JP2008153496A - Nitric acid manganese closed recycle system for solid-state electrolytic capacitor - Google Patents

Nitric acid manganese closed recycle system for solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2008153496A
JP2008153496A JP2006341095A JP2006341095A JP2008153496A JP 2008153496 A JP2008153496 A JP 2008153496A JP 2006341095 A JP2006341095 A JP 2006341095A JP 2006341095 A JP2006341095 A JP 2006341095A JP 2008153496 A JP2008153496 A JP 2008153496A
Authority
JP
Japan
Prior art keywords
manganese nitrate
manganese
liquid
nitric acid
acid manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341095A
Other languages
Japanese (ja)
Other versions
JP4755971B2 (en
Inventor
Shigeoki Nishimura
成興 西村
Satoshi Hashimoto
聡 橋本
Takashi Gunji
孝 郡司
Hirobumi Kamimura
博文 上村
Hirokazu Hatori
宏和 羽鳥
Takehisa Kitamura
武久 北村
Takahiro Rokkaku
隆広 六角
Masahide Uramoto
昌秀 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc, Tomiyama Pure Chemical Industries Ltd filed Critical Hitachi AIC Inc
Priority to JP2006341095A priority Critical patent/JP4755971B2/en
Publication of JP2008153496A publication Critical patent/JP2008153496A/en
Application granted granted Critical
Publication of JP4755971B2 publication Critical patent/JP4755971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To establish a system for closed recycling of nitric acid manganese by returning a waste liquid of a nitric acid manganese liquid of a remaining immersion liquid, which has been heretofore simply discarded without being recycled, to a nitric acid manganese refining step without adding any special operation, while, in a solid-state electrolytic capacitor including manganese dioxide in a cathode, immersing a sintered body formed with surface-oxidized coating of a valve operating metal in the nitric acid manganese fluid, and manganese dioxide is obtained on a surface of the sintered body by calcination and thermal decomposition. <P>SOLUTION: A manganese-dioxide cathode is obtained by immersion in a nitric acid manganese liquid separated into nitric acid manganese 6-hydrate liquid, or a diluted solution thereof or the both and nitric acid manganese n-hydrate (n=natural number of ≤4), calcination and thermal decomposition. A waste liquid of nitric acid manganese is refined after being separated into the nitric acid manganese 6-hydrate liquid, or the diluted solution thereof and the nitric acid manganese n-hydrate liquid (n=natural number of ≤4), and reused. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は固体電解コンデンサの製造方法に関する。特に固体電解コンデンサの電解質材料の原料である硝酸マンガンの処理方法に関する。さらにこれは硝酸マンガン液のクローズドリサイクルシステムに関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor. In particular, the present invention relates to a method for treating manganese nitrate which is a raw material of an electrolyte material for a solid electrolytic capacitor. This also relates to a closed recycling system for manganese nitrate solution.

現在の携帯電話やパーソナルコンピュータなどの電子機器には、小型、大容量のコンデンサが多数用いられている。各種コンデンサの中でもタンタルコンデンサやニオブコンデンサは単位容量当りの容量が大きい、小型・大容量コンデンサであり、熱安定性や電気特性が良好であるため、電子機器に好んで使用されている。これらのコンデンサの陰極には導電性高分子と二酸化マンガンが用いられているが、現在使用されているコンデンサの大半は二酸化マンガン陰極品である。この二酸化マンガンは焼結されたタンタル、又はニオブ、又は酸化ニオブまたはこれらの金属の合金の表面に陽極酸化にて誘電体酸化物皮膜を形成した多孔体を所定の濃度の硝酸マンガン液中に含浸し、焼成熱分解させ、これをくりかえすことにより形成される。   Many electronic devices such as mobile phones and personal computers currently use small and large-capacity capacitors. Among various capacitors, tantalum capacitors and niobium capacitors are small and large-capacity capacitors with a large capacity per unit capacity, and are favorably used in electronic devices because of their good thermal stability and electrical characteristics. Although the conductive polymer and manganese dioxide are used for the cathode of these capacitors, most of the capacitors currently used are manganese dioxide cathode products. This manganese dioxide is impregnated in a manganese nitrate solution of a predetermined concentration with a porous body in which a dielectric oxide film is formed by anodic oxidation on the surface of sintered tantalum, niobium, niobium oxide or an alloy of these metals. It is formed by firing and pyrolyzing and repeating this.

