JP2008153047A - Photoelectric conversion element, solar cell, and optical sensor - Google Patents

Photoelectric conversion element, solar cell, and optical sensor Download PDF

Info

Publication number
JP2008153047A
JP2008153047A JP2006339643A JP2006339643A JP2008153047A JP 2008153047 A JP2008153047 A JP 2008153047A JP 2006339643 A JP2006339643 A JP 2006339643A JP 2006339643 A JP2006339643 A JP 2006339643A JP 2008153047 A JP2008153047 A JP 2008153047A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
pyrene
optical sensor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339643A
Other languages
Japanese (ja)
Inventor
友子 ▲崎▼村
Tomoko Sakimura
Toyoko Shibata
豊子 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2006339643A priority Critical patent/JP2008153047A/en
Publication of JP2008153047A publication Critical patent/JP2008153047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element excellent in photoelectric conversion efficiency or the like and showing stable performance, as well as a solar cell and an optical sensor. <P>SOLUTION: The photoelectric conversion element contains a pyrene system compound with high photoelectric conversion efficiency as a photoelectric conversion material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、ピレン系化合物を光電変換材料として用いた光電変換素子、太陽電池及び光センサーに関するものである。   The present invention relates to a photoelectric conversion element, a solar cell, and an optical sensor using a pyrene compound as a photoelectric conversion material.

光電変換材料の他の応用例として、太陽電池や光センザーの分野では、従来のシリコン半導体を用いたものから、よりコストの安い有機化合物を用いた光電変換材料の技術開発が盛んである。   As other application examples of photoelectric conversion materials, in the field of solar cells and photosensors, technological development of photoelectric conversion materials using organic compounds at lower costs than those using conventional silicon semiconductors has been active.

この為、光電変換材料として、350nm〜600nmの短波長光に対し、高感度を有する顔料や色素の開発が望まれている。   For this reason, the development of pigments and dyes having high sensitivity to short wavelength light of 350 nm to 600 nm is desired as photoelectric conversion materials.

従来、光センサーに適用される顔料としては、アゾ顔料等が知られているが(特許文献1)、これらの顔料を太陽電池や光センサーの光電変換材料として用いても、十分な特性が得られていない。   Conventionally, azo pigments and the like are known as pigments applied to optical sensors (Patent Document 1), but sufficient characteristics can be obtained even when these pigments are used as photoelectric conversion materials for solar cells or optical sensors. It is not done.

又、有機化合物を用いた太陽電池や光センサーとしては、p型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体とn型無機半導体、あるいはp型有機半導体と電子受容性有機化合物を接合させるヘテロ接合型光電変換素子等がある。これらに用いられる有機化合物の光電変換材料としては、クロロフィル、ペリレン、ジスアゾなどの合成色素や顔料、ポリアセチレン等の導電性高分子材料、またはそれらの複合材料等であり、これらを真空蒸着法、キャスト法、またはディッピング法などにより、薄膜化したもので、光電変換素子が形成されている。しかし、これらの光電変換素子を用いた太陽電池では、変換効率は低く、また耐久性も悪いという問題があった。   Moreover, as a solar cell or an optical sensor using an organic compound, a Schottky photoelectric conversion element that joins a p-type organic semiconductor and a metal having a small work function, a p-type organic semiconductor and an n-type inorganic semiconductor, or a p-type organic semiconductor. And a heterojunction photoelectric conversion element that joins an electron-accepting organic compound. The organic compound photoelectric conversion materials used for these include synthetic dyes and pigments such as chlorophyll, perylene and disazo, conductive polymer materials such as polyacetylene, or composite materials thereof, and these can be vacuum deposited or cast. A photoelectric conversion element is formed by thinning the film by a method or a dipping method. However, solar cells using these photoelectric conversion elements have a problem that conversion efficiency is low and durability is poor.

又、ルテニウム錯体系色素を多孔質酸化チタン電極に吸着させることで、現在、シリコン太陽電池並みの性能を有するまでになっている(例えば、非特許文献1)。   Further, by adsorbing a ruthenium complex-based dye on a porous titanium oxide electrode, it has now reached the same level of performance as a silicon solar cell (for example, Non-Patent Document 1).

しかしながら、前記ルテニウム錯体系色素は比較的優れた特性を有することがわかっているが、色素が高価であること、および錯体の中心金属であるルテニウムが稀少元素であり将来にわたる安定的な供給に懸念がもたれることから、より安価で安定的に供給可能な有機色素がより好ましい。   However, although the ruthenium complex dyes are known to have relatively excellent characteristics, the dyes are expensive, and there is concern about ruthenium, which is the central metal of the complex, as a rare element and stable supply in the future. Therefore, organic dyes that are cheaper and can be stably supplied are more preferable.

このルテニウム錯体系色素を代替えするものとして、これまでにも多くの有機色素が検討されており、例えば、ルテニウム錯体色素の他、メロシアニン色素、キサンテン系色素、クマリン系色素、アクリジン系色素、フェニルメタン系色素等が検討されているが、これら色素を用いた場合の光電変換効率は未だ充分なものではなく、さらに変換効率の高い光電変換素子を構成できる有機色素が待望されていた。   Many organic dyes have been studied as alternatives to this ruthenium complex dye. For example, in addition to ruthenium complex dyes, merocyanine dyes, xanthene dyes, coumarin dyes, acridine dyes, phenylmethane However, the photoelectric conversion efficiency when these dyes are used is not yet sufficient, and there has been a demand for an organic dye that can constitute a photoelectric conversion element with higher conversion efficiency.

又、色素増感型太陽電池は上記の如くナノサイズの多孔質酸化物半導体の表面に色素を吸着させる必要があるため、多くは溶媒可溶の有機染料が用いられるが、有機染料は一般に耐久性に問題を有しており、屋外で使用する太陽電池では、初期に得られた高い光電変換効率の劣化が大きい。即ち、色素増感型太陽電池は、高い光電変換効率に加え、高耐久性を備えることが望まれている。
特開平10−125976号公報 J.Am.Chem.Soc.115(1993)6382
In addition, since dye-sensitized solar cells need to adsorb a dye to the surface of a nano-sized porous oxide semiconductor as described above, many solvent-soluble organic dyes are used, but organic dyes are generally durable. The solar cell used outdoors has a large deterioration in the high photoelectric conversion efficiency obtained in the initial stage. That is, the dye-sensitized solar cell is desired to have high durability in addition to high photoelectric conversion efficiency.
Japanese Patent Laid-Open No. 10-125976 J. et al. Am. Chem. Soc. 115 (1993) 6382

本発明は、上記問題点を解決するためになされた。本発明の目的は、光電変換効率が高く、太陽電池或いは光センサーとして有用な新規な光電変換材料を用いた光電変換素子、及び該光電変換素子を用いた太陽電池や光センサーを提供することである。   The present invention has been made to solve the above problems. An object of the present invention is to provide a photoelectric conversion element using a novel photoelectric conversion material having high photoelectric conversion efficiency and useful as a solar cell or an optical sensor, and a solar cell and an optical sensor using the photoelectric conversion element. is there.

本願発明者等は、光電変換効率が高く、耐久性を改善できる新規化合物の探索を行なった結果、波長が350〜600nm近辺に高い光電変換効率を示す新規な光電変換材料を見いだし、本願発明を完成した。   As a result of searching for a new compound having high photoelectric conversion efficiency and improved durability, the present inventors have found a novel photoelectric conversion material having a high photoelectric conversion efficiency in the vicinity of a wavelength of 350 to 600 nm. completed.

即ち、本発明は以下のような化学構造のピレン系化合物を光電変換材料として用いた光電変換素子、該光電変換素子を用いた太陽電池、光センサーを形成することにより達成される。
1.下記一般式(1)〜(3)で表される少なくとも1つを含有するピレン系化合物を光電変換材料として含有することを特徴とする光電変換素子。
That is, the present invention is achieved by forming a photoelectric conversion element using a pyrene compound having the following chemical structure as a photoelectric conversion material, a solar cell using the photoelectric conversion element, and an optical sensor.
1. A photoelectric conversion element comprising a pyrene compound containing at least one of the following general formulas (1) to (3) as a photoelectric conversion material.

Figure 2008153047
Figure 2008153047

(一般式(1)〜(3)中、Xは2価の芳香族基又は2価の複素環基を表し、Rは1価の芳香族基或いは複素環基を表す。)
2.前記ピレン系化合物の熱重量分析において、下記式で定義される400℃から450℃の質量減少率D400/450が、1.0%以下であることを特徴とする前記1に記載の光電変換素子。
(In the general formulas (1) to (3), X represents a divalent aromatic group or a divalent heterocyclic group, and R represents a monovalent aromatic group or a heterocyclic group.)
2. 2. The photoelectric conversion element as described in 1 above, wherein, in the thermogravimetric analysis of the pyrene compound, a mass reduction rate D400 / 450 from 400 ° C. to 450 ° C. defined by the following formula is 1.0% or less. .

