JP2008151289A - Sliding bearing - Google Patents

Sliding bearing Download PDF

Info

Publication number
JP2008151289A
JP2008151289A JP2006341100A JP2006341100A JP2008151289A JP 2008151289 A JP2008151289 A JP 2008151289A JP 2006341100 A JP2006341100 A JP 2006341100A JP 2006341100 A JP2006341100 A JP 2006341100A JP 2008151289 A JP2008151289 A JP 2008151289A
Authority
JP
Japan
Prior art keywords
semi
cylindrical portion
bearing body
bearing
slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341100A
Other languages
Japanese (ja)
Other versions
JP4940931B2 (en
Inventor
Masaki Saito
勝紀 斉藤
Hidetoshi Kaita
英俊 貝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2006341100A priority Critical patent/JP4940931B2/en
Publication of JP2008151289A publication Critical patent/JP2008151289A/en
Application granted granted Critical
Publication of JP4940931B2 publication Critical patent/JP4940931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/002Elastic or yielding linear bearings or bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/66Acetals, e.g. polyoxymethylene [POM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding bearing capable of shaping its exterior surface side without using an outer mold which is divided into sections corresponding to the number of slits to be shaped by the outer mold and facilitating manufacturing and reducing cost. <P>SOLUTION: The sliding bearing 1 comprises a bearing body 11, slits 14 and 15 extended from one end face 12 in the axial direction A of the bearing body 11 to the other end face 13 in the axial direction A of the bearing body 11, slits 16, 17, and 18 extended from the other end face 13 of the bearing body 11 to one end face 12 of the bearing body 11, a sliding surface 19 which is formed inside the bearing body 11 and partially partitioned by the slits 14 to 18, mounting grooves 21 formed on the outer surface 20 of the bearing body 11, and elastic rings 22 which are radially projected outwardly from the outer surface 20 of the bearing body 11 and fitted into the mounting grooves 21 so as to contract the diameter of the bearing body 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自動車のラック軸を直動自在に支承するためにラック軸等の軸とハウジングとの間に介在される滑り軸受を具備した軸受機構に関する。   The present invention relates to a bearing mechanism including a slide bearing interposed between a shaft such as a rack shaft and a housing in order to support, for example, a rack shaft of an automobile so as to be movable.

特開2004−347105号公報JP 2004-347105 A

自動車の操舵用のラック軸を直動自在に支承するラック軸用軸受としては合成樹脂からなる滑り軸受が使用されている。   A sliding bearing made of a synthetic resin is used as a bearing for a rack shaft that supports a rack shaft for steering of an automobile so that the rack shaft can move directly.

滑り軸受は、転がり軸受に比べ、価格が安く、振動吸収性に優れるという利点を有するものの、滑り軸受とラック軸との間に適度のクリアランス(軸受隙間)を必要とするため、ラック軸に生じる振動によりラック軸と滑り軸受との間に衝突音を発生し、自動車を運転する者に不快音として伝達されるという問題がある。この衝突音の発生を抑制すべく滑り軸受とラック軸との間のクリアランスを小さくすると、摩擦トルクが増大する上に、直動開始時と直動中との摩擦トルクの差が大きくなると共にラック軸の外径寸法誤差によるスティックスリップ現象等に起因して直動中において摩擦トルクの変動が生じる等の摩擦トルクの安定性を阻害する要因となる。   Sliding bearings have the advantages of lower cost and better vibration absorption than rolling bearings, but they require an appropriate clearance (bearing clearance) between the sliding bearing and the rack shaft, so they occur in the rack shaft. There is a problem that a collision noise is generated between the rack shaft and the sliding bearing due to the vibration and is transmitted as an unpleasant sound to a person driving the automobile. If the clearance between the slide bearing and the rack shaft is reduced to suppress the occurrence of this collision noise, the friction torque increases, and the difference between the friction torque at the start of linear motion and during the linear motion increases and the rack is increased. It becomes a factor that hinders the stability of the friction torque, such as a fluctuation of the friction torque during the linear motion due to a stick-slip phenomenon or the like due to an outer diameter error of the shaft.

また、ラック軸は、滑り軸受を介してハウジングに直動自在に支承されるのであるが、ハウジングの内径の真円度は通常それ程高くなく、斯かるハウジング内に合成樹脂からなる滑り軸受を圧入、固定すると、ハウジングの内径の真円度に影響されて滑り軸受が歪んでラック軸との間のクリアランスに差異が生じ、これによっても摩擦トルクの安定性を阻害することにもなる。   In addition, the rack shaft is supported by the housing through a sliding bearing so as to be able to move directly, but the roundness of the inner diameter of the housing is usually not so high, and a sliding bearing made of synthetic resin is press-fitted into the housing. When fixed, the sliding bearing is distorted due to the roundness of the inner diameter of the housing, resulting in a difference in clearance from the rack shaft, which also inhibits the stability of the friction torque.

特許文献1には、ラック軸との衝突音をなくし得る上に、直動摩擦抵抗を減少でき、しかも、直動開始時と直動中との直動摩擦抵抗の差を小さくできると共にラック軸の外径寸法誤差及びハウジングの内径の真円度等に影響されないで、安定した直動摩擦抵抗を得ることができ、而して、ラック軸を円滑に支承できてラック軸の直動をよりスムースに行わせることができる樹脂性の滑り軸受が提案されている。   In Patent Document 1, it is possible to eliminate the collision noise with the rack shaft, reduce the linear frictional resistance, reduce the difference in the linear frictional resistance between when the linear motion starts and during linear motion, and Stable linear motion friction resistance can be obtained without being affected by the diameter error and the roundness of the inner diameter of the housing. Thus, the rack shaft can be supported smoothly and the rack shaft can be moved more smoothly. Resin-type plain bearings that can be made have been proposed.

特許文献1において提案されている滑り軸受は、円筒状の軸受本体と、この軸受本体の軸方向の一方の端面から軸受本体の軸方向の他方の端面に向かって伸びた複数の一方のスリットと、軸受本体の他方の端面から軸受本体の一方の端面に向かって伸びた他方のスリットと、軸受本体の内側に設けられている摺動面と、軸受本体の外面に設けられた装着溝と、軸受本体の外面から径方向に部分的に突出すると共に軸受本体を縮径させるように装着溝に嵌装された弾性リングとを具備しているが、斯かる滑り軸受を中子及び外型をもって樹脂により一体成形する場合、装着溝が軸受本体の外面に設けられている結果、軸受本体の外面側を形成する外型を軸方向に抜くことができないために、外面側を成形する外型として分割された複数の外型が用いられて成形後にはこの分割された複数の外型を径方向外方向に引き抜いて軸受本体から除去している。   A sliding bearing proposed in Patent Document 1 includes a cylindrical bearing body, and a plurality of slits extending from one axial end surface of the bearing main body toward the other axial end surface of the bearing main body. The other slit extending from the other end surface of the bearing body toward the one end surface of the bearing body, the sliding surface provided inside the bearing body, the mounting groove provided on the outer surface of the bearing body, An elastic ring that partially protrudes radially from the outer surface of the bearing body and that is fitted in the mounting groove so as to reduce the diameter of the bearing body. When integrally molding with resin, the mounting groove is provided on the outer surface of the bearing body. As a result, the outer mold that forms the outer surface of the bearing body cannot be removed in the axial direction. Multiple outer molds divided After need be by molding is removed from the bearing body is pulled out the divided plurality of outer mold radially outward.

ところで、特許文献1で提案された滑り軸受では、一方及び他方のスリットが径方向においては放射方向に伸びている結果、成形後に軸受本体から外型を引き抜いて軸受本体から除去するためには、外型で形成すべきスリットの数に対応した個数に分割された外型を必要とする結果、製造が煩雑となる上に、コスト上昇の要因となる。   By the way, in the sliding bearing proposed in Patent Document 1, as a result of one and the other slits extending radially in the radial direction, in order to pull out the outer mold from the bearing body after molding and remove it from the bearing body, As a result of requiring the outer mold divided into the number corresponding to the number of slits to be formed by the outer mold, the manufacturing becomes complicated and the cost increases.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、外型で形成すべきスリットの数に対応した個数に分割された外型を用いなくても外面側を成形でき、而して、製造が容易であって、コスト低減を図り得る滑り軸受を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to provide an outer surface side without using an outer mold divided into a number corresponding to the number of slits to be formed by the outer mold. It is an object of the present invention to provide a plain bearing that can be molded and thus can be easily manufactured and can reduce costs.

