JP2008151698A - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP2008151698A
JP2008151698A JP2006341283A JP2006341283A JP2008151698A JP 2008151698 A JP2008151698 A JP 2008151698A JP 2006341283 A JP2006341283 A JP 2006341283A JP 2006341283 A JP2006341283 A JP 2006341283A JP 2008151698 A JP2008151698 A JP 2008151698A
Authority
JP
Japan
Prior art keywords
pulse
target
received
cell
pulse compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006341283A
Other languages
Japanese (ja)
Inventor
Katsuhiko Murakami
克彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006341283A priority Critical patent/JP2008151698A/en
Publication of JP2008151698A publication Critical patent/JP2008151698A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To save timely resource by needing no transmission and receiving of short transmission pulses for covering a blind region. <P>SOLUTION: Radar equipment periodically, which transmits the transmission pulses modulating a frequency, pulse-compresses to receive reflection pulses reflected from targets and detects the positions of the targets together with the pulse compression result, includes: pulse compressors 4a-4e for a plurality of blind regions performing pulse compression processing by preparing reference function having band width of frequency modulation corresponding to different receiving pulse width by each and using the different reference function; and a plurality of target detectors 6a-6e for performing target detection processing by using the pulse compression processing result by the plurality of the pulse compressors 4a-4e. The radar equipment detects the targets in the blind region. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、目標物に対して電波を照射し、目標物から反射された電波をもとに目標物の位置を検出するレーダ装置に関するものである。   The present invention relates to a radar apparatus that irradiates a target with radio waves and detects the position of the target based on radio waves reflected from the target.

従来のレーダ装置は、距離性能と距離分解能を同時に満足させるために、長いパルス信号を送信し、受信された信号に対してパルス圧縮処理を行い、パルス圧縮後の信号に対して目標検出処理を行うことにより、目標有無の判定と目標距離の測定を行っている。すなわち従来のパルス圧縮を用いたレーダにおいては、遠距離の目標を探知する際には、平均送信電力を向上させるために、送信時間がパルス繰り返し周期の数10%の長パルスを用いている。長パルスを用いると、送信中は受信できないため、近距離に目標を検出できない大きなブラインド領域が発生する。例えばデューティ(送信パルス幅/パルス繰り返し周期)を30%とすると、覆域(インストルメントレンジ)の近距離側30%がブラインド領域となってしまう。   In order to satisfy the distance performance and distance resolution at the same time, the conventional radar device transmits a long pulse signal, performs pulse compression processing on the received signal, and performs target detection processing on the signal after pulse compression. By doing so, the presence / absence of the target is determined and the target distance is measured. That is, in a conventional radar using pulse compression, when detecting a target at a long distance, a long pulse having a transmission time of several tens of the pulse repetition period is used in order to improve the average transmission power. When a long pulse is used, since it cannot be received during transmission, a large blind region in which a target cannot be detected occurs in a short distance. For example, if the duty (transmission pulse width / pulse repetition period) is set to 30%, 30% on the short distance side of the covered area (instrument range) becomes a blind area.

このようなブラインド領域をカバーするために、特許文献1においては、長パルスの後に短パルスでチャープ周波数の異なるチャープ信号を付加した送信信号を使用し、この送信信号によるレーダ反射波を受信し、受信した反射波をフーリエ変換して2つの周波数帯域のスプクトラムに分割し、この2つのスプクトラムと長短それぞれのチャープ信号から作成した個別のフィルタ係数とのベクトル積をフーリエ逆変換することによって、各パルスの発射時間位置に対応した反射波を得るようにしている。   In order to cover such a blind region, in Patent Document 1, a transmission signal obtained by adding a chirp signal having a short pulse and a different chirp frequency after a long pulse is used, and a radar reflected wave by this transmission signal is received, The received reflected wave is Fourier-transformed and divided into two frequency band spectrums, and each pulse is obtained by inverse Fourier-transforming the vector product of the two spectrums and the individual filter coefficients created from the long and short chirp signals. The reflected wave corresponding to the launch time position is obtained.