D400/450={(G400−G450)/Gi}×100
但し、Giは測定開始時の質量であり、G400、G450は400℃、450℃での質量である。
3.前記ピレン系化合物が多段昇華精製により得られることを特徴とする前記2に記載の光電変換素子。
4.前記ピレン系化合物がトレイン昇華精製により得られることを特徴とする前記2に記載の光電変換素子。
5.前記ピレン系化合物が高沸点溶媒中で加熱処理して得られることを特徴とする前記2に記載の光電変換素子。
6.前記ピレン系化合物がアシッドペースト処理処理により得られることを特徴とする前記2に記載の光電変換素子。
7.前記1〜6のいずれか1項に記載の光電変換素子を備えたことを特徴とする太陽電池。
8.前記1〜6のいずれか1項に記載の光電変換素子を備えたことを特徴とする光センサー。
D400 / 450 = {(G400−G450) / Gi} × 100
However, Gi is a mass at the start of measurement, and G400 and G450 are masses at 400 ° C. and 450 ° C.
3. 3. The photoelectric conversion element as described in 2 above, wherein the pyrene compound is obtained by multi-stage sublimation purification.
4). 3. The photoelectric conversion element as described in 2 above, wherein the pyrene compound is obtained by train sublimation purification.
5. 3. The photoelectric conversion element as described in 2 above, wherein the pyrene compound is obtained by heat treatment in a high boiling point solvent.
6). 3. The photoelectric conversion element as described in 2 above, wherein the pyrene compound is obtained by an acid paste treatment.
7). A solar cell comprising the photoelectric conversion element according to any one of 1 to 6 above.
8). An optical sensor comprising the photoelectric conversion element according to any one of 1 to 6 above.

本願発明のピレン系化合物を光電変換材料として用いて光電変換素子、太陽電池、光センサーを構成することにより、高い光電変換効率と優れた安定性とを示す光電変換素子、太陽電池、光センサーを提供得することができる。   By using the pyrene compound of the present invention as a photoelectric conversion material to constitute a photoelectric conversion element, a solar cell, and an optical sensor, a photoelectric conversion element, a solar cell, and an optical sensor that exhibit high photoelectric conversion efficiency and excellent stability are obtained. Can be provided.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本願発明に係わるピレン系化合物は前記一般式(1)〜(3)の少なくとも1つを光電変換材料として用いる。   The pyrene compound according to the present invention uses at least one of the general formulas (1) to (3) as a photoelectric conversion material.

ピレン系化合物が、前記一般式(1)〜(3)のいずれか1つで表されるであることにより、光電変換材料として、短波長光に対し高効率の光電変換特性を有し、高い光電変換効率と優れた安定性を示す光電変換素子、太陽電池、光センサーを提供得することができる。   When the pyrene compound is represented by any one of the general formulas (1) to (3), the photoelectric conversion material has high-efficiency photoelectric conversion characteristics with respect to short-wavelength light, and is high. It is possible to provide and provide a photoelectric conversion element, a solar cell, and an optical sensor that exhibit photoelectric conversion efficiency and excellent stability.

以下、本発明に係わるピレン系化合物について説明する。   Hereinafter, the pyrene compound according to the present invention will be described.

本発明に係わるピレン系化合物は、前記一般式(1)〜(3)少なくとも1つの化学構造を有する。   The pyrene compound according to the present invention has at least one chemical structure represented by the general formulas (1) to (3).

前記一般式(1)〜一般式(3)中、Xで表される2価の芳香族基、2価の複素環基としては、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピリジン環、アントラキノン環などが挙げられ、特に好ましいものはベンゼン環、ナフタレン環等から導入される2価の基である。Xの置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシロキシ基、ハロゲン原子、ニトロ基、シアノ基などが挙げられる。   In the general formulas (1) to (3), the divalent aromatic group represented by X and the divalent heterocyclic group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyridine ring, Anthraquinone rings and the like can be mentioned, and particularly preferred are divalent groups introduced from a benzene ring, a naphthalene ring or the like. Examples of the substituent for X include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, an acyloxy group, a halogen atom, a nitro group, and a cyano group.

Rとしては、置換、無置換のフェニル基、ナフチル基、フリル基、チエニル基、ピリジル基などが挙げられ、特に好ましいものは置換、無置換のフェニル基、ナフチル基である。R上の置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、アシロキシ基、ハロゲン原子、ニトロ基、シアノ基などが挙げられる。   Examples of R include substituted and unsubstituted phenyl groups, naphthyl groups, furyl groups, thienyl groups, and pyridyl groups. Particularly preferred are substituted and unsubstituted phenyl groups and naphthyl groups. Examples of the substituent on R include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, an acyl group, an acyloxy group, a halogen atom, a nitro group, and a cyano group.

これらの化合物は、波長が350〜500nmの露光光源に対し、単位露光量に対する電位減衰値が大きく、小径のドット潜像をシャープに形成することができる。   These compounds have a large potential attenuation value per unit exposure amount with respect to an exposure light source having a wavelength of 350 to 500 nm, and can form a small dot latent image sharply.

一般式(1)〜一般式(3)で表されるピレン系化合物は、下記一般式(6)で表されるピレン−1,2,6,7−テトラカルボン酸二無水物誘導体と一般式(7)で表されるジアミノ化合物の脱水縮合反応により製造される。   The pyrene compound represented by the general formula (1) to the general formula (3) includes a pyrene-1,2,6,7-tetracarboxylic dianhydride derivative represented by the following general formula (6) and a general formula. It is produced by a dehydration condensation reaction of the diamino compound represented by (7).

Figure 2008153047
Figure 2008153047

(一般式(6)中、Rは一般式(1)〜一般式(3)におけるRと同一である。一般式(7)中、Xは一般式(1)〜一般式(3)におけるXと同一である。)
又、一般式(1)〜一般式(3)で表されるピレン系化合物は、それぞれが互いに構造異性体の化合物であり、上記縮合反応において生成する化合物は、これら構造異性体の混合物として生成し得るが、これらは単離することなく使用しても本発明の効果を良好に発揮できる。以下に記す一般式(1)〜一般式(3)の具体例においては、それぞれの化合物で構造異性体を取り得ることを前提としている。又、後述する実施例においては、構造異性体の混合物をそのまま用いて、有機感光体を作製している。
(In General Formula (6), R is the same as R in General Formula (1) to General Formula (3). In General Formula (7), X is X in General Formula (1) to General Formula (3). Is the same as
The pyrene compounds represented by the general formulas (1) to (3) are structural isomers of each other, and the compounds produced in the condensation reaction are produced as a mixture of these structural isomers. However, even if they are used without being isolated, the effects of the present invention can be exhibited well. In the specific examples of the general formulas (1) to (3) described below, it is assumed that each compound can take a structural isomer. In the examples described later, organic photoreceptors are produced using a mixture of structural isomers as they are.

一般式(1)〜一般式(3)のいずれか1つで表されるピレン系化合物の具体例を下記に例示する。   Specific examples of the pyrene-based compound represented by any one of the general formula (1) to the general formula (3) are illustrated below.

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

次に、上記例示化合物の合成例を記載する。   Next, synthesis examples of the above exemplary compounds will be described.

合成例1(C−1)
3,8−ジフェニルピレン−1,2,6,7−テトラカルボン酸二無水物2.5g(0.005モル)、o−フェニレンジアミン1.6g(0.015モル)、無水塩化亜鉛0.1g(0.001モル)を、キノリン50ml中2時間加熱還流し、析出した結晶を濾取した。アセトン、メタノールで洗浄した後乾燥し、2.8g(88%)の例示化合物C−1を得た。
Synthesis Example 1 (C-1)
3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride 2.5 g (0.005 mol), o-phenylenediamine 1.6 g (0.015 mol), anhydrous zinc chloride 1 g (0.001 mol) was heated to reflux in 50 ml of quinoline for 2 hours, and the precipitated crystals were collected by filtration. After washing with acetone and methanol, it was dried to obtain 2.8 g (88%) of Exemplified Compound C-1.

又、本願発明のピレン系化合物は、熱重量分析において、下記式で定義される400℃の質量減少率D400が、1.0%以下であるものがより好ましい。   The pyrene compound of the present invention preferably has a mass reduction rate D400 at 400 ° C. defined by the following formula of 1.0% or less in thermogravimetric analysis.

D400={(Gi−G400)/Gi}×100
但し、Giは測定開始時の質量であり、G400は400℃での質量である。
D400 = {(Gi−G400) / Gi} × 100
However, Gi is the mass at the start of measurement, and G400 is the mass at 400 ° C.

該質量減少率D400は、ピレン系化合物を室温から400℃に昇温した際に生じる質量減少率であり、この測定は以下のような条件で測定できる。   The mass reduction rate D400 is a mass reduction rate produced when the pyrene compound is heated from room temperature to 400 ° C. This measurement can be performed under the following conditions.

「示差熱熱重量同時測定装置TG/DTA6200」(セイコーインスツルメンツ(株)社製)により、約5mgの試料を100ml/minの窒素気流下毎分10℃の速度で昇温するようにして加熱し、測定開始時(室温)から400℃に昇温した際に生じる質量減少率を測定する。   About 5 mg of sample was heated at a rate of 10 ° C. per minute under a nitrogen stream of 100 ml / min by “differential thermogravimetric simultaneous measurement device TG / DTA6200” (manufactured by Seiko Instruments Inc.). The mass reduction rate that occurs when the temperature is raised to 400 ° C. from the start of measurement (room temperature) is measured.

前記一般式(1)〜(3)のピレン系化合物においては、上記の温度範囲の質量減少率は、ピレン系化合物の昇華点近くで揮発する不純物成分の量を示しているものと思われ、このような不純物成分が多量にピレン系化合物の顔料中に含有されていると、顔料中に不純物準位が、多量に発生し、太陽電池や光センサーの特性に悪影響を与えるものと思われる。   In the pyrene compounds of the general formulas (1) to (3), the mass reduction rate in the above temperature range seems to indicate the amount of impurity components that volatilize near the sublimation point of the pyrene compounds, If such an impurity component is contained in a large amount in the pigment of the pyrene compound, it is considered that a large amount of impurity levels are generated in the pigment, which adversely affects the characteristics of the solar cell and the optical sensor.

