JP2008153106A - Plane light source element and image display device using the same - Google Patents

Plane light source element and image display device using the same Download PDF

Info

Publication number
JP2008153106A
JP2008153106A JP2006341021A JP2006341021A JP2008153106A JP 2008153106 A JP2008153106 A JP 2008153106A JP 2006341021 A JP2006341021 A JP 2006341021A JP 2006341021 A JP2006341021 A JP 2006341021A JP 2008153106 A JP2008153106 A JP 2008153106A
Authority
JP
Japan
Prior art keywords
light
light source
guide plate
source element
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341021A
Other languages
Japanese (ja)
Other versions
JP4704326B2 (en
Inventor
Ikuo Onishi
伊久雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006341021A priority Critical patent/JP4704326B2/en
Publication of JP2008153106A publication Critical patent/JP2008153106A/en
Application granted granted Critical
Publication of JP4704326B2 publication Critical patent/JP4704326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plane light source element and an image display device which can efficiently deflect light from a light source in a front direction and can give high luminance in the front direction. <P>SOLUTION: The plane light source element is provided with a light source, a light guide plate and an emitting light controlling plate for emitting light in a front direction. Convex portions are optically adhered tightly with the light guide plate and a cross-section of the convex portion satisfies a predetermined formula. And, the image display device is provided with the plane light source element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、面光源素子およびこれを備える液晶表示装置などの画像表示装置、さらに該画像表示装置を表示モジュールとして備えるパーソナルコンピュータ、コンピュータ用モニタ、ビデオカメラ、テレビ受信機、カーナビゲーションシステムなどの画像表示装置に関する。   The present invention relates to an image display device such as a surface light source element and a liquid crystal display device including the surface light source element, and a personal computer, a computer monitor, a video camera, a television receiver, a car navigation system, and the like provided with the image display device as a display module. The present invention relates to a display device.

液晶表示装置に代表される透過型の画像表示装置は、面状に光を発する面光源素子(バックライト)とドット状に画素が配置された透過型表示素子とで構成され、該透過型表示素子の各画素で面光源素子からの光の透過率がコントロールされることによって文字や映像などが表示される。面光源素子としては、ハロゲンランプ、反射板、レンズ等が組み合わされて出射光の輝度の分布が制御されるもの、蛍光管が導光板の端面に設けられて蛍光管からの光が端面と垂直な面から出射されるもの、蛍光管が導光板の直下に設けられたもの(直下型)などが挙げられる。ハロゲンランプを利用した面光源素子は、高輝度を必要とする液晶プロジェクタに主に用いられる。   2. Description of the Related Art A transmissive image display device typified by a liquid crystal display device includes a surface light source element (backlight) that emits light in a planar shape and a transmissive display element in which pixels are arranged in a dot shape. Characters, images, and the like are displayed by controlling the light transmittance from the surface light source element in each pixel of the element. As a surface light source element, a halogen lamp, a reflector, a lens, etc. are combined to control the luminance distribution of the emitted light. A fluorescent tube is provided on the end surface of the light guide plate, and light from the fluorescent tube is perpendicular to the end surface. The light emitted from a flat surface, the one provided with a fluorescent tube directly under the light guide plate (direct type), and the like. A surface light source element using a halogen lamp is mainly used in a liquid crystal projector that requires high luminance.

一方、導光板を利用した面光源素子は薄型化が可能であるため、直視型の液晶TV、パーソナルコンピュータのディスプレイなどに用いられることが多い。これら導光板を利用した面光源素子では、通常、正面輝度や出射光の視野角特性を改善する目的で導光板の出射面側にプリズムシートや拡散シートを設けるが、さらなる薄型化を実現する手段としては、これらのシートの機能を合わせ持った出射光制御板が有効である。これら出射光制御板は入射面上に所望の視野角特性に合わせて決定される形状からなる凸部を有しており、導光板と出射光制御板を平行に配置するとともに、固定層を介して光学的に導光板と密着させることによって出射光制御板の出射面から出射する光を制御することが可能である(特許文献1参照)。   On the other hand, since a surface light source element using a light guide plate can be thinned, it is often used for a direct-view liquid crystal TV, a display of a personal computer, and the like. In these surface light source elements using the light guide plate, a prism sheet or a diffusion sheet is usually provided on the exit surface side of the light guide plate for the purpose of improving the front luminance and the viewing angle characteristics of the emitted light. As such, an outgoing light control plate having the functions of these sheets is effective. These outgoing light control plates have a convex portion having a shape determined in accordance with a desired viewing angle characteristic on the incident surface, and the light guide plate and the outgoing light control plate are arranged in parallel and through a fixed layer. Thus, it is possible to control the light emitted from the emission surface of the outgoing light control plate by optically contacting the light guide plate (see Patent Document 1).

特開2001−338507号公報JP 2001-338507 A

しかしながら、近年、これら面光源素子に関する正面方向の輝度向上の要求はますます高まっており、一方で省エネルギーの観点から効率的に光を正面方向に偏向することが望まれている。凸部の断面形状により光を正面方向に偏向する割合は、大きく異なってくること、また導光板の屈折率、凸部をなす材料の屈折率に応じて、断面形状を変更する必要があることが分っているが、正面方向の輝度を効率良く高めるための断面形状についての知見は不充分であった。   However, in recent years, there has been an increasing demand for luminance enhancement in the front direction with respect to these surface light source elements. On the other hand, it is desired to efficiently deflect light in the front direction from the viewpoint of energy saving. The ratio of deflecting light in the front direction depends on the cross-sectional shape of the convex portion, and the cross-sectional shape must be changed according to the refractive index of the light guide plate and the refractive index of the material forming the convex portion. However, the knowledge about the cross-sectional shape for efficiently increasing the luminance in the front direction has been insufficient.

そこで本発明は、前記の課題に鑑みてなされたもので、光源からの光を効率良く正面方向に偏向することで正面方向の輝度の高い面光源素子および画像表示装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a surface light source element and an image display device having high brightness in the front direction by efficiently deflecting light from the light source in the front direction. To do.