本発明の滑り軸受は、円筒状の軸受本体と、この軸受本体に設けられていると共に軸受本体の軸方向の一方の端面から軸受本体の軸方向の他方の端面に向かって伸びた複数の一方のスリットと、軸受本体に設けられていると共に軸受本体の他方の端面から軸受本体の一方の端面に向かって伸びた他方のスリットと、軸受本体の内側に設けられていると共に両スリットにより軸心周りの方向において部分的に分断された摺動面と、軸受本体の外面に設けられた少なくとも一つの装着溝と、軸受本体の外面から径方向に部分的に突出すると共に軸受本体を縮径させるように装着溝に嵌装された弾性リングとを具備しており、ここで、複数個の一方のスリットのうちの少なくとも一つの一方のスリットは、軸受本体の中心を通る仮想直径線で分断される軸受本体の一方の半円筒部に設けられており、複数個の一方のスリットのうちの残余の一方のスリットは、軸受本体の中心を通る仮想直径線で分断される軸受本体の他方の半円筒部に設けられており、一方の半円筒部に設けられた少なくとも一つの一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の一方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の一方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びており、他方の半円筒部に設けられた残余の一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の他方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の他方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びている。   A sliding bearing according to the present invention includes a cylindrical bearing body and a plurality of ones provided on the bearing body and extending from one axial end surface of the bearing main body toward the other axial end surface of the bearing main body. And the other slit extending from the other end surface of the bearing body toward the one end surface of the bearing body, and the inner slit of the bearing body and the center of the shaft by the both slits. A sliding surface partially divided in the surrounding direction, at least one mounting groove provided on the outer surface of the bearing body, and partially protruding in the radial direction from the outer surface of the bearing body and reducing the diameter of the bearing body And at least one of the plurality of slits is divided by a virtual diameter line passing through the center of the bearing body. The remaining one of the plurality of slits is separated by a virtual diameter line passing through the center of the bearing body. At least one slit provided in one semi-cylindrical part has a width in a direction parallel to the virtual diameter line from the inside to the outside of one semi-cylindrical part of the bearing body. It extends in the direction perpendicular to the virtual diameter line so that it becomes the same width or gradually increases from the inside to the outside of one semi-cylindrical portion of the bearing body, The remaining one slit provided in the semi-cylindrical portion has a width in the direction parallel to the virtual diameter line so that the width is the same from the inside to the outside of the other semi-cylindrical portion of the bearing body, or the width is the bearing. Inside the other semi-cylindrical part of the main body To gradually increase brought toward its Luo outward, it extends in a direction perpendicular to the virtual diametrical line.

本発明の滑り軸受によれば、一方の半円筒部に設けられた少なくとも一つの一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の一方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の一方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びており、他方の半円筒部に設けられた残余の一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の一方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の他方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びているために、一方の半円筒部用の外型と他方の半円筒部用の外型との二つの分割された外型でもって両スリットと共に軸受本体を成形しても、成形後に容易に二つの分割された外型を軸受本体から外側に引き抜いて軸受本体から除去することができ、而して、外型で形成すべきスリットの数に対応した個数に分割された外型を用いなくても外面側を成形でき、複数のスリット及び装着溝を有した滑り軸受を容易に製造できてコスト低減を図り得る。   According to the sliding bearing of the present invention, at least one of the slits provided in the one semi-cylindrical portion has a width in a direction parallel to the virtual diameter line from the inside to the outside of the one semi-cylindrical portion of the bearing body. Extending in the direction perpendicular to the virtual diameter line so that the width becomes the same width or gradually increases from the inside to the outside of one semi-cylindrical portion of the bearing body, One of the remaining slits provided in the semi-cylindrical part of the bearing is such that the width in the direction parallel to the virtual diameter line is the same from the inside to the outside of the one semi-cylindrical part of the bearing body, or the width is Since it extends in the direction orthogonal to the virtual diameter line so that it gradually increases from the inside to the outside of the other half-cylindrical portion of the bearing body, Two divisions with the outer mold for the other semi-cylindrical part Even if the bearing body is molded with both slits using the outer mold, the two separated outer molds can be easily pulled out from the bearing body and removed from the bearing body after molding. The outer surface side can be molded without using an outer mold divided into the number corresponding to the number of slits to be formed in the mold, and a sliding bearing having a plurality of slits and mounting grooves can be easily manufactured to reduce costs. obtain.

本発明の滑り軸受では、一方の半円筒部に設けられた少なくとも一つの一方のスリットは、一方の半円筒部の内側から外側に向かう方向において平坦であって互いに平行に伸びる一方の半円筒部の一対の平坦壁で規定されていても、一方の半円筒部の内側から外側に向かう方向において平坦に伸びる一方の半円筒部の一方の平坦壁と、一方の半円筒部の内側から外側に向かうに連れて平坦壁から徐々に離反して平坦に伸びる一方の半円筒部の他方の平坦壁とで規定されていても、更には、一方の半円筒部の内側から外側に向かうに連れて互いに徐々に離反して平坦に伸びる一方の半円筒部の一対の平坦壁で規定されていてもよい。   In the sliding bearing of the present invention, at least one slit provided in one semi-cylindrical portion is flat in the direction from the inner side to the outer side of the one semi-cylindrical portion and extends in parallel with each other. Even though it is defined by a pair of flat walls, one flat wall of one semi-cylindrical portion that extends flat in the direction from the inside to the outside of one semi-cylindrical portion and from the inside to the outside of one semi-cylindrical portion Even if it is defined by the other flat wall of one semi-cylindrical portion that is gradually separated from the flat wall as it goes, and further extends toward the outside from one semi-cylindrical portion, It may be defined by a pair of flat walls of one semi-cylindrical portion that is gradually separated from each other and extends flat.

他方の半円筒部に設けられた残余の一方のスリットは、他方の半円筒部の内側から外側に向かう方向において平坦であって互いに平行に伸びる他方の半円筒部の一対の平坦壁で規定されていても、他方の半円筒部の内側から外側に向かう方向において平坦に伸びる他方の半円筒部の一方の平坦壁と、他方の半円筒部の内側から外側に向かうに連れて平坦壁から徐々に離反して平坦に伸びる他方の半円筒部の他方の平坦壁とで規定されていても、更には、他方の半円筒部の内側から外側に向かうに連れて互いに徐々に離反して平坦に伸びる他方の半円筒部の一対の平坦壁で規定されていてもよい。   The remaining one slit provided in the other semi-cylindrical portion is defined by a pair of flat walls of the other semi-cylindrical portion that are flat in the direction from the inner side to the outer side of the other semi-cylindrical portion and extend parallel to each other. However, one flat wall of the other semi-cylindrical portion that extends flat in the direction from the inner side to the outer side of the other semi-cylindrical portion, and gradually from the flat wall as it goes from the inner side to the outer side of the other semi-cylindrical portion. And the other flat wall of the other semi-cylindrical portion that extends flatly apart from each other, and further, gradually flatten away from each other as it goes from the inside to the outside of the other semi-cylindrical portion. You may be prescribed | regulated by a pair of flat wall of the other semi-cylinder part to extend.

本発明の滑り軸受では、弾性リングが装着された軸受本体がハウジングの内周面に挿入されると、軸受本体の外周面から部分的に突出する弾性リングは、ハウジングの内周面に対して締め代をもって弾性変形し、当該弾性変形によりハウジングの内径の真円度等の寸法誤差を吸収できる。また、軸受本体の両端面に対して開口端を有したスリットにより縮径自在となっている本発明の軸受本体は、弾性リングによって縮径されてその内部に挿通されたラック軸を摺動面を介して締め付けるので、ラック軸との間のクリアランスを零にできて、ラック軸との間の衝突をなくし得、結果として不快音として伝達される衝突音の発生をなくし得る上に、直動開始時と直動中との直動摩擦抵抗の差を小さくできると共にラック軸の外径寸法誤差を吸収できて安定した直動摩擦抵抗を得ることができる。   In the sliding bearing of the present invention, when the bearing main body to which the elastic ring is attached is inserted into the inner peripheral surface of the housing, the elastic ring partially protruding from the outer peripheral surface of the bearing main body is It is elastically deformed with a tightening margin, and the elastic deformation can absorb dimensional errors such as the roundness of the inner diameter of the housing. Further, the bearing body of the present invention, which can be reduced in diameter by a slit having an open end with respect to both end faces of the bearing body, has a sliding surface on a rack shaft which is reduced in diameter by an elastic ring and inserted into the inside thereof. Since the clearance between the rack shaft and the rack shaft can be reduced to zero, the collision with the rack shaft can be eliminated. As a result, the generation of the collision noise transmitted as an unpleasant noise can be eliminated, and the linear motion can be achieved. It is possible to reduce the difference between the linear frictional resistance at the start and the linear motion, and to absorb the outer diameter dimension error of the rack shaft, thereby obtaining a stable linear frictional resistance.

滑り軸受は、好ましい例では、ラック軸等が貫通するハウジング内に装着されるが、装着溝に嵌装された弾性リングは、弾性リングの弾性係数にもよるが、その外径が、ハウジングの内周面の径よりも0.3mmから1.0mm程度大きいものを、その内径が、装着溝の底面の径よりも0.3mmから1.0mm程度小さいものを好ましい例として提示し得るが、要は、ハウジングの内周面に対して締め代をもち、かつ摺動面を介してラック軸等の軸を適度な弾性力で締め付けて摺動面とラック軸等の軸との間のクリアランスを零とする程度に、軸受本体の外周面から突出すると共に軸受本体を縮径させるようになっていればよく、具体的には、少なくとも、外径がハウジングの内周面の径よりも大きく、内径が溝の底面の径よりも小さければよい。   In a preferred example, the slide bearing is mounted in a housing through which a rack shaft or the like passes. However, the outer diameter of the elastic ring fitted in the mounting groove depends on the elastic coefficient of the elastic ring. Although a thing larger by about 0.3 mm to 1.0 mm than the diameter of the inner peripheral surface can be presented as a preferred example, the inner diameter is about 0.3 mm to 1.0 mm smaller than the diameter of the bottom surface of the mounting groove. In short, the clearance between the sliding surface and the shaft such as the rack shaft is obtained by tightening the shaft such as the rack shaft with an appropriate elastic force through the sliding surface with respect to the inner peripheral surface of the housing. It is only necessary to project from the outer peripheral surface of the bearing main body and reduce the diameter of the bearing main body so as to make zero the diameter. Specifically, at least the outer diameter is larger than the diameter of the inner peripheral surface of the housing. If the inner diameter is smaller than the diameter of the bottom of the groove Good.