硝酸マンガン液は種々な濃度で調節されており、また、熱分解促進のため硝酸アンモニウムを2wt%程度添加されている(特許文献1)。従って液の安定性が問題となり、所定の時間後に液の交換を行っている。   Manganese nitrate liquid is adjusted at various concentrations, and about 2 wt% ammonium nitrate is added to promote thermal decomposition (Patent Document 1). Accordingly, the stability of the liquid becomes a problem, and the liquid is exchanged after a predetermined time.

液が接触するものは容器とタンタル、ニオブなどの誘電体皮膜を形成した多孔焼結体に過ぎないので、廃液中の不純物は析出した二酸化マンガン粒子のみである。   Since the liquid contacts only with the porous sintered body on which the container and the dielectric film such as tantalum and niobium are formed, the impurities in the waste liquid are only precipitated manganese dioxide particles.

しかし、この廃液の量はかなりの量となり、廃液を処理しようとすると有害物であるマンガンの除去及び河川等の附栄養物質となってしまう硝酸性窒素分の除去が必要となる。
特開平9−246107号公報
However, the amount of the waste liquid is considerable, and when the waste liquid is to be treated, it is necessary to remove manganese, which is a harmful substance, and nitrate nitrogen that becomes a nutrient such as a river.
JP 9-246107 A

本発明は、二酸化マンガン微粒子を含む硝酸マンガン廃液を硝酸マンガン精製工程へ特異的な操作を加えることなく戻し、硝酸マンガンクローズドリサイクルシステムを確立することにある。   An object of the present invention is to establish a manganese nitrate closed recycling system by returning a manganese nitrate waste solution containing manganese dioxide fine particles to a manganese nitrate purification process without performing a specific operation.

本発明は上記課題を解決するために、弁作用金属の表面酸化被膜を形成させた焼結体を硝酸マンガン液に含浸させ、焼結体の表面に、焼成熱分解により二酸化マンガン陰極を得ている固体電解コンデンサの製造方法における固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステムにおいて、硝酸マンガン6水和物液又はその希釈液又はそのそれぞれと、硝酸マンガンn(n=4以下の自然数)水和物液とに分けた硝酸マンガン液中に含浸し、焼成熱分解させ、二酸化マンガン陰極を得ると共に、硝酸マンガン廃液は、前記硝酸マンガン6水和物又はその希釈液の硝酸マンガン6水和物の廃液と、前記硝酸マンガンn(n=4以下の自然数)水和物の廃液とのふたつに分別して精製し、再利用する固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステムを提供する。
また、前記硝酸マンガン6水和物の廃液は、加熱脱水して昌析する工程を経て再利用するとともに、前記硝酸マンガンn(n=4以下の自然数)水和物の廃液は、減圧脱水して昌析する工程を経て再利用する、固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステムを提供する。
In order to solve the above-mentioned problems, the present invention impregnates a sintered body on which a valve metal oxide surface oxide film is formed with a manganese nitrate solution, and obtains a manganese dioxide cathode on the surface of the sintered body by firing pyrolysis. In a closed flow recycling system for solid electrolytic capacitors in a solid electrolytic capacitor manufacturing method, manganese nitrate hexahydrate solution or diluted solution thereof, or each thereof, and manganese nitrate n (n = 4 or less natural number) hydrate solution The manganese nitrate cathode is impregnated into a manganese nitrate solution divided into the above and fired and pyrolyzed to obtain a manganese dioxide cathode, and the manganese nitrate waste liquid is composed of the manganese nitrate hexahydrate or the diluted manganese nitrate hexahydrate , Manganese nitrate for solid electrolytic capacitors that is separated and purified from the waste liquid of manganese nitrate n (n = 4 or less natural number) hydrate. To provide a rose-loop recycling system.
The manganese nitrate hexahydrate waste liquid is reused through a process of heat dehydration and scouring, and the manganese nitrate n (n = natural number of 4 or less) hydrate waste liquid is dehydrated under reduced pressure. We provide a manganese nitrate closed recycling system for solid electrolytic capacitors that can be reused through the process of refining.