請求項1に記載の発明は、
光源と、前記光源からの光を受光する少なくとも1つの端面である入射面と該入射面と略垂直を成す主面の一つである出射面とを有する導光板と、前記導光板の出射面からの光を入射面上の凸部で受光して出射面から正面方向へ出射する出射光制御板とを備える面光源素子であって、凸部が導光板と光学的に密着してなり、任意の前記凸部と、該凸部の最近傍にある前記光源との最短経路を含む前記出射面に垂直な平面と該出射面の交線をX軸、凸部の光学的密着部の中心を通り出射面と直交する軸をY軸とし、X軸方向の光学的に密着していない部分の断面形状が、下記の(1)式〜(14)式で表されるN個の傾きの異なる領域が下記(15)式を満足するものであることを特徴とする面光源素子である。

Figure 2008153106
The invention described in claim 1
A light guide plate having a light source, an incident surface that is at least one end surface that receives light from the light source, and an output surface that is one of main surfaces substantially perpendicular to the incident surface, and an output surface of the light guide plate A surface light source element including an outgoing light control plate that receives the light from the convex portion on the incident surface and emits the light from the outgoing surface in the front direction, and the convex portion is in optical contact with the light guide plate, The plane perpendicular to the exit surface including the shortest path between the arbitrary projection and the light source nearest to the projection and the line of intersection of the exit surface is the X axis, and the center of the optical contact portion of the projection The cross-sectional shape of the portion that is not optically in close contact in the X-axis direction has N slopes expressed by the following formulas (1) to (14), where the axis that passes through and is orthogonal to the exit surface is the Y-axis. The surface light source element is characterized in that the different regions satisfy the following expression (15).
Figure 2008153106

請求項2に記載の発明は、
前記凸部のX軸方向の断面形状が、該凸部を成すN個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする請求項1に記載の面光源素子照明装置である。
The invention described in claim 2
The cross-sectional shape of the convex portion in the X-axis direction is a shape obtained by approximating the shape of at least one pair of two adjacent regions by a curve among N different regions forming the convex portion. It is a surface light source element illuminating device of Claim 1.

請求項3に記載の発明は、
請求項1または2の面光源素子の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置である。
The invention described in claim 3
An image display device comprising a transmissive display element on the exit surface side of the surface light source element according to claim 1.

本発明によれば、導光板の出射面と出射光制御板の入射面を光学的に密着した面光源素子において、出射光制御板の凸部の断面形状を制御することで、指向性が強く、正面方向の輝度の高い面光源素子を得ることができる。また、本発明の面光源素子上に透過型表示素子を設けることで、指向性が強く、正面方向の輝度の高い画像表示装置を得ることができる。凸部へは最近傍の光源から入射する光のエネルギー量が最も多い。従って、X軸方向の断面形状を最適化することで、最も効率よく正面方向の輝度を高めることができる。   According to the present invention, in the surface light source element in which the exit surface of the light guide plate and the entrance surface of the exit light control plate are optically adhered, the directivity is strong by controlling the cross-sectional shape of the convex portion of the exit light control plate. A surface light source element having high brightness in the front direction can be obtained. In addition, by providing a transmissive display element on the surface light source element of the present invention, an image display device having high directivity and high luminance in the front direction can be obtained. The convex portion has the largest amount of energy of light incident from the nearest light source. Therefore, by optimizing the cross-sectional shape in the X-axis direction, the luminance in the front direction can be increased most efficiently.

本発明の面光源素子では、出射光制御板の最近傍の光源と凸部を結ぶ、前記出射面に垂直な凸部の断面が光源からの光線の偏向を制御するが、導光板と凸部の光学的密着部の入射位置に光線の偏向方向は依存する。従って、導光板と凸部の光学的密着部の中心を通る面での断面形状を規定することで、目的とする光線制御方向からのズレを低減し、効率良く目的とする光線方向制御が可能となる。   In the surface light source element of the present invention, the light source plate and the convex portion are controlled by the cross section of the convex portion that connects the light source closest to the outgoing light control plate and the convex portion and is perpendicular to the outgoing surface. The light deflection direction depends on the incident position of the optical contact portion. Therefore, by defining the cross-sectional shape in the plane passing through the center of the optical contact portion between the light guide plate and the convex portion, the deviation from the target light beam control direction is reduced, and the target light beam direction control can be performed efficiently. It becomes.

(1)式は、光学的に密着していない部分Wの割合bをN分割している。分割した各点に入射した光が効率よく正面方向に出射するよう各点で傾きをなせばよい。ここで割合bは、0.85〜1の範囲であることが必要である。bが0.85を下回ると、光が入射しない壁面が存在することになり、効率の低下を招く。   In the formula (1), the ratio b of the portion W that is not optically adhered is divided into N parts. What is necessary is just to make inclination in each point so that the light which injected into each divided | segmented point radiate | emits efficiently to a front direction. Here, the ratio b needs to be in the range of 0.85 to 1. If b is less than 0.85, there will be a wall surface on which light does not enter, leading to a reduction in efficiency.

図5に示すように(2)式は導光板端面1から入射した光が屈折し、端面法線方向に対する最大の角度である。また(3)式は前記光線の凸部への入射角度であり、(4)式は凸部内部での導光板出射面法線方向となす角度を表す。さらに(5)式は、導光板出射面からのなす角度を表す。また(6)式は凸部に角度π/2で入射した場合の凸部内部での屈折角度である。ただしn<nの場合は全反射が発生するため、この光線は発生しない。従って、凸部内部で出射平面となす最小の角度は(7)式で得られる。つまり図5に示すように導光板の端面から入射した光は、導光板内を全反射を繰り返し伝播してゆき、凸部が導光板と光学的に密着した部分から凸部に入射した際、凸部の光は、導光板出射面からA’以上かつB’’’以下の角度に限定される。 As shown in FIG. 5, the expression (2) is the maximum angle with respect to the normal direction of the end face when light incident from the end face 1 of the light guide plate is refracted. Moreover, (3) Formula is an incident angle to the convex part of the said light ray, (4) Formula represents the angle made with the light guide plate output surface normal direction inside a convex part. Further, equation (5) represents an angle formed from the light guide plate exit surface. Equation (6) is a refraction angle inside the convex portion when incident on the convex portion at an angle π / 2. However, in the case of n 2 <n 1 , total reflection occurs, so this light ray does not occur. Therefore, the minimum angle formed with the exit plane inside the convex portion is obtained by equation (7). That is, as shown in FIG. 5, the light incident from the end face of the light guide plate repeatedly propagates the total reflection in the light guide plate, and when the convex portion enters the convex portion from the portion that is in optical contact with the light guide plate, The light of the convex portion is limited to an angle of A ′ or more and B ′ ″ or less from the light guide plate exit surface.