特開2004−53569号公報JP 2004-53569 A

しかしながらこのような短い送信パルスを別に送信する特許文献1の手法では、ブラインド領域をカバーするための短い送信パルスの送受信に時間的なリソースを使ってしまい、送信パルスの繰り返し周期が長くなるなどの問題がある。   However, in the method of Patent Document 1 for separately transmitting such a short transmission pulse, a time resource is used for transmission / reception of a short transmission pulse for covering the blind region, and the repetition cycle of the transmission pulse becomes long. There's a problem.

本発明は、上記に鑑みてなされたものであって、ブラインド領域をカバーするための短い送信パルスの送受信を不要とすることで、時間的なリソースを節約することができるレーダ装置を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a radar apparatus that can save time resources by making it unnecessary to transmit and receive a short transmission pulse for covering a blind area. Objective.

上述した課題を解決し、目的を達成するために、本発明は、周波数変調した送信パルスを周期的に送信し、目標物から反射された反射パルスを受信してパルス圧縮し、このパルス圧縮結果をもとに目標物の位置を検出するレーダ装置において、それぞれが異なる受信パルス幅に対応する前記周波数変調の帯域幅を有する参照関数が用意され、該異なる参照関数を用いて前記パルス圧縮処理を行う複数のブラインド領域用のパルス圧縮器と、前記複数のパルス圧縮器によるパルス圧縮処理結果を用いて目標物検出処理を行う複数の目標検出器とを備え、送信パルスより短い幅の受信パルスしか受信できないブラインド領域における目標物を検出することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention periodically transmits a frequency-modulated transmission pulse, receives a reflected pulse reflected from a target, and performs pulse compression. A reference function having a frequency modulation bandwidth corresponding to a different received pulse width is prepared, and the pulse compression processing is performed using the different reference function. A plurality of blind region pulse compressors, and a plurality of target detectors that perform target detection processing using the result of pulse compression processing by the plurality of pulse compressors, and only receive pulses having a width shorter than the transmission pulse. It is characterized by detecting a target in a blind area where it cannot be received.

この発明によれば、異なる受信パルス幅に対応する周波数変調の帯域幅を有する参照関数を用いてパルス圧縮を行い、これらのパルス圧縮処理結果を用いてブラインド領域における目標物検出処理を行うようにしたので、ブラインド領域をカバーするための短い送信パルスの送受信が不要となり、そのための時間的なリソースを節約できるという効果がある。また、受信パルスと参照関数が同じ変調帯域をもつため正常なパルス圧縮が行え、変調帯域が異なるパルス圧縮を行った場合に生じるレンジサイドローブの増大が生じることはない。   According to the present invention, pulse compression is performed using a reference function having frequency modulation bandwidths corresponding to different received pulse widths, and target detection processing in the blind region is performed using these pulse compression processing results. As a result, transmission / reception of a short transmission pulse for covering the blind area becomes unnecessary, and there is an effect that time resources can be saved. Further, since the received pulse and the reference function have the same modulation band, normal pulse compression can be performed, and an increase in range side lobe that occurs when pulse compression with a different modulation band is performed does not occur.

以下に、本発明にかかるレーダ装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a radar apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、この発明に係るレーダ装置の実施の形態1の構成図である。図1に示すように、レーダ装置は、アンテナ1と、送受信機2と、ノーマルパルス圧縮器3と、複数(この場合5個)のエクリプス用パルス圧縮器4a〜4eと、ノーマル目標検出器5と、複数(この場合5個)の低分解能用目標検出器6a〜6eと、距離合成器7とを備えて構成される。このレーダ装置は、例えば艦船や海辺などに設置される。   FIG. 1 is a configuration diagram of a first embodiment of a radar apparatus according to the present invention. As shown in FIG. 1, the radar apparatus includes an antenna 1, a transceiver 2, a normal pulse compressor 3, a plurality of (5 in this case) Eclipse pulse compressors 4 a to 4 e, and a normal target detector 5. And a plurality of (in this case, five) low-resolution target detectors 6 a to 6 e and a distance synthesizer 7. This radar apparatus is installed on a ship or the seaside, for example.