本発明により以下の効果が得られる。
廃液を精製工程に戻せるので、廃液処理が不要となる。
精製工程の前処理としての処理工程を新たに設ける必要がない。
The following effects can be obtained by the present invention.
Since the waste liquid can be returned to the purification process, the waste liquid treatment becomes unnecessary.
There is no need to newly provide a processing step as a pretreatment for the purification step.

以下、本発明に係わる、固体電解コンデンサ陰極形成用硝酸マンガン液クローズドリサイクルシステムの詳細について説明する。
本発明に使用する硝酸マンガン液は、例えばタンタル固体電解コンデンサの陰極二酸化マンガン形成に使用し、その種類は、(1)硝酸マンガン6水和物に純水を添加した希釈液 (2)硝酸マンガン6水和物 (3)硝酸マンガン3水和物である。(1)の希釈液濃度は、10wt%、90wt%程度であり、タンタル及びニオブ焼結体の平均細孔径により変化させており、平均細孔径が小さくなると、硝酸マンガンの初回含浸液濃度は低くする。これらはそのまま又は加温液化して順次誘電体皮膜を形成したタンタル多孔焼結体に含浸し、250℃以上の温度で熱分解させ二酸化マンガンを細孔内及び焼結体表面に付着させる。たとえば、硝酸マンガン6水和物の濃度を、40wt%、60wt%、100wt%、硝酸マンガン3水和物の順に含浸、焼成を繰り返す。含浸回数は適宜変化させるが、通常は各濃度2回ずつ以上の含浸焼成を行う。
これらの液は時間とともに液中でも硝酸マンガンの分解が進行するため、黒色化し、寿命となる。そこで廃液を(1)+(2)と(3)に分別排出する。それぞれの液をろ過後、晶析工程に投入する。(1)+(2)は加熱脱水し、硝酸マンガン6水和物近傍の組成とし、6水和物を晶析分離する。ろ液はされに次の晶析工程へと移送する。(3)のろ過液は減圧脱水装置に投入し、硝酸マンガン3水和物近傍まで濃縮し、晶析させる。このように晶析精製したものは原料として含浸工程へ投入される。これで硝酸マンガンのクローズドリサイクルシステムが確立する。
Hereinafter, the details of the manganese nitrate liquid closed recycling system for forming a solid electrolytic capacitor cathode according to the present invention will be described.
The manganese nitrate solution used in the present invention is used for, for example, the formation of cathode manganese dioxide of a tantalum solid electrolytic capacitor, and the type is (1) a diluted solution obtained by adding pure water to manganese nitrate hexahydrate. Hexahydrate (3) Manganese nitrate trihydrate. The diluted solution concentration of (1) is about 10 wt% and 90 wt%, and is changed depending on the average pore size of the tantalum and niobium sintered bodies. To do. These are impregnated into a tantalum porous sintered body as it is or heated and liquefied to sequentially form a dielectric film, and thermally decomposed at a temperature of 250 ° C. or higher to attach manganese dioxide to the pores and the surface of the sintered body. For example, impregnation and firing of manganese nitrate hexahydrate are repeated in the order of 40 wt%, 60 wt%, 100 wt%, and manganese nitrate trihydrate. Although the number of impregnations is appropriately changed, the impregnation firing is usually performed twice or more at each concentration.
These liquids are blackened due to the progress of decomposition of manganese nitrate in the liquid over time, and have a lifetime. Therefore, the waste liquid is discharged separately into (1) + (2) and (3). Each solution is filtered and then charged into the crystallization step. (1) + (2) is dehydrated by heating to a composition in the vicinity of manganese nitrate hexahydrate, and the hexahydrate is crystallized and separated. The filtrate is then transferred to the next crystallization step. The filtrate of (3) is put into a vacuum dehydrator, concentrated to the vicinity of manganese nitrate trihydrate and crystallized. The crystallization refined product is supplied to the impregnation step as a raw material. This establishes a closed recycling system for manganese nitrate.