次に、上記合成例1で得られた、ピレン系化合物(顔料)を用いて、本発明に係わる質量減少率が1.0%以下のピレン系化合物に精製する方法について、以下a〜d(ピレン系化合物の精製処理a〜d)で具体的に記載する。   Next, with respect to a method for purifying a pyrene compound having a mass reduction rate of 1.0% or less according to the present invention using the pyrene compound (pigment) obtained in Synthesis Example 1, the following a to d ( Specific description will be given in the purification treatments a to d) of the pyrene compound.

a.多段昇華精製により得られるピレン系化合物
多段昇華精製とは、2段階以上の昇華工程を含むものである。最初の段階は、顔料の昇華温度よりわずかに高い温度で、有効量、例えば約1〜10質量%の昇華物を第1基体上に凝縮させる。引き続き、第2段階では昇華温度を10〜100℃の範囲で上げ、昇華物を第2基体上に凝縮させることにより、揮発性不純物や分解不純物を含まない高純度の顔料を得ることができる。場合によっては、3段階以上の工程を含んでも良い。
a. Pyrene compounds obtained by multi-stage sublimation purification Multi-stage sublimation purification includes two or more sublimation steps. The first stage condenses an effective amount, for example about 1-10% by weight of the sublimate, onto the first substrate at a temperature slightly above the sublimation temperature of the pigment. Subsequently, in the second stage, the sublimation temperature is raised in the range of 10 to 100 ° C., and the sublimate is condensed on the second substrate, whereby a high-purity pigment containing no volatile impurities or decomposition impurities can be obtained. Depending on the case, three or more steps may be included.

精製例1(多段昇華精製の具体例)
合成例1で得られたピレン系化合物(C−1)5gをるつぼに入れ、昇華装置のチャンバを約133.3mPa〜13.3mPaに減圧した後、るつぼの温度を420℃にて上げて10分間維持し、加熱を止めた。るつぼが200℃以下になった時チャンバ内を大気圧にし、コレクタ基体から昇華物0.5g(第1段の昇華C−1)を集めた。次いで、昇華装置のチャンバを約133.3mPa〜13.3mPaに減圧した後、るつぼの温度を450℃にて2時間加熱した。冷却後コレクタ基体に付着した昇華物4.2gのピレン系化合物(第2段の昇華C−1)を得た。該C−1の質量減少率は0.5%であった。
Purification Example 1 (Specific example of multi-stage sublimation purification)
After putting 5 g of the pyrene compound (C-1) obtained in Synthesis Example 1 into a crucible and depressurizing the chamber of the sublimation apparatus to about 133.3 mPa to 13.3 mPa, the temperature of the crucible is raised at 420 ° C. to 10 Maintained for minutes and heat was turned off. When the temperature of the crucible became 200 ° C. or lower, the pressure in the chamber was changed to atmospheric pressure, and 0.5 g of sublimate (first stage sublimation C-1) was collected from the collector substrate. Next, after the pressure of the chamber of the sublimation apparatus was reduced to about 133.3 mPa to 13.3 mPa, the temperature of the crucible was heated at 450 ° C. for 2 hours. After cooling, 4.2 g of a pyrene compound (second stage sublimation C-1) attached to the collector substrate was obtained. The mass reduction rate of C-1 was 0.5%.

b.分別昇華精製により得られるピレン系化合物
分別昇華精製とは、まず顔料を第1位置で温度T1に加熱して顔料及びそれに含まれる揮発性不純物の蒸発を行い、次いでT1より低い温度T2に保った第2位置にて顔料蒸気を凝縮させ、続いてT2より低い温度T3に保った第3位置にて揮発性不純物の蒸気を凝縮させることによって行う。非昇華性不純物は出発物質をおいた第1位置に残存し、揮発性不純物からも分離した精製顔料が得られる。本発明の分別昇華法は、トレイン昇華のような公知の精製方法を含む。
b. Pyrene-based compounds obtained by fractional sublimation purification In fractional sublimation purification, the pigment is first heated to a temperature T1 at a first position to evaporate the pigment and volatile impurities contained therein, and then maintained at a temperature T2 lower than T1. This is done by condensing the pigment vapor at the second position and then condensing the vapor of volatile impurities at the third position maintained at a temperature T3 lower than T2. Non-sublimable impurities remain in the first position with the starting material, and a purified pigment separated from volatile impurities is obtained. The fractional sublimation method of the present invention includes known purification methods such as train sublimation.

精製例2(分別昇華精製の具体例)
合成例1で得られたピレン系化合物(C−1)5gをパイレックス(登録商標)ガラスチューブに入れ、このチューブを、チューブの長さに沿って約480℃〜約20℃の温度勾配(1mの長さで、約480℃〜約20℃の温度勾配をつけた)を生ずる炉の内側に置いた。ガラスチューブ内を約133.3mPa〜13.3mPaに減圧し、精製すべきピレン系顔料が置かれた位置を約480℃に加熱した。生成した蒸気をチューブの低温側に移動、凝縮させ、約300〜420℃の間の領域に凝縮した昇華物4.4gのピレン系化合物(C−1)を得た。該C−1の質量減少率は0.24%であった。
Purification example 2 (specific example of fractional sublimation purification)
5 g of the pyrene compound (C-1) obtained in Synthesis Example 1 was placed in a Pyrex (registered trademark) glass tube, and the tube was subjected to a temperature gradient (1 m) of about 480 ° C. to about 20 ° C. along the length of the tube. At a temperature gradient of about 480 ° C. to about 20 ° C.). The inside of the glass tube was depressurized to about 133.3 mPa to 13.3 mPa, and the position where the pyrene pigment to be purified was placed was heated to about 480 ° C. The generated vapor was transferred to the low temperature side of the tube and condensed to obtain 4.4 g of a pyrene compound (C-1) sublimate condensed in a region between about 300 to 420 ° C. The mass reduction rate of C-1 was 0.24%.

c.高沸点溶媒中で加熱処理して得られるピレン系化合物
高沸点溶媒中で加熱処理とは、未精製顔料を沸点150℃以上の高沸点溶媒中で加熱することにより再結晶または洗浄し、高沸点溶媒に対する溶解性の高い不純物を除去することである。本発明において好ましい高沸点溶媒としては、o−ジクロロベンゼン、1−クロロナフタレン、ニトロベンゼン、キノリン、スルホラン等が挙げられる。
c. A pyrene compound obtained by heat treatment in a high-boiling solvent Heat treatment in a high-boiling solvent is a recrystallization or washing by heating an unpurified pigment in a high-boiling solvent having a boiling point of 150 ° C. or higher. It is to remove impurities that are highly soluble in the solvent. Preferred high boiling point solvents in the present invention include o-dichlorobenzene, 1-chloronaphthalene, nitrobenzene, quinoline, sulfolane and the like.

精製例3(高沸点溶媒中で加熱処理の具体例)
合成例1で得られたピレン系化合物(C−1)5gをるつぼに入れ、昇華装置のチャンバを約133.3mPa〜13.3mPaに減圧した後、るつぼの温度を450℃に上げて2時間加熱した。冷却後チャンバ内を大気圧にし、コレクタ基体に付着した昇華物4.5gを得た。次いで、該昇華物1.0gをキノリン100mlに懸濁させ、200℃にて1時間加熱した後濾過し、アセトン、次いでメタノールにて洗浄し、乾燥させて、精製したC−1を得た。該C−1の質量減少率は0.51%であった。
Purification Example 3 (Specific example of heat treatment in a high boiling point solvent)
5 g of the pyrene compound (C-1) obtained in Synthesis Example 1 is put in a crucible, the pressure of the chamber of the sublimation apparatus is reduced to about 133.3 mPa to 13.3 mPa, and then the temperature of the crucible is raised to 450 ° C. for 2 hours. Heated. After cooling, the pressure inside the chamber was changed to atmospheric pressure to obtain 4.5 g of sublimate adhering to the collector substrate. Next, 1.0 g of the sublimate was suspended in 100 ml of quinoline, heated at 200 ° C. for 1 hour, filtered, washed with acetone and then methanol, and dried to obtain purified C-1. The mass reduction rate of C-1 was 0.51%.

d.アシッドペースト処理により得られるピレン系化合物
アシッドペースト処理とは、顔料を硫酸、クロロ硫酸、トリフルオロ酢酸等の強い酸に溶かして水に注いで微粒子化すると同時に水溶性無機不純物の除去処理及び顔料粒子のアモルファス化を促進する処理であり、フタロシアニン顔料ではよく用いられる処理技術である。本発明のピレン化合物のアシッドペースト処理には、トリフルオロ酢酸を用いて処理するのが好ましい。
d. Pyrene-based compounds obtained by acid paste treatment Acid paste treatment is a process in which pigment is dissolved in a strong acid such as sulfuric acid, chlorosulfuric acid or trifluoroacetic acid and then poured into water to form fine particles, and at the same time, removal of water-soluble inorganic impurities and pigment particles This is a treatment that promotes the amorphization of the phthalocyanine, and is a treatment technique often used for phthalocyanine pigments. The acid paste treatment of the pyrene compound of the present invention is preferably performed using trifluoroacetic acid.

アシッドペースト処理された顔料は微細な粒子のため、その後の水洗浄後も濾過された結晶は水を通常、顔料質量の5〜10倍質量含み、ウェットケーキ又は含水ペースト状で得られるが、これを乾燥して、目的の顔料が得られる。   Since the acid paste-treated pigment is a fine particle, the crystal after filtration after washing with water usually contains water 5 to 10 times the mass of the pigment and is obtained in the form of a wet cake or hydrous paste. Is dried to obtain the desired pigment.