次に、図1のレーダ装置の動作を説明する。送受信機2は、リニアFM変調(アップチャープ変調またはダウンチャープ変調)をかけた送信信号を発生し、アンテナ1へ出力する。アンテナ1は、空中に送信信号を放射し、目標物からの反射信号を受信する。アンテナ1によって受信された信号は、送受信機2へ出力され、送受信機2によって増幅、周波数変換され、ノーマルパルス圧縮器3及び複数のエクリプス用パルス圧縮器4a〜4eへ出力される。   Next, the operation of the radar apparatus of FIG. 1 will be described. The transceiver 2 generates a transmission signal subjected to linear FM modulation (up-chirp modulation or down-chirp modulation) and outputs the transmission signal to the antenna 1. The antenna 1 radiates a transmission signal in the air and receives a reflected signal from a target. A signal received by the antenna 1 is output to the transceiver 2, amplified and frequency-converted by the transceiver 2, and output to the normal pulse compressor 3 and the plurality of Eclipse pulse compressors 4 a to 4 e.

ノーマルパルス圧縮器3の動作を説明する。ノーマルパルス圧縮器3は、図2に示すように、近距離側のブラインド領域BLを除く距離範囲の信号、すなわち正常にパルス圧縮処理が行える距離範囲の信号に対してパルス圧縮処理を行う。ここで、送信パルスの送信期間においては反射信号を受信できないので、図4に示すような受信パルスの欠損(エクリプス)が発生する。ブラインド領域BLとは、送信パルスのパルス幅と同じ長さのパルスが受信できない距離範囲、別言すれば送信パルス幅より短いパルス幅の受信パルスしか受信できない距離範囲のことをいう。ノーマルパルス圧縮器3は、図2に示すように、送信パルスの後端から次の送信パルスの前端までの距離範囲の入力信号にリニアFM方式のパルス圧縮処理を行い、近距離側のブラインド領域BLを除く距離範囲(ブラインド領域BLの後端から次の送信パルスの前端までの距離範囲)のパルス圧縮後信号をノーマル目標検出器5へ出力する。   The operation of the normal pulse compressor 3 will be described. As shown in FIG. 2, the normal pulse compressor 3 performs a pulse compression process on a signal in a distance range excluding the blind area BL on the short distance side, that is, a signal in a distance range in which the pulse compression process can be normally performed. Here, since the reflected signal cannot be received during the transmission period of the transmission pulse, a reception pulse defect (Eclipse) as shown in FIG. 4 occurs. The blind region BL refers to a distance range in which a pulse having the same length as the transmission pulse width cannot be received, in other words, a distance range in which only a reception pulse having a pulse width shorter than the transmission pulse width can be received. As shown in FIG. 2, the normal pulse compressor 3 performs linear FM pulse compression processing on the input signal in the distance range from the rear end of the transmission pulse to the front end of the next transmission pulse, so that the blind region on the short distance side A pulse-compressed signal in a distance range excluding BL (distance range from the rear end of the blind area BL to the front end of the next transmission pulse) is output to the normal target detector 5.

エクリプス用パルス圧縮器4a〜4eの動作を説明する。エクリプス用パルス圧縮器4a〜4eは、全体としてみれば、図3に示すように、ブラインド領域BLの距離範囲の入力信号に対して、リニアFM方式のエクリプス用パルス圧縮処理を行い、ブラインド領域BLに対応する距離範囲のパルス圧縮後信号を低分解能用目標検出器6a〜6eへ出力する。   The operation of the Eclipse pulse compressors 4a to 4e will be described. As shown in FIG. 3, the Eclipse pulse compressors 4a to 4e perform linear FM Eclipse pulse compression processing on the input signal in the distance range of the blind region BL, as shown in FIG. Are output to the low-resolution target detectors 6a to 6e.