いずれの弾性リングも、断面円形状の所謂Oリングであってよいが、その他の断面X字形状、断面U字形状又は断面台形状のリング等であってもよく、弾性リングを形成する弾性材料としては、天然ゴム、合成ゴム、弾性を有する熱可塑性合成樹脂、例えばポリエステルエラストマーのいずれであってもよい。   Any of the elastic rings may be a so-called O-ring having a circular cross section, but may be another X-shaped cross-section, a U-shaped cross-section or a trapezoidal ring, and the like. For example, any of natural rubber, synthetic rubber, and thermoplastic synthetic resin having elasticity, for example, polyester elastomer may be used.

本発明においては、軸受本体には一方及び他方のスリットの夫々を複数個設けてもよく、一方及び他方のスリットは、軸心周りの方向において交互に配されていてもよく、各摺動面は、軸受本体の両端面から軸方向において所定距離だけ離れた位置間で軸受本体の内側に設けられいてもよく、また、好ましい例では、軸受本体の外周面には軸方向において互いに離間された少なくとも二つの装着溝が設けられており、各装着溝に軸受本体の外周面から部分的に突出すると共に軸受本体を縮径させるように弾性リングが嵌装されており、軸方向において二つの装着溝間に摺動面の軸方向の中央部が位置しており、摺動面は、軸方向において二つの装着溝間で軸受本体の内側に設けられていてもよく、また軸方向において二つの装着溝を越えて軸受本体の内側に設けられていてもよい。   In the present invention, the bearing body may be provided with a plurality of one and other slits, and the one and other slits may be alternately arranged in the direction around the axis, and each sliding surface May be provided on the inner side of the bearing body at a position separated from the both end faces of the bearing body by a predetermined distance in the axial direction, and in a preferred example, the outer peripheral surface of the bearing body is spaced apart from each other in the axial direction. At least two mounting grooves are provided, and each mounting groove partially protrudes from the outer peripheral surface of the bearing body, and an elastic ring is fitted so as to reduce the diameter of the bearing body. An axial center portion of the sliding surface is located between the grooves, and the sliding surface may be provided on the inner side of the bearing body between the two mounting grooves in the axial direction. Shaft over mounting groove It may be provided on the inside of the body.

装着溝に嵌装される弾性リングは、装着溝の容積よりも大きな体積を有しているとよい。弾性リングは、装着溝において隙間なしに軸受本体にぴったりと配されている必要はなく、軸受本体に対して若干の隙間をもって装着溝に嵌装されていてもよく、軸受本体の外周面から径方向に部分的に突出する弾性リングの部位がハウジングによって正規に押圧された場合に変形して装着溝を完全に埋めるようになっていてもよく、或いはこのようにハウジングによって正規に押圧された場合にも軸受本体に対して若干の隙間をもつ一方、意図しない外力によりハウジングがラック軸に対して正規の位置から偏心して部分的にハウジングによって強く押圧された場合には斯かる過度に押圧された部位で変形して溝を完全に埋めて剛性を増大し、これによりハウジングの意図しない偏心に逆らうようになっていてもよい。   The elastic ring fitted in the mounting groove preferably has a volume larger than the volume of the mounting groove. The elastic ring does not need to be arranged closely to the bearing body without a gap in the mounting groove, and may be fitted in the mounting groove with a slight gap with respect to the bearing body, and the diameter from the outer peripheral surface of the bearing body The part of the elastic ring that partially protrudes in the direction may be deformed when it is properly pressed by the housing to completely fill the mounting groove, or when it is normally pressed by the housing in this way However, when the housing is eccentrically deviated from the normal position with respect to the rack shaft due to an unintended external force and partially pressed strongly by the housing, the bearing body is pressed excessively. It may be deformed at the site to completely fill the groove to increase rigidity, thereby countering unintentional eccentricity of the housing.

滑り軸受は、好ましくは、ハウジングに対して自由端部となる部位での軸受本体の径方向の最大厚みの0.3%から10%の幅をもったクリアランスがハウジングの内周面と自由端部となる部位での軸受本体の外周面との間に生じるようになっている。クリアランスが0.3%よりも少ないと、意図しない外力によりハウジングがラック軸に対して正規の位置から偏心した場合に、ハウジングが容易に軸受本体に接触して異常音等を発生させる虞があり、クリアランスが10%よりも大きいと、意図しない外力によりハウジングがラック軸に対して正規の位置から容易に大きく偏心して軸受機構による調心効果を低下させる虞があり、したがって、上記のようになっていると、ハウジングの軸受本体への接触を回避できてハウジングをラック軸に対して正規の位置に確実に保持できる。   The slide bearing preferably has a clearance having a width of 0.3% to 10% of the maximum radial thickness of the bearing body at a portion that becomes a free end with respect to the housing, and the inner peripheral surface of the housing and the free end. It is generated between the outer peripheral surface of the bearing main body at the part to be a part. If the clearance is less than 0.3%, there is a risk that the housing will easily come into contact with the bearing body and generate abnormal noise when the housing is decentered from the normal position with respect to the rack shaft due to unintended external force. If the clearance is larger than 10%, the housing may be easily decentered from the normal position with respect to the rack shaft by an unintended external force, which may reduce the alignment effect of the bearing mechanism. As a result, contact of the housing with the bearing main body can be avoided, and the housing can be reliably held at a normal position with respect to the rack shaft.

本発明の滑り軸受では、ラック軸の軸方向の移動においてハウジング内に対するハウジング外の空気の大きな出入を確保するために、ハウジング内とハウジング外とを連通させる通気用溝を軸受本体の外面側又は内面側に設けてもよい。   In the sliding bearing according to the present invention, in order to ensure a large flow of air outside the housing with respect to the inside of the housing in the axial movement of the rack shaft, a ventilation groove for communicating the inside of the housing with the outside of the housing is provided on the outer surface side of the bearing body or It may be provided on the inner surface side.

好ましい例では、軸受本体の内側は、軸受本体の一方の端面から摺動面の軸方向の一端まで伸びると共に徐々に縮径した一方のテーパ面と、軸受本体の他方の端面から摺動面の軸方向の他端まで伸びると共に徐々に縮径した他方のテーパ面とを具備しており、ここで、一方のテーパ面は、他方のテーパ面の軸方向長より長い軸方向長を有していてもよく、一方のテーパ面は、他方のテーパ面のテーパ角度より大きなテーパ角度を有していてもよく、斯かるテーパ面を有した滑り軸受によれば、一方のテーパ面側から軸受本体をラック軸の外周面へ容易に装着できる結果、組付け工数を大幅に削減できる。   In a preferred example, the inner side of the bearing body extends from one end surface of the bearing body to one end in the axial direction of the sliding surface and gradually decreases in diameter, and from the other end surface of the bearing body to the sliding surface. The other tapered surface extending to the other end in the axial direction and gradually decreasing in diameter, wherein one tapered surface has an axial length longer than the axial length of the other tapered surface. The one taper surface may have a taper angle larger than the taper angle of the other taper surface, and according to the slide bearing having such a taper surface, the bearing body from the one taper surface side. As a result, the assembly man-hours can be greatly reduced.

本発明において、軸受本体は、合成樹脂から一体成形されたものであり、軸受本体を形成する合成樹脂としては、ポリアセタール樹脂、ポリアミド樹脂、ポリエチレン樹脂及び四ふっ化エチレン樹脂などの熱可塑性合成樹脂を好ましい例として挙げることができる。   In the present invention, the bearing main body is integrally molded from a synthetic resin, and the synthetic resin forming the bearing main body is a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, polyethylene resin and tetrafluoroethylene resin. It can be mentioned as a preferred example.

本発明によれば、外型で形成すべきスリットの数に対応した個数に分割された外型を用いなくても外面側を成形でき、而して、製造が容易であって、コスト低減を図り得る滑り軸受を提供することができる。   According to the present invention, the outer surface side can be molded without using the outer mold divided into the number corresponding to the number of slits to be formed by the outer mold, and thus the manufacturing is easy and the cost can be reduced. A planable sliding bearing can be provided.

以下、図を参照して本発明及びその好ましい実施例を説明する。なお、本発明はこれらの例に何等限定されないのである。   Hereinafter, the present invention and preferred embodiments thereof will be described with reference to the drawings. The present invention is not limited to these examples.

図1から図4において、本例の滑り軸受1は、ハウジング2の円筒状の内周面3とハウジング2内に挿着されるラック軸4の円筒状の外周面5との間に介在されるようになっている。   1 to 4, the sliding bearing 1 of this example is interposed between a cylindrical inner peripheral surface 3 of a housing 2 and a cylindrical outer peripheral surface 5 of a rack shaft 4 that is inserted into the housing 2. It has become so.