(1)+(2)+(3)を混合した場合、高濃度の硝酸マンガン3水和物を得るためには加熱脱水では硝酸マンガンの熱分解が進行し、硝酸マンガン3水和物を得ることが出来ない。3水和物を得るためには、余分な水分を減圧脱水する必要があり、多大なエネルギーを消費する。そのため、クローズドリサイクルする価値が見出せない。硝酸マンガン6水和物より高濃度のものとそれ以下の低濃度のものとに分別回収するとメリットが存在する。   When (1) + (2) + (3) is mixed, in order to obtain high-concentration manganese nitrate trihydrate, thermal decomposition of manganese nitrate proceeds in heat dehydration to obtain manganese nitrate trihydrate. I can't. In order to obtain the trihydrate, it is necessary to dehydrate the excess water under reduced pressure, which consumes a lot of energy. Therefore, the value of closed recycling cannot be found. There is a merit when fractionated and recovered in a concentration higher than that of manganese nitrate hexahydrate and in a concentration lower than that of manganese nitrate hexahydrate.

本発明のクローズドリサイクルシステムでは焼結体に付着し、熱分解された二酸化マンガンは系外へ移行するため、その不足分は新たに硝酸マンガン6水和物および3水和物として加える必要がある。   In the closed recycling system of the present invention, manganese dioxide that adheres to the sintered body and is thermally decomposed moves out of the system, so that the shortage needs to be newly added as manganese nitrate hexahydrate and trihydrate. .

以下、本発明による実施例を挙げて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

タンタル焼結体の平均細孔径は、0.3μmのものを使用し、硝酸マンガン6水和物の濃度が40wt%、60wt%、100wt%、硝酸マンガン3水和物の順に含浸、焼成を繰り返す。各濃度2回ずつ含浸焼成を行う。所定の時間が経過後、液は硝酸マンガン3水和物(高濃度液)と、それ以外の各濃度の硝酸マンガン6水和物は混合して(低濃度液)分別回収する。回収液はそれぞれの精製工程へ投入される。
低濃度液からは加熱脱水/晶析操作により、硝酸マンガン6水和物を精製し、高濃度液からは硝酸マンガン3水和物を精製する。硝酸マンガン6水和物からはさらに含浸に供しされる低濃度の硝酸マンガン希釈液を調合し、使用する。含浸によりコンデンサ素子に付着した分が減少するため、精製工程において、新規原材料を加え、精製することによりクローズドリサイクルシステムが成立する。
The average pore size of the tantalum sintered body is 0.3 μm, and the manganese nitrate hexahydrate concentration is 40 wt%, 60 wt%, 100 wt%, and manganese nitrate trihydrate is impregnated and fired repeatedly. . Impregnation firing is performed twice for each concentration. After a predetermined time has elapsed, the liquid is manganese nitrate trihydrate (high concentration liquid) and the other concentrations of manganese nitrate hexahydrate are mixed (low concentration liquid) and collected separately. The recovered liquid is put into each purification step.
Manganese nitrate hexahydrate is purified from the low concentration solution by heating dehydration / crystallization operation, and manganese nitrate trihydrate is purified from the high concentration solution. From manganese nitrate hexahydrate, a low-concentration manganese nitrate diluted solution to be further impregnated is prepared and used. Since the amount adhering to the capacitor element due to the impregnation is reduced, a closed recycle system is established by adding and refining new raw materials in the purification process.

