全カウンタのカウント出力が0又は最大値でなくなった場合は、何れかのカウンタのカウント出力が0又は最大値になるまで全カウンタを一斉にカウントダウン又はカウントアップする制御を繰り返し、復号単位区間の最後にカウント出力が0又は最大値となっているカウンタに対応する2のべき乗値を最頻値とする。従って、簡単なハードウェア構成と制御で最頻値を効率よく検出できる。
In the fifth aspect of the present invention, the mode detection means includes a plurality of counters provided for each class in units of powers of 2 and a control means for performing count control of each counter.
The control means sets each counter to 0 or the maximum value at the initial stage of the decoding unit interval and monitors the subsequent count output, and the soft decision signal amplitude is included with the input of each soft decision signal. If only the counter corresponding to each power of 2 of the class that did not exist is counted up or down, and the count output of all counters is not 0 or the maximum value, the count output of any counter becomes 0 or the maximum value Until all the counters are counted, the control for counting down or counting up is repeated, and the power of 2 corresponding to the counter whose count output is 0 or the maximum value at the end of the decoding unit interval is set as the mode value. Therefore, the mode value can be efficiently detected with a simple hardware configuration and control.

本発明の第6の態様では、正規化手段は、復調器出力の2進数からなる軟判定信号振幅を最頻値よりも小さい2のべき乗からなる基準値で除算する。2進数の軟判定信号に対する2のべき乗による除算は、該軟判定信号を下位側にビットシフトすることで容易に行える。   In the sixth aspect of the present invention, the normalizing means divides the soft decision signal amplitude consisting of the binary number of the demodulator output by a reference value consisting of a power of 2 smaller than the mode value. The division of the binary soft decision signal by a power of 2 can be easily performed by bit-shifting the soft decision signal to the lower side.

本発明の第7の態様では、復調器出力の軟判定信号のビット数をN、正規化後の軟判定信号のビット数をMとするとき、基準値の値を0乃至(N−M)の範囲内に制限する制限手段を備える。   In the seventh aspect of the present invention, when the number of bits of the soft decision signal output from the demodulator is N and the number of bits of the soft decision signal after normalization is M, the reference value is 0 to (N−M). Restricting means for limiting within the range is provided.

本発明においては、最頻値が小さい場合でも、その基準値を0(ビットシフトなし)以上に制限するため、入力軟判定信号の下位ビットをそのまま軟判定復号に有効に利用できる。一方、最頻値が大きい場合でも、その基準値を(N−M)以下に制限するため、入力軟判定信号の下位ビットを必要以上に損なわず(シフトアウトせず)に軟判定復号に有効に利用できる。また、これらにより正規化後の軟判定信号に常にMビットを確保できる。   In the present invention, even when the mode value is small, the reference value is limited to 0 (no bit shift) or more, so that the lower bits of the input soft decision signal can be effectively used as they are for soft decision decoding. On the other hand, even when the mode value is large, the reference value is limited to (N−M) or less, so that it is effective for soft decision decoding without losing the lower bits of the input soft decision signal more than necessary (without shifting out). Available to: Also, M bits can always be secured in the normalized soft decision signal.

本発明の第8の態様による受信装置は、受信信号を軟判定復調する復調手段と、前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき最頻値を検出する最頻値検出手段と、前記検出した最頻値に基づく基準値により前記軟判定信振幅の正規化を行う正規化手段と、パケット再送制御の下で、少なくとも初送パケットに係る正規化後の軟判定信号系列及び基準値を記憶するメモリと、初送パケットと再送パケットに係る各正規化後の軟判定信号振幅をそれぞれの基準値の比に基づいて最大比合成する合成手段と、前記合成後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えるものである。   According to an eighth aspect of the present invention, there is provided a receiving device for detecting a mode value based on a frequency distribution of a soft decision signal amplitude in a decoding unit section of an output of the demodulation unit and a demodulation unit for soft decision demodulation of a received signal. A value detecting means, a normalizing means for normalizing the soft decision signal amplitude based on a reference value based on the detected mode value, and a soft decision after normalization relating to at least an initial transmission packet under packet retransmission control A memory for storing a signal sequence and a reference value, a combining means for combining a maximum ratio of each normalized soft decision signal amplitude relating to an initial transmission packet and a retransmission packet based on a ratio of the respective reference values; Decoding means for decoding received data based on the soft decision signal sequence.

本発明においては、パケット再送合成方式(HARQ)の下で、初送パケットと再送パケットに係る各正規化後の軟判定信号振幅をそれぞれの最頻値に応じた基準値の比に基づいて最大比合成するため、多値変調方式によらず、マルチパスフェージング等の受信環境に応じて常に最適の最大比合成を行える。   In the present invention, under the packet retransmission combining method (HARQ), the normalized soft decision signal amplitudes of the initial transmission packet and the retransmission packet are maximized based on the ratio of the reference values according to the respective mode values. Since the ratio combining is performed, the optimum maximum ratio combining can always be performed according to the reception environment such as multipath fading regardless of the multi-level modulation method.

本発明の第9の態様による受信装置は、受信信号を軟判定復調する復調手段と、前記復調手段の出力の復号単位区間におけるシリアルな軟判定信号系列を所定数のシンボルを単位にパラレル変換するシリアルパラレル変換手段と、前記パラレル変換されたそれぞれの軟判定信号系列に各対応して並列に設けられ、2進数からなる各軟判定信号系列の振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布を計数する複数の分布計数手段と、前記各分布計数手段による階級別の計数出力を階級別に加算する加算手段と、前記加算出力の度数分布に基づき最大の分布が含まれる階級の2のべき乗値を最頻値とする最頻値検出手段と、前記最頻値を基準として前記軟判定信号振幅の正規化を行う正規化手段と、前記正規化後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えるものである。従って、最頻値の検出を高速に行え、高帯域(Broad Band)の通信にも対応できる。   According to a ninth aspect of the present invention, there is provided a receiving apparatus for demodulating a received signal soft decision demodulating and parallel converting a serial soft decision signal sequence in a decoding unit section of the output of the demodulating unit in units of a predetermined number of symbols. Serial-parallel conversion means, and each of the parallel-converted soft decision signal sequences provided in parallel to classify the amplitude of each soft decision signal sequence consisting of binary numbers in units of powers of 2, A plurality of distribution counting means for counting the frequency distribution of the soft decision signal amplitude included in the class, an adding means for adding the count output for each class by each distribution counting means by class, and a maximum based on the frequency distribution of the added output A mode value detecting unit that uses a power of 2 of a class including the distribution of the mode as a mode value, a normalizing unit that normalizes the soft decision signal amplitude based on the mode value, and the normal In which and a decoding means for decoding the received data based on the soft decision signal sequence after. Therefore, the mode value can be detected at a high speed, and it is possible to cope with broadband communication.

以上述べた如く本発明によれば、より少ないビット数で、高い受信性能が得られるため、特にモバイル機器の小型化、性能向上に寄与するところが極めて大きい。   As described above, according to the present invention, a high reception performance can be obtained with a smaller number of bits, so that it greatly contributes particularly to downsizing and performance improvement of mobile devices.

以下、添付図面に従って本発明に好適なる実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.

図1は第1の実施の形態による受信装置の要部構成図で、復号単位区間の軟判定信号系列について求めた振幅(尤度)分布の最頻値から基準値を作成し、該基準値で各軟判定信号を正規化する場合を示している。   FIG. 1 is a configuration diagram of a main part of a receiving apparatus according to the first embodiment. A reference value is created from a mode value of an amplitude (likelihood) distribution obtained for a soft decision signal sequence in a decoding unit section. Shows the case where each soft decision signal is normalized.