(8)、(9)式は多角形で求める形状の初期値を与えている。(10)、(11)式は凸部と導光板の光学的密着部を(M+1)に等分割したときの各領域のx座標を示している。   Equations (8) and (9) give initial values of shapes to be obtained as polygons. Equations (10) and (11) indicate the x coordinate of each region when the convex contact portion and the optical contact portion of the light guide plate are equally divided into (M + 1).

図1に示す各領域から凸部の斜面(X、Y)に進行する光の傾きは、(12)式で表される。この傾きがA’以下もしくはB’’’以上であればこの光は存在しないことを(13)式は意味する。従って、(14)は斜面(X、Y)への入射光の傾きの平均を表す。 The inclination of light traveling from each region shown in FIG. 1 to the slope (X i , Y i ) of the convex portion is expressed by equation (12). If this slope is less than A ′ or greater than B ′ ″, this means that this light does not exist (13). Therefore, (14) represents the average of the inclination of the incident light on the slope (X i , Y i ).

θの傾きの光が壁面で全反射し、略正面方向に向かうには(X、Y)における傾きαが(15)式を満足していればよい。αは望ましい視野角特性に応じて適宜選択すればよい。正面方向で高い輝度を得るには、
|2α−θ−π/2|≦π/20 (16)
が望ましく、
|2α−θ−π/2|≦π/30 (17)
がより望ましい。
In order for light having an inclination of θ i to be totally reflected on the wall surface and to be directed substantially in the front direction, the inclination α i in (X i , Y i ) only needs to satisfy the expression (15). α i may be appropriately selected according to a desired viewing angle characteristic. To obtain high brightness in the front direction,
| 2α i −θ i −π / 2 | ≦ π / 20 (16)
Is desirable,
| 2α i −θ i −π / 2 | ≦ π / 30 (17)
Is more desirable.

座標(X、Y)とその点での傾きから次の座標である(Xi+1、Yi+1)は(18)式で求めることができる。
i+1=(X+Δ)×tanα+Y (18)
From the coordinates (X i , Y i ) and the inclination at that point, the next coordinates (X i + 1 , Y i + 1 ) can be obtained by equation (18).
Y i + 1 = (X i + Δ) × tan α i + Y i (18)

本形状を有する凸部の光学的に密着した部分から入射した光は効率的に略正面方向に出射し、正面方向の輝度が高い面光源素子を得ることができる。   Light incident from the optically close portion of the convex portion having this shape is efficiently emitted in the substantially front direction, and a surface light source element having high luminance in the front direction can be obtained.

請求項2に記載した発明は請求項1に記載の面光源素子であって、前記凸部のX軸方向の断面形状が、該凸部を成すN個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする面光源素子である。本面光源素子では正面方向への出光強度の分布や、出光角度の分布を滑らかにすることができる。また、より賦形しやすいため出射光制御板の作製時に有利となり望ましい。さらに、領域の接合部が鋭い形状ではないことで破損しにくい点も望ましい。該接合部の破損は光の出射方向の変化や、不必要な散乱が生じることがあり、望ましくない。   The invention according to claim 2 is the surface light source element according to claim 1, wherein the cross-sectional shape of the convex portion in the X-axis direction is at least one set out of N different regions forming the convex portion. The surface light source element is characterized in that the shape of two adjacent areas is approximated by a curve. In the main surface light source element, the distribution of light output intensity in the front direction and the distribution of light output angles can be made smooth. In addition, since it is easier to form, it is advantageous when producing the outgoing light control plate. Furthermore, it is also desirable that the bonded portion of the region is not easily broken because it is not a sharp shape. The breakage of the joint is undesirable because it may cause a change in the light emission direction and unnecessary scattering.

請求項3に記載した発明は、請求項1または2の面光源素子の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置である。該面光源素子は正面方向の輝度が高いため、この出射面側に透過型表示素子を設けることにより、好ましい画像表示装置として利用できる。ここで、画像表示装置とは、面光源素子と透過型表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。   The invention described in claim 3 is an image display device characterized in that a transmissive display element is provided on the light exit surface side of the surface light source element of claim 1 or 2. Since the surface light source element has high brightness in the front direction, it can be used as a preferred image display device by providing a transmission type display element on the exit surface side. Here, the image display device refers to a display module in which a surface light source element and a transmissive display element are combined, and a device having at least an image display function such as a television and a personal computer monitor using the display module.

以下、本発明の実施形態について図面を参照しながら詳しく説明する。
図6は本発明の実施形態に係る面光源素子の一部断面を示す概略断面図を示す。この面光源素子は、左右の端面1側に光源2が設けられた導光板3と、導光板3から出射された光の出射角度の分布を制御する出射光制御板4からなっている。出射光制御板4は導光板3上に配置され、入射面5に入射した光が出射面から出射される。出射光制御板4の入射面5には、導光板3の出射面6からの光を出射光制御板4を介して正面方向に向かわせるために、多数の凸部7が形成されている。この凸部7の頂部は導光板3の出射面6に光学的に密着している。光源2の周囲には、導光板の入射面1側と反対方向に進む光を反射し、導光板の入射面1側に進行させるリフレクタが設けられていてもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 6 is a schematic sectional view showing a partial section of the surface light source element according to the embodiment of the present invention. The surface light source element includes a light guide plate 3 provided with a light source 2 on the left and right end faces 1 side, and an outgoing light control plate 4 that controls the distribution of the outgoing angles of light emitted from the light guide plate 3. The outgoing light control plate 4 is disposed on the light guide plate 3, and light incident on the incident surface 5 is emitted from the outgoing surface. A large number of convex portions 7 are formed on the incident surface 5 of the outgoing light control plate 4 in order to direct light from the outgoing surface 6 of the light guide plate 3 in the front direction through the outgoing light control plate 4. The top of the projection 7 is in optical contact with the light exit surface 6 of the light guide plate 3. A reflector that reflects light traveling in the opposite direction to the incident surface 1 side of the light guide plate and travels to the incident surface 1 side of the light guide plate may be provided around the light source 2.