前述したように、ブラインド領域BLにおいては、受信パルスの欠損(エクリプス)が発生するので、このブラインド領域BLにおける目標物からの受信パルスは、送信パルスのパルス幅より短いものとなる。エクリプス用パルス圧縮処理は、図4に示すように、受信パルス幅によってリニアFM変調波の変調帯域Δfが異なることに着目し、受信距離毎に(受信パルス幅毎に)受信できる変調帯域幅Δfを予め計算し、これら各変調帯域に対応する複数の異なる参照関数を予め生成し、生成した複数の参照関数を用いてパルス圧縮処理を行うものである。   As described above, since a loss (Eclipse) of the reception pulse occurs in the blind region BL, the reception pulse from the target in the blind region BL is shorter than the pulse width of the transmission pulse. As shown in FIG. 4, the Eclipse pulse compression processing pays attention to the fact that the modulation band Δf of the linear FM modulated wave varies depending on the reception pulse width, and the modulation bandwidth Δf that can be received for each reception distance (each reception pulse width). Is calculated in advance, a plurality of different reference functions corresponding to these modulation bands are generated in advance, and pulse compression processing is performed using the generated plurality of reference functions.

図5は、各エクリプス用パルス圧縮器4a〜4eで行うパルス圧縮処理の概念を示したものであり、ハッチングで示した部分が受信パルス部分であり、破線で囲まれた部分がエクリプスである。また、受信パルスおよびエクリプス部分に記入した斜め直線は、図4と同様の変調帯域を示すものである。例えば、エクリプス用パルス圧縮器4aでは、0からΔtaの受信パルス幅に対応する変調帯域Δfaを有する参照関数を用いてパルス圧縮処理を行う。また、エクリプス用パルス圧縮器4bでは、0からΔtbの受信パルス幅に対応する変調帯域Δfbを有する参照関数を用いてパルス圧縮処理を行い、エクリプス用パルス圧縮器4cでは、0からΔtcの受信パルス幅に対応する変調帯域Δfcを有する参照関数を用いてパルス圧縮処理を行い、エクリプス用パルス圧縮器4dでは、0からΔtdの受信パルス幅に対応する変調帯域Δfdを有する参照関数を用いてパルス圧縮処理を行い、エクリプス用パルス圧縮器4eでは、0からΔteの受信パルス幅に対応する変調帯域Δfeを有する参照関数を用いてパルス圧縮処理を行う。この場合、受信パルス幅を5段階に分割したが、分割数は任意である。   FIG. 5 shows the concept of the pulse compression processing performed by each of the Eclipse pulse compressors 4a to 4e. The hatched portion is a received pulse portion, and the portion surrounded by a broken line is Eclipse. In addition, the diagonal straight line written in the received pulse and the Eclipse portion indicates the same modulation band as in FIG. For example, the Eclipse pulse compressor 4a performs pulse compression processing using a reference function having a modulation band Δfa corresponding to a received pulse width of 0 to Δta. The Eclipse pulse compressor 4b performs pulse compression using a reference function having a modulation band Δfb corresponding to the received pulse width of 0 to Δtb, and the Eclipse pulse compressor 4c receives received pulses of 0 to Δtc. Pulse compression processing is performed using a reference function having a modulation band Δfc corresponding to the width, and the Eclipse pulse compressor 4d performs pulse compression using a reference function having a modulation band Δfd corresponding to a received pulse width of 0 to Δtd. The Eclipse pulse compressor 4e performs pulse compression processing using a reference function having a modulation band Δfe corresponding to a received pulse width of 0 to Δte. In this case, the reception pulse width is divided into five stages, but the number of divisions is arbitrary.

エクリプス用パルス圧縮処理は、受信パルスと参照関数が同じ変調帯域をもつため正常なパルス圧縮が行え、変調帯域が異なるパルス圧縮を行った場合に生じる、レンジサイドローブの増大が生じることはない。ただし、受信パルス幅が小さくなるとこれに応じて参照関数の変調帯域幅が狭くなるため、パルス圧縮後のパルス幅は広くなり、距離分解能は劣化する。   In the Eclipse pulse compression processing, since the received pulse and the reference function have the same modulation band, normal pulse compression can be performed, and an increase in the range side lobe that occurs when pulse compression with a different modulation band is performed does not occur. However, if the reception pulse width is reduced, the modulation bandwidth of the reference function is reduced accordingly, so that the pulse width after pulse compression is increased and the distance resolution is degraded.