動作の概要を述べると、図において、復調回路11は入力のA/D変換された受信信号を16QAMや64QAM等により軟判定復調し、メモリ12は復号単位区間(コードブ
ロック単位又はフレーム単位)における復調回路出力の各軟判定信号L(j=1,2,…J)を時間合わせのために一旦記憶する。一方、絶対値回路15ではこれら各軟判定信号Lの振幅(符号)を絶対値化し、更に指数化回路16では各軟判定信号Ljの振幅(尤度)を2のべき乗を単位に指数化(階級分け)する。更に、最頻値検出回路17では指数化後の各軟判定信号Ljの振幅について各階級に含まれる振幅の度数を計数し、最も度数が大きい階級を表す2のべき乗値Pを最頻値として出力する。更に、基準値作成回路18ではこの最頻値Pを所定の設定値Aで除算(減算)して基準値B(=P−A )を作成し、制限回路19では該基準値Bが所定の範囲から逸脱しないように制限する。一方、正規化回路13ではメモリ12から読み出した各軟判定信号Lを基準値Bで除算して正規化する。そして、FEC(Forward error Control)復号回路14では正規化後の各軟判定信号(=L/B)に基づいて受信データの誤り訂正復号を行う。
An outline of the operation will be described. In the figure, the demodulation circuit 11 soft-demodulates the input A / D converted received signal by 16QAM, 64QAM or the like, and the memory 12 in the decoding unit section (code block unit or frame unit). Each soft decision signal L j (j = 1, 2,... J) output from the demodulation circuit is temporarily stored for time adjustment. On the other hand, the absolute value circuit 15 converts the amplitude (sign) of each soft decision signal L j into an absolute value, and the indexing circuit 16 exponentiates the amplitude (likelihood) of each soft decision signal Lj in units of powers of 2. (Classification). Further, the mode value detection circuit 17 counts the frequency of the amplitude included in each class with respect to the amplitude of each soft decision signal Lj after indexing, and sets the power value P of 2 representing the class with the highest frequency as the mode value. Output. Further, the reference value creating circuit 18 divides (subtracts) the mode value P by a predetermined set value A to create a reference value B (= P−A), and the limiting circuit 19 sets the reference value B to a predetermined value. Limit so as not to depart from the scope. On the other hand, the normalization circuit 13 divides each soft decision signal L j read from the memory 12 by the reference value B to normalize. An FEC (Forward Error Control) decoding circuit 14 performs error correction decoding of the received data based on each soft decision signal (= L j / B) after normalization.

図2は実施の形態による絶対値及び指数化回路の動作説明図で、これらの機能ブロックをハードウェアやDSPで構成した場合の動作を具体的に説明する。絶対値回路15において、例えば正の軟判定信号「39」が入力した場合はそのデータ部をそのまま出力し、負の軟判定信号「−39」が入力した場合は、データ部の2の補数をとって絶対値化し、得られた軟判定信号「39」を出力する。ハードウェアによる場合は、データ部の1の補数(ビット反転信号)「38」を生成して、これに「1」を加算することで2の補数「39」を容易に生成できる。   FIG. 2 is a diagram for explaining the operation of the absolute value and indexing circuit according to the embodiment. The operation when these functional blocks are configured by hardware or a DSP will be specifically described. In the absolute value circuit 15, for example, when a positive soft decision signal “39” is input, the data portion is output as it is, and when a negative soft decision signal “−39” is input, the two's complement of the data portion is output. The absolute value is obtained and the obtained soft decision signal “39” is output. In the case of hardware, a 1's complement (bit inversion signal) “38” of the data part is generated, and “1” is added to this to generate a 2's complement “39”.

指数化回路16では、軟判定信号Ljの絶対値「39」に対して2を底とする対数log「39」=5.29を求め、その整数部分「5」のみを取り出すことで、振幅(尤度)を指数化する。ハードウェアの場合は、2進化された絶対値「39」を保持するレジスタの最上位ビットb7から順にビット「1」を探していき、最初に見つかったビットb5=「1」を残して、それより下位のビットを「0」とする。この場合は2(=32)が最上位ビットとなる。この時、2未満の端数が切り捨てとなるため、ビットb5=「1」を1ビット上位側にシフトしてビットb6=「1」を絶対値「39」を代表する階級(指数)とする。この例は、絶対値「39」を2≦「39」<2を2の範囲に階級分けすることになる。 The indexing circuit 16 obtains a logarithm log 2 “39” = 5.29 with 2 as the base for the absolute value “39” of the soft decision signal Lj, and extracts only the integer part “5” to obtain the amplitude. Index (likelihood). In the case of hardware, the bit “1” is searched in order from the most significant bit b7 of the register holding the absolute value “39” binarized, and the bit b5 = “1” found first is left, The lower bits are set to “0”. In this case, 2 5 (= 32) is the most significant bit. At this time, since a fractional value less than 25 is rounded down, bit b5 = "1" is shifted to the upper side by 1 bit, and bit b6 = "1" is set as a class (exponent) representing the absolute value "39". . In this example, the absolute value “39” is classified into the range of 2 5 ≦ “39” <2 6 to 26 .

これを一般化すると、2n−1≦絶対値Lj<2の範囲に含まれる絶対値Ljを2に階級分けすることになり、こうして例えば8ビットからなる全ての入力信号は、2,2,2,…,2の何れか一つに指数化(階級分け)される。本実施の形態では
階級分けを2進数の桁数(即ち、指数)で行うため、広範なレンジを少ない階級数で表現でき、これによって回路規模を小さく抑えることができる。なお、2n−1≦絶対値Lj<2の範囲に含まれる絶対値Ljを2n−1に階級分けしてもよい。
Generalizing this, the absolute value Lj included in the scope of 2 n-1 ≦ absolute value Lj <2 n to class divided into 2 n, thus for example, all of the input signal composed of 8 bits, 2 1 , 2 2 , 2 3 ,..., 2 8 are indexed (classified). In this embodiment, classification is performed by binary digits (that is, exponents), so that a wide range can be expressed by a small number of classes, thereby reducing the circuit scale. The absolute value Lj included in the range of 2 n−1 ≦ absolute value Lj <2 n may be classified into 2 n−1 .

図3は実施の形態による最頻値検出回路のブロック図であり、本実施の形態では、入力の軟判定信号振幅を指数化したことと関連して、最頻値の検出を少ないハードウェアで効率よく行える場合を提案する。   FIG. 3 is a block diagram of the mode detection circuit according to the embodiment. In this embodiment, the mode value is detected with a small amount of hardware in association with the indexing of the input soft decision signal amplitude. We propose a case where it can be done efficiently.

図において、指数化回路16の出力のビットb0〜b7(N=8の場合)の各々に対してK進のアップダウンカウンタCTR0〜CTR7を接続する。正規化区間のデータ数をJとすると、各カウンタのビット数kは、
K>J/2 但し、K=2
を満足するもので良い。その理由は後述する。各カウンタCTRは、出力のカウント値Q=(K−1)の時にキャリーアウト信号Coの論理1レベル(例えばハイレベル)を出力し、カウント値Q=0の時にボロー信号Boの論理1レベルを出力する。
In the figure, K-bit up / down counters CTR0 to CTR7 are connected to the bits b0 to b7 (when N = 8) of the output of the indexing circuit 16, respectively. If the number of data in the normalization interval is J, the number of bits k of each counter is
K> J / 2 where K = 2 k
It is good to satisfy. The reason will be described later. Each counter CTR outputs a logic 1 level (eg, high level) of the carry-out signal Co when the output count value Q = (K−1), and outputs a logic 1 level of the borrow signal Bo when the count value Q = 0. Output.

カウンタCTR0〜7のキャリーアウト信号C0〜C7は、NORゲート回路NO1に
入力しており、全てのキャリーアウト信号C0〜C7が論理0レベル(ローレベル)の時はNOR1の出力が付勢されて全カウンタCTR〜CTR7のアップカウントを可能にする。また、各カウンタCTR0〜7のボロー信号Boはその反転信号がそれぞれANDゲート回路A0〜A7に入力しており、いずれかのカウント出力Qが0になったカウンタは、対応するANDゲート回路の入力を消勢するため、それ以上はカウントダウンされない。
The carry-out signals C0 to C7 of the counters CTR0 to CTR7 are input to the NOR gate circuit NO1, and when all the carryout signals C0 to C7 are at logic 0 level (low level), the output of NOR1 is energized. All counters CTR to CTR7 can be counted up. In addition, the inverted signals of the borrow signals Bo of the counters CTR0 to CTR7 are respectively input to the AND gate circuits A0 to A7, and the counter whose count output Q is 0 is the input of the corresponding AND gate circuit. Will no longer count down.