光源2から導光板の入射面1へ入射した光は導光板3内を、全反射を繰り返し伝播していく。この伝播する光が出射光制御板4の凸部7の頂部との界面から出射光制御板4に取り込まれる。これにより、導光板3内および固定層9内を伝播する光は界面から順次、出射光制御板4に取り出され、取り出された光は出射光制御板4の凸部7内で全反射されて出射される。   Light incident on the incident surface 1 of the light guide plate from the light source 2 propagates through the light guide plate 3 repeatedly with total reflection. The propagating light is taken into the outgoing light control plate 4 from the interface with the top of the convex portion 7 of the outgoing light control plate 4. Thereby, the light propagating in the light guide plate 3 and the fixed layer 9 is sequentially extracted from the interface to the outgoing light control plate 4, and the extracted light is totally reflected in the convex portion 7 of the outgoing light control plate 4. Emitted.

本発明の面光源素子に用いる導光板としては、ポリメチルメタクリレート(PMMA)などのアクリル樹脂、ポリカーボネート樹脂(PC)、ポリスチレン樹脂(PS)、シクロオレフィンポリマー等の透明性に優れた樹脂またはガラスを所定の形状に加工したものを用いることができる。なかでもPMMAを用いるのが軽量性、透明性の点で好ましい。加工方法としては、押出し板若しくはキャスト板から切り出す方法または加熱プレス、射出成形等の溶融成形法などが好適に用いられるがこれに限定されるものではない。   As the light guide plate used in the surface light source element of the present invention, an acrylic resin such as polymethyl methacrylate (PMMA), a polycarbonate resin (PC), a polystyrene resin (PS), a resin having excellent transparency such as a cycloolefin polymer, or glass is used. What was processed into the predetermined shape can be used. Of these, it is preferable to use PMMA in terms of lightness and transparency. As a processing method, a method of cutting out from an extruded plate or a cast plate or a melt molding method such as a hot press or injection molding is preferably used, but is not limited thereto.

また、導光板と出射光制御板を光学的に密着させるには、導光板と出射光制御板の間に固定層を設けてもよい。固定層としては、接着剤、粘着剤、粘接着剤、光硬化性樹脂などが挙げられるが、取り扱い性や生産性の面から光硬化性の粘接着剤が好適に用いられる。粘着剤には、例えばゴム系やアクリル系、ビニルアルキルエーテル系やシリコーン系、ポリエステル系やポリウレタン系、ポリエーテル系やポリアミド系、スチレン系などの適宜なポリマーをベースポリマーとするものが挙げられる。中でも、アクリル酸ないしメタクリル酸のアルキルエステルを主体とするポリマーをベースポリマーとするアクリル系粘着剤が透明性や耐候性、耐熱性の点で優れるため、好適に用いられる。また、接着剤はそれに例えばシリカやアルミナ、チタニアやジルコニア、酸化錫や酸化インジウム、酸化カドミウムや酸化ノンモン等の導電性のある無機系粒子や、架橋または未架橋ポリマー等の有機系粒子などの適宜な透明粒子を1種または2種以上含有させて光拡散型のものとすることもできる。   In order to optically adhere the light guide plate and the outgoing light control plate, a fixed layer may be provided between the light guide plate and the outgoing light control plate. Examples of the fixing layer include an adhesive, a pressure-sensitive adhesive, an adhesive, a photocurable resin, and the like. A photocurable adhesive is preferably used from the viewpoints of handleability and productivity. Examples of the pressure-sensitive adhesive include those based on an appropriate polymer such as rubber, acrylic, vinyl alkyl ether, silicone, polyester, polyurethane, polyether, polyamide, and styrene. Among these, acrylic pressure-sensitive adhesives based on polymers mainly composed of alkyl esters of acrylic acid or methacrylic acid are preferred because they are excellent in transparency, weather resistance and heat resistance. In addition, the adhesive may be appropriately selected from conductive inorganic particles such as silica, alumina, titania and zirconia, tin oxide and indium oxide, cadmium oxide and nonmony oxide, and organic particles such as a crosslinked or uncrosslinked polymer. One kind or two or more kinds of transparent particles may be contained to obtain a light diffusion type.

固定相を設ける場合は、凸部の先端が埋まる場合がある。この場合には図4に示すように、固定層の表面を導光体の出射面6とし、固定相に埋まった幅を2aとすればよい。また固定相の屈折率をnとした場合には、
≦n≦n (19)
であることが好ましい。屈折率が(19)式を満たすことで導光板内を伝播する光を効率よく凸部に取り込むことができ、高輝度化が容易になる。
When the stationary phase is provided, the tip of the convex portion may be buried. In this case, as shown in FIG. 4, the surface of the fixed layer may be the light exit surface 6 of the light guide, and the width embedded in the stationary phase may be 2a. Further, when the refractive index of the stationary phase was n 3 is
n 1 ≦ n 3 ≦ n 2 (19)
It is preferable that When the refractive index satisfies the equation (19), light propagating in the light guide plate can be efficiently taken into the convex portion, and high brightness can be easily achieved.

さらに、導光板の表面改質や、出射光制御板の凸部を形成する材料に自己粘着性を持たせることで、導光板と出射光制御板を、固定相を介さずに光学的に密着させてもよい。この場合は凸部先端に2aの平坦部を設けることが好適である。この平坦部が密着することで、光学的密着部の幅を高い精度で得ることができる。   Furthermore, the surface modification of the light guide plate and the self-adhesiveness of the material that forms the convex part of the outgoing light control plate allow the light guide plate and the outgoing light control plate to be optically adhered without a stationary phase. You may let them. In this case, it is preferable to provide a flat portion 2a at the tip of the convex portion. When the flat portion is in close contact, the width of the optical close contact portion can be obtained with high accuracy.