また、エクリプス用パルス圧縮処理では、送信パルス幅の全てが受信されていない受信パルスに対してパルス圧縮処理を行うため、パルス圧縮後の目標信号は、ノーマルパルス圧縮に比べ電力的には低下する。しかし、ブラインド領域BLは近距離に生じるものであり、スパンロスが小さいため、同じレーダ有効反射面積の目標に対する探知性能は劣化しない。   Further, in the Eclipse pulse compression processing, since the pulse compression processing is performed on the received pulse in which the entire transmission pulse width is not received, the target signal after the pulse compression is lower in power than the normal pulse compression. . However, since the blind region BL occurs at a short distance and the span loss is small, the detection performance for the target having the same radar effective reflection area does not deteriorate.

ノーマル目標検出器5は、入力信号に対して、S/N改善処理、不要信号除去処理を行った後、振幅検出処理を行い、ノーマル目標検出処理によって距離ごとに目標の有無を判定し、判定結果を距離合成器7へ出力する。   The normal target detector 5 performs an S / N improvement process and an unnecessary signal removal process on the input signal, then performs an amplitude detection process, and determines the presence / absence of a target for each distance by the normal target detection process. The result is output to the distance synthesizer 7.

ノーマル目標検出処理を図6に示す。ノーマル目標検出処理は、一般にCFARと呼ばれる処理であり、移動窓中の参照セル内の受信電力を用いてスレショルドレベルを決定し、注目セルの信号がスレショルドレベルよりも大きいかどうかで、目標の有無を判定するものである。すなわち、演算部10および11で各参照セル受信信号の和を計算し、演算部12で各参照セルの受信信号の合計値を参照セル数で除算し、演算部13で該除算結果に係数を乗じて閾値レベルを算出し、比較器14で注目セル内の信号を閾値レベルと比較することで目標の有無を判定する。注目セルと参照セルとの間に存在するガードセルは、目標信号が注目セルに存在するときに、目標信号の距離方向の裾野が参照セルに入り、スレショルドレベルが高くなることを防止するものであり、ノーマルパルス圧縮後のピークパルス幅相当のセル長とする。   The normal target detection process is shown in FIG. The normal target detection process is a process generally called CFAR. The threshold level is determined by using the received power in the reference cell in the moving window, and whether or not the target cell signal is larger than the threshold level. Is determined. That is, the arithmetic units 10 and 11 calculate the sum of the received signals of the reference cells, the arithmetic unit 12 divides the total value of the received signals of the reference cells by the number of reference cells, and the arithmetic unit 13 adds the coefficient to the division result. The threshold level is calculated by multiplication, and the comparator 14 determines the presence or absence of the target by comparing the signal in the target cell with the threshold level. The guard cell that exists between the target cell and the reference cell prevents the base level of the target signal from entering the reference cell and increasing the threshold level when the target signal exists in the target cell. The cell length is equivalent to the peak pulse width after normal pulse compression.

各低分解能目標検出器6a〜6eでは、ノーマル目標検出器5と同様に、入力信号に対して、S/N改善処理、不要信号除去処理を行った後、振幅検出処理を行い、低分解能目標検出出処理によって距離ごとに目標の有無を判定し、判定結果を距離合成器7へ出力する。   Each of the low resolution target detectors 6a to 6e, like the normal target detector 5, performs an S / N improvement process and an unnecessary signal removal process on the input signal, and then performs an amplitude detection process to obtain a low resolution target. The presence / absence of the target is determined for each distance by the detection output process, and the determination result is output to the distance synthesizer 7.