なお、ハードウェア削減の観点からは、カウンタCTR0〜7のビット数を出来るだけ少なくしたい。もし、あるカウンタがJ個の軟判定信号により連続でカウントダウンした場合は、該カウンタは最大J個までをカウントダウンできるる必要がある。しかし、最頻値の検出を目的とする本実施の形態では、この様な状況下でもカウンタが少なくともJ/2までカウントダウンしたら、この時点でこのカウンタを最頻値の1候補と推定できる。   From the viewpoint of hardware reduction, it is desirable to reduce the number of bits of the counters CTR0 to CTR7 as much as possible. If a certain counter is continuously counted down by J soft decision signals, the counter needs to be able to count down to a maximum of J. However, in this embodiment for the purpose of detecting the mode value, even if the counter counts down to at least J / 2 even in such a situation, this counter can be estimated as one mode value candidate at this point.

なぜなら、信号振幅の分布によっては、同時に他のもう一つのカウンタも最小J/2までカウントダウンする可能性があるが、この場合も他のカウンタを最頻値のもう一つの候補に推定できると共に、この場合は、振幅の小さい値に対応するカウンタの2のべき乗値を最頻値Pと決定できるからである。これが最悪のケースであって、3つ以上のカウンタが同時にJ/2までカウントダウンすることはあり得ないから、各カウンタは最大J/2個をカウントできるもので良い。   Because, depending on the signal amplitude distribution, another counter may count down to the minimum J / 2 at the same time. In this case, the other counter can be estimated as another candidate of the mode value, In this case, the power value of 2 of the counter corresponding to the small amplitude value can be determined as the mode value P. This is the worst case, and it is not possible for three or more counters to count down to J / 2 at the same time, so each counter may be capable of counting up to J / 2.

係る構成により、復号区間(正規化区間)の始めに発生するパルスFPによりCTR0〜7に初期値として最大値I(=K−1)をセットし、これによりカウンタCTR0〜7のキャリー信号C0〜C7は全て論理1レベルとなる。次に、1つ目の指数化尤度b0〜b7が入力すると、その時点で発生するタイミングパルスTPに同期してビット「0」の入力に対応するカウンタのみをカウントダウンする。 例えば指数化尤度のビットb6のみが論理1レベルの場合は、クロック信号CKにより他のCTR0〜5及びCTR7のみがカウントダウンする。次に、指数化尤度のビットb5のみが論理1レベルの場合は、他のCTR0〜4及びCTR6,7のみがカウントダウンする。   With such a configuration, the maximum value I (= K−1) is set as an initial value in CTR0 to CTR7 by the pulse FP generated at the beginning of the decoding period (normalization period), and thereby the carry signals C0 to CTR0 of the counters CTR0 to CTR7 are set. C7 is all at a logic 1 level. Next, when the first exponential likelihoods b0 to b7 are input, only the counter corresponding to the input of the bit “0” is counted down in synchronization with the timing pulse TP generated at that time. For example, when only the bit b6 of the exponential likelihood is a logic 1 level, only the other CTR0 to CTR5 and CTR7 are counted down by the clock signal CK. Next, when only the bit b5 of the exponential likelihood is at the logic 1 level, only the other CTR0 to CTR4 and CTR6 and 7 are counted down.

この時点では全カウンタCTR0〜7のキャリー信号C0〜C7は共に論理0レベルとなり、これに伴いNOR1の出力が論理1レベルとなるため、続くクロック信号CKにより全カウンタCTR0〜7は一斉にカウントアップする。これにより何れかのカウンタのキャリーアウト信号Coが論理1レベルになると、NORゲート回路NO1の出力が消勢され、カウントアップは停止する。   At this time, the carry signals C0 to C7 of all the counters CTR0 to CTR7 are all at the logic 0 level, and as a result, the output of NOR1 is at the logic 1 level, so that all the counters CTR0 to CTR7 are simultaneously counted up by the clock signal CK. To do. As a result, when the carry-out signal Co of any counter becomes the logic 1 level, the output of the NOR gate circuit NO1 is deactivated and the count-up is stopped.

こうして、やがて正規化区間のJ個の軟判定信号が入力すると、最も論理1レベルが多かった指数化ビットに接続するカウンタのキャリーアウト信号Coのみが論理1レベルとなって残っている。こうして少ないハードウェアで指数化振幅の最頻値P(2のP乗に相当)を効率よく検出できる。なお、実際には複数カウンタのキャリーアウト信号Coが共に論理1レベルとなる場合も存在し得る。この場合は、相対的に低レベルの軟判定信号の正規化精度を重んじる観点より、小さい方の指数化ビットを最頻値とする。   Thus, when J soft decision signals in the normalization interval are input, only the carry-out signal Co of the counter connected to the indexing bit having the largest logical 1 level remains at the logical 1 level. In this way, the mode value P (corresponding to 2 to the power of P) of the exponential amplitude can be efficiently detected with a small amount of hardware. Actually, there may be cases where the carry-out signals Co of a plurality of counters are both at a logic 1 level. In this case, from the viewpoint of respecting the normalization accuracy of the relatively low level soft decision signal, the smaller exponent bit is set as the mode value.

なお、上記実施の形態では、最頻値検出手段が2のべき乗を単位とする階級別に設けた複数のカウンタと、各カウンタの計数制御を行う制御手段とを備え、前記制御手段は、復号単位区間の初期段階で各カウンタに最大値をセットしてその後のカウント出力を監視すると共に、各軟判定信号の入力に伴って、該軟判定信号振幅が含まれなかった階級の各2のべき乗に対応するカウンタのみをカウントダウンし、かつ全カウンタのカウント出力が最大値でなくなった場合は、何れかのカウンタのカウント出力が最大値になるまで全カウンタを一斉にカウントアップする制御を繰り返し、復号単位区間の最後にカウント出力が最大値となっているカウンタに対応する2のべき乗値を最頻値とする場合を述べたが、こ
れに限らない。
In the above embodiment, the mode detection means includes a plurality of counters provided for each class whose unit is a power of 2, and a control means for performing count control of each counter, wherein the control means includes a decoding unit. At the initial stage of the section, each counter is set to the maximum value and the subsequent count output is monitored, and with the input of each soft decision signal, the soft decision signal amplitude is not included in each power of 2 If only the corresponding counter is counted down and the count output of all counters is not at the maximum value, repeat the control to count up all the counters simultaneously until the count output of one of the counters reaches the maximum value. Although the case where the power value of 2 corresponding to the counter having the maximum count output at the end of the interval is set as the mode value has been described, the present invention is not limited to this.

他にも、前記制御手段が、復号単位区間の初期段階で各カウンタに0をセットしてその後のカウント出力を監視すると共に、各軟判定信号の入力に伴って、該軟判定信号振幅が含まれなかった階級の各2のべき乗に対応するカウンタのみをカウントアップし、かつ全カウンタのカウント出力が0でなくなった場合は、何れかのカウンタのカウント出力が0になるまで全カウンタを一斉にカウントダウンする制御を繰り返し、復号単位区間の最後にカウント出力が0となっているカウンタに対応する2のべき乗値を最頻値とするように構成してもよい。   In addition, the control means sets each counter to 0 at the initial stage of the decoding unit interval and monitors the subsequent count output, and the soft decision signal amplitude is included as each soft decision signal is input. If only the counter corresponding to each power of 2 of the class that has not been counted is counted up and the count output of all counters is not 0, all the counters are all at once until the count output of any counter becomes 0 The countdown control may be repeated so that the power value of 2 corresponding to the counter whose count output is 0 at the end of the decoding unit interval is set as the mode value.