また、出射光制御板の表面形状は、スタンパまたは雌金型などを用いて、熱プレス法、紫外線硬化による2P法、熱硬化によるキャスト法、射出成形法等によって透明な基材上に形成することができる。該透明な基材としては、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィンポリマー等の樹脂またはガラスが用いられる。本発明においては、アクリル樹脂を用いた透明な基材上に光硬化性樹脂で形状を転写することが好適に用いられる。   Further, the surface shape of the outgoing light control plate is formed on a transparent substrate by using a stamper or a female die or the like by a hot press method, a 2P method by ultraviolet curing, a casting method by thermal curing, an injection molding method, or the like. be able to. As the transparent substrate, resin such as acrylic resin, polycarbonate resin, polystyrene resin, cycloolefin polymer, or glass is used. In the present invention, it is preferable to transfer the shape with a photocurable resin onto a transparent substrate using an acrylic resin.

基材に転写する際に用いる光硬化性樹脂は、作製した出射光制御板の光学性能を決定するものであり、所望の性能に応じて適宜選択するのが好ましい。光硬化性樹脂の成分としては、ラジカル重合が可能なモノマー或いはオリゴマーを単独で或いは2種以上組み合わせて用いるが、通常2種以上を用いるのが好ましく、出射光制御板に要求される機械的強度、耐衝撃性、耐熱性、表面硬度などを付与することができる。成分の具体例としては、脂肪族、脂環族、芳香族系のモノ又はポリアルコールとアクリル酸又はメタクリル酸との縮合反応で得られるエステル型(メタ)アクリレートや、分子内に2個以上のイソシアネート基を有するイソシアネート化合物とヒドロキシル基またはチオール基を含有する(メタ)アクリレートとのウレタン化反応で得られるウレタンポリ(メタ)アクリレートや分子内に少なくとも2個のエポキシ基を有する化合物とアクリル酸又はメタクリル酸とのグリシジル基開環反応で得られるエポキシポリ(メタ)アクリレートや、飽和又は不飽和多価カルボン酸、多価アルコール及び(メタ)アクリル酸との縮合反応で得られるポリエステル(メタ)アクリレート等の(メタ)アクリロイル官能性モノマー若しくはオリゴマーや、スチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、ジビニルベンゼン等のビニル化合物や、ジエチレングリコールビスアリルカーボネート、ジアリルフタレート、ジアリルビフェニレート等の(メタ)アリル化合物が挙げられる。これらの単量体は1種を単独で用いてもよいし、2種以上を混合してもよい。   The photocurable resin used when transferring to the substrate determines the optical performance of the produced outgoing light control plate, and is preferably selected as appropriate according to the desired performance. As a component of the photo-curable resin, a monomer or oligomer capable of radical polymerization is used alone or in combination of two or more, but usually two or more are preferably used, and the mechanical strength required for the outgoing light control plate is used. , Impact resistance, heat resistance, surface hardness and the like can be imparted. Specific examples of the component include an ester type (meth) acrylate obtained by a condensation reaction of an aliphatic, alicyclic, or aromatic mono- or polyalcohol with acrylic acid or methacrylic acid, or two or more in the molecule. Urethane poly (meth) acrylate obtained by urethanization reaction of isocyanate compound having isocyanate group and (meth) acrylate containing hydroxyl group or thiol group and compound having at least two epoxy groups in the molecule and acrylic acid or Epoxy poly (meth) acrylate obtained by glycidyl group ring-opening reaction with methacrylic acid, polyester (meth) acrylate obtained by condensation reaction with saturated or unsaturated polyvalent carboxylic acid, polyhydric alcohol and (meth) acrylic acid (Meth) acryloyl functional monomers or oligomers such as Ren, chlorostyrene, bromostyrene, dibromostyrene, and vinyl compounds such as divinylbenzene, diethylene glycol bis allyl carbonate, diallyl phthalate, (meth) allyl compounds such as diallyl biphenylene rate and the like. These monomers may be used individually by 1 type, and may mix 2 or more types.

出射光制御板の作製に用いるスタンパは、例えばガラス基板上にネガ型あるいはポジ型の感光性樹脂をコーティングし、この感光性樹脂を、フォトマスクを介して露光するかまたはレーザー描画装置により露光し、現像後、電鋳を行うことにより作製することができるし、切削によって作製することもできる。   For example, a stamper used for manufacturing the emission light control plate is coated with a negative or positive photosensitive resin on a glass substrate, and the photosensitive resin is exposed through a photomask or exposed by a laser drawing apparatus. It can be produced by electroforming after development, or it can be produced by cutting.

出射光制御板の好適な厚さは0.05mm〜3mmで、特に、0.1mm〜0.5mmのフィルム状であることで装置の薄型化、軽量化密着性低下につながる応力の低減などの効果が得られ好ましい。0.05mmを下回ると導光板との固定時の皺や物理的強度の低下から好ましくない。一方、3mmを超えると装置が重量化するため好ましくない。   The suitable thickness of the outgoing light control plate is 0.05 mm to 3 mm, and particularly the film shape of 0.1 mm to 0.5 mm reduces the thickness of the device, reduces the weight, and reduces the stress that leads to reduced adhesion. An effect is acquired and it is preferable. If it is less than 0.05 mm, it is not preferable because of wrinkles at the time of fixing to the light guide plate and a decrease in physical strength. On the other hand, if it exceeds 3 mm, the apparatus becomes undesirably heavy.

また、本発明における出射光制御板が備えた凸部は、1次元的配置のレンチキュラーレンズのようなパターンのほかに、図2もしくは図3に示す2次元的配置のレンズアレイタイプでもよい。光源に線状である蛍光管を用いた場合には、レンチキュラーレンズタイプ、レンズアレイタイプを用いることができる。またLEDで代表される点状光源を用いた場合には、レンズアレイタイプであることが好ましい。レンズアレイである場合には、最近傍以外の光源から凸部に入射する光も正面方向に出射できるよう、単位レンズ中心に対して回転対称であることが好適である。   Further, the convex portion provided in the outgoing light control plate in the present invention may be a two-dimensionally arranged lens array type shown in FIG. 2 or 3 in addition to a pattern such as a one-dimensionally arranged lenticular lens. When a linear fluorescent tube is used as the light source, a lenticular lens type or a lens array type can be used. When a point light source typified by an LED is used, it is preferably a lens array type. In the case of a lens array, it is preferable that the lens array is rotationally symmetric with respect to the center of the unit lens so that light incident on the convex portion from a light source other than the nearest can be emitted in the front direction.