精製例4(アシッドペースト処理の具体例)
合成例1で得られたピレン系化合物(C−1)5gをるつぼに入れ、昇華装置のチャンバを約133.3mPa〜13.3mPaに減圧した後、るつぼの温度を450℃に上げて2時間加熱した。冷却後チャンバ内を大気圧にし、コレクタ基体に付着した昇華物4.5gを得た。次いで、該昇華物1.0gをトリフルオロ酢酸30mlに溶解し、これを水500mlに滴下した。沈殿した顔料をろ過し、200mlの水に懸濁させて洗浄した。洗浄液の電気伝導度が100μS/以下になるまで水洗を繰り返し、得られたウェットケーキを乾燥し、精製したC−1を得た。該C−1の質量減少率は0.76%であった。
Purification Example 4 (Specific example of acid paste treatment)
5 g of the pyrene compound (C-1) obtained in Synthesis Example 1 is put in a crucible, the pressure of the chamber of the sublimation apparatus is reduced to about 133.3 mPa to 13.3 mPa, and then the temperature of the crucible is raised to 450 ° C. for 2 hours. Heated. After cooling, the pressure inside the chamber was changed to atmospheric pressure to obtain 4.5 g of sublimate adhering to the collector substrate. Next, 1.0 g of the sublimate was dissolved in 30 ml of trifluoroacetic acid, and this was added dropwise to 500 ml of water. The precipitated pigment was filtered, suspended in 200 ml of water and washed. Washing with water was repeated until the electrical conductivity of the cleaning liquid reached 100 μS / less, and the resulting wet cake was dried to obtain purified C-1. The mass reduction rate of C-1 was 0.76%.

《光電変換素子》
本願発明の光電変換素子について、図1を用いて説明する。
<< Photoelectric conversion element >>
The photoelectric conversion element of the present invention will be described with reference to FIG.

図1は、本発明の光電変換素子の構造の一例を示す部分断面図である。   FIG. 1 is a partial cross-sectional view showing an example of the structure of the photoelectric conversion element of the present invention.

1は透明電極、2は感光層、3は電荷移動層、4は対向電極、5は隔壁を表す。尚、透明電極1と感光層2をあわせて光電極ともいう。   Reference numeral 1 denotes a transparent electrode, 2 denotes a photosensitive layer, 3 denotes a charge transfer layer, 4 denotes a counter electrode, and 5 denotes a partition wall. The transparent electrode 1 and the photosensitive layer 2 are also collectively referred to as a photoelectrode.

透明電極
透明電極1は、基盤1aと透明電極膜1bで構成される。
Transparent electrode The transparent electrode 1 includes a base 1a and a transparent electrode film 1b.

本発明の光電変換素子や本発明の太陽電池に用いられる透明電極は、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性支持体に導電性物質を設けた構造のものを用いることができる。該導電性物質に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。透明電極の厚さは特に制約されないが、0.3mm〜5mmが好ましい。   The transparent electrode used in the photoelectric conversion element of the present invention and the solar cell of the present invention has a structure in which a conductive material is provided on a conductive material such as a metal plate or a non-conductive support such as a glass plate or a plastic film. Can be used. Examples of materials used for the conductive substance include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium) or conductive metal oxides (eg, indium-tin composite oxide, tin oxide doped with fluorine) And carbon). The thickness of the transparent electrode is not particularly limited, but is preferably 0.3 mm to 5 mm.

また透明電極は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明電極を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。光は透明電極側から入射させることが好ましい。   Further, the transparent electrode is preferably substantially transparent, and being substantially transparent means that the light transmittance is 10% or more, more preferably 50% or more, and 80% or more. Most preferably. In order to obtain a transparent electrode, it is preferable to provide a conductive layer made of a conductive metal oxide on the surface of a glass plate or a plastic film. The light is preferably incident from the transparent electrode side.

透明電極の表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。 The surface resistance of the transparent electrode is preferably 50 Ω / cm 2 or less, more preferably 10 Ω / cm 2 or less.

感光層2は本発明のピレン系化合物を光電変換材料として含有する層であり、電荷移動層3は通常、レドックス電解質が含有し、透明電極1、感光層2、対向電極4に接触した形態で用いられる。   The photosensitive layer 2 is a layer containing the pyrene compound of the present invention as a photoelectric conversion material, and the charge transfer layer 3 usually contains a redox electrolyte and is in contact with the transparent electrode 1, the photosensitive layer 2, and the counter electrode 4. Used.

本発明の光電変換素子は、上記感光層2がpnヘテロ接合型の複層構造或いは色素増感型の単層構造を有することが好ましい。pn接合型の複層構造は、図1に示すような透明電極1上に、フタロシアニン顔料等のn型半導体層を設け、その上に本願発明のピレン系化合物顔料のp型半導体層を設けて感光層2を形成する。   In the photoelectric conversion element of the present invention, the photosensitive layer 2 preferably has a pn heterojunction type multilayer structure or a dye-sensitized single layer structure. In the pn junction type multilayer structure, an n-type semiconductor layer such as a phthalocyanine pigment is provided on a transparent electrode 1 as shown in FIG. 1, and a p-type semiconductor layer of a pyrene compound pigment of the present invention is provided thereon. The photosensitive layer 2 is formed.

pn接合型の層構成は、p型或いはn型の顔料を溶媒と必要によりバインダー等の媒体中に分散させ、該分散により得られた分散液を塗布することにより形成することができる。又、該pn接合層を塗布後に燒結し、pn接合型燒結層を形成してもよい。   A pn junction type layer structure can be formed by dispersing a p-type or n-type pigment in a solvent and, if necessary, a medium such as a binder, and applying a dispersion obtained by the dispersion. Alternatively, the pn junction layer may be sintered after coating to form a pn junction type sintered layer.

n型半導体層に用いられる顔料としては、上記フタロシアニン顔料の他に、酸化チタン、酸化亜鉛等が挙げられる。   Examples of the pigment used for the n-type semiconductor layer include titanium oxide and zinc oxide in addition to the phthalocyanine pigment.

上記p型又はn型半導体層の膜厚は、各々0.05〜1μmの範囲が好ましい。又、p又はnの各層に含有される顔料の含有率は各層毎に30質量%以上であることが好ましい。又、pn接合型光電変換素子の場合は、図1中の3の電荷移動層は不要であり、透明電極、感光層及び対抗電極で構成することが好ましい。   The thickness of the p-type or n-type semiconductor layer is preferably in the range of 0.05 to 1 μm. Moreover, it is preferable that the content rate of the pigment contained in each layer of p or n is 30 mass% or more for each layer. Further, in the case of a pn junction type photoelectric conversion element, the charge transfer layer 3 in FIG. 1 is not necessary, and it is preferably composed of a transparent electrode, a photosensitive layer and a counter electrode.

対向電極
対向電極4は、基盤4a、透明導電膜4b、金や白金等の導電層4cから構成される。基盤4a及び透明導電膜4bは、前記した透明電極の基盤1a及び透明電極膜1bと同様の物質を用いて作製される。導電層4cは、導電性を有するものであればよく、任意の導電性材料が用いられる。金電極、白金電極、導電材料表面に金又は白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
Counter electrode The counter electrode 4 includes a base 4a, a transparent conductive film 4b, and a conductive layer 4c such as gold or platinum. The substrate 4a and the transparent conductive film 4b are manufactured using the same materials as those of the transparent electrode substrate 1a and the transparent electrode film 1b. The conductive layer 4c only needs to have conductivity, and an arbitrary conductive material is used. Examples thereof include a gold electrode, a platinum electrode, a material obtained by depositing gold or platinum on the surface of a conductive material, rhodium metal, ruthenium metal, ruthenium oxide, and carbon.

一方、色素増感型の構造では、感光層を酸化チタン等の半導体層で形成し、該半導体層に本発明に係るピレン系化合物を吸着させることにより上記感光層2を色増感させて形成する。この色素増感型の場合は、ピレン系化合物を適切な溶媒に溶解し、透明電極1上に形成された半導体層をその溶液に浸漬することによって行われる。その際には半導体層は、焼成処理がなされていることが好ましい。焼成処理により、酸化チタン等の半導体材料がピレン系化合物を吸着しやすくなり、色増感効果が高まると思われる。又、半導体層は、あらかじめ減圧処理、また加熱処理により膜中の気泡を除去し、前記ピレン系化合物が半導体層内部深くに進入できるようにしておくことが好ましい。   On the other hand, in the dye-sensitized structure, the photosensitive layer is formed of a semiconductor layer such as titanium oxide, and the photosensitive layer 2 is color-sensitized by adsorbing the pyrene compound according to the present invention to the semiconductor layer. To do. In the case of this dye-sensitized type, the pyrene compound is dissolved in an appropriate solvent, and the semiconductor layer formed on the transparent electrode 1 is immersed in the solution. At that time, the semiconductor layer is preferably subjected to a firing treatment. By baking treatment, it is considered that a semiconductor material such as titanium oxide easily adsorbs a pyrene-based compound, and the color sensitization effect is enhanced. In addition, it is preferable that the semiconductor layer is preliminarily subjected to pressure reduction treatment or heat treatment to remove bubbles in the film so that the pyrene compound can enter deep inside the semiconductor layer.