ニオブ金属粉末の焼結体に所定の誘電体皮膜をアノード酸化にて形成した素子の平均細孔径は1.0μmであった。この素子は硝酸マンガン6水和物の60wt%液の含浸焼成を2回、硝酸マンガン6水和物の100%の液に2回、硝酸マンガン3水和物の液に2回含浸焼成を繰り返し、カーボン、銀のペーストを焼きつけ、42アロイ等のリードフレームに載せ、封止樹脂にてモールドすることによりコンデンサ製品とする。
硝酸マンガン液は素子付着により減少した分を補給し、低濃度の液は約1ケ月使用後、液交換を行う。硝酸マンガン6水和物100%以下の低濃度液は一括して排出する。液濃度は硝酸マンガン6水和物の約80wt%液である。一方、硝酸マンガン3水和物は一定量を毎日取り出し、新鮮液を取り出し量と素子付着による減少量に見合うだけ補給し、含浸工程に使用する。1ケ月使用後全量交換するが、液はこの硝酸マンガン3水和物のみ回収する。硝酸マンガン6水和物約80%の液は硝酸マンガン6水和物の精製工程原料として供給され、ろ過後加熱濃縮され、晶析精製され、硝酸マンガン6水和物として回収される。一方、硝酸マンガン3水和物廃液はそのまま、ろ過後、液が吸湿性であるため、多少の減圧脱水後硝酸マンガン3水和物として精製回収される。硝酸マンガン3水和物は分解促進剤等の添加後、硝酸マンガン3水和物含浸液として供給される。このような形で硝酸マンガン液のクローズドリサイクルシステムが出来上がる。
(比較例1)
An average pore diameter of an element in which a predetermined dielectric film was formed by anodic oxidation on a sintered body of niobium metal powder was 1.0 μm. This device was impregnated and fired twice with 60 wt% manganese nitrate hexahydrate, twice with 100% manganese nitrate hexahydrate, and twice with manganese nitrate trihydrate. Then, a carbon and silver paste is baked, placed on a lead frame such as 42 alloy, and molded with a sealing resin to obtain a capacitor product.
Manganese nitrate solution replenishes the amount reduced by device adhesion, and low-concentration solution is replaced after about one month of use. Low concentration solution of manganese nitrate hexahydrate 100% or less is discharged in a lump. The liquid concentration is about 80 wt% liquid of manganese nitrate hexahydrate. On the other hand, a certain amount of manganese nitrate trihydrate is taken out every day, and fresh liquid is replenished in accordance with the taken-out amount and the reduction amount due to device adhesion, and used for the impregnation step. The whole amount is changed after one month of use, but only this manganese nitrate trihydrate is recovered. A solution of about 80% manganese nitrate hexahydrate is supplied as a raw material for the purification process of manganese nitrate hexahydrate, filtered and concentrated by heating, purified by crystallization, and recovered as manganese nitrate hexahydrate. On the other hand, the manganese nitrate trihydrate waste liquid is filtered as it is, and since the liquid is hygroscopic, it is purified and recovered as manganese nitrate trihydrate after some dehydration under reduced pressure. Manganese nitrate trihydrate is supplied as a manganese nitrate trihydrate impregnation liquid after the addition of a decomposition accelerator or the like. In this way, a closed recycling system for manganese nitrate solution is completed.
(Comparative Example 1)