滑り軸受1は、円筒状の軸受本体11と、軸受本体11に設けられていると共に軸受本体11の軸方向Aの一方の端面12から軸受本体11の軸方向Aの他方の端面13に向かって伸びた2個一組の合計2組のスリット14及び15と、軸受本体11に設けられていると共に軸受本体11の他方の端面13から軸受本体11の一方の端面12に向かって伸びた2個一組の合計3組のスリット16、17及び18と、軸受本体11の内側に設けられていると共にスリット14から18により軸心周りの方向Bにおいて部分的に分断された円筒状の摺動面19と、軸受本体11の外面20に設けられた少なくとも一つ、本例では2つの装着溝21と、軸受本体11の外面20から径方向外方向に部分的に突出すると共に軸受本体11を縮径させるように装着溝21の夫々に嵌装された弾性リング22とを具備している。   The sliding bearing 1 is provided in the cylindrical bearing body 11 and the one end face 12 in the axial direction A of the bearing body 11 toward the other end face 13 in the axial direction A of the bearing body 11. Two sets of two slits 14 and 15 in total, each of which extends, and two slits 14 and 15 provided in the bearing body 11 and extending from the other end face 13 of the bearing body 11 toward the one end face 12 of the bearing body 11 A set of three slits 16, 17 and 18 in total, and a cylindrical sliding surface provided inside the bearing body 11 and partially divided in the direction B around the axis by the slits 14 to 18 19 and at least one provided on the outer surface 20 of the bearing body 11, in this example, two mounting grooves 21 and the outer surface 20 of the bearing body 11 partially protrude radially outward and the bearing body 11 is shrunk. Diameter And comprising an elastic ring 22 which is fitted to each of the urchin mounting groove 21.

スリット14及び15により方向Bにおいて分断されていると共にハウジング2の円環状の係止溝23に嵌合される鍔部24を一体的に有した軸受本体11は、その内側に、摺動面19に加えて、端面12から端面13に向かって軸方向Aに伸びると共に徐々に縮径して摺動面19の一方の端縁で終端し、しかも、スリット14及び15により方向Bにおいて分断されたテーパ面31と、端面13から端面12に向かって軸方向Aに伸びると共に徐々に縮径して摺動面19の他方の環状の端縁で終端し、しかも、スリット16から18により方向Bにおいて分断されたテーパ面32と、端面12から軸方向Aに伸びてスリット16、17及び18の軸方向Aの一端の夫々に接続された通気用溝33とを具備しており、摺動面19の一方の端縁は、スリット14及び15並びに通気用溝33により方向Bにおいて分断されており、摺動面19の他方の端縁は、スリット16から18により方向Bにおいて分断されている。   The bearing body 11 integrally having a flange 24 which is divided in the direction B by the slits 14 and 15 and is fitted into the annular locking groove 23 of the housing 2 has a sliding surface 19 inside thereof. In addition, it extends in the axial direction A from the end surface 12 toward the end surface 13 and gradually contracts in diameter to terminate at one edge of the sliding surface 19, and is divided in the direction B by the slits 14 and 15. The taper surface 31 extends in the axial direction A from the end surface 13 toward the end surface 12 and gradually decreases in diameter to terminate at the other annular edge of the sliding surface 19, and in the direction B by the slits 16 to 18. It includes a divided tapered surface 32 and a ventilation groove 33 extending in the axial direction A from the end surface 12 and connected to one end in the axial direction A of the slits 16, 17 and 18. One edge of Are divided in the direction B by the slits 14 and 15 and the ventilation grooves 33, the other edge of the sliding surface 19 is divided in the direction B by the slits 16 18.

端面12において開口すると共に軸方向Aにおいて端面13側の装着溝21を超えて伸びた複数個の一方のスリット14及び15のうちの少なくとも一つの一方のスリット、本例では2個のスリット14の夫々は、軸受本体11の中心Oを通る仮想直径線41で分断される軸受本体11の一方の半円筒部42に設けられており、複数個の一方のスリット14及び15のうちの残余の一方のスリット、本例では2個のスリット15の夫々は、軸受本体11の中心Oを通る仮想直径線41で分断される軸受本体11の他方の半円筒部43に設けられている。   At least one of the plurality of slits 14 and 15 that open in the end surface 12 and extend in the axial direction A beyond the mounting groove 21 on the end surface 13 side, in this example, two slits 14. Each is provided in one semi-cylindrical portion 42 of the bearing body 11 which is divided by a virtual diameter line 41 passing through the center O of the bearing body 11, and one of the remaining ones of the plurality of slits 14 and 15. Each of the two slits 15 in this example is provided in the other semi-cylindrical portion 43 of the bearing body 11 that is divided by a virtual diameter line 41 passing through the center O of the bearing body 11.

半円筒部42に設けられた2個のスリット14の夫々は、仮想直径線41に対して平行な方向Cにおける幅Dが半円筒部42の内側44から外側45に向かうに連れて徐々に大きくなるように、仮想直径線41に対して直交する方向Eに伸びており、スリット14の夫々は、仮想直径線41に対して直交する方向Eであって半円筒部42の内側44から外側45に向かう方向に平坦に伸びる半円筒部42の平坦壁46と、半円筒部42の内側44から外側45に向かうに連れて平坦壁46から徐々に離反して平坦に伸びる半円筒部42の平坦壁48とで規定されている。   Each of the two slits 14 provided in the semi-cylindrical portion 42 has a width D in the direction C parallel to the virtual diameter line 41 gradually increasing from the inner side 44 to the outer side 45 of the semi-cylindrical portion 42. As shown, the slits 14 extend in a direction E perpendicular to the virtual diameter line 41, and each of the slits 14 is in the direction E perpendicular to the virtual diameter line 41 from the inner side 44 to the outer side 45 of the semi-cylindrical portion 42. The flat wall 46 of the semi-cylindrical portion 42 that extends flatly in the direction toward the flat surface, and the flat surface of the semi-cylindrical portion 42 that gradually extends away from the flat wall 46 as it goes from the inner side 44 to the outer side 45 of the semi-cylindrical portion 42. It is defined by the wall 48.

2個のスリット14の夫々は、中心Oを通ると共に仮想直径線41に直交した直交仮想直径線49に関して夫々略45°の角度をもって対称に配されている。   Each of the two slits 14 is symmetrically arranged with an angle of about 45 ° with respect to the orthogonal virtual diameter line 49 that passes through the center O and is orthogonal to the virtual diameter line 41.

半円筒部43に設けられた2個のスリット15の夫々は、2個のスリット14の夫々と同様に、仮想直径線41に対して平行な方向Cにおける幅Dが半円筒部43の内側54から外側55に向かうに連れて徐々に大きくなるように、仮想直径線41に対して直交する方向Eに伸びており、スリット15の夫々は、仮想直径線41に対して直交する方向Eであって半円筒部43の内側54から外側55に向かう方向に平坦に伸びる半円筒部43の平坦な平坦壁56と、半円筒部43の内側54から外側55に向かうに連れて平坦壁56から徐々に離反して伸びる半円筒部43の平坦壁58とで規定されている。   Each of the two slits 15 provided in the semi-cylindrical portion 43 has the width D in the direction C parallel to the virtual diameter line 41 in the same manner as each of the two slits 14. The slits 15 extend in the direction E perpendicular to the virtual diameter line 41 so as to gradually increase from the first to the outer side 55, and each of the slits 15 is in the direction E perpendicular to the virtual diameter line 41. The flat flat wall 56 of the semi-cylindrical portion 43 that extends flat in the direction from the inner side 54 to the outer side 55 of the semi-cylindrical portion 43 and gradually from the flat wall 56 toward the outer side 55 from the inner side 54 of the semi-cylindrical portion 43. And the flat wall 58 of the semi-cylindrical portion 43 that extends away from each other.

2個のスリット15の夫々は、2個のスリット14の夫々と同様に、中心Oを通ると共に仮想直径線41に直交した直交仮想直径線49に関して夫々略45°の角度をもって対称に配されていると共に仮想直径線41に関して2個のスリット14の夫々に対して対称に配されている。   Each of the two slits 15 is symmetrically arranged with an angle of about 45 ° with respect to the orthogonal virtual diameter line 49 that passes through the center O and is orthogonal to the virtual diameter line 41, similarly to each of the two slits 14. In addition, the virtual diameter line 41 is symmetrically arranged with respect to each of the two slits 14.

半円筒部42に設けられた2個のスリット16の夫々は、仮想直径線41に対して直交する方向Eであって軸受本体11の半円筒部42の内側44から外側45に向かう方向に、当該仮想直径線41に対して平行な方向Cにおける幅dが同幅となるように伸びており、スリット16の夫々は、仮想直径線41に対して直交する方向Eに平坦であって互いに平行に伸びている半円筒部42の一対の平坦壁61で規定されており、方向Bにおいて2個のスリット14の間に配されていると共に直交仮想直径線49に関して夫々略20°の角度をもって対称に配されている。   Each of the two slits 16 provided in the semi-cylindrical portion 42 is in a direction E perpendicular to the virtual diameter line 41 and from the inner side 44 to the outer side 45 of the semi-cylindrical portion 42 of the bearing body 11. The width d in the direction C parallel to the virtual diameter line 41 extends to be the same width, and each of the slits 16 is flat in the direction E orthogonal to the virtual diameter line 41 and parallel to each other. Are defined by a pair of flat walls 61 of the semi-cylindrical portion 42 extending in the direction B, are arranged between the two slits 14 in the direction B, and are symmetrical with respect to the orthogonal virtual diameter line 49 at an angle of approximately 20 °, respectively. It is arranged in.