低分解能目標検出処理を図7に示す。すなわち、演算部20および21で各参照セル受信信号の和を計算し、演算部22で各参照セルの受信信号の合計値を参照セル数で除算し、演算部23で該除算結果に係数を乗じて閾値レベルを算出し、比較器24で注目セル内の信号を閾値レベルと比較することで目標の有無を判定する。低分解能目標検出処理とノーマル目標検出処理との違いは、ガードセル長のみである。低分解能目標検出処理では、ガードセル長を受信距離ごとに変化させ、エクリプス用パルス圧縮後のパルス幅相当のセル長とする。すなわち、複数の低分解能目標検出器6a〜6eにおける移動窓中のガードセルのセル長を受信パルス幅に応じてパルス圧縮後のパルス幅相当のセル長になるように異ならせている。具体的には、低分解能目標検出器6aは受信パルス幅が最も短いものを検出対象としているので、パルス圧縮後のピークパルス幅が最も広くなるので、ガードセルもこれに応じて長くし、また低分解能目標検出器6eは受信パルス幅が最も長いものを検出対象としているので、パルス圧縮後のピークパルス幅が最も狭くなるので、ガードセルもこれに応じて短くする。   The low resolution target detection processing is shown in FIG. That is, the arithmetic units 20 and 21 calculate the sum of the received signals of the reference cells, the arithmetic unit 22 divides the total value of the received signals of the reference cells by the number of reference cells, and the arithmetic unit 23 adds the coefficient to the division result. The threshold level is calculated by multiplication, and the comparator 24 compares the signal in the target cell with the threshold level to determine the presence or absence of the target. The only difference between the low resolution target detection process and the normal target detection process is the guard cell length. In the low-resolution target detection process, the guard cell length is changed for each reception distance to obtain a cell length corresponding to the pulse width after the Eclipse pulse compression. That is, the cell lengths of the guard cells in the moving window in the plurality of low resolution target detectors 6a to 6e are made different so as to become the cell length corresponding to the pulse width after pulse compression according to the received pulse width. Specifically, since the low-resolution target detector 6a is targeted for detection with the shortest received pulse width, the peak pulse width after pulse compression is the widest, so the guard cell is also lengthened accordingly and low. Since the resolution target detector 6e has the longest received pulse width as a detection target, the peak pulse width after the pulse compression becomes the narrowest, so the guard cell is also shortened accordingly.

距離合成器7は、ノーマル目標検出器5と複数の低分解能用目標検出器6a〜6eの出力を統合し、ブラインド領域BLを含む全距離範囲の目標検出結果を出力する。   The distance synthesizer 7 integrates the outputs of the normal target detector 5 and the plurality of low resolution target detectors 6a to 6e, and outputs target detection results for the entire distance range including the blind region BL.

本レーダ装置は、上記のように動作するため、従来ブラインドとなっていた領域の信号に対しても、レンジサイドローブの劣化しないパルス圧縮を行うことができる。また、従来ブラインドとなっていた領域の信号に対して目標検出を行う際に、圧縮後パルス幅が広くなることによって参照セル内に目標信号が混入し、スレショルドレベルの増大を招き、目標探知性能が劣化することを防止できる。これにより、長パルスを送信しても、従来必要であった、ブラインド領域をカバーするための短い送信パルスの送受信を行う必要がなく、そのための時間的なリソースを節約できるという効果がある。   Since this radar apparatus operates as described above, it is possible to perform pulse compression that does not deteriorate the range side lobe even for a signal in a region that has conventionally been blind. In addition, when performing target detection for signals in areas that were previously blind, the target signal is mixed into the reference cell due to the wide pulse width after compression, leading to an increase in the threshold level, and target detection performance. Can be prevented from deteriorating. As a result, even when a long pulse is transmitted, it is not necessary to transmit and receive a short transmission pulse for covering a blind area, which can save time resources.

以上のように、本発明にかかるレーダ装置は、周波数変調した送信パルスを周期的に送信し、目標物から反射された反射パルスを受信してパルス圧縮し、このパルス圧縮結果をもとに目標物の位置を検出するレーダ装置に有用である。   As described above, the radar apparatus according to the present invention periodically transmits a frequency-modulated transmission pulse, receives the reflected pulse reflected from the target, compresses the pulse, and based on the pulse compression result, This is useful for radar devices that detect the position of an object.

この発明の実施の形態によるレーダ装置を示す構成図である。It is a block diagram which shows the radar apparatus by embodiment of this invention. この発明の実施の形態によるノーマルパルス圧縮器の入出力距離範囲を示す図である。It is a figure which shows the input / output distance range of the normal pulse compressor by embodiment of this invention. この発明の実施の形態によるエクリプス用パルス圧縮器の入出力距離範囲を示す図である。It is a figure which shows the input / output distance range of the pulse compressor for Eclipse by embodiment of this invention. この発明の実施の形態によるエクリプス用パルス圧縮処理における参照関数の変調帯域を示す図である。It is a figure which shows the modulation band of the reference function in the pulse compression process for Eclipse by embodiment of this invention. この発明の実施の形態によるエクリプス用パルス圧縮処理におけるパルス圧縮処理を示す概念図である。It is a conceptual diagram which shows the pulse compression process in the pulse compression process for Eclipse by embodiment of this invention. この発明の実施の形態によるノーマル目標検出処理を説明する図である。It is a figure explaining the normal target detection process by embodiment of this invention. この発明の実施の形態による低分解能用目標検出処理を説明する図である。It is a figure explaining the target detection process for low resolution by embodiment of this invention.