実施例1と同様の工程において排出した廃液を全量混合すると、廃液中の硝酸マンガン濃度は約硝酸マンガン5〜6水和物相当となる。硝酸マンガン6水和物の原料として投入し、硝酸マンガン6水和物として回収は可能であるが、含浸液として使用している硝酸マンガン3水和物を回収するには3水和物となるまでの水分の減圧脱水工程が必要となり、多大なエネルギーを要する。従って、クローズドリサイクルシステムは成立し難い。
(比較例2)
When the whole amount of the waste liquid discharged in the same process as in Example 1 is mixed, the manganese nitrate concentration in the waste liquid is equivalent to about manganese nitrate 5-6 hydrate. It can be input as a raw material for manganese nitrate hexahydrate and recovered as manganese nitrate hexahydrate, but to recover manganese nitrate trihydrate used as an impregnating solution, it becomes a trihydrate. This requires a vacuum dehydration step of water up to and requires a lot of energy. Therefore, it is difficult to establish a closed recycling system.
(Comparative Example 2)

実施例2と同様の工程において排出した廃液を全量混合すると廃液中の硝酸マンガン濃度は硝酸マンガン5水和物相当以下となった。硝酸マンガン6水和物の原料とするには純水を加え、晶析分離することで可能であり。現状精製工程に更なるエネルギーの付与は必要ない。しかし、含浸液として使用している硝酸マンガン3水和物を回収するためには比較例1と同様に減圧脱水により硝酸マンガン濃度を3水和物相当まで濃縮後、晶析分離精製する必要がある。そのため、多大なエネルギー付与が必要となり、クローズドリサイクルシステムは成立し難い。   When the entire amount of the waste liquid discharged in the same process as in Example 2 was mixed, the manganese nitrate concentration in the waste liquid became equal to or lower than that of manganese nitrate pentahydrate. To make manganese nitrate hexahydrate as a raw material, pure water is added and crystallized and separated. No further energy needs to be applied to the current purification process. However, in order to recover the manganese nitrate trihydrate used as the impregnating liquid, it is necessary to concentrate and concentrate the manganese nitrate concentration to the equivalent of trihydrate by dehydration under reduced pressure as in Comparative Example 1, followed by purification by crystallization. is there. Therefore, enormous energy provision is required, and it is difficult to establish a closed recycling system.

Claims (2)

弁作用金属の表面酸化被膜を形成させた焼結体を硝酸マンガン液に含浸させ、焼結体の表面に、焼成熱分解により二酸化マンガン陰極を得ている固体電解コンデンサの製造方法における固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステムにおいて、硝酸マンガン6水和物液又はその希釈液又はそのそれぞれと、硝酸マンガンn(n=4以下の自然数)水和物液とに分けた硝酸マンガン液中に含浸し、焼成熱分解させ、二酸化マンガン陰極を得ると共に、硝酸マンガン廃液は、前記硝酸マンガン6水和物又はその希釈液の硝酸マンガン6水和物の廃液と、前記硝酸マンガンn(n=4以下の自然数)水和物の廃液とのふたつに分別して精製し、再利用する固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステム。   Solid electrolytic capacitor in a method for producing a solid electrolytic capacitor in which a sintered body formed with a valve metal oxide surface oxide film is impregnated with a manganese nitrate solution, and a manganese dioxide cathode is obtained on the surface of the sintered body by firing pyrolysis In a manganese nitrate closed recycle system for use, the manganese nitrate liquid is divided into manganese nitrate hexahydrate liquid or diluted liquid thereof or each of them and manganese nitrate n (n = natural number less than 4) hydrate liquid. The manganese nitrate cathode is obtained by firing and pyrolyzing to obtain a manganese dioxide cathode, and the manganese nitrate hexahydrate or its dilute manganese nitrate hexahydrate waste and the manganese nitrate n (n = 4 or less). Natural number) Manganese nitrate closed recycling system for solid electrolytic capacitors that is separated and purified from hydrate waste liquid and purified. 請求項第1項において、前記硝酸マンガン6水和物の廃液は、加熱脱水して昌析する工程を経て再利用するとともに、前記硝酸マンガンn(n=4以下の自然数)水和物の廃液は、減圧脱水して昌析する工程を経て再利用する、固体電解コンデンサ用硝酸マンガンクローズドリサイクルシステム。   The waste liquid of the manganese nitrate hexahydrate according to claim 1, wherein the waste liquid of the manganese nitrate hexahydrate is reused through a step of heat dehydration and scouring, and the waste liquid of the manganese nitrate n (n = 4 or less natural number) hydrate. Is a manganese nitrate closed recycle system for solid electrolytic capacitors that is reused after dehydration under reduced pressure.
JP2006341095A 2006-12-19 2006-12-19 Manganese nitrate closed recycling system for solid electrolytic capacitors Active JP4755971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341095A JP4755971B2 (en) 2006-12-19 2006-12-19 Manganese nitrate closed recycling system for solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341095A JP4755971B2 (en) 2006-12-19 2006-12-19 Manganese nitrate closed recycling system for solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2008153496A true JP2008153496A (en) 2008-07-03
JP4755971B2 JP4755971B2 (en) 2011-08-24