半円筒部43に設けられた2個のスリット17の夫々は、仮想直径線41に対して直交する方向Eであって軸受本体11の半円筒部43の内側54から外側55に向かう方向に、当該仮想直径線41に対して平行な方向Cにおける幅dが同幅となるように伸びており、スリット17の夫々は、仮想直径線41に対して直交する方向Eに平坦であって互いに平行に伸びている半円筒部43の一対の平坦壁62で規定されており、方向Bにおいて2個のスリット15の間に配されていると共に直交仮想直径線49に関して夫々略20°の角度をもって対称に配されている。   Each of the two slits 17 provided in the semi-cylindrical portion 43 is in a direction E perpendicular to the virtual diameter line 41 and from the inner side 54 to the outer side 55 of the semi-cylindrical portion 43 of the bearing body 11. The width d in the direction C parallel to the virtual diameter line 41 extends to be the same width, and each of the slits 17 is flat in the direction E perpendicular to the virtual diameter line 41 and parallel to each other. Are defined by a pair of flat walls 62 of the semi-cylindrical portion 43 extending in the direction B, are arranged between the two slits 15 in the direction B, and are symmetrical with respect to the orthogonal virtual diameter line 49 at an angle of approximately 20 °, respectively. It is arranged in.

半円筒部42と半円筒部43との境界部に設けられた2個のスリット18の夫々は、仮想直径線41に対して平行な方向Cであって半円筒部42と半円筒部43との境界部における軸受本体11の半円筒部42及び43の内側44及び54から外側45及び55に向かう方向に、当該仮想直径線41に対して直交する方向Eにおける幅dが同幅となるように伸びており、スリット18の夫々は、仮想直径線41に対して平行な方向Cに平坦であって互いに平行に伸びている半円筒部42及び43の一対の平坦壁63で規定されており、スリット18の夫々は、仮想直径線41上であって直交仮想直径線49に関して夫々略90°の角度をもって対称に配されている。   Each of the two slits 18 provided at the boundary between the semi-cylindrical portion 42 and the semi-cylindrical portion 43 is in a direction C parallel to the virtual diameter line 41, and the semi-cylindrical portion 42, the semi-cylindrical portion 43, The width d in the direction E perpendicular to the virtual diameter line 41 is the same in the direction from the inner side 44 and 54 to the outer side 45 and 55 of the semi-cylindrical portions 42 and 43 of the bearing body 11 at the boundary portion of Each of the slits 18 is defined by a pair of flat walls 63 of semi-cylindrical portions 42 and 43 that are flat in a direction C parallel to the virtual diameter line 41 and extend parallel to each other. Each of the slits 18 is arranged symmetrically on the virtual diameter line 41 and at an angle of about 90 ° with respect to the orthogonal virtual diameter line 49.

スリット16の軸方向Aの一端の夫々に接続された通気用溝33は、底面64と、平坦壁61に連接されていると共に方向Eに平坦であって互いに平行に伸びている一対の平坦壁65とによって規定されており、スリット17の軸方向Aの一端の夫々に接続された通気用溝33は、底面66と、平坦壁62に連接されていると共に方向Eに平坦であって互いに平行に伸びている一対の平坦壁67とによって規定されており、スリット18の軸方向Aの一端の夫々に接続された通気用溝33は、底面68と、平坦壁63に連接されていると共に当該平坦壁63と同じ方向であって互いに平行に伸びている一対の平坦壁69とによって規定されている。   The ventilation groove 33 connected to each one end of the slit 16 in the axial direction A is connected to the bottom surface 64 and the flat wall 61 and is flat in the direction E and extends in parallel with each other. The ventilation groove 33 connected to each one end in the axial direction A of the slit 17 is connected to the bottom surface 66 and the flat wall 62 and is flat in the direction E and parallel to each other. A ventilation groove 33 defined by a pair of flat walls 67 extending in the direction of the slit 18 and connected to one end in the axial direction A of the slit 18 is connected to the bottom surface 68 and the flat wall 63 and It is defined by a pair of flat walls 69 extending in parallel to each other in the same direction as the flat wall 63.

鍔部24を含めて軸受本体11は、合成樹脂、例えばポリアセタール樹脂、ポリアミド樹脂などの熱可塑性合成樹脂から一体成形されたものである。   The bearing body 11 including the flange portion 24 is integrally molded from a synthetic resin, for example, a thermoplastic synthetic resin such as a polyacetal resin or a polyamide resin.

軸受本体11の外面20に軸方向Aにおいて互いに離間されて設けられている二つの装着溝21は、軸受本体11の外面20側での環状の三つの突起71、72及び73により規定されており、突起71、72及び73における軸受本体11の外面20の径は、夫々互いに等しい一方、ハウジング2の内周面3の径より小さく、突起71、72及び73における軸受本体11の外面20とハウジング2の内周面3との間に環状の隙間(クリアランス)74が生じるようになっている。   Two mounting grooves 21 provided on the outer surface 20 of the bearing body 11 so as to be separated from each other in the axial direction A are defined by three annular projections 71, 72 and 73 on the outer surface 20 side of the bearing body 11. The diameters of the outer surface 20 of the bearing body 11 at the protrusions 71, 72 and 73 are equal to each other, but smaller than the diameter of the inner peripheral surface 3 of the housing 2, and the outer surface 20 of the bearing body 11 at the protrusions 71, 72 and 73 and the housing. An annular gap (clearance) 74 is formed between the inner peripheral surface 3 and the inner peripheral surface 3.

Oリングからなる各弾性リング22は、ハウジング2の内周面3に嵌装されていない一方、装着溝21に装着されている状態で、ハウジング2の内周面3の径よりも大きい外径を有し、ハウジング2の内周面3に嵌装されていない上に、装着溝21にも装着されていない状態で、装着溝21の底面75の径よりも小さい内径を有しており、而して、軸受本体11の突起71、72及び73における外面20から部分的に突出すると共に軸受本体11を縮径させるように装着溝21に嵌装されている弾性リング22の夫々は、嵌装される装着溝21の容積よりも大きな体積を有しており、締め付けられて変形して隙間なしに装着溝21に充填されても部分的に外面20から突出するようになっている。   Each elastic ring 22 made of an O-ring is not fitted on the inner circumferential surface 3 of the housing 2, but has an outer diameter larger than the diameter of the inner circumferential surface 3 of the housing 2 while being fitted in the mounting groove 21. And has an inner diameter smaller than the diameter of the bottom surface 75 of the mounting groove 21 in a state where it is not mounted on the inner peripheral surface 3 of the housing 2 and is not mounted on the mounting groove 21. Thus, each of the elastic rings 22 that protrude partially from the outer surface 20 of the projections 71, 72, and 73 of the bearing body 11 and that are fitted in the mounting groove 21 so as to reduce the diameter of the bearing body 11 is fitted. It has a volume larger than the volume of the mounting groove 21 to be mounted, and even if it is tightened and deformed to fill the mounting groove 21 without a gap, it partially protrudes from the outer surface 20.

各弾性リング22は、その外周面で締め代をもってハウジング2の内周面3に嵌装されており、軸受本体11は、その外面20とハウジング2の内周面3との間に隙間74をもってハウジング2の内周面3に配されていると共に摺動面19を介してラック軸4を弾性リング22の弾性力をもって当該ラック軸4を軸方向Aに移動自在に締め付けてラック軸4の外周面5に装着されている。   Each elastic ring 22 is fitted to the inner peripheral surface 3 of the housing 2 with a tightening margin at the outer peripheral surface, and the bearing body 11 has a gap 74 between the outer surface 20 and the inner peripheral surface 3 of the housing 2. The rack shaft 4 is arranged on the inner peripheral surface 3 of the housing 2 and the rack shaft 4 is movably clamped in the axial direction A by the elastic force of the elastic ring 22 via the sliding surface 19 to Mounted on surface 5.

軸方向Aに移動自在なラック軸4は、一方ではステアリングホイールに、他方では車輪に夫々連結機構を介して連結されており、斯かる連結機構は知られているので説明を省く。   The rack shaft 4 that is movable in the axial direction A is connected to the steering wheel on the one hand and to the wheel on the other side via a connecting mechanism, and such a connecting mechanism is known and will not be described.

以上の滑り軸受1では、軸受本体11の外面20の装着溝21に弾性リング22を嵌装することにより、スリット14から18を有する軸受本体11は、弾性リング22の弾性圧縮力により縮径されており、こうして軸受本体11が縮径された状態の滑り軸受1はハウジング2内に配置され、その後、軸受本体11の内側にラック軸4を挿入することにより、軸受本体11は弾性リング22の弾性圧縮力に抗してスリット14から18により拡径すると共にラック軸4はその外周面5で弾性リング22の弾性圧縮力をもって摺動面19により締め付けられることになる一方、各弾性リング22は、その外周面で締め代をもってハウジング2の内周面3に接触されることになり、ハウジング2の円環状の係止溝23に嵌合された鍔部24により滑り軸受1は、ハウジング2に対して位置決めされることになる。   In the sliding bearing 1 described above, the elastic ring 22 is fitted into the mounting groove 21 of the outer surface 20 of the bearing main body 11, so that the bearing main body 11 having the slits 14 to 18 is reduced in diameter by the elastic compressive force of the elastic ring 22. Thus, the sliding bearing 1 in a state where the diameter of the bearing body 11 is reduced is disposed in the housing 2, and then the rack shaft 4 is inserted inside the bearing body 11, whereby the bearing body 11 has the elastic ring 22. While the diameter of the rack shaft 4 is increased by the slits 14 to 18 against the elastic compressive force, the rack shaft 4 is tightened by the sliding surface 19 with the elastic compressive force of the elastic ring 22 on the outer peripheral surface 5. The outer peripheral surface is brought into contact with the inner peripheral surface 3 of the housing 2 with a tightening margin, and the flange portion 24 fitted in the annular locking groove 23 of the housing 2 is used. Bearing 1 Ri will be positioned with respect to the housing 2.