色素増感型の半導体層に用いられる半導体材料としては、前記酸化チタン(TiO2)以外に、SnO2、Fe23、WO3、ZnO、Nb25、CdS、ZnS、PbS、Bi23、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2、Ti34等が挙げられるが、好ましく用いられるのは、TiO2、ZnO、SnO2、Fe23、WO3、Nb25、CdS、PbSであり、好ましく用いられるのは、これらのうち金属酸化物もしくは金属硫化物半導体である。これらのうち更に好ましく用いられるのは、金属酸化物半導体であり、なかでもTiO2またはNb25であり、より好ましく用いられるのはTiO2である。 Semiconductor materials used for the dye-sensitized semiconductor layer include SnO 2 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5 , CdS, ZnS, PbS, and Bi in addition to the titanium oxide (TiO 2 ). 2 S 3 , CdSe, CdTe, GaP, InP, GaAs, CuInS 2 , CuInSe 2 , Ti 3 N 4 and the like can be mentioned, but preferably used are TiO 2 , ZnO, SnO 2 , Fe 2 O 3 , WO 3 , Nb 2 O 5 , CdS, and PbS. Of these, metal oxides or metal sulfide semiconductors are preferably used. Of these, a metal oxide semiconductor is more preferably used, and among them, TiO 2 or Nb 2 O 5 is used, and TiO 2 is more preferably used.

上記感光層2を形成するに際し、ピレン系化合物或いは酸化チタン等の分散或いは溶解に用いられる溶媒としては、特に制限されないが、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、シクロヘキサノール、グリシドール、フルフリルアルコール、ベンジルアルコールなどのアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテートなどのグリコール誘導体類、o−キシレン、トルエン、シクロヘキサンなどの炭化水素、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、ブチロラクトンなどのエステル、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、メチル−n−ペンチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノンなどのケトンが挙げられる。   In forming the photosensitive layer 2, the solvent used for dispersion or dissolution of the pyrene compound or titanium oxide is not particularly limited. For example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, cyclohexanol, Alcohols such as glycidol, furfuryl alcohol, benzyl alcohol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono Glycol derivatives such as butyl ether acetate, o-xylene, toluene, cyclohexane Hydrocarbons such as ethyl acetate, esters such as ethyl acetate, acetic acid-n-propyl, acetic acid-n-butyl, butyrolactone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, methyl-n-pentyl ketone, methyl isobutyl Ketones such as ketone, cyclopentanone, cyclohexanone, and cycloheptanone are exemplified.

色素増感型構造では、透明電極1上に感光層2を形成したら、該感光層2と向かい合うようにして対向電極4を配置する。さらに、半導体電極と対向電極4の間に電荷移動層であるレドックス電解質を注入して光電変換素子とする。   In the dye-sensitized structure, when the photosensitive layer 2 is formed on the transparent electrode 1, the counter electrode 4 is disposed so as to face the photosensitive layer 2. Further, a redox electrolyte as a charge transfer layer is injected between the semiconductor electrode and the counter electrode 4 to obtain a photoelectric conversion element.

《太陽電池》
本発明の太陽電池について説明する。
《Solar cell》
The solar cell of the present invention will be described.

本発明の太陽電池は、前記した本発明の光電変換素子の一態様として、太陽光に最適の設計並びに、回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、光電変換材料用半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、太陽電池構造全体を樹脂封止することが好ましい。   In the solar cell of the present invention, as one aspect of the photoelectric conversion element of the present invention described above, optimal design and circuit design for sunlight are performed, and optimal photoelectric conversion is performed when sunlight is used as a light source. It has such a structure. That is, the semiconductor for photoelectric conversion material has a structure that can be irradiated with sunlight. When configuring the solar cell of the present invention, the entire solar cell structure is preferably resin-sealed.

本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、光電変換材料として本願発明のピレン系化合物を用いた光電変換素子は、照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子又は正孔は、次いで透明電極1を経由して対向電極4に移動に移動する。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。   When the solar cell of the present invention is irradiated with sunlight or an electromagnetic wave equivalent to sunlight, the photoelectric conversion element using the pyrene compound of the present invention as a photoelectric conversion material absorbs the irradiated light or electromagnetic wave and excites it. The electrons or holes generated by the excitation then move to move to the counter electrode 4 via the transparent electrode 1. In this way, electrons flow, and a solar cell using the photoelectric conversion element of the present invention can be configured.

《光センサー》
本願発明の光センサーとしては、CCD、CMOS等の固体撮像システムを用いたデジタルカメラ用の光センサー等に用いることができる。光センサーの基本的構造は特開2003−234460号公報等に記されているように、光電変換膜(電磁波吸収/光電変換部位)と走査回路部(電荷転送/読み取り部位)が導電性材料によって、電気的に接続されている構造を有しているが、本願発明の光センサーは光電変換膜に前記ピレン系化合物を光電変換材料として用い青又は緑色部の光電変換効率を改善できる材料として用いられる。
《Light sensor》
The optical sensor of the present invention can be used for an optical sensor for a digital camera using a solid-state imaging system such as a CCD or CMOS. As the basic structure of the optical sensor is described in Japanese Patent Application Laid-Open No. 2003-234460, etc., the photoelectric conversion film (electromagnetic wave absorption / photoelectric conversion part) and the scanning circuit part (charge transfer / reading part) are made of a conductive material. However, the photosensor of the present invention uses the pyrene compound as a photoelectric conversion material as a photoelectric conversion material for the photoelectric conversion film, and is used as a material that can improve the photoelectric conversion efficiency of the blue or green part. It is done.

光センサーの光電変換膜はほぼ前記した光電変換素子と同様の構造で構成できる。但し、光が直接入射されない側の対向電極には不透明の導電性支持体が好ましい。このような支持体としてはアルミニウムや銅の金属支持体やこれらの金属で表面加工されたシート等が好ましく用いられる。   The photoelectric conversion film of the optical sensor can be configured with substantially the same structure as the photoelectric conversion element described above. However, an opaque conductive support is preferable for the counter electrode on the side where light is not directly incident. As such a support, an aluminum or copper metal support, a sheet surface-treated with these metals, or the like is preferably used.

これらの光導電膜は赤や緑の長波長感度を有する他の光電変換膜と積層し、白色或いはフルカラーに対応した光電変換膜を形成してもよい。   These photoconductive films may be laminated with another photoelectric conversion film having a long wavelength sensitivity of red or green to form a photoelectric conversion film corresponding to white or full color.

そして、これらの光電変換膜は、走査回路部上に電気的に接続され、光センサーを構成することができる。   These photoelectric conversion films are electrically connected to the scanning circuit unit, and can constitute an optical sensor.

走査回路部は、半導体基板上にMOSトランジスタが各画素単位に形成された構成や、あるいは、撮像素子としてCCDを有する構成を適宜採用することができる。   The scanning circuit unit can appropriately adopt a configuration in which a MOS transistor is formed on a semiconductor substrate for each pixel unit, or a configuration having a CCD as an image sensor.

例えばMOSトランジスタを用いた固体撮像素子の場合、電極を透過した入射光によって光導電膜の中に電荷が発生し、電極に電圧を印加することにより電極と電極との間に生じる電界によって電荷が光導電膜の中を電極まで走行し、さらにMOSトランジスタの電荷蓄積部まで移動し、電荷蓄積部に電荷が蓄積される。電荷蓄積部に蓄積された電荷は、MOSトランジスタのスイッチングにより電荷読出し部に移動し、さらに電気信号として出力される。これにより、フルカラーの画像信号が、信号処理部を含む固体撮像装置に入力される。   For example, in the case of a solid-state imaging device using a MOS transistor, charges are generated in the photoconductive film by incident light transmitted through the electrodes, and the charges are generated by an electric field generated between the electrodes by applying a voltage to the electrodes. It travels to the electrode through the photoconductive film, and further moves to the charge storage part of the MOS transistor, and charges are stored in the charge storage part. The charge accumulated in the charge accumulation unit moves to the charge readout unit by switching of the MOS transistor, and is further output as an electric signal. Thereby, a full-color image signal is input to the solid-state imaging device including the signal processing unit.

以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、下記文中「部」とは「質量部」を表す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. In the following text, “part” means “part by mass”.

(実施例1)
《光電変換素子101の作製》
フッ素をドープした酸化スズをコートした透明導電性ガラス板上(透明電極1)に膜厚0.4μmのチタニルフタロシアニン層を蒸着により形成した。このチタニルフタロシアニン層(N層)の上に、膜厚0.5μmのピレン系化合物層(P層)を蒸着により形成し(例示化合物C−1:多段昇華精製の質量減少率0.50%を用いた)、更にその上に、対向電極4として、膜厚1μmの金層を蒸着で形成し、PN接合型の光電変換素子101を作製した。
(Example 1)
<< Production of Photoelectric Conversion Element 101 >>
A titanyl phthalocyanine layer having a thickness of 0.4 μm was formed by vapor deposition on a transparent conductive glass plate coated with tin oxide doped with fluorine (transparent electrode 1). On this titanyl phthalocyanine layer (N layer), a pyrene-based compound layer (P layer) having a thickness of 0.5 μm was formed by vapor deposition (Exemplary Compound C-1: Mass reduction rate of multistage sublimation purification: 0.50%) Furthermore, a 1 μm-thick gold layer was formed thereon as a counter electrode 4 by vapor deposition, and a PN junction type photoelectric conversion element 101 was produced.

《光電変換素子102〜106の作製》:本発明
光電変換素子101の作製において、ピレン系化合物(C−1)を表1に記載のそれぞれの例示化合物に変更した以外は同様にして、光電変換素子102〜106を得た。
<< Preparation of Photoelectric Conversion Elements 102-106 >>: Present Invention In the preparation of photoelectric conversion element 101, photoelectric conversion was performed in the same manner except that pyrene-based compound (C-1) was changed to each of the exemplified compounds shown in Table 1. Elements 102 to 106 were obtained.