図4は実施の形態による基準値作成及び正規化回路の動作説明図である。ところで、入力の軟判定信号Ljを最頻値Pでそのまま正規化(除算)すると、最頻値の下側に分布する軟判定信号の振幅が「0」になってしまうので、最頻値Pよりも小さい値を基準値Bとする必要がある。そこで、基準値作成回路18は、最頻値Pから所定の設定値Aを減算して基準値B(=P−A)を作成する。設定値Aは最頻値Pの下側分布をカバーするための定数(2を底とする対数)であり、通常は「4」又は「5」程度とすることで軟判定利得を確保できる。   FIG. 4 is a diagram for explaining the operation of the reference value creation and normalization circuit according to the embodiment. By the way, if the input soft decision signal Lj is normalized (divided) by the mode value P as it is, the amplitude of the soft decision signal distributed below the mode value becomes “0”. It is necessary to set a smaller value as the reference value B. Therefore, the reference value creation circuit 18 creates a reference value B (= P−A) by subtracting a predetermined set value A from the mode value P. The set value A is a constant (a logarithm with 2 as the base) for covering the lower distribution of the mode P, and usually a soft decision gain can be secured by setting it to about “4” or “5”.

図4の(a)において、上記方法により最頻値Pから単純に基準値Bを求めると、最頻値P(=8)のとき、その下側に設定値A(=5)ビット分の軟判定利得を確保しようとすると、基準値B(=8−5=3)となる。また、最頻値P(=7)のときは基準値B(=2)となり、以下、同様にして、最頻値P(=4)のときは基準値B(=−1)となる。   In FIG. 4A, when the reference value B is simply obtained from the mode value P by the above method, when the mode value P (= 8), the set value A (= 5) bits below it. If a soft decision gain is to be secured, the reference value B (= 8−5 = 3) is obtained. Further, when the mode value P (= 7), the reference value B (= 2) is obtained. Similarly, when the mode value P (= 4), the reference value B (= −1) is obtained.

ところで、入力8ビットの軟判定信号を下位側に3ビットシフトした場合は、有効数字のビット数が「5」となるため、復号回路14にM(=6)ビットを提供できない。一方、入力5ビットの軟判定信号を下位側にシフトした場合は、下位の有効ビットが切り捨てられてしまうため、この場合もビットシフトしない方が良い。このような理由から、制限回路19では基準値Bを以下の範囲内、
0≦B≦(N−M)
のものに制限している。図の例では、0≦B≦2の範囲内に制限している。
By the way, when the input 8-bit soft decision signal is shifted by 3 bits to the lower side, the number of significant digits is “5”, so that M (= 6) bits cannot be provided to the decoding circuit 14. On the other hand, when the 5-bit soft decision signal is shifted to the lower side, the lower significant bits are discarded, so it is better not to shift the bit. For this reason, the limiting circuit 19 sets the reference value B within the following range:
0 ≦ B ≦ (N−M)
It is restricted to the ones. In the example of the figure, the range is limited to 0 ≦ B ≦ 2.

図4の(b)において、正規化回路13では、入力の軟判定信号Ljを基準値Bで除算して正規化する。基準値B(=2)による正規化は、ハードウェアでは、入力の軟判定信号Ljを下位側に2ビットシフトすることで容易に行える。基準値B(=0)による正規化は、入力の軟判定信号Ljを下位側にシフトしないで、下位6ビットをそのまま抽出する。   In FIG. 4B, the normalization circuit 13 normalizes the input soft decision signal Lj by dividing it by the reference value B. Normalization by the reference value B (= 2) can be easily performed by shifting the input soft decision signal Lj by 2 bits to the lower side in hardware. Normalization by the reference value B (= 0) extracts the lower 6 bits as they are without shifting the input soft decision signal Lj to the lower side.

図5は実施の形態による正規化方式の効果を説明する図で、マルチパスフェージングを受けた信号を複数(例えば1000)フレームに渡って受信し、これらを64QAMで軟判定復調した場合のシミュレーション結果を示している。図5(A)は正規化前の信号分布を示しており、特性Ljは全入力の軟判定信号、特性Avは各復号単位区間における平均値、特性Moは同区間における最頻値の相対度数をそれぞれ示している。各分布はマルチパスフェージングの影響による広がりを有すると共に、平均値分布Avは64QAMの採用により入力信号分布Ljの中心よりも振幅の大きい方にずれている。これに対して、最頻値分布Moは入力信号分布Ljと重なっていると共に、平均値分布Avよりも低い値に分布している。   FIG. 5 is a diagram for explaining the effect of the normalization method according to the embodiment. A simulation result when a signal subjected to multipath fading is received over a plurality of (for example, 1000) frames and soft decision demodulation is performed with 64QAM. Is shown. FIG. 5A shows a signal distribution before normalization, a characteristic Lj is a soft decision signal of all inputs, a characteristic Av is an average value in each decoding unit section, and a characteristic Mo is a relative frequency of a mode value in the same section. Respectively. Each distribution has a spread due to the influence of multipath fading, and the average value distribution Av is shifted to a larger amplitude than the center of the input signal distribution Lj by adopting 64QAM. On the other hand, the mode distribution Mo overlaps with the input signal distribution Lj and is distributed at a value lower than the average value distribution Av.

図5(B)は入力の軟判定信号系列を、平均値と最頻値とを基準とし、共に下位側に数ビットを確保して正規化した後の振幅(尤度)分布を示している。図において、特性Lj
は正規化しない場合、特性Lj/Avは平均値に基づき正規化した場合、特性Lj/Moは最頻値に基づき正規化した場合の信号分布をそれぞれ示している。
FIG. 5B shows an amplitude (likelihood) distribution after normalizing the input soft decision signal sequence with reference to the average value and the mode value, both securing several bits on the lower side. . In the figure, characteristic Lj
Indicates the signal distribution when the characteristic Lj / Av is normalized based on the average value, and the characteristic Lj / Mo indicates the signal distribution when normalized based on the mode value.

実際上は、振幅が「0」の入力信号は存在しなかったが、正規化により指数化尤度「0」に含まれることになった信号が少なからず現れており、その頻度は、平均値Avによる正規化よりも最頻値Moによる正規化の方が明らかに少なくなっている。従って、平均値Avによる正規化よりも最頻値Moによる正規化の方が受信性能が良い。一方、レベルの高い方では最頻値Moによる正規化の方が狭いレンジに分布しているが、この張り付きは軟判定復号の大きな劣化要因とはならない。かくして、従来の平均値に基づき正規化する方式ではで正規化後の軟判定信号に8〜10ビット必要であったが、本実施の形態ではこれを6ビットに削減できた。   In practice, there was no input signal having an amplitude of “0”, but there are not a few signals that have been included in the exponential likelihood “0” by normalization, and the frequency is an average value. The normalization with the mode value Mo is clearly less than the normalization with Av. Therefore, the normalization with the mode Mo is better than the normalization with the average value Av. On the other hand, in the higher level, normalization by the mode value Mo is distributed in a narrower range, but this sticking does not cause a large deterioration of soft decision decoding. Thus, in the conventional method of normalizing based on the average value, 8 to 10 bits are required for the soft decision signal after normalization, but in the present embodiment, this can be reduced to 6 bits.