出射光制御板の光出射面には微細な表面凹凸を直接転写してもよいし、光透過性微粒子を混合させた拡散剤液を塗工することによって拡散層を設けても良い。拡散層により視野角特性がなだらかになり、良好な品位を得ることができる。   Fine surface irregularities may be directly transferred to the light emission surface of the emission light control plate, or a diffusion layer may be provided by applying a diffusing agent liquid mixed with light-transmitting fine particles. A viewing angle characteristic becomes gentle by the diffusion layer, and good quality can be obtained.

単位凸部の大きさである2(a+w)は、10μm以上、300μm以下であることが望ましい。さらに望ましくは、15μm以上、200μm以下である。10μmより小さいと回折現象により着色が発生し、画面の品位を低下させる。また300μmより大きいと凸部自身が視認されるため、画面の品位を低下させる。   2 (a + w), which is the size of the unit convex portion, is preferably 10 μm or more and 300 μm or less. More desirably, it is 15 μm or more and 200 μm or less. If it is smaller than 10 μm, coloring occurs due to diffraction phenomenon, and the quality of the screen is lowered. On the other hand, if it is larger than 300 μm, the projection itself is visually recognized, so that the quality of the screen is lowered.

Nは5〜10の範囲であることが望ましい。これより小さくなると十分な性能を得ることができない。またこれ以上では、凸部形状の作製の困難さが増大する。   N is preferably in the range of 5-10. If it becomes smaller than this, sufficient performance cannot be obtained. Further, the difficulty in producing the convex shape increases.

曲線への近似法としては特に制限はなく、通常よく知られている最小二乗法、スプライン補間法、ラグランジュ補間法などを用いることができる。近似に用いる点は、近似する領域から少なくとも1点を選ぶ。通常近似する領域の数より多くとる。例えば、連続する複数の領域の両端と各領域の接点を選ぶことができる。また加えて、各領域の中点を近似に用いることもできる。   The approximation method to the curve is not particularly limited, and a generally well-known least square method, spline interpolation method, Lagrange interpolation method, or the like can be used. As the points used for approximation, at least one point is selected from the approximated region. Usually more than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. In addition, the midpoint of each region can be used for approximation.

また本発明に用いる光源としては、冷陰極管、熱陰極間などの線状光源、LEDなどの点状光源が挙げられる。線状光源の場合には、導光板の片方の端面または対向する両端面に1本または複数本配置してもよい。線状光源の本数が多くなると、導光板への入射光量が増加し、高輝度化を図ることができる。また点状光源の場合には、1個または複数個用いてもよい。この場合、点状光源を配置する導光板側面の中心に対して点状光源を対称に配置することが好ましい。この配置により面内の分布を対象にすることができ外観品位を向上することができる。一方、複数個用いる場合、点状光源の間隔は均等になるよう配置することが望ましい。これにより点状光源の近傍と点状光源間のムラを最小に抑えることができる。   Examples of the light source used in the present invention include a cold cathode tube, a linear light source such as between hot cathodes, and a point light source such as an LED. In the case of a linear light source, one or a plurality of light sources may be arranged on one end face of the light guide plate or on opposite end faces. When the number of linear light sources increases, the amount of light incident on the light guide plate increases, and high brightness can be achieved. In the case of a point light source, one or more may be used. In this case, it is preferable to arrange the point light sources symmetrically with respect to the center of the side surface of the light guide plate where the point light sources are arranged. With this arrangement, the in-plane distribution can be targeted and the appearance quality can be improved. On the other hand, when using two or more, it is desirable to arrange | position so that the space | interval of a point light source may become equal. As a result, unevenness between the vicinity of the point light source and the point light source can be minimized.

以下、実施例によって、より具体的に本発明の効果を説明する。各実施例、並びに比較例では、図6に示すような構成の面光源素子の正面輝度を測定し、効果を確認した。何れの場合も、導光板短辺側面に光源として白色LED3個を配置し、面光源素子を得た。LEDの発光中心間距離は10mmとし、中央の1個は導光板側面の中央に配置した。面光源素子の中央部を発光面に対して垂直に500mmの距離から輝度計(トプコンテクノハウス社製BM−7Fast)により測定した。   Hereinafter, the effects of the present invention will be described more specifically by way of examples. In each example and comparative example, the front luminance of the surface light source element configured as shown in FIG. 6 was measured to confirm the effect. In any case, three white LEDs were disposed as light sources on the short side surface of the light guide plate to obtain a surface light source element. The distance between the light emission centers of the LEDs was 10 mm, and one at the center was arranged at the center of the side surface of the light guide plate. The central part of the surface light source element was measured with a luminance meter (BM-7Fast, manufactured by Topcon Technohouse) from a distance of 500 mm perpendicular to the light emitting surface.

(実施例1)
実施例1では、導光板3として、寸法が30mm×40mmで厚み1mmの平板状PMMAを用い、出射面およびその対向する面は平坦面とした。出射光制御板4としては、基材として厚み0.1mmのPMMAフィルムを用い、スタンパに光硬化性樹脂を塗布したものを紫外線硬化することで基材に転写して作製した。導光板の屈折率は1.49であり、硬化後の光硬化性樹脂の屈折率は1.54であった。該出射光制御板を導光板の出射面に貼り合わせた。
(Example 1)
In Example 1, as the light guide plate 3, a flat PMMA having a size of 30 mm × 40 mm and a thickness of 1 mm was used, and the emission surface and the opposing surface were flat surfaces. The emission light control plate 4 was prepared by using a PMMA film having a thickness of 0.1 mm as a base material and transferring the photo-curing resin applied to the stamper to the base material by UV curing. The refractive index of the light guide plate was 1.49, and the refractive index of the photocurable resin after curing was 1.54. The outgoing light control plate was bonded to the outgoing surface of the light guide plate.