Family

ID=39655341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341095A Active JP4755971B2 (en) 2006-12-19 2006-12-19 Manganese nitrate closed recycling system for solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4755971B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210840B1 (en) * 1966-10-12 1977-03-26
JPH01232711A (en) * 1988-01-21 1989-09-18 Siemens Ag Manufacture of solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210840B1 (en) * 1966-10-12 1977-03-26
JPH01232711A (en) * 1988-01-21 1989-09-18 Siemens Ag Manufacture of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4755971B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
KR101731494B1 (en) Nitrogen-containing porous carbon material, method for producing same, and electric double layer capacitor using the nitrogen-containing porous carbon material
CN105220181B (en) Technique of the copper for high pure and ultra-fine copper powder is reclaimed from waste and old circuit board based on electrochemical process
JP5638010B2 (en) Method for producing metal powder
KR102529356B1 (en) Method for producing reduced graphene oxide from electrode graphite scrap
US20150129433A1 (en) Method for recovering a metal from solution, system for recovering a metal from solution, and system for recovering lithium from salt water
EP2877613B1 (en) Selective reductive electrowinning method
CN104261387B (en) A kind of big area prepares the method for Graphene carbon paper and the Graphene carbon paper of preparation thereof
JP2003534459A (en) Cathode for electrochemical regeneration of permanganate etching solution
Cao et al. Formation of nanoporous anodized tin oxide films in electrolyte containing F− and S2−
Liu et al. Electrochemical property of α-PbO prepared from the spent negative powders of lead acid batteries
CA3155463A1 (en) Processes for the preparation of expanded graphite and exfoliated graphene oxide
CN111320166B (en) Method for preparing two-dimensional porous graphene oxide through one-step electrochemical process
KR101604890B1 (en) A preparation method of an electroconductive membrane for water purification, a membrane prepared thereby, and a method of water purification by using the membrane
JP4755971B2 (en) Manganese nitrate closed recycling system for solid electrolytic capacitors
EP3650585A1 (en) Electrolytic cell and procedure for the preparation of graphene by means of electrochemical exfoliation
US9184448B2 (en) Method of producing aluminum structure and aluminum structure
KR101291681B1 (en) Recovery method of tin and nickel from scraps of steel ball for barrel plating
EP3686299B1 (en) Environmentally friendly process for extracting silver
Xie et al. An innovative process for the direct recovery of lead from waste lead paste
Santos et al. Influence of synthesis conditions on the properties of electrochemically synthesized BaTiO3 nanoparticles
CN110073037B (en) Method and apparatus for manufacturing electrolytic aluminum foil
Popescu et al. The use of deep eutectic solvents ionic liquids for selective dissolution and recovery of Sn, Pb and Zn from electric and electronic waste (WEEE)
WO2011100963A1 (en) Double-layer capacitor
CN107930420A (en) A kind of acidproof high conductivity anion-exchange membrane of hydrophobicity and preparation method thereof
Zhang et al. Recovery and Utilization of Electrolytic Manganese Anode Slime for the High-Value Industrialized Products─ A Review

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20091127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4755971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250