符号の説明Explanation of symbols

1 アンテナ
2 送受信機
3 ノーマルパルス圧縮器
4a〜4e エクリプス用パルス圧縮器
5 ノーマル目標検出器
6a〜6e 低分解能用目標検出器
7 距離合成器
DESCRIPTION OF SYMBOLS 1 Antenna 2 Transceiver 3 Normal pulse compressor 4a-4e Eclipse pulse compressor 5 Normal target detector 6a-6e Low resolution target detector 7 Distance synthesizer

Claims (2)

周波数変調した送信パルスを周期的に送信し、目標物から反射された反射パルスを受信してパルス圧縮し、このパルス圧縮結果をもとに目標物の位置を検出するレーダ装置において、
それぞれが異なる受信パルス幅に対応する前記周波数変調の帯域幅を有する参照関数が用意され、該異なる参照関数を用いて前記パルス圧縮処理を行う複数のブラインド領域用のパルス圧縮器と、
前記複数のパルス圧縮器によるパルス圧縮処理結果を用いて目標物検出処理を行う複数の目標検出器と、
を備え、送信パルスより短い幅の受信パルスしか受信できないブラインド領域における目標物を検出することを特徴とするレーダ装置。
In a radar apparatus that periodically transmits a frequency-modulated transmission pulse, receives a reflected pulse reflected from a target, compresses the pulse, and detects the position of the target based on the pulse compression result.
A reference function having a frequency modulation bandwidth corresponding to a different received pulse width is prepared, and a plurality of blind region pulse compressors that perform the pulse compression processing using the different reference functions;
A plurality of target detectors for performing target object detection processing using a result of pulse compression processing by the plurality of pulse compressors;
And detecting a target in a blind region in which only a received pulse having a width shorter than a transmitted pulse can be received.
前記複数の目標検出器は、移動窓中の参照セル内の信号を用いて閾値を決定し、注目セルの信号が前記閾値よりも大きいか否かで、目標の有無を判定するCFAR処理を行うものであり、
前記複数の目標検出器における移動窓中の前記注目セルと参照セル間に存在するガードセルのセル長を受信パルス幅に応じてパルス圧縮後のパルス幅相当のセル長になるように異ならせたことを特徴とする請求項1に記載のレーダ装置。
The plurality of target detectors determine a threshold value using a signal in a reference cell in a moving window, and perform CFAR processing for determining the presence / absence of a target based on whether or not a signal of a target cell is larger than the threshold value. Is,
The cell length of the guard cell existing between the target cell and the reference cell in the moving window in the plurality of target detectors is changed to be a cell length corresponding to the pulse width after pulse compression according to the received pulse width. The radar apparatus according to claim 1.
JP2006341283A 2006-12-19 2006-12-19 Radar equipment Pending JP2008151698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341283A JP2008151698A (en) 2006-12-19 2006-12-19 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341283A JP2008151698A (en) 2006-12-19 2006-12-19 Radar equipment

Publications (1)

Publication Number Publication Date
JP2008151698A true JP2008151698A (en) 2008-07-03

Family

ID=39654005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341283A Pending JP2008151698A (en) 2006-12-19 2006-12-19 Radar equipment

Country Status (1)