《光電変換素107の作製》:比較例
光電変換素子101の作製において、ピレン系化合物(C−1)を表1に記載の下記比較化合物C−Rに変更した以外は同様にして、光電変換素子107を得た。
<< Preparation of Photoelectric Conversion Element 107 >> Comparative Example Photoelectric conversion was performed in the same manner as in the preparation of the photoelectric conversion element 101 except that the pyrene compound (C-1) was changed to the following comparative compound CR shown in Table 1. Element 107 was obtained.

Figure 2008153047
Figure 2008153047

Figure 2008153047
Figure 2008153047

(実施例2)
《太陽電池SC−101〜SC−107の作製》:本発明
光電変換素子101〜107の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−101〜SC−107を各々3ロットずつ作製した。
(Example 2)
<< Preparation of Solar Cells SC-101 to SC-107 >>: After the side surfaces of the photoelectric conversion elements 101 to 107 of the present invention are sealed with resin, lead wires are attached, and the solar cells SC-101 to SC-107 of the present invention are attached. Three lots were prepared for each.

《太陽電池の光電変換効率の評価》
上記で得られた太陽電池SC−101〜SC−107の各々にソーラーシミュレーター(JASCO(日本分光)製、低エネルギー分光感度測定装置CEP−25)により100mW/m2の強度の光を照射した時の光電変換効率を測定し表1に示した。示した値は、同じ構成および作製方法の太陽電池3つについての測定結果の平均値とした。
<< Evaluation of photoelectric conversion efficiency of solar cells >>
When each of the solar cells SC-101 to SC-107 obtained above was irradiated with light having an intensity of 100 mW / m 2 by a solar simulator (manufactured by JASCO (JASCO), low energy spectral sensitivity measuring device CEP-25). The photoelectric conversion efficiency was measured and shown in Table 1. The indicated value was the average value of the measurement results for three solar cells having the same configuration and production method.

光電変換効率(エネルギー変換効率)の評価
上述の太陽電池SC−101〜SC−107について、それぞれの光電変換効率(エネルギー変換効率η)を評価すべく試験を行った。この評価試験は、ソーラーシミュレータ(ワコム電創株式会社製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM−1.5)を通したキセノンランプから100mW/cm2の疑似太陽光を照射することにより以下の手順で行った。
Evaluation of photoelectric conversion efficiency (energy conversion efficiency) The above-described solar cells SC-101 to SC-107 were tested to evaluate the respective photoelectric conversion efficiency (energy conversion efficiency η). This evaluation test was conducted using a solar simulator (trade name: “WXS-85-H type” manufactured by Wacom Denso Co., Ltd.) and 100 mW / cm 2 from a xenon lamp that passed through an AM filter (AM-1.5). The following procedure was performed by irradiating simulated sunlight.

完成直後の各太陽電池について、I−Vテスターを用いて、室温にて電流−電圧特性を測定し、短絡電流(Jsc)、開放電圧(Voc)、及び曲線因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。なお、太陽電池の光電変換効率(η(%))は、下記式(A)に基づいて算出した。   For each solar cell immediately after completion, the current-voltage characteristics were measured at room temperature using an IV tester, and the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) were obtained. From these, the photoelectric conversion efficiency (η (%)) was determined. In addition, the photoelectric conversion efficiency ((eta) (%)) of the solar cell was computed based on the following formula (A).

η=100×(Voc×Jsc×F.F.)/P・・・(A)
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は曲線因子を示す。これによって得た光電変換効率の結果を表2に示す。
η = 100 × (Voc × Jsc × FF) / P (A)
Here, P is the incident light intensity [mW / cm −2 ], Voc is the open circuit voltage [V], Jsc is the short-circuit current density [mA · cm −2 ], F.V. F. Indicates a fill factor. Table 2 shows the photoelectric conversion efficiency obtained as a result.

Figure 2008153047
Figure 2008153047

表2より、本発明の太陽電池SC−101〜SC−106は高い光電変換特性を示し、前記一般式(1)〜(3)のピレン系化合物を太陽電池の光変換材料として用いることが有効であることを示している。中でも、多段昇華精製を施したSC−101〜SC−105の太陽電池は特に優れた効果を示している。一方、比較例の太陽電池SC−107は光電変換効率は、本発明の太陽電池に比し著しく低いことが確認される。また、且つ、本発明の太陽電池SC−101〜SC−106は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることを確認した。 From Table 2, the solar cells SC-101 to SC-106 of the present invention exhibit high photoelectric conversion characteristics, and it is effective to use the pyrene compounds of the general formulas (1) to (3) as the light conversion material of the solar cell. It is shown that. Among them, the SC-101 to SC-105 solar cells subjected to the multi-stage sublimation purification show particularly excellent effects. On the other hand, it is confirmed that the solar cell SC-107 of the comparative example has a significantly lower photoelectric conversion efficiency than the solar cell of the present invention. In addition, the solar cells SC-101 to SC-106 of the present invention are excellent in stability because no decrease in photoelectric conversion efficiency is observed even after 100 hours of light irradiation of 100 mW / m 2 by a solar simulator. It was confirmed.

(実施例3)
《光センサーの動作確認》:本発明
前記光電変換素子101〜107(対応する光サンサーNo.をLC−101〜LC−107とした)を用いて、光センサーとしての動作を以下の要領で確認した。
(Example 3)
<< Operation Confirmation of Optical Sensor >>: The operation of the optical sensor is confirmed in the following manner using the photoelectric conversion elements 101 to 107 (corresponding optical sensor Nos. Are LC-101 to LC-107). did.

これらの光センサーLC−101〜LC−107の光照射による電流変化を評価することにより、光センサーとしての有用性を評価した。   The usefulness as an optical sensor was evaluated by evaluating the current change by light irradiation of these optical sensors LC-101 to LC-107.

評価は、これら光センサーの両端に10Vの印加電圧をかけた状態で、キセノンランプ(浜松ホトニクス社製L2274)の光源に、青のフィルターを通して得られる青色光を、20luxの強度で照射した。照射光強度を照度計(ミノルタ社製)で測定した。使用したフィルターの特性は400〜500nmの平均透過率が80%以上の特性を有しているものである。   Evaluation was performed by irradiating a light source of a xenon lamp (L2274, manufactured by Hamamatsu Photonics) with blue light obtained through a blue filter at an intensity of 20 lux with an applied voltage of 10 V applied to both ends of these photosensors. Irradiation light intensity was measured with an illuminometer (Minolta). The filter used has a characteristic that an average transmittance of 400 to 500 nm is 80% or more.

光照射の開始開始時間から2.0秒後の定常電流を測定し、光照射前の定常電流に対する電流値の増加倍率(開始開始時間から2.0秒後の定常電流/光照射前の定常電流)を計算して、各光センサーの評価を行った。その結果を表3に示す。   Measure the steady current 2.0 seconds after the start time of light irradiation and increase the current value relative to the steady current before light irradiation (steady current 2.0 seconds after the start time / steady state before light irradiation). Current) was calculated to evaluate each optical sensor. The results are shown in Table 3.

Figure 2008153047
Figure 2008153047

表3より、光センサーLC−101〜LC−106の電流値の増加率は、比較例の光センサーLC−107に比し、優れて高いことが見られる。   From Table 3, it can be seen that the increase rate of the current value of the photosensors LC-101 to LC-106 is excellent and high as compared with the photosensor LC-107 of the comparative example.

(実施例4)
《光電変換素子111の作製》
フッ素をドープした酸化スズをコートした透明導電性ガラス板上(透明電極1)に膜厚0.4μmのチタニルフタロシアニン層を蒸着により形成した。このチタニルフタロシアニン層(N層)の上に、膜厚0.5μmのピレン系化合物層(P層)を蒸着により形成し(例示化合物C−1:分別昇華精製の質量減少率0.24%を用いた)、更にその上に、対向電極4として、膜厚1μmの金層を蒸着で形成し、PN接合型の光電変換素子111を作製した。
Example 4
<< Production of Photoelectric Conversion Element 111 >>
A titanyl phthalocyanine layer having a thickness of 0.4 μm was formed by vapor deposition on a transparent conductive glass plate coated with tin oxide doped with fluorine (transparent electrode 1). On this titanyl phthalocyanine layer (N layer), a pyrene-based compound layer (P layer) having a film thickness of 0.5 μm was formed by vapor deposition (Exemplary Compound C-1: Mass reduction rate of fractional sublimation purification 0.24%) Furthermore, a 1 μm-thick gold layer was formed thereon as a counter electrode 4 by vapor deposition to produce a PN junction type photoelectric conversion element 111.

《光電変換素子112〜116の作製》:本発明
光電変換素子101の作製において、ピレン系化合物(C−1)を表4に記載のそれぞれの例示化合物に変更した以外は同様にして、光電変換素子112〜116を得た。
<< Preparation of Photoelectric Conversion Elements 112 to 116 >>: Present Invention In the preparation of photoelectric conversion element 101, photoelectric conversion was performed in the same manner except that pyrene-based compound (C-1) was changed to each of the exemplified compounds shown in Table 4. Elements 112 to 116 were obtained.

Figure 2008153047
Figure 2008153047

(実施例5)
《太陽電池SC−111〜SC−116の作製》:本発明
光電変換素子111〜116の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−111〜SC−116を各々3ロットずつ作製した。
(Example 5)
<< Preparation of Solar Cells SC-111-SC-116 >>: After Encapsulating the Sides of the Photoelectric Conversion Elements 111-116 with Resin, the Lead Wires are Attached to the Solar Cells SC-111-SC-116 of the Present Invention. Three lots were prepared for each.

《太陽電池の光電変換効率の評価》
上記で得られた太陽電池SC−111〜SC−116の各々を実施例2と同様にして評価した。これによって得た光電変換効率の結果を表5に示す。
<< Evaluation of photoelectric conversion efficiency of solar cells >>
Each of the solar cells SC-111-SC-116 obtained above was evaluated in the same manner as in Example 2. Table 5 shows the results of photoelectric conversion efficiency obtained in this manner.