(実施例2)
実施例2では、導光板3として、寸法が30mm×40mmで厚み1mmの平板状PMMAを用い、出射面およびその対向する面は平坦面とした。出射光制御板4としては、基材として厚み0.1mmのPMMAフィルムを用い、スタンパに光硬化性樹脂を塗布したものを紫外線硬化することで基材に転写して作製した。導光板の屈折率は1.49であり、硬化後の光硬化性樹脂の屈折率は1.54であった。該出射光制御板を導光板の出射面に貼り合わせた。
(Example 2)
In Example 2, as the light guide plate 3, a flat PMMA having a size of 30 mm × 40 mm and a thickness of 1 mm was used, and the emission surface and the opposite surface were flat surfaces. The emission light control plate 4 was prepared by using a PMMA film having a thickness of 0.1 mm as a base material and transferring the photo-curing resin applied to the stamper to the base material by UV curing. The refractive index of the light guide plate was 1.49, and the refractive index of the photocurable resin after curing was 1.54. The outgoing light control plate was bonded to the outgoing surface of the light guide plate.

(実施例3)
実施例3では、導光板3として、寸法が30mm×40mmで厚み1mmの平板状PCを用い、出射面およびその対向する面は平坦面とした。出射光制御板4としては、基材として厚み0.1mmのPCフィルムを用い、スタンパに光硬化性樹脂を塗布したものを紫外線硬化することで基材に転写して作製した。導光板の屈折率は1.59であり、硬化後の光硬化性樹脂の屈折率は1.59であった。該出射光制御板を導光板の出射面に貼り合わせた。
(Example 3)
In Example 3, a flat plate PC having a size of 30 mm × 40 mm and a thickness of 1 mm was used as the light guide plate 3, and the emission surface and the opposing surface were flat surfaces. The emission light control plate 4 was prepared by using a PC film having a thickness of 0.1 mm as a base material and transferring a photocurable resin applied to a stamper to the base material by ultraviolet curing. The refractive index of the light guide plate was 1.59, and the refractive index of the photocurable resin after curing was 1.59. The outgoing light control plate was bonded to the outgoing surface of the light guide plate.

(比較例1)
比較例1では、寸法が30mm×40mmで厚み1mmの平板状PCを用い、出射面およびその対向する面は平坦面とした。出射光制御板4としては、基材として厚み0.1mmのPCフィルムを用い、スタンパに光硬化性樹脂を塗布したものを紫外線硬化することで基材に転写して作製した。導光板の屈折率は1.59であり、硬化後の光硬化性樹脂の屈折率は1.59であった。該出射光制御板を導光板の出射面に貼り合わせた。
表1に上記実施例ならびに比較例の正面輝度の評価結果を示す。
(Comparative Example 1)
In Comparative Example 1, a flat-plate PC having a size of 30 mm × 40 mm and a thickness of 1 mm was used, and the emission surface and the opposing surface were flat surfaces. The emission light control plate 4 was prepared by using a PC film having a thickness of 0.1 mm as a base material and transferring a photocurable resin applied to a stamper to the base material by ultraviolet curing. The refractive index of the light guide plate was 1.59, and the refractive index of the photocurable resin after curing was 1.59. The outgoing light control plate was bonded to the outgoing surface of the light guide plate.
Table 1 shows the evaluation results of the front luminance of the above examples and comparative examples.

Figure 2008153106
Figure 2008153106

図7は、実施例1における凸部断面形状の(X、Y)座標を示している。なお、XおよびYの単位はmmである。 FIG. 7 shows the (X i , Y i ) coordinates of the convex section shape in Example 1. The unit of X i and Y i is mm.

実施例2および3の凸部断面形状は下記多項式で近似したものである。

Figure 2008153106
XおよびYの単位はmmである。実施例2および3の(20)式における各パラメータをそれぞれ図8、図9に示す。 The convex section sectional shapes of Examples 2 and 3 are approximated by the following polynomial.
Figure 2008153106
The unit of X and Y is mm. The respective parameters in the expression (20) of Examples 2 and 3 are shown in FIGS. 8 and 9, respectively.

本発明の原理を示す概略断面図である。It is a schematic sectional drawing which shows the principle of this invention. 本発明に用いることのできる凸部形状の略図である。It is the schematic of the convex part shape which can be used for this invention. 本発明に用いることのできる回転対称な凸部形状の略図である。1 is a schematic diagram of a rotationally symmetrical convex shape that can be used in the present invention. 凸部と導光板の間に固定相を用いた場合の概略断面図である。It is a schematic sectional drawing at the time of using a stationary phase between a convex part and a light-guide plate. 本発明の説明に用いる記号の説明図である。It is explanatory drawing of the symbol used for description of this invention. 本発明の面光源素子の一部断面を示す概略断面図である。It is a schematic sectional drawing which shows the partial cross section of the surface light source element of this invention. 実施例1に係る凸部断面形状の(X、Y)座標を示す表である。3 is a table showing (X i , Y i ) coordinates of a convex section sectional shape according to Example 1. 凸部断面形状を示す(20)式における実施例2に係るパラメータを示す表である。It is a table | surface which shows the parameter which concerns on Example 2 in (20) Formula which shows a convex part cross-sectional shape. 凸部断面形状を示す(20)式における実施例3に係るパラメータを示す表である。It is a table | surface which shows the parameter which concerns on Example 3 in (20) Formula which shows a convex part cross-sectional shape.