図6は実施の形態によるブロックエラーレートのグラフ図で、64QAMによる復調で、符号化率0.9、伝搬条件がTU(Typical case for Urban area)120km/hの場合を示している。横軸は信号対雑音比SNR、縦軸はブロックエラーレート(BLER)である。特性Oは入力の軟判定信号を正規化しないで復号した理想演算の場合を示している。特性A1は平均値Avに基づく正規化で、正規化後のビット数M=7ビット、設定値A=5の場合を示している。特性A2は同じく平均値Avに基づく正規化で、正規化後のビット数M=8ビット、設定値A=6の場合を示している。また、特性M1は最頻値Moに基づく正規化で、正規化後のビット数M=7ビット、設定値A=5の場合を示しており、特性M2は同じく正規化後のビット数M=8ビット,設定値A=6の場合を示している。なお、TU条件については、文献(3Gpp Technical Specification TS45.005 “Radio transmission and reception”)に記載されている。   FIG. 6 is a graph of the block error rate according to the embodiment, and shows a case where the coding rate is 0.9 and the propagation condition is TU (Typical case for Urban area) 120 km / h by 64QAM demodulation. The horizontal axis represents the signal-to-noise ratio SNR, and the vertical axis represents the block error rate (BLER). A characteristic O represents the case of an ideal calculation obtained by decoding the input soft decision signal without normalization. The characteristic A1 is normalization based on the average value Av, and shows a case where the number of bits after normalization M = 7 bits and the set value A = 5. The characteristic A2 is also normalized based on the average value Av, and shows the case where the number of bits after normalization M = 8 bits and the set value A = 6. The characteristic M1 is normalized based on the mode value Mo, and shows the case where the number of bits after normalization M = 7 bits and the set value A = 5. The characteristic M2 is also the number of bits after normalization M = The case of 8 bits and setting value A = 6 is shown. The TU condition is described in the literature (3Gpp Technical Specification TS45.005 “Radio transmission and reception”).

グラフを見ると、何れの特性も正規化後のビット数M(又は設定値A)は大きいほどBLER特性は良く、また平均値Avに基づく正規化よりも最頻値Moに基づく正規化を行った方がより良いBLER特性となっている。   As can be seen from the graph, the BLER characteristic is better as the number of bits M (or set value A) after normalization is larger, and normalization based on the mode value Mo is performed rather than normalization based on the average value Av. BLER characteristics are better.

図7は第2の実施の形態による受信装置の要部構成図で、本発明のパケット再送合成方式HARQ(Hybrid Automatic Repeat Request)による受信装置への適用例を示している。誤り訂正技術を大きく2つに分けると、再送合成(ARQ:Automatic repeat request)方式とFEC(Forward error Control)方式とがある。また両者の長所を合わせ持ったHARQ(Hybrid ARQ)方式もある。ここでは、最近の移動無線で採用されている、復号後ビット誤り率を最小とするような最大事後確率(MAP) 復号法を利用するハイブリッド再送合成方式(HARQ)を採用する受信装置への適用例を示す。   FIG. 7 is a block diagram of the main part of the receiving apparatus according to the second embodiment, and shows an application example to the receiving apparatus using the packet retransmission combining method HARQ (Hybrid Automatic Repeat Request) of the present invention. The error correction technology is roughly divided into two types: a retransmission combining (ARQ: Automatic repeat request) method and a FEC (Forward error Control) method. There is also a HARQ (Hybrid ARQ) method that combines the advantages of both. Here, it is applied to a receiving apparatus that adopts a hybrid retransmission combining method (HARQ) that uses a maximum a posteriori probability (MAP) decoding method that is adopted in recent mobile radio to minimize a bit error rate after decoding. An example is shown.

図において、復調回路11〜正規化回路13まで及びFEC復号回路14の構成については上記図1で述べたものと同様でよい。残りはHARQ制御に関する部分であり、以下、この部分の動作を説明する。ます、1回目の受信では基準値B1で正規化された一連の軟判定信号L1が1回目の基準値B1と共に合成振幅正規化回路21に入力する。この時点では、合成すべき過去の軟判定信号系列が存在しないので、一連の軟判定信号系列Llは、そのまま加算回路23を通ってFEC復号回路14に加えられ、同時にメモリ22に記憶される。また1回目の基準値B1は基準値メモリ24に記憶される。FEC復号回路14では1回目の軟判定信号Llに基づき誤り訂正復号を行うと共に、出力の復号データは不図示のCRC検査回路でCRC検査が行われ、検査OKの場合は送信側にACKを返送する。そして、このフレームの受信を終了する。   In the figure, the configurations of the demodulating circuit 11 to the normalizing circuit 13 and the FEC decoding circuit 14 may be the same as those described in FIG. The remaining part is related to HARQ control, and the operation of this part will be described below. In the first reception, a series of soft decision signals L1 normalized by the reference value B1 are input to the combined amplitude normalization circuit 21 together with the first reference value B1. At this time, since there is no past soft decision signal sequence to be combined, the series of soft decision signal sequences L1 is added to the FEC decoding circuit 14 as it is through the adder circuit 23 and stored in the memory 22 at the same time. The first reference value B1 is stored in the reference value memory 24. The FEC decoding circuit 14 performs error correction decoding based on the first soft decision signal Ll, and the decoded data of the output is CRC checked by a CRC check circuit (not shown). In the case of check OK, an ACK is returned to the transmitting side. To do. Then, the reception of this frame ends.

しかし、CRC検査がNGの場合は、送信側にNACKを返送し、これを受けた送信側では同一データについての2回目のフレームを送信する。更に、これを受けた受信側では基準値B2で正規化された2回目の軟判定信号系列L2がその基準値B2と共に合成振幅
正規化回路21に入力する。同時にメモリ22からは1回目の軟判定信号L1が読み出され、また基準値メモリ24からは1回目の基準値B1が読み出され、合成振幅正規化回路21に入力する。
However, if the CRC check is NG, a NACK is returned to the transmitting side, and the transmitting side that receives this transmits a second frame for the same data. Further, on the receiving side receiving this, the second soft decision signal sequence L2 normalized by the reference value B2 is input to the combined amplitude normalization circuit 21 together with the reference value B2. At the same time, the first soft decision signal L 1 is read from the memory 22, and the first reference value B 1 is read from the reference value memory 24 and input to the combined amplitude normalization circuit 21.

これらの軟判定信号系列L1,L2は合成振幅正規化回路21で基準値B1,B2の比に応じた振幅に正規化(レベル合わせ)されて後、加算器23で加算(最大比合成)され、FEC復号回路14に加えられると共に、軟判定信号系列L2と基準値B2はそれぞれメモリ22、24にも記憶される。FEC復号回路14では加算器出力の合成軟判定信号系列に基づき誤り訂正復号を行うと共に、出力の復号データはCRC検査が行われ、検査OKの場合は送信側にACKを返送する。そして、このフレームの受信を終了する。また検査NGの場合は送信側にNACKを返送し、更に3回目の軟判定信号L3を合成する。   These soft decision signal sequences L1 and L2 are normalized (leveled) by the combined amplitude normalization circuit 21 to an amplitude corresponding to the ratio of the reference values B1 and B2, and then added by the adder 23 (maximum ratio combining). Are added to the FEC decoding circuit 14, and the soft decision signal sequence L2 and the reference value B2 are also stored in the memories 22 and 24, respectively. The FEC decoding circuit 14 performs error correction decoding based on the combined soft decision signal sequence output from the adder, and the output decoded data undergoes CRC check. In the case of check OK, an ACK is returned to the transmitting side. Then, the reception of this frame ends. In the case of inspection NG, NACK is returned to the transmission side, and the third soft decision signal L3 is synthesized.

本第2の実施の形態ではレベル合わせの基準に最頻値に基づく基準値を使用することにより、様々な受信環境下における軟判定信号の振幅を適正に正規化できる。また本第2の実施の形態では正規化段階で生成した最頻値を最大比合成処理に有効に利用できる。   In the second embodiment, by using a reference value based on the mode value as a level matching reference, it is possible to properly normalize the amplitude of the soft decision signal under various reception environments. In the second embodiment, the mode value generated at the normalization stage can be effectively used for the maximum ratio combining process.

図8は第3の実施の形態による受信装置の要部構成図で、最頻値の検出を高速に行う場合を示している。図において、復調回路12の軟判定出力はシリアルパラレル変改器(S/P)31でNビット毎のパラレル信号に変換され、そのうちの一方は時間合わせのために4つのメモリ12a〜12dに記憶され、他方は4つの絶対値回路15a〜15dにそれぞれ入力する。   FIG. 8 is a block diagram of the main part of the receiving apparatus according to the third embodiment, and shows a case where the mode value is detected at high speed. In the figure, the soft decision output of the demodulation circuit 12 is converted into a parallel signal for every N bits by a serial / parallel converter (S / P) 31, and one of them is stored in four memories 12a to 12d for time adjustment. The other is input to the four absolute value circuits 15a to 15d.