Figure 2008153047
Figure 2008153047

表5より、本発明の太陽電池SC−111〜SC−116は高い光電変換特性を示し、前記一般式(1)〜(3)のピレン系化合物で且つ分別昇華精製を施した化合物を太陽電池の光変換材料として用いることが有効であることを示している。また、本発明の太陽電池SC−111〜SC−116は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることを確認した。 From Table 5, the solar cells SC-1111 to SC-116 of the present invention exhibit high photoelectric conversion characteristics, and the solar cell is a pyrene compound of the general formulas (1) to (3) and subjected to fractional sublimation purification. It is shown that it is effective to use as a light conversion material. Moreover, the solar cells SC-111-SC-116 of the present invention were confirmed to be excellent in stability because no decrease in photoelectric conversion efficiency was observed even after 100 hours of light irradiation of 100 mW / m 2 by a solar simulator. did.

(実施例6)
《光センサーの動作確認》:本発明
前記光電変換素子111〜116(対応する光サンサーNo.をLC−111〜LC−116とした)を用いて、光センサーとしての動作を以下の要領で確認した。
(Example 6)
<< Operation Confirmation of Optical Sensor >>: The operation of the optical sensor is confirmed as follows using the photoelectric conversion elements 111 to 116 (corresponding optical sensor Nos. Are LC-1111 to LC-116) of the present invention. did.

これらの光センサーLC−111〜LC−116の光照射による電流変化を前記実施例3と同様に評価し、光センサーとしての有用性を評価した。その結果を表6に示す。   Changes in current due to light irradiation of these photosensors LC-1111 to LC-116 were evaluated in the same manner as in Example 3 to evaluate their usefulness as photosensors. The results are shown in Table 6.

Figure 2008153047
Figure 2008153047

表6より、光センサーLC−111〜LC−116の電流値の増加率は、前記比較例の光センサーLC−107に比し、優れて高いことが見られる。   From Table 6, it can be seen that the increase rate of the current value of the optical sensors LC-1111 to LC-116 is superior and higher than that of the optical sensor LC-107 of the comparative example.

(実施例7)
《光電変換素子121の作製》
フッ素をドープした酸化スズをコートした透明導電性ガラス板上(透明電極1)に膜厚0.4μmのチタニルフタロシアニン層を蒸着により形成した。このチタニルフタロシアニン層(N層)の上に、膜厚0.5μmのピレン系化合物層(P層)を蒸着により形成し(例示化合物C−1:高沸点溶媒中で加熱処理の質量減少率0.51%を用いた)、更にその上に、対向電極4として、膜厚1μmの金層を蒸着で形成し、PN接合型の光電変換素子121を作製した。
(Example 7)
<< Production of Photoelectric Conversion Element 121 >>
A titanyl phthalocyanine layer having a thickness of 0.4 μm was formed by vapor deposition on a transparent conductive glass plate coated with tin oxide doped with fluorine (transparent electrode 1). On this titanyl phthalocyanine layer (N layer), a pyrene-based compound layer (P layer) having a film thickness of 0.5 μm was formed by vapor deposition (Exemplary Compound C-1: Mass reduction rate of heat treatment in high boiling point solvent 0 Further, a gold layer having a thickness of 1 μm was formed thereon as a counter electrode 4 by vapor deposition to produce a PN junction type photoelectric conversion element 121.

《光電変換素子112〜116の作製》:本発明
光電変換素子121の作製において、ピレン系化合物(C−1)を表7に記載のそれぞれの例示化合物に変更した以外は同様にして、光電変換素子122〜128を得た。
<< Preparation of Photoelectric Conversion Elements 112 to 116 >>: Present Invention In the preparation of photoelectric conversion element 121, photoelectric conversion was performed in the same manner except that pyrene-based compound (C-1) was changed to each of the exemplified compounds shown in Table 7. Elements 122 to 128 were obtained.

Figure 2008153047
Figure 2008153047

(実施例8)
《太陽電池SC−121〜SC−128の作製》:本発明
光電変換素子121〜128の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−121〜SC−128を各々3ロットずつ作製した。
(Example 8)
<< Preparation of Solar Cells SC-121 to SC-128 >>: The present invention The side surfaces of the photoelectric conversion elements 121 to 128 are encapsulated with resin, then lead wires are attached, and the solar cells SC-121 to SC-128 of the present invention are attached. Three lots were prepared for each.

《太陽電池の光電変換効率の評価》
上記で得られた太陽電池SC−121〜SC−128の各々を実施例2と同様にして評価した。これによって得た光電変換効率の結果を表8に示す。
<< Evaluation of photoelectric conversion efficiency of solar cells >>
Each of the solar cells SC-121 to SC-128 obtained above was evaluated in the same manner as in Example 2. Table 8 shows the results of the photoelectric conversion efficiency obtained as described above.

Figure 2008153047
Figure 2008153047

表8より、本発明の太陽電池SC−121〜SC−128は高い光電変換特性を示し、前記一般式(1)〜(3)のピレン系化合物を太陽電池の光変換材料として用いることが有効であることを示している。中でも、高沸点溶媒中での加熱処理を施した化合物を用いた太陽電池SC−121〜SC−127は、より高い光電変換特性を示している。また、本発明の太陽電池SC−121〜SC−128は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることを確認した。 From Table 8, the solar cells SC-121 to SC-128 of the present invention exhibit high photoelectric conversion characteristics, and it is effective to use the pyrene-based compounds of the general formulas (1) to (3) as the light conversion material of the solar cell. It is shown that. Among these, solar cells SC-121 to SC-127 using compounds subjected to heat treatment in a high-boiling solvent show higher photoelectric conversion characteristics. In addition, it was confirmed that the solar cells SC-121 to SC-128 of the present invention were excellent in stability because no decrease in photoelectric conversion efficiency was observed even after 100 hours of light irradiation of 100 mW / m 2 by a solar simulator. did.

(実施例9)
《光センサーの動作確認》:本発明
前記光電変換素子121〜128(対応する光サンサーNo.をLC−121〜LC−128とした)を用いて、光センサーとしての動作を以下の要領で確認した。
Example 9
<< Operation check of optical sensor >>: The operation of the optical sensor is confirmed as follows using the photoelectric conversion elements 121 to 128 (corresponding optical sensor Nos. Are LC-121 to LC-128) of the present invention. did.

これらの光センサーLC−121〜LC−128の光照射による電流変化を前記実施例3と同様に評価し、光センサーとしての有用性を評価した。その結果を表9に示す。   Changes in current due to light irradiation of these photosensors LC-121 to LC-128 were evaluated in the same manner as in Example 3 to evaluate their usefulness as photosensors. The results are shown in Table 9.

Figure 2008153047
Figure 2008153047

表9より、光センサーLC−121〜LC−128の電流値の増加率は、前記比較例の光センサーLC−107に比し、優れて高いことが見られる。   From Table 9, it can be seen that the rate of increase in the current value of the photosensors LC-121 to LC-128 is superior to the photosensor LC-107 of the comparative example.

(実施例10)
《光電変換素子131の作製》
フッ素をドープした酸化スズをコートした透明導電性ガラス板上(透明電極1)に膜厚0.4μmのチタニルフタロシアニン層を蒸着により形成した。このチタニルフタロシアニン層(N層)の上に、膜厚0.5μmのピレン系化合物層(P層)を蒸着により形成し(例示化合物C−1:アシッドペースト処理の質量減少率0.76%を用いた)、更にその上に、対向電極4として、膜厚1μmの金層を蒸着で形成し、PN接合型の光電変換素子131を作製した。
(Example 10)
<< Production of Photoelectric Conversion Element 131 >>
A titanyl phthalocyanine layer having a thickness of 0.4 μm was formed by vapor deposition on a transparent conductive glass plate coated with tin oxide doped with fluorine (transparent electrode 1). On this titanyl phthalocyanine layer (N layer), a 0.5 μm-thick pyrene-based compound layer (P layer) was formed by vapor deposition (Exemplary Compound C-1: Mass reduction rate of 0.76% in acid paste treatment) Furthermore, a 1 μm-thick gold layer was formed thereon as a counter electrode 4 by vapor deposition, and a PN junction type photoelectric conversion element 131 was produced.

《光電変換素子132〜135の作製》:本発明
光電変換素子131の作製において、ピレン系化合物(C−1)を表10に記載のそれぞれの例示化合物に変更した以外は同様にして、光電変換素子132〜135を得た。
<< Preparation of Photoelectric Conversion Elements 132 to 135 >>: Present Invention In the preparation of the photoelectric conversion element 131, photoelectric conversion was performed in the same manner except that the pyrene-based compound (C-1) was changed to each of the exemplified compounds shown in Table 10. Elements 132 to 135 were obtained.

Figure 2008153047
Figure 2008153047

(実施例11)
《太陽電池SC−131〜SC−135の作製》:本発明
光電変換素子131〜135の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−131〜SC−135を各々3ロットずつ作製した。
(Example 11)
<< Preparation of Solar Cells SC-131 to SC-135 >>: The Solar Cells SC-131 to SC-135 of the Present Invention are Attached with Leads after Encapsulating the Sides of the Photoelectric Conversion Elements 131 to 135 with Resin Three lots were prepared for each.