したがって、摺動面19とラック軸4の外周面5との間のクリアランスは零となり、軸受本体11とラック軸4との間の衝突をなくし得、結果として運転者に不快音として伝達される衝突音の発生はなく、軸受本体11の装着溝21に嵌装された弾性リング22はハウジング2の内周面3に対して締め代をもっているので、弾性リング22は弾性変形し、当該弾性変形によりハウジング2の内径の真円度等の寸法誤差を吸収できる。   Therefore, the clearance between the sliding surface 19 and the outer peripheral surface 5 of the rack shaft 4 becomes zero, and the collision between the bearing body 11 and the rack shaft 4 can be eliminated, and as a result, it is transmitted to the driver as an unpleasant sound. No impact sound is generated, and the elastic ring 22 fitted in the mounting groove 21 of the bearing body 11 has a tightening margin with respect to the inner peripheral surface 3 of the housing 2, so that the elastic ring 22 is elastically deformed and the elastic deformation is performed. Thus, dimensional errors such as the roundness of the inner diameter of the housing 2 can be absorbed.

滑り軸受1ではまた、ハウジング2内とハウジング2外とをスリット16、17及び18並びに通気用溝33を介して連通させることができるので、ラック軸4の軸方向Aの移動においてハウジング2内に対するハウジング2外の空気の出入を確保できる。   Also in the slide bearing 1, the inside of the housing 2 and the outside of the housing 2 can be communicated with each other through the slits 16, 17 and 18 and the ventilation groove 33, so that the rack shaft 4 moves in the axial direction A with respect to the housing 2. The entrance and exit of air outside the housing 2 can be secured.

加えて、滑り軸受1では、2つのスリット14は、幅Dが半円筒部42の内側44から外側45に向かうに連れて徐々に大きくなるように方向Eに伸びており、2つのスリット15は、幅Dが半円筒部43の内側54から外側55に向かうに連れて漸次大きくなるように方向Eに伸びているために、半円筒部42用の外型と半円筒部43用の外型との二つの分割された外型でもって両スリット14及び15と共に軸受本体11の外面20側を成形しても、成形後に容易に両外型を方向Eにおいて互いに逆に夫々引き抜いて軸受本体11から除去することができる。滑り軸受1において、軸受本体11の摺動面19を含む内面側及びスリット16、17及び18並びに通気用溝33は、軸受本体11の外面20側の成形と共に、スリット16、17及び18並びに通気用溝33に相当する突起を有した成形用の中子を外型内に配置して成形され、成形後に中子を軸受本体11内から端面13側に引き抜くことにより成形される。   In addition, in the sliding bearing 1, the two slits 14 extend in the direction E so that the width D gradually increases from the inner side 44 to the outer side 45 of the semicylindrical portion 42, and the two slits 15 are Since the width D extends in the direction E so as to gradually increase from the inner side 54 to the outer side 55 of the semi-cylindrical portion 43, the outer die for the semi-cylindrical portion 42 and the outer die for the semi-cylindrical portion 43. Even if the outer surface 20 side of the bearing body 11 is molded together with the slits 14 and 15 with the two divided outer molds, the outer molds are easily pulled out in the direction E in the direction E after the molding. Can be removed. In the sliding bearing 1, the inner surface side including the sliding surface 19 of the bearing body 11 and the slits 16, 17 and 18 and the ventilation groove 33 are formed on the outer surface 20 side of the bearing body 11, and the slits 16, 17 and 18 and the ventilation groove. The molding core having a projection corresponding to the groove 33 is formed in the outer mold and molded by drawing the core from the bearing body 11 toward the end face 13 after molding.

したがって、滑り軸受1を製造するには、軸受本体11の外面20側を成形する半円筒部42用の外型と半円筒部43用の外型との2つの外型と軸受本体11の内面側を成形する中子との成形型を準備すればよいことになり、而して、複数のスリット14及び15並びに装着溝21を有した滑り軸受1を容易に製造できてコスト低減を図り得る。   Therefore, in order to manufacture the sliding bearing 1, two outer molds, that is, the outer mold for the semi-cylindrical portion 42 and the outer mold for the semi-cylindrical section 43 that form the outer surface 20 side of the bearing body 11, and the inner surface of the bearing body 11. Therefore, it is only necessary to prepare a mold with a core that molds the side, and thus the slide bearing 1 having the plurality of slits 14 and 15 and the mounting groove 21 can be easily manufactured, and the cost can be reduced. .

上記の滑り軸受1では、通気用溝33を端面12から軸方向Aに伸びてスリット16、17及び18の軸方向Aの一端の夫々に接続させて軸受本体11の内側に設けたが、これに代えて又はこれと共に、図5から図8に示すように、軸受本体11の外側に設けてもよい。即ち、図5から図8に示す滑り軸受1では、通気用溝81は、端面12から軸方向Aに伸びてスリット16及び17の軸方向Aの一端の夫々に接続されていると共に鍔部24を通って軸受本体11の外面20に設けられており、斯かる通気用溝81は、底面82と、平坦壁61及び62に連接されていると共に方向Eに平坦であって互いに平行に伸びている一対の平坦壁83とによって規定されている。   In the sliding bearing 1 described above, the ventilation groove 33 extends in the axial direction A from the end surface 12 and is connected to one end in the axial direction A of the slits 16, 17 and 18, and is provided inside the bearing body 11. Instead of or together with this, as shown in FIGS. 5 to 8, it may be provided outside the bearing body 11. That is, in the sliding bearing 1 shown in FIGS. 5 to 8, the ventilation groove 81 extends in the axial direction A from the end face 12 and is connected to one end of the slits 16 and 17 in the axial direction A and the flange 24. And the ventilation groove 81 is connected to the bottom surface 82 and the flat walls 61 and 62 and is flat in the direction E and extends in parallel with each other. And a pair of flat walls 83.

ハウジング2の円筒状の内周面3とハウジング2内に挿着されるラック軸4の円筒状の外周面5との間に介在されるようになっていると共に通気用溝81を具備する図5から図8に示す滑り軸受1でも、図1から図4に記載の滑り軸受1と同様に、軸受本体11とラック軸4との間の衝突をなくし得、結果として運転者に不快音として伝達される衝突音の発生はなく、弾性リング22の弾性変形によりハウジング2の内径の真円度等の寸法誤差を吸収でき、また、ハウジング2内とハウジング2外とをスリット16及び17並びに通気用溝81を介して連通させることができるので、ラック軸4の軸方向Aの移動においてハウジング2内に対するハウジング2外の空気の出入を確保でき、しかも、通気用溝81用の突起を有した半円筒部42用の外型と半円筒部43用の外型との二つの分割された外型でもって両スリット14及び15並びに通気用溝81と共に軸受本体11の外面側を成形しても、成形後に容易に両外型を方向Eに互いに逆に夫々引き抜いて軸受本体11から除去することができる。   The figure is provided between the cylindrical inner peripheral surface 3 of the housing 2 and the cylindrical outer peripheral surface 5 of the rack shaft 4 inserted into the housing 2 and has a ventilation groove 81. Also in the sliding bearing 1 shown in FIGS. 5 to 8, the collision between the bearing body 11 and the rack shaft 4 can be eliminated similarly to the sliding bearing 1 described in FIGS. 1 to 4, resulting in an unpleasant sound for the driver. No transmitted collision noise is generated, and dimensional errors such as the roundness of the inner diameter of the housing 2 can be absorbed by the elastic deformation of the elastic ring 22, and the slits 16 and 17 and the ventilation between the inside of the housing 2 and the outside of the housing 2 are ventilated. Since the air can be communicated via the groove 81, the movement of the rack shaft 4 in the axial direction A can ensure the flow of air outside the housing 2 with respect to the inside of the housing 2, and the projection for the ventilation groove 81 is provided. Semi-cylindrical part 42 Even if the outer surface side of the bearing main body 11 is molded together with the slits 14 and 15 and the ventilation groove 81 with two outer molds of the outer mold and the outer mold for the semi-cylindrical portion 43, it is easy after molding. Both outer molds can be pulled out in the direction E in opposite directions and removed from the bearing body 11.