本実施の形態ではN(例えば8)ビットの軟判定信号系列Ljを各8ビット毎にS/P変換したことにより、第1行目の絶対値回路15a〜分布計数回路32aは第1,5,9,…番目のサブ軟判定信号系列についての指数化尤度(振幅)b0〜b7を階級別に計数し、また第2行目の絶対値回路15b〜分布計数回路32bは第2,6,10,…番目のサブ軟判定信号系列についての指数化尤度b0〜b7を階級別に計数することになる。以下も同様である。   In the present embodiment, the N (for example, 8) bit soft decision signal sequence Lj is subjected to S / P conversion for every 8 bits, so that the absolute value circuit 15a to the distribution counting circuit 32a in the first row are the first, fifth. , 9,..., The exponential likelihoods (amplitudes) b0 to b7 for the sub soft decision signal series are counted by class, and the absolute value circuit 15b to the distribution counting circuit 32b in the second row are the second, sixth, The indexing likelihoods b0 to b7 for the 10th,..., Sub-soft decision signal sequence are counted by class. The same applies to the following.

こうして、やがてJ個(例えば5000〜10000シンボル程度)の軟判定信号系列Ljが入力し終わると、各分布計数回路32a〜32dはそれぞれJ/4個分のインタリーブされたサブ軟判定信号系列についての指数化尤度b0〜b7を個別に計数している。そこで、加算回路33は分布計数回路32a〜32dの各計数出力B0〜B7を階級別に加算し、こうしてJ個分の軟判定信号系列について求めたのと等価な指数化尤度b0〜b7の各個数を出力する。最頻値検出回路34は加算器出力の計数出力に基づき尤も値の大きい指数化尤度(最頻値)Pを検出する。基準値作成回路18は最頻値Pに基づき基準値Bを作成し、制限回路19は該基準値Bが所定の範囲内の値になるように制限する。   Thus, when J (for example, about 5000 to 10000 symbols) soft decision signal sequences Lj are finally input, each of the distribution counting circuits 32a to 32d has J / 4 interleaved sub soft decision signal sequences. Indexing likelihoods b0 to b7 are counted individually. Therefore, the adding circuit 33 adds the count outputs B0 to B7 of the distribution counting circuits 32a to 32d for each class, and thus each of the exponential likelihoods b0 to b7 equivalent to that obtained for the J soft decision signal sequences. Output the number. The mode value detection circuit 34 detects an exponential likelihood (mode value) P having a large likelihood value based on the count output of the adder output. The reference value creating circuit 18 creates a reference value B based on the mode value P, and the limiting circuit 19 limits the reference value B to a value within a predetermined range.

一方、正規化回路13a〜13dではインタリーブされた各サブ軟判定信号系列を基準値Bで正規化し、各M(例えば6)ビットの正規化されたサブ軟判定信号系列を生成する。パラレルシリアル変換器(P/S)35は正規化後の各サブ軟判定信号系列をデインタリーブしてシリアルの正規化軟判定信号系列に変換し、FEC復号回路14に入力する。   On the other hand, the normalization circuits 13a to 13d normalize the interleaved sub soft decision signal sequences with the reference value B to generate each M (for example, 6) bits normalized sub soft decision signal sequences. The parallel-serial converter (P / S) 35 deinterleaves each normalized sub soft decision signal sequence to convert it into a serial normalized soft decision signal sequence, and inputs it to the FEC decoding circuit 14.

なお、本第3の実施の形態では、入力の軟判定信号系列Ljを4つのサブ軟判定信号系列に分解したが、これに限らない。他にも任意数のサブ軟判定信号系列に分解できる。   In the third embodiment, the input soft decision signal sequence Lj is decomposed into four sub soft decision signal sequences. However, the present invention is not limited to this. In addition, it can be decomposed into an arbitrary number of sub soft decision signal sequences.

また、上記各実施の形態では、軟判定信号系列の振幅(尤度)レンジを2のべき乗を単位に階級分けして最頻値を検出したが、これに限らない。振幅レンジを10又は100等のリニアな区間を単位に階級分けして最頻値を検出するように構成しても良い。   In each of the above embodiments, the mode value is detected by classifying the amplitude (likelihood) range of the soft decision signal sequence in units of powers of 2, but the present invention is not limited to this. The mode may be configured such that the mode value is detected by classifying the amplitude range into units of linear sections such as 10 or 100.

また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組合せの様々な変更が行えることは言うまでもない。   Moreover, although the several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention.

(付記1) 復調器出力の軟判定信号を正規化する軟判定信号の正規化方法であって、復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出し、該検出した最頻値を基準として前記軟判定信号系列の正規化を行うことを特徴とする軟判定信号の正規化方法。   (Supplementary Note 1) A soft decision signal normalization method for normalizing a soft decision signal output from a demodulator, wherein a mode value of a signal amplitude is detected based on a frequency distribution of soft decision signal amplitudes in a decoding unit interval, A soft decision signal normalization method, wherein normalization of the soft decision signal sequence is performed on the basis of the detected mode value.

(付記2) 2進数からなる軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる2のべき乗値を最頻値とすることを特徴とする付記1記載の軟判定信号の正規化方法。   (Supplementary note 2) The soft decision signal amplitude consisting of binary numbers is divided into units of powers of 2, and the power value of 2 including the maximum distribution is the most frequent based on the frequency distribution of the soft decision signal amplitude included in each class. The method for normalizing a soft decision signal according to appendix 1, wherein the value is a value.

(付記3) 受信信号を軟判定復調する復調手段と、前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出する最頻値検出手段と、前記検出した最頻値を基準として前記軟判定信号系列の正規化を行う正規化手段と、前記正規化後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えることを特徴とする受信装置。   (Supplementary Note 3) Demodulation means for soft-decision demodulation of the received signal, mode detection means for detecting the mode value of the signal amplitude based on the frequency distribution of the soft-decision signal amplitude in the decoding unit section of the output of the demodulation means, And normalizing means for normalizing the soft decision signal sequence based on the detected mode value, and decoding means for decoding received data based on the soft decision signal sequence after normalization. Receiving device.

(付記4) 最頻値検出手段は、2進数からなる各軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる階級の2のべき乗値を最頻値とすることを特徴とする付記3記載の受信装置。   (Supplementary Note 4) The mode value detection means classifies each soft decision signal amplitude consisting of binary numbers in units of powers of 2, and includes the maximum distribution based on the frequency distribution of the soft decision signal amplitude included in each class. The receiving apparatus according to supplementary note 3, wherein a power value of 2 of a given class is a mode value.

(付記5) 最頻値検出手段は、2のべき乗を単位とする階級別に設けた複数のカウンタと、各カウンタの計数制御を行う制御手段とを備え、前記制御手段は、復号単位区間の初期段階で各カウンタに0又は最大値をセットしてその後のカウント出力を監視すると共に、各軟判定信号の入力に伴って、該軟判定信号振幅が含まれなかった階級の各2のべき乗に対応するカウンタのみをカウントアップ又はカウントダウンし、かつ全カウンタのカウント出力が0又は最大値でなくなった場合は、何れかのカウンタのカウント出力が0又は最大値になるまで全カウンタを一斉にカウントダウン又はカウントアップする制御を繰り返し、復号単位区間の最後にカウント出力が0又は最大値となっているカウンタに対応する2のべき乗値を最頻値とすることを特徴とする付記4記載の受信装置。   (Supplementary Note 5) The mode detection means includes a plurality of counters provided for each class in units of powers of 2 and a control means for performing count control of each counter. At each stage, each counter is set to 0 or the maximum value, and the subsequent count output is monitored, and with the input of each soft decision signal, it corresponds to each power of 2 of the class that did not include the soft decision signal amplitude Count up or down only the counters that count, and if the count output of all counters is 0 or no longer the maximum value, all counters are counted down or counted all at once until the count output of any counter reaches 0 or the maximum value Up control is repeated, and the power value of 2 corresponding to the counter whose count output is 0 or the maximum value at the end of the decoding unit interval is set as the mode value. Receiving the additional notes 4, wherein a.