Country Link
JP (1) JP2008151698A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158359A1 (en) * 2010-06-17 2011-12-22 三菱電機株式会社 Radar device
JP2012513583A (en) * 2008-12-23 2012-06-14 フエンテ,ヴィセンテ ディアス Method and apparatus for obtaining resistance to phase difference and Doppler effect in a communication detection system
JP2013253812A (en) * 2012-06-05 2013-12-19 Toshiba Corp Pulse radar device
WO2018207444A1 (en) * 2017-05-08 2018-11-15 三菱電機株式会社 Target detection device and target detection method
KR101975462B1 (en) * 2018-06-14 2019-05-07 엘아이지넥스원 주식회사 Method and Apparatus for Processing Radar Received Signal Based on Multi-Pulse Compression
KR102012386B1 (en) * 2018-04-16 2019-08-20 국방과학연구소 Apparatus for generating a deception signal for a pulse compression signal and method therefor
JP2019219314A (en) * 2018-06-21 2019-12-26 株式会社東芝 Pulse compression radar device and radar signal processing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513583A (en) * 2008-12-23 2012-06-14 フエンテ,ヴィセンテ ディアス Method and apparatus for obtaining resistance to phase difference and Doppler effect in a communication detection system
US9140783B2 (en) 2010-06-17 2015-09-22 Mitsubishi Electric Corporation Radar device
EP2584373A4 (en) * 2010-06-17 2014-11-26 Mitsubishi Electric Corp Radar device
EP2584373A1 (en) * 2010-06-17 2013-04-24 Mitsubishi Electric Corporation Radar device
JPWO2011158359A1 (en) * 2010-06-17 2013-08-15 三菱電機株式会社 Radar equipment
JP5595496B2 (en) * 2010-06-17 2014-09-24 三菱電機株式会社 Radar equipment
CN102947725A (en) * 2010-06-17 2013-02-27 三菱电机株式会社 Radar device
WO2011158359A1 (en) * 2010-06-17 2011-12-22 三菱電機株式会社 Radar device
JP2013253812A (en) * 2012-06-05 2013-12-19 Toshiba Corp Pulse radar device
WO2018207444A1 (en) * 2017-05-08 2018-11-15 三菱電機株式会社 Target detection device and target detection method
WO2018207234A1 (en) * 2017-05-08 2018-11-15 三菱電機株式会社 Target detection device and target detection method
JPWO2018207444A1 (en) * 2017-05-08 2019-11-07 三菱電機株式会社 Target detection apparatus and target detection method
US11231486B2 (en) 2017-05-08 2022-01-25 Mitsubishi Electric Corporation Target detection device and target detection method
KR102012386B1 (en) * 2018-04-16 2019-08-20 국방과학연구소 Apparatus for generating a deception signal for a pulse compression signal and method therefor
KR101975462B1 (en) * 2018-06-14 2019-05-07 엘아이지넥스원 주식회사 Method and Apparatus for Processing Radar Received Signal Based on Multi-Pulse Compression
JP2019219314A (en) * 2018-06-21 2019-12-26 株式会社東芝 Pulse compression radar device and radar signal processing method therefor

Similar Documents

Publication Publication Date Title
JP4120679B2 (en) Radar
KR102186191B1 (en) Radar sensing with interference suppression
US10078128B2 (en) Digital receiver techniques in radar detectors
US7460058B2 (en) Radar
JP3788322B2 (en) Radar
US8169359B2 (en) Pulse doppler radar device
JP2008151698A (en) Radar equipment
US9110152B2 (en) Method of determining threshold for detection of peak frequency in radar and object information producing apparatus using the same
EP2584373B1 (en) Radar device
US8125375B2 (en) Radar
JP2008232832A (en) Interference determination method and fmcw radar
US8565294B2 (en) Classification of interference
US7522093B2 (en) Radar for detecting a target by transmitting and receiving an electromagnetic-wave beam
US7427946B2 (en) Object sensing apparatus
JP2000241538A (en) Radar device
US10884114B2 (en) Radar device
US6825799B2 (en) Radar apparatus equipped with abnormality detection function
JPH10142322A (en) Fm radar apparatus
JP2021067461A (en) Radar device and radar signal processing method
JP2010169671A (en) Radar device
US20230258767A1 (en) Signal processing device, radar device, and radar operation method
US11237259B2 (en) Radar device
TWI825488B (en) Doppler radar apparatus and power saving method thereof
Wu et al. Detection performance improvement of FMCW Radar using frequency shift
JP3853642B2 (en) Automotive radar equipment