図1から図4に示す滑り軸受1では、通気用溝33を軸受本体11の内側であって端面12側にスリット16、17及び18に連通させて設け、図5から図8に示す滑り軸受1では、通気用溝81を軸受本体11の外側であって端面12側にスリット16及び17に連通させて設けたが、これに代えて又はこれと共に、図9から図12に示すように、通気用溝85及び86を軸受本体11の外側であって端面13側にスリット14及び15に連通させて設けてもよい。即ち、図9から図12に示す滑り軸受1では、通気用溝85は、端面13から軸方向Aに伸びてスリット14の軸方向Aの他端の夫々に接続されていると共に軸受本体11の外面20に設けられており、斯かる通気用溝85は、傾斜した底面87と、平坦壁46に連接されていると共に方向Eに平坦に伸びている平坦壁88と、平坦壁48に連接されていると共に方向Eに伸びている平坦壁89とによって規定されて、端面13から端面12に向かうに連れて徐々に深くなっており、通気用溝86は、端面13から軸方向Aに伸びてスリット15の軸方向Aの他端の夫々に接続されていると共に軸受本体11の外面20に設けられており、斯かる通気用溝86は、傾斜した底面90と、平坦壁56に連接されていると共に方向Eに平坦に伸びている平坦壁91と、平坦壁58に連接されていると共に方向Eに伸びている平坦壁92とによって規定されて、端面13から端面12に向かうに連れて徐々に深くなっている。   In the sliding bearing 1 shown in FIGS. 1 to 4, the ventilation groove 33 is provided inside the bearing body 11 on the end face 12 side so as to communicate with the slits 16, 17 and 18, and the sliding bearing shown in FIGS. 5 to 8. 1, the ventilation groove 81 is provided outside the bearing body 11 and in communication with the slits 16 and 17 on the end face 12 side, but instead of or together with this, as shown in FIGS. 9 to 12, The ventilation grooves 85 and 86 may be provided outside the bearing body 11 and on the end face 13 side so as to communicate with the slits 14 and 15. That is, in the plain bearing 1 shown in FIGS. 9 to 12, the ventilation groove 85 extends from the end surface 13 in the axial direction A and is connected to each of the other ends of the slit 14 in the axial direction A and The ventilation groove 85 provided on the outer surface 20 is connected to the inclined bottom surface 87, the flat wall 88 connected to the flat wall 46 and extending flat in the direction E, and the flat wall 48. Defined by a flat wall 89 extending in the direction E and gradually becoming deeper from the end face 13 toward the end face 12, and the ventilation groove 86 extends in the axial direction A from the end face 13. The slit 15 is connected to each of the other ends in the axial direction A of the slit 15 and is provided on the outer surface 20 of the bearing body 11. The ventilation groove 86 is connected to the inclined bottom surface 90 and the flat wall 56. And flat in direction E A flat wall 91 which are, defined by a flat wall 92 extending in the direction E along with being connected to the flat wall 58, is gradually deeper him to towards the end surface 12 from the end face 13.

ハウジング2の円筒状の内周面3とハウジング2内に挿着されるラック軸4の円筒状の外周面5との間に介在されるようになっていると共に通気用溝85及び86を具備する図9から図12に示す滑り軸受1でも、図1から図4及び図5から図8に記載の滑り軸受1と同様に、軸受本体11とラック軸4との間の衝突をなくし得、結果として運転者に不快音として伝達される衝突音の発生はなく、弾性リング22の弾性変形によりハウジング2の内径の真円度等の寸法誤差を吸収でき、また、ハウジング2内とハウジング2外とをスリット14及び15並びに通気用溝85及び86を介して連通させることができるので、ラック軸4の軸方向Aの移動においてハウジング2内に対するハウジング2外の空気の出入を確保でき、しかも、通気用溝85用の突起を有した半円筒部42用の外型と通気用溝86用の突起を有した半円筒部43用の外型との二つの分割された外型でもって両スリット14及び15並びに通気用溝85及び86と共に軸受本体11の外面側を成形しても、成形後に容易に両外型を方向Eに互いに逆に夫々引き抜いて当該両外型を軸受本体11から除去することができる。   The housing 2 is interposed between the cylindrical inner peripheral surface 3 of the housing 2 and the cylindrical outer peripheral surface 5 of the rack shaft 4 inserted into the housing 2, and has ventilation grooves 85 and 86. The sliding bearing 1 shown in FIGS. 9 to 12 can eliminate the collision between the bearing body 11 and the rack shaft 4 in the same manner as the sliding bearing 1 described in FIGS. 1 to 4 and FIGS. 5 to 8. As a result, no collision sound is transmitted to the driver as an unpleasant sound, and the elastic deformation of the elastic ring 22 can absorb dimensional errors such as the roundness of the inner diameter of the housing 2, and the inside of the housing 2 and the outside of the housing 2 can be absorbed. Can be communicated with each other through the slits 14 and 15 and the ventilation grooves 85 and 86, so that the movement of the air outside the housing 2 with respect to the inside of the housing 2 can be secured in the movement of the rack shaft 4 in the axial direction A. For ventilation The two slits 14 and 15 are divided into two outer molds: an outer mold for the semi-cylindrical portion 42 having a projection for 85 and an outer mold for the semi-cylindrical portion 43 having a projection for the ventilation groove 86. In addition, even if the outer surface side of the bearing body 11 is molded together with the ventilation grooves 85 and 86, both the outer molds can be easily pulled out in the direction E and removed from the bearing body 11 after molding. it can.

スリット14及び15としては、軸受本体11の半円筒部42及び43の内側44及び54から外側45及び55に向かうに連れて同幅となるようになっていても、方向Eであって互いに平行に伸びている半円筒部42及び43の一対の平坦壁で規定されていてもよく、更には、内側44及び54から外側45及び55に向かうに連れて互いに徐々に離反して平坦に伸びる半円筒部42及び43の一対の平坦壁で規定されていてもよい。   Even though the slits 14 and 15 have the same width from the inner side 44 and 54 of the semi-cylindrical portions 42 and 43 of the bearing body 11 toward the outer side 45 and 55, they are parallel to each other in the direction E. May be defined by a pair of flat walls of the semi-cylindrical portions 42 and 43 extending further in the direction from the inner side 44 and 54 to the outer side 45 and 55. It may be defined by a pair of flat walls of the cylindrical portions 42 and 43.

本発明の好ましい例において滑り軸受の図2に示すI−I線矢視断面説明図である。It is II sectional view explanatory drawing shown in FIG. 2 of a sliding bearing in the preferable example of this invention. 図1に示す例の滑り軸受の右側面説明図である。It is right side explanatory drawing of the slide bearing of the example shown in FIG. 図1に示す例の滑り軸受の左側面説明図である。It is a left side explanatory view of the slide bearing of the example shown in FIG. 図1に示す例において滑り軸受の平面説明図である。FIG. 2 is an explanatory plan view of a sliding bearing in the example shown in FIG. 1. 本発明の好ましい例において滑り軸受の図6に示すV−V線矢視断面説明図である。FIG. 7 is a cross-sectional explanatory view taken along the line VV shown in FIG. 6 of the sliding bearing in a preferred example of the present invention. 図5に示す例の滑り軸受の右側面説明図である。It is right side explanatory drawing of the sliding bearing of the example shown in FIG. 図5に示す例の滑り軸受の左側面説明図である。It is left side explanatory drawing of the slide bearing of the example shown in FIG. 図5に示す例において滑り軸受の平面説明図である。FIG. 6 is an explanatory plan view of a sliding bearing in the example shown in FIG. 5. 本発明の好ましい例において滑り軸受の図10に示すIX−IX線矢視断面説明図である。FIG. 11 is a cross-sectional explanatory view taken along line IX-IX of FIG. 10 showing a sliding bearing in a preferred example of the present invention. 図9に示す例の滑り軸受の右側面説明図である。It is right side explanatory drawing of the slide bearing of the example shown in FIG. 図9に示す例の滑り軸受の左側面説明図である。FIG. 10 is a left side explanatory view of the slide bearing of the example shown in FIG. 9. 図9に示す例において滑り軸受の平面説明図である。FIG. 10 is an explanatory plan view of a plain bearing in the example shown in FIG. 9.

符号の説明Explanation of symbols

1 滑り軸受
11 軸受本体
12、13 端面
14、15、16、17、18 スリット
19 摺動面
20 外面
21 装着溝
22 弾性リング
DESCRIPTION OF SYMBOLS 1 Sliding bearing 11 Bearing main body 12, 13 End surface 14, 15, 16, 17, 18 Slit 19 Sliding surface 20 Outer surface 21 Mounting groove 22 Elastic ring

Claims (7)