(付記6) 正規化手段は、復調器出力の2進数からなる軟判定信号振幅を最頻値よりも小さい2のべき乗からなる基準値で除算することを特徴とする付記4記載の受信装置。   (Supplementary note 6) The receiving apparatus according to supplementary note 4, wherein the normalizing means divides the soft decision signal amplitude composed of the binary number of the demodulator output by a reference value composed of a power of 2 smaller than the mode value.

(付記7) 復調器出力の軟判定信号のビット数をN、正規化後の軟判定信号のビット数をMとするとき、基準値の値を0乃至(N−M)の範囲内に制限する制限手段を備えることを特徴とする付記6記載の受信装置。   (Supplementary note 7) When N is the number of bits of the soft decision signal output from the demodulator and M is the number of bits of the soft decision signal after normalization, the reference value is limited to a range of 0 to (N−M). The receiving device according to appendix 6, further comprising a restricting unit that performs the above operation.

(付記8) 受信信号を軟判定復調する復調手段と、前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき最頻値を検出する最頻値検出手段と、前記検出した最頻値に基づく基準値により前記軟判定信振幅の正規化を行う正規化手段と、パケット再送制御の下で、少なくとも初送パケットに係る正規化後の軟判定信号系列及び基準値を記憶するメモリと、初送パケットと再送パケットに係る各正規化後の軟判定信号振幅をそれぞれの基準値の比に基づいて最大比合成する合成手段と、前記合成後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えることを特徴とする受信装置。   (Supplementary Note 8) Demodulation means for soft-decision demodulation of the received signal, mode value detection means for detecting the mode value based on the frequency distribution of the soft-decision signal amplitude in the decoding unit section of the output of the demodulation means, and the detected Normalizing means for normalizing the soft decision signal amplitude based on a reference value based on the mode value, and storing at least a normalized soft decision signal sequence and a reference value related to the initial transmission packet under packet retransmission control Memory, combining means for combining the maximum ratio of each normalized soft decision signal amplitude related to the initial transmission packet and the retransmission packet based on the ratio of the respective reference values, and received data based on the combined soft decision signal sequence A receiving device comprising: decoding means for performing decoding.

(付記9) 受信信号を軟判定復調する復調手段と、前記復調手段の出力の復号単位区間におけるシリアルな軟判定信号系列を所定数のシンボルを単位にパラレル変換するシリ
アルパラレル変換手段と、前記パラレル変換されたそれぞれの軟判定信号系列に各対応して並列に設けられ、2進数からなる各軟判定信号系列の振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布を計数する複数の分布計数手段と、前記各分布計数手段による階級別の計数出力を階級別に加算する加算手段と、前記加算出力の度数分布に基づき最大の分布が含まれる階級の2のべき乗値を最頻値とする最頻値検出手段と、前記最頻値を基準として前記軟判定信号振幅の正規化を行う正規化手段と、前記正規化後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えることを特徴とする受信装置。
(Supplementary Note 9) Demodulating means for soft-decision demodulating a received signal, serial-parallel conversion means for parallel-converting a serial soft-decision signal sequence in a decoding unit section of the output of the demodulating means in units of a predetermined number of symbols, and the parallel Corresponding to each converted soft decision signal sequence, the amplitude of each soft decision signal sequence consisting of binary numbers is divided into units of powers of 2 and the soft decision signal amplitude included in each class A plurality of distribution counting means for counting the frequency distribution of the above, an adding means for adding the count output by class by each distribution counting means for each class, and a class 2 including the maximum distribution based on the frequency distribution of the added output A mode value detecting unit that sets a power value of the mode as a mode value, a normalizing unit that normalizes the soft decision signal amplitude based on the mode value, and a soft decision signal sequence after the normalization. And a decoding means for decoding received data.

第1の実施の形態による受信装置の要部構成図である。It is a principal part block diagram of the receiver by 1st Embodiment. 実施の形態による絶対値化及び指数化回路の動作説明図である。It is operation | movement explanatory drawing of the absolute value conversion and the indexation circuit by embodiment. 実施の形態による最頻値検出回路のブロック図である。It is a block diagram of the mode detection circuit by embodiment. 実施の形態による基準値作成及び正規化回路の動作説明図である。It is operation | movement explanatory drawing of the reference value preparation and normalization circuit by embodiment. 実施の形態による正規化方式の効果を説明する図である。It is a figure explaining the effect of the normalization system by embodiment. 実施の形態によるブロックエラーレートのグラフ図である。It is a graph of the block error rate by embodiment. 第2の実施の形態による受信装置の要部構成図である。It is a principal part block diagram of the receiver by 2nd Embodiment. 第3の実施の形態による受信装置の要部構成図である。It is a principal part block diagram of the receiver by 3rd Embodiment. 多値変調方式の一例を示す図である。It is a figure which shows an example of a multi-value modulation system. 多値変調方式における尤度分布のヒストグラムを示す図である。It is a figure which shows the histogram of likelihood distribution in a multi-value modulation system. 従来の受信装置の要部構成図である。It is a principal part block diagram of the conventional receiver.

符号の説明Explanation of symbols

11 復調回路
12 メモリ
13 正規化回路
14 FEC(Forward error Control)復号回路
15 絶対値回路
16 指数化回路
17 最頻値検出回路
18 基準値作成回路
19 制限回路
DESCRIPTION OF SYMBOLS 11 Demodulation circuit 12 Memory 13 Normalization circuit 14 FEC (Forward error Control) decoding circuit 15 Absolute value circuit 16 Indexing circuit 17 Mode value detection circuit 18 Reference value creation circuit 19 Limiting circuit

Claims (8)