符号の説明Explanation of symbols

1・・・端面、2・・・光源、3・・・導光板、4・・・出射光制御板、5・・・入射面
6・・・出射面、7・・・凸部、9・・・固定層、10・・・リフレクタ
DESCRIPTION OF SYMBOLS 1 ... End surface, 2 ... Light source, 3 ... Light guide plate, 4 ... Output light control board, 5 ... Incident surface 6 ... Output surface, 7 ... Convex part, 9 * ..Fixed layer, 10 ... reflector

Claims (3)

光源と、前記光源からの光を受光する少なくとも1つの端面である入射面と該入射面と略垂直を成す主面の一つである出射面とを有する導光板と、前記導光板の出射面からの光を入射面上の凸部で受光して出射面から正面方向へ出射する出射光制御板とを備える面光源素子であって、凸部が導光板と光学的に密着してなり、任意の前記凸部と、該凸部の最近傍にある前記光源との最短経路を含む前記出射面に垂直な平面と該出射面の交線をX軸、凸部の光学的密着部の中心を通り出射面と直交する軸をY軸とし、X軸方向の光学的に密着していない部分の断面形状が、下記の(1)式〜(14)式で表されるN個の傾きの異なる領域が下記(15)式を満足するものであることを特徴とする面光源素子。
Figure 2008153106
A light guide plate having a light source, an incident surface that is at least one end surface that receives light from the light source, and an output surface that is one of main surfaces substantially perpendicular to the incident surface, and an output surface of the light guide plate A surface light source element including an outgoing light control plate that receives the light from the convex portion on the incident surface and emits the light from the outgoing surface in the front direction, and the convex portion is in optical contact with the light guide plate, The plane perpendicular to the exit surface including the shortest path between the arbitrary projection and the light source nearest to the projection and the line of intersection of the exit surface is the X axis, and the center of the optical contact portion of the projection The cross-sectional shape of the portion that is not optically in close contact in the X-axis direction has N slopes expressed by the following formulas (1) to (14), where the axis that passes through and is orthogonal to the exit surface is the Y-axis A surface light source element characterized in that different regions satisfy the following expression (15).
Figure 2008153106
前記凸部のX軸方向の断面形状が、該凸部を成すN個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする請求項1に記載の面光源素子。   The cross-sectional shape of the convex portion in the X-axis direction is a shape obtained by approximating the shape of at least one pair of two adjacent regions by a curve among N different regions forming the convex portion. The surface light source element according to claim 1. 請求項1または2の面光源素子の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置。   An image display device comprising a transmissive display element provided on the light exit surface side of the surface light source element according to claim 1.
JP2006341021A 2006-12-19 2006-12-19 Surface light source element and image display device using the same Expired - Fee Related JP4704326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341021A JP4704326B2 (en) 2006-12-19 2006-12-19 Surface light source element and image display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341021A JP4704326B2 (en) 2006-12-19 2006-12-19 Surface light source element and image display device using the same

Publications (2)

Publication Number Publication Date
JP2008153106A true JP2008153106A (en) 2008-07-03
JP4704326B2 JP4704326B2 (en) 2011-06-15

Family

ID=39655067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341021A Expired - Fee Related JP4704326B2 (en) 2006-12-19 2006-12-19 Surface light source element and image display device using the same

Country Status (1)

Country Link
JP (1) JP4704326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135219A (en) * 2008-12-05 2010-06-17 Kuraray Co Ltd Plane light source element and image display device using this
JP2010135220A (en) * 2008-12-05 2010-06-17 Kuraray Co Ltd Surafce light source element and image display device using the same
JP2011150924A (en) * 2010-01-22 2011-08-04 Kuraray Co Ltd Plane light source element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255529A (en) * 1997-03-13 1998-09-25 Toray Ind Inc Directive planar light source
JP2001312914A (en) * 2000-04-28 2001-11-09 Kuraray Co Ltd Surface light source element and display device using the same
JP2002042528A (en) * 2000-04-27 2002-02-08 Kuraray Co Ltd Surface light-source element and display device using it
WO2003040784A1 (en) * 2001-11-07 2003-05-15 International Business Machines Corporation Prism sheet, back light unit using the prism sheet, and transmissive liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255529A (en) * 1997-03-13 1998-09-25 Toray Ind Inc Directive planar light source
JP2002042528A (en) * 2000-04-27 2002-02-08 Kuraray Co Ltd Surface light-source element and display device using it
JP2001312914A (en) * 2000-04-28 2001-11-09 Kuraray Co Ltd Surface light source element and display device using the same
WO2003040784A1 (en) * 2001-11-07 2003-05-15 International Business Machines Corporation Prism sheet, back light unit using the prism sheet, and transmissive liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135219A (en) * 2008-12-05 2010-06-17 Kuraray Co Ltd Plane light source element and image display device using this
JP2010135220A (en) * 2008-12-05 2010-06-17 Kuraray Co Ltd Surafce light source element and image display device using the same
JP2011150924A (en) * 2010-01-22 2011-08-04 Kuraray Co Ltd Plane light source element

Also Published As

Publication number Publication date
JP4704326B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP2012164583A (en) Light guide plate, surface light source device, and transmission type display device
JP2009539146A (en) Flexible optical waveguide
WO2011043466A1 (en) Image display device
KR100253635B1 (en) Light guiding body, method of manufacturing thereof, and plane-light source
KR980010515A (en) Backlight system, prism lens sheet and liquid crystal display device
JP4423933B2 (en) Optical sheet and backlight unit and display using the same
JPWO2008047855A1 (en) Surface light source element and manufacturing method thereof
JP5003298B2 (en) Optical sheet, backlight unit using the same, and display device
JP2008218418A (en) Surface light source and light guide used for same
TW201314314A (en) Light guide plate, surface light source device, and transmissive image display device
JP4704326B2 (en) Surface light source element and image display device using the same
JP6782831B2 (en) Light guide film and backlight unit
JP5301257B2 (en) Surface light source element and image display device using the same
JP5012221B2 (en) Backlight unit and display device
JP4815930B2 (en) Light transmissive film, backlight device, and liquid crystal display device
JP2010135220A (en) Surafce light source element and image display device using the same
KR102002546B1 (en) Back light unit for picture generate unit
JP5985396B2 (en) Surface light source element and lighting device including the same
JP2008304700A (en) Optical sheet, illumination device and display device
JP5442313B2 (en) Surface light source element and image display device using the same
JP2009037929A (en) Surface light source element and image display device using it
JP4220327B2 (en) Surface light source element and display device using the same
JP2006173046A (en) Surface light source element and three dimensional display using it
KR101069934B1 (en) Diffuser sheet with multi-function
JPH117261A (en) Both-side surface light source element and both-side display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

LAPS Cancellation because of no payment of annual fees