《太陽電池の光電変換効率の評価》
上記で得られた太陽電池SC−131〜SC−135の各々を実施例2と同様にして評価した。これによって得た光電変換効率の結果を表11に示す。
<< Evaluation of photoelectric conversion efficiency of solar cells >>
Each of the solar cells SC-131 to SC-135 obtained above was evaluated in the same manner as in Example 2. Table 11 shows the results of the photoelectric conversion efficiency obtained as described above.

Figure 2008153047
Figure 2008153047

表11より、本発明の太陽電池SC−131〜SC−135は高い光電変換特性を示し、前記一般式(1)〜(3)のピレン系化合物を太陽電池の光変換材料として用いることが有効であることを示している。また、本発明の太陽電池SC−131〜SC−135は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることを確認した。 From Table 11, the solar cells SC-131 to SC-135 of the present invention exhibit high photoelectric conversion characteristics, and it is effective to use the pyrene compounds of the general formulas (1) to (3) as the light conversion material of the solar cell. It is shown that. In addition, it was confirmed that the solar cells SC-131 to SC-135 of the present invention were excellent in stability because no decrease in photoelectric conversion efficiency was observed even after 100 hours of light irradiation of 100 mW / m 2 by a solar simulator. did.

(実施例12)
《光センサーの動作確認》:本発明
前記光電変換素子131〜135(対応する光サンサーNo.をLC−131〜LC−135とした)を用いて、光センサーとしての動作を以下の要領で確認した。
(Example 12)
<< Operation check of optical sensor >>: The present invention uses the photoelectric conversion elements 131 to 135 (corresponding optical sensor Nos. LC-131 to LC-135) to check the operation as an optical sensor in the following manner. did.

これらの光センサーLC−131〜LC−135の光照射による電流変化を前記実施例3と同様に評価し、光センサーとしての有用性を評価した。その結果を表12に示す。   Changes in current due to light irradiation of these photosensors LC-131 to LC-135 were evaluated in the same manner as in Example 3 to evaluate their usefulness as photosensors. The results are shown in Table 12.

Figure 2008153047
Figure 2008153047

表12より、光センサーLC−131〜LC−135の電流値の増加率は、前記比較例の光センサーLC−107に比し、優れて高いことが見られる。   From Table 12, it can be seen that the increase rate of the current values of the photosensors LC-131 to LC-135 is excellent and high as compared with the photosensor LC-107 of the comparative example.

本発明の光電変換素子の構造の一例を示す部分断面図である。It is a fragmentary sectional view which shows an example of the structure of the photoelectric conversion element of this invention.

符号の説明Explanation of symbols

1 透明電極
2 感光層
3 電荷移動層
4 対向電極
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Photosensitive layer 3 Charge transfer layer 4 Counter electrode

Claims (8)

下記一般式(1)〜(3)で表される少なくとも1つを含有するピレン系化合物を光電変換材料として含有することを特徴とする光電変換素子。
Figure 2008153047
(一般式(1)〜(3)中、Xは2価の芳香族基又は2価の複素環基を表し、Rは1価の芳香族基或いは複素環基を表す。)
A photoelectric conversion element comprising a pyrene compound containing at least one of the following general formulas (1) to (3) as a photoelectric conversion material.
Figure 2008153047
(In the general formulas (1) to (3), X represents a divalent aromatic group or a divalent heterocyclic group, and R represents a monovalent aromatic group or a heterocyclic group.)
前記ピレン系化合物の熱重量分析において、下記式で定義される400℃から450℃の質量減少率D400/450が、1.0%以下であることを特徴とする請求項1に記載の光電変換素子。
D400/450={(G400−G450)/Gi}×100
但し、Giは測定開始時の質量であり、G400、G450は400℃、450℃での質量である。
2. The photoelectric conversion according to claim 1, wherein, in the thermogravimetric analysis of the pyrene-based compound, a mass reduction rate D400 / 450 from 400 ° C. to 450 ° C. defined by the following formula is 1.0% or less. element.
D400 / 450 = {(G400−G450) / Gi} × 100
However, Gi is a mass at the start of measurement, and G400 and G450 are masses at 400 ° C. and 450 ° C.
前記ピレン系化合物が多段昇華精製により得られることを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the pyrene compound is obtained by multi-stage sublimation purification. 前記ピレン系化合物がトレイン昇華精製により得られることを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the pyrene compound is obtained by train sublimation purification. 前記ピレン系化合物が高沸点溶媒中で加熱処理して得られることを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the pyrene compound is obtained by heat treatment in a high boiling point solvent. 前記ピレン系化合物がアシッドペースト処理処理により得られることを特徴とする請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein the pyrene compound is obtained by an acid paste treatment. 請求項1〜6のいずれか1項に記載の光電変換素子を備えたことを特徴とする太陽電池。 A solar cell comprising the photoelectric conversion device according to claim 1. 請求項1〜6のいずれか1項に記載の光電変換素子を備えたことを特徴とする光センサー。 An optical sensor comprising the photoelectric conversion element according to claim 1.
JP2006339643A 2006-12-18 2006-12-18 Photoelectric conversion element, solar cell, and optical sensor Pending JP2008153047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339643A JP2008153047A (en) 2006-12-18 2006-12-18 Photoelectric conversion element, solar cell, and optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339643A JP2008153047A (en) 2006-12-18 2006-12-18 Photoelectric conversion element, solar cell, and optical sensor

Publications (1)

Publication Number Publication Date
JP2008153047A true JP2008153047A (en) 2008-07-03

Family

ID=39655017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339643A Pending JP2008153047A (en) 2006-12-18 2006-12-18 Photoelectric conversion element, solar cell, and optical sensor

Country Status (1)

Country Link
JP (1) JP2008153047A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119068A (en) * 2009-12-01 2011-06-16 Nitto Denko Corp Electrode for dye-sensitized solar cell and dye-sensitized solar cell
WO2011138935A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element
JP2011529455A (en) * 2008-07-29 2011-12-08 メルク パテント ゲーエムベーハー Compounds for electronic devices
CN110603257A (en) * 2017-07-21 2019-12-20 积水化学工业株式会社 Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light control material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529455A (en) * 2008-07-29 2011-12-08 メルク パテント ゲーエムベーハー Compounds for electronic devices
US9051233B2 (en) 2008-07-29 2015-06-09 Merck Patent Gmbh Compounds for electronic devices
US10074807B2 (en) 2008-07-29 2018-09-11 Merck Patent Gmbh Compounds for electronic devices
JP2011119068A (en) * 2009-12-01 2011-06-16 Nitto Denko Corp Electrode for dye-sensitized solar cell and dye-sensitized solar cell
WO2011138935A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element
CN110603257A (en) * 2017-07-21 2019-12-20 积水化学工业株式会社 Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light control material
JPWO2019017314A1 (en) * 2017-07-21 2020-06-25 積水化学工業株式会社 Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light control material
EP3656773A4 (en) * 2017-07-21 2021-03-03 Sekisui Chemical Co., Ltd. Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light-modulating material
US11078209B2 (en) 2017-07-21 2021-08-03 Sekisui Chemical Co., Ltd. Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light-modulating material
JP7064196B2 (en) 2017-07-21 2022-05-10 積水化学工業株式会社 Graphene or graphene oxide derivatives, fluorescent materials, phosphorescent materials, and dimming materials
CN110603257B (en) * 2017-07-21 2022-08-16 积水化学工业株式会社 Polycyclic aromatic hydrocarbon derivative, fluorescent material, phosphorescent material, and light control material

Similar Documents

Publication Publication Date Title
JP5106381B2 (en) Dye-sensitized photoelectric conversion element
JP5940089B2 (en) Naphthalene monoimide derivatives and their use as photosensitizers in solar cells and photodetectors
EP2352201B1 (en) Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
US8242355B2 (en) Photoelectric conversion element and solar cell
KR102571879B1 (en) Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion device using the same, and dye-sensitized solar cell
JP2018188617A (en) Composition, and photoelectric conversion element and imaging device that employ the same
Bae et al. Near-IR organic sensitizers containing squaraine and phenothiazine units for dye-sensitized solar cells
JP2018190964A (en) Photoelectric conversion film, photoelectric conversion element using the same, and imaging apparatus
JP5706846B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell using the same
KR20150123312A (en) Novel compound and photoelectric conversion element using same
EP2272920B1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP2008153047A (en) Photoelectric conversion element, solar cell, and optical sensor
JP2011060669A (en) Photoelectric conversion element, method of manufacturing the same, and metal phthalocyanine complex dye
Srinivasan et al. A diminutive modification in arylamine electron donors: Synthesis, photophysics and solvatochromic analysis–towards the understanding of dye sensitized solar cell performances
Dentani et al. Application of 9-substituted 3, 4-perylenedicarboxylic anhydrides as sensitizers for zinc oxide solar cell
KR102448440B1 (en) A sensitizing dye, a sensitizing dye for photoelectric conversion, a photoelectric conversion element using the same, and a dye-sensitized solar cell
JP2008181687A (en) Photoelectric conversion element, solar cell, and photosensor
CN116133444A (en) Photovoltaic device containing cyclobutane-based hole transport material
JP2017137264A (en) Organic compound, infrared light absorbing material and use thereof
Cebeci et al. Synthesis and photovoltaic properties of organic photosensitizer using D-π-D type 4, 5-diazafluorene ligand and derivatives for efficient dye-sensitized solar cell
JP2016193954A (en) Methine dye and dye-sensitized photoelectric conversion element using the same
JP2019530746A (en) Hole transporting organic molecules containing enamine groups for optoelectronics and photoelectrochemical devices
JP7486103B2 (en) Composition, photoelectric conversion element and imaging device
KR20230031149A (en) Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion element, and dye-sensitized solar cell
Park et al. Comparison between organic sensitizers containing stilbene and azo group as bridging unit for dye sensitized solar cells