円筒状の軸受本体と、この軸受本体に設けられていると共に軸受本体の軸方向の一方の端面から軸受本体の軸方向の他方の端面に向かって伸びた複数の一方のスリットと、軸受本体に設けられていると共に軸受本体の他方の端面から軸受本体の一方の端面に向かって伸びた他方のスリットと、軸受本体の内側に設けられていると共に両スリットにより軸心周りの方向において部分的に分断された摺動面と、軸受本体の外面に設けられた少なくとも一つの装着溝と、軸受本体の外面から径方向に部分的に突出すると共に軸受本体を縮径させるように装着溝に嵌装された弾性リングとを具備しており、複数個の一方のスリットのうちの少なくとも一つの一方のスリットは、軸受本体の中心を通る仮想直径線で分断される軸受本体の一方の半円筒部に設けられており、複数個の一方のスリットのうちの残余の一方のスリットは、軸受本体の中心を通る仮想直径線で分断される軸受本体の他方の半円筒部に設けられており、一方の半円筒部に設けられた少なくとも一つの一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の一方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の一方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びており、他方の半円筒部に設けられた残余の一方のスリットは、仮想直径線に対して平行な方向における幅が軸受本体の他方の半円筒部の内側から外側まで同幅となるように又は当該幅が軸受本体の他方の半円筒部の内側から外側に向かうに連れて徐々に大きくなるように、仮想直径線に対して直交する方向に伸びている滑り軸受。   A cylindrical bearing body, a plurality of slits provided on the bearing body and extending from one axial end surface of the bearing main body toward the other axial end surface of the bearing main body, and the bearing main body And the other slit extending from the other end surface of the bearing body toward the one end surface of the bearing body, and provided in the bearing body and partially in the direction around the axis by both slits. The separated sliding surface, at least one mounting groove provided on the outer surface of the bearing body, and a part of the bearing body that protrudes radially from the outer surface of the bearing body and fits in the mounting groove so as to reduce the diameter of the bearing body. One half cylindrical portion of the bearing body that is divided by a virtual diameter line passing through the center of the bearing body. The remaining one of the plurality of slits is provided in the other semi-cylindrical portion of the bearing body that is divided by an imaginary diameter line passing through the center of the bearing body. At least one of the slits provided in the semi-cylindrical part has a width in a direction parallel to the virtual diameter line so that the width is the same from the inside to the outside of the one semi-cylindrical part of the bearing body, or the width is One of the remaining portions provided in the other semi-cylindrical part extends in a direction perpendicular to the virtual diameter line so that it gradually increases from the inside to the outside of one semi-cylindrical part of the bearing body. The slit in the direction parallel to the virtual diameter line has the same width from the inside to the outside of the other semi-cylindrical portion of the bearing body or from the inside of the other half-cylindrical portion of the bearing body. Gradually toward the outside As increases, the sliding bearing extending in a direction perpendicular to the virtual diametrical line. 一方の半円筒部に設けられた少なくとも一つの一方のスリットは、一方の半円筒部の内側から外側に向かう方向において平坦であって互いに平行に伸びる一方の半円筒部の一対の平坦壁で規定されている請求項1に記載の滑り軸受。   At least one slit provided in one semi-cylindrical portion is defined by a pair of flat walls of one semi-cylindrical portion that are flat in the direction from the inside to the outside of the one semi-cylindrical portion and extend parallel to each other. The plain bearing according to claim 1. 一方の半円筒部に設けられた少なくとも一つの一方のスリットは、一方の半円筒部の内側から外側に向かう方向において平坦に伸びる一方の半円筒部の一方の平坦壁と、一方の半円筒部の内側から外側に向かうに連れて平坦壁から徐々に離反して平坦に伸びる一方の半円筒部の他方の平坦壁とで規定されている請求項1に記載の滑り軸受。   At least one slit provided in one semi-cylindrical portion includes one flat wall of one semi-cylindrical portion that extends flat in the direction from the inside to the outside of one semi-cylindrical portion, and one semi-cylindrical portion. The sliding bearing according to claim 1, wherein the sliding bearing is defined by the other flat wall of one semi-cylindrical portion that gradually extends away from the flat wall as it goes from the inside to the outside. 一方の半円筒部に設けられた少なくとも一つの一方のスリットは、一方の半円筒部の内側から外側に向かうに連れて互いに徐々に離反して平坦に伸びる一方の半円筒部の一対の平坦壁で規定されている請求項1に記載の滑り軸受。   At least one of the slits provided in one semi-cylindrical portion is a pair of flat walls of one semi-cylindrical portion that extends flatly away from each other as it goes from the inside to the outside of the one semi-cylindrical portion. The plain bearing according to claim 1, defined by 他方の半円筒部に設けられた残余の一方のスリットは、他方の半円筒部の内側から外側に向かう方向において平坦であって互いに平行に伸びる他方の半円筒部の一対の平坦壁で規定されている請求項1から4のいずれか一項に記載の滑り軸受。   The remaining one slit provided in the other semi-cylindrical portion is defined by a pair of flat walls of the other semi-cylindrical portion that are flat in the direction from the inner side to the outer side of the other semi-cylindrical portion and extend parallel to each other. The sliding bearing according to any one of claims 1 to 4. 他方の半円筒部に設けられた残余の一方のスリットは、他方の半円筒部の内側から外側に向かう方向において平坦に伸びる他方の半円筒部の一方の平坦壁と、他方の半円筒部の内側から外側に向かうに連れて平坦壁から徐々に離反して平坦に伸びる他方の半円筒部の他方の平坦壁とで規定されている請求項1から4のいずれか一項に記載の滑り軸受。   The remaining one slit provided in the other semi-cylindrical portion includes one flat wall of the other semi-cylindrical portion that extends flat in the direction from the inside to the outside of the other semi-cylindrical portion, and the other half-cylindrical portion. The sliding bearing according to any one of claims 1 to 4, wherein the sliding bearing is defined by the other flat wall of the other semi-cylindrical portion that gradually extends away from the flat wall as it goes from the inside to the outside. . 他方の半円筒部に設けられた残余の一方のスリットは、他方の半円筒部の内側から外側に向かうに連れて互いに徐々に離反して平坦に伸びる他方の半円筒部の一対の平坦壁で規定されている請求項1から4のいずれか一項に記載の滑り軸受。   One of the remaining slits provided in the other semi-cylindrical portion is a pair of flat walls of the other semi-cylindrical portion that are gradually separated from each other as they go from the inside to the outside of the other semi-cylindrical portion. The plain bearing according to any one of claims 1 to 4, wherein the plain bearing is defined.
JP2006341100A 2006-12-19 2006-12-19 Plain bearing Active JP4940931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341100A JP4940931B2 (en) 2006-12-19 2006-12-19 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341100A JP4940931B2 (en) 2006-12-19 2006-12-19 Plain bearing

Publications (2)

Publication Number Publication Date
JP2008151289A true JP2008151289A (en) 2008-07-03
JP4940931B2 JP4940931B2 (en) 2012-05-30

Family

ID=39653663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341100A Active JP4940931B2 (en) 2006-12-19 2006-12-19 Plain bearing

Country Status (1)

Country Link
JP (1) JP4940931B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032708A1 (en) 2010-09-08 2012-03-15 オイレス工業株式会社 Slide bearing
US20120087608A1 (en) * 2010-10-07 2012-04-12 Robert Bosch Gmbh Sliding bearing, process for producing a sliding bearing and use of a sliding bearing
JP2016142372A (en) * 2015-02-03 2016-08-08 オイレス工業株式会社 Slide bearing
JP2017087972A (en) * 2015-11-10 2017-05-25 株式会社ジェイテクト Steering shaft support structure
JP2018155390A (en) * 2017-03-21 2018-10-04 オイレス工業株式会社 Slide bearing
JP2018179024A (en) * 2017-04-03 2018-11-15 オイレス工業株式会社 Slide bearing
WO2019026928A1 (en) 2017-08-03 2019-02-07 オイレス工業株式会社 Bearing and steering mechanism
WO2019078254A1 (en) * 2017-10-20 2019-04-25 マツダ株式会社 Rack bush and steering mechanism
US20190368539A1 (en) * 2018-05-31 2019-12-05 Nidec Sankyo Corporation Motor and valve drive device
JPWO2020017503A1 (en) * 2018-07-20 2021-08-02 日本精工株式会社 Rack and pinion type steering gear unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106763219A (en) * 2016-12-05 2017-05-31 重庆美的通用制冷设备有限公司 Bearing assembly and the compressor with it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220478A (en) * 1997-02-05 1998-08-21 Fuji Heavy Ind Ltd Bearing structure
JP2004347105A (en) * 2002-08-28 2004-12-09 Oiles Ind Co Ltd Sliding bearing and bearing mechanism with the same
JP2005308088A (en) * 2004-04-21 2005-11-04 Nsk Ltd Ball screw device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220478A (en) * 1997-02-05 1998-08-21 Fuji Heavy Ind Ltd Bearing structure
JP2004347105A (en) * 2002-08-28 2004-12-09 Oiles Ind Co Ltd Sliding bearing and bearing mechanism with the same
JP2005308088A (en) * 2004-04-21 2005-11-04 Nsk Ltd Ball screw device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838000A (en) * 2010-09-08 2017-06-13 奥依列斯工业株式会社 Sliding bearing
JP2012057717A (en) * 2010-09-08 2012-03-22 Showa Corp Plain bearing
CN102667195A (en) * 2010-09-08 2012-09-12 奥依列斯工业株式会社 Sliding bearing
EP2615321A1 (en) * 2010-09-08 2013-07-17 Oiles Corporation Slide bearing
US8696207B2 (en) 2010-09-08 2014-04-15 Oiles Corporation Sliding bearing
EP2615321A4 (en) * 2010-09-08 2014-08-06 Oiles Industry Co Ltd Slide bearing
US8944689B2 (en) 2010-09-08 2015-02-03 Oiles Corporation Sliding bearing
CN104500573A (en) * 2010-09-08 2015-04-08 奥依列斯工业株式会社 Sliding bearing
WO2012032708A1 (en) 2010-09-08 2012-03-15 オイレス工業株式会社 Slide bearing
CN104500573B (en) * 2010-09-08 2017-06-27 奥依列斯工业株式会社 Sliding bearing
US20120087608A1 (en) * 2010-10-07 2012-04-12 Robert Bosch Gmbh Sliding bearing, process for producing a sliding bearing and use of a sliding bearing
US8641285B2 (en) * 2010-10-07 2014-02-04 Robert Bosch Gmbh Sliding bearing, process for producing a sliding bearing and use of a sliding bearing
US9989084B2 (en) 2015-02-03 2018-06-05 Oiles Corporation Slide bearing
KR102447103B1 (en) 2015-02-03 2022-09-27 오일레스고교 가부시키가이샤 sliding bearing
WO2016125547A1 (en) * 2015-02-03 2016-08-11 オイレス工業株式会社 Slide bearing
KR20170107571A (en) * 2015-02-03 2017-09-25 오일레스고교 가부시키가이샤 Sliding bearing
JP2016142372A (en) * 2015-02-03 2016-08-08 オイレス工業株式会社 Slide bearing
JP2017087972A (en) * 2015-11-10 2017-05-25 株式会社ジェイテクト Steering shaft support structure
JP2018155390A (en) * 2017-03-21 2018-10-04 オイレス工業株式会社 Slide bearing
JP2018179024A (en) * 2017-04-03 2018-11-15 オイレス工業株式会社 Slide bearing
WO2019026928A1 (en) 2017-08-03 2019-02-07 オイレス工業株式会社 Bearing and steering mechanism
US