復調器出力の軟判定信号を正規化する軟判定信号の正規化方法であって、復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出し、該検出した最頻値を基準として前記軟判定信号系列の正規化を行うことを特徴とする軟判定信号の正規化方法。 A method for normalizing a soft decision signal for normalizing a soft decision signal output from a demodulator, wherein a mode value of a signal amplitude is detected based on a frequency distribution of the soft decision signal amplitude in a decoding unit interval, and the detected mode A soft decision signal normalization method, wherein the soft decision signal sequence is normalized based on a value. 2進数からなる軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる2のべき乗値を最頻値とすることを特徴とする請求項1記載の軟判定信号の正規化方法。 The soft decision signal amplitude consisting of binary numbers is divided into units of powers of 2, and the power value of 2 including the maximum distribution based on the frequency distribution of the soft decision signal amplitudes included in each class is set as the mode value. The soft decision signal normalization method according to claim 1. 受信信号を軟判定復調する復調手段と、
前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき信号振幅の最頻値を検出する最頻値検出手段と、
前記検出した最頻値を基準として前記軟判定信号系列の正規化を行う正規化手段と、
前記正規化後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えることを特徴とする受信装置。
Demodulation means for soft decision demodulation of the received signal;
Mode detection means for detecting the mode value of the signal amplitude based on the frequency distribution of the soft decision signal amplitude in the decoding unit section of the output of the demodulation means;
Normalizing means for normalizing the soft decision signal sequence based on the detected mode value;
A receiving apparatus comprising: decoding means for decoding received data based on the normalized soft decision signal sequence.
最頻値検出手段は、2進数からなる各軟判定信号振幅を2のべき乗を単位に階級分けし、各階級に含まれる軟判定信号振幅の度数分布に基づき最大の分布が含まれる階級の2のべき乗値を最頻値とすることを特徴とする請求項3記載の受信装置。 The mode value detecting means classifies each soft decision signal amplitude consisting of binary numbers in units of powers of 2, and 2 of the class including the maximum distribution based on the frequency distribution of the soft decision signal amplitude included in each class. 4. The receiving apparatus according to claim 3, wherein a power value of is a mode value. 最頻値検出手段は、2のべき乗を単位とする階級別に設けた複数のカウンタと、各カウンタの計数制御を行う制御手段とを備え、
前記制御手段は、復号単位区間の初期段階で各カウンタに0又は最大値をセットしてその後のカウント出力を監視すると共に、各軟判定信号の入力に伴って、該軟判定信号振幅が含まれなかった階級の各2のべき乗に対応するカウンタのみをカウントアップ又はカウントダウンし、かつ全カウンタのカウント出力が0又は最大値でなくなった場合は、何れかのカウンタのカウント出力が0又は最大値になるまで全カウンタを一斉にカウントダウン又はカウントアップする制御を繰り返し、復号単位区間の最後にカウント出力が0又は最大値となっているカウンタに対応する2のべき乗値を最頻値とすることを特徴とする請求項4記載の受信装置。
The mode detection means includes a plurality of counters provided for each class in units of powers of 2 and control means for performing count control of each counter.
The control means sets each counter to 0 or the maximum value at the initial stage of the decoding unit interval and monitors the subsequent count output, and the soft decision signal amplitude is included with the input of each soft decision signal. If only the counter corresponding to each power of 2 of the class that did not exist is counted up or down, and the count output of all counters is not 0 or the maximum value, the count output of any counter becomes 0 or the maximum value The control to count down or count up all the counters at once is repeated until the counter reaches, and the power value of 2 corresponding to the counter whose count output is 0 or the maximum value at the end of the decoding unit interval is the mode value. The receiving device according to claim 4.
正規化手段は、復調器出力の2進数からなる軟判定信号振幅を最頻値よりも小さい2のべき乗からなる基準値で除算することを特徴とする請求項4記載の受信装置。 5. The receiving apparatus according to claim 4, wherein the normalizing means divides the soft decision signal amplitude made up of a binary number of the demodulator output by a reference value made up of a power of 2 smaller than the mode value. 復調器出力の軟判定信号のビット数をN、正規化後の軟判定信号のビット数をMとするとき、基準値の値を0乃至(N−M)の範囲内に制限する制限手段を備えることを特徴とする請求項6記載の受信装置。 Limiting means for limiting the value of the reference value within the range of 0 to (N−M), where N is the number of bits of the soft decision signal output from the demodulator and M is the number of bits of the soft decision signal after normalization. The receiving apparatus according to claim 6, further comprising: 受信信号を軟判定復調する復調手段と、
前記復調手段の出力の復号単位区間における軟判定信号振幅の度数分布に基づき最頻値を検出する最頻値検出手段と、
前記検出した最頻値に基づく基準値により前記軟判定信振幅の正規化を行う正規化手段と、
パケット再送制御の下で、少なくとも初送パケットに係る正規化後の軟判定信号系列及び基準値を記憶するメモリと、
初送パケットと再送パケットに係る各正規化後の軟判定信号振幅をそれぞれの基準値の比に基づいて最大比合成する合成手段と、
前記合成後の軟判定信号系列に基づき受信データの復号を行う復号手段とを備えることを特徴とする受信装置。
Demodulation means for soft decision demodulation of the received signal;
A mode value detecting means for detecting a mode value based on a frequency distribution of the soft decision signal amplitude in the decoding unit section of the output of the demodulating means;
Normalizing means for normalizing the soft decision signal amplitude based on a reference value based on the detected mode value;
Under packet retransmission control, a memory that stores at least a normalized soft decision signal sequence and a reference value related to an initial transmission packet;
Combining means for combining the maximum ratio of the soft decision signal amplitudes after normalization related to the initial transmission packet and the retransmission packet based on the ratio of the respective reference values;
A receiving apparatus comprising: decoding means for decoding received data based on the combined soft decision signal sequence.
JP2006337056A 2006-12-14 2006-12-14 Receiver Expired - Fee Related JP4905108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337056A JP4905108B2 (en) 2006-12-14 2006-12-14 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337056A JP4905108B2 (en) 2006-12-14 2006-12-14 Receiver

Publications (2)

Publication Number Publication Date
JP2008153751A true JP2008153751A (en) 2008-07-03
JP4905108B2 JP4905108B2 (en) 2012-03-28

Family

ID=39655509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337056A Expired - Fee Related JP4905108B2 (en) 2006-12-14 2006-12-14 Receiver

Country Status (1)

Country Link
JP (1) JP4905108B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154144A (en) * 2008-12-25 2010-07-08 Fujitsu Ltd Data conversion apparatus and data conversion method
US8718200B2 (en) 2011-11-28 2014-05-06 Kabushiki Kaisha Toshiba Scaling decision device and method for deciding scaling value used in normalization of signal
US9100157B2 (en) 2013-11-29 2015-08-04 Fujitsu Limited Likelihood weighting circuit
JP7550888B2 (en) 2020-08-14 2024-09-13 セインチップス テクノロジー カンパニーリミテッド Data processing method and apparatus, decoder, network device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237753A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Decoding device and decoding method
JP2004260713A (en) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp Receiver
JP2005150914A (en) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd Communications device and error correction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237753A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Decoding device and decoding method
JP2004260713A (en) * 2003-02-27 2004-09-16 Mitsubishi Electric Corp Receiver
JP2005150914A (en) * 2003-11-12 2005-06-09 Matsushita Electric Ind Co Ltd Communications device and error correction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010154144A (en) * 2008-12-25 2010-07-08 Fujitsu Ltd Data conversion apparatus and data conversion method
US8718200B2 (en) 2011-11-28 2014-05-06 Kabushiki Kaisha Toshiba Scaling decision device and method for deciding scaling value used in normalization of signal
US9100157B2 (en) 2013-11-29 2015-08-04 Fujitsu Limited Likelihood weighting circuit
JP7550888B2 (en) 2020-08-14 2024-09-13 セインチップス テクノロジー カンパニーリミテッド Data processing method and apparatus, decoder, network device and storage medium
US12113546B2 (en) 2020-08-14 2024-10-08 Sanechips Technology Co., Ltd. Data processing method and device, decoder, network device and storage medium

Also Published As

Publication number Publication date
JP4905108B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP1355430B1 (en) Error detection methods in wireless communication systems
US7831886B2 (en) Fast H-ARQ acknowledgement generation method using a stopping rule for turbo decoding
US8028223B2 (en) Transmission device, encoding device and decoding device
US8234557B2 (en) Transmission device
JP3811699B2 (en) Error correction apparatus and method for code division multiple access mobile communication system
US20070124657A1 (en) Decoding device, decoding method, and receiving apparatus
CN1292958A (en) Received signal quality determination methods and system for convolutionally encoded communication channels
EP1312170B1 (en) Acceptance / rejection of codewords of a repetition code in dependence of the number of corrections performed
CN1233139C (en) Effective band width cascade connected lattice code modem and decording method
JP4905108B2 (en) Receiver
US6536010B1 (en) Digital transmission system and method
RU2214679C2 (en) Method of quantization for iterative decoder in communication system
US6883130B2 (en) Enhanced and adaptive error detection in digital communications
JP7054762B2 (en) Wireless communication system and wireless communication method
US7975212B2 (en) Sequential decoding method and apparatus thereof
JP2005150914A (en) Communications device and error correction method
WO2003003644A1 (en) Improvements relating to data packet error detection
JP4263834B2 (en) Error correction method
US20010056566A1 (en) Apparatus and method for determining a most likely code word in a digital data transmission system
Usman et al. Impact of Fountain Codes on GPRS channels
CN101150323A (en) Method of scaling input data and mobile device and receiver
Mzyece et al. Performance evaluation of suboptimal decoding schemes for tail biting convolutional codes in EDGE headers
Nnochiri Modelling of Convolutional Encoder with Viterbi Decoder for the Next Generation Broadband Wireless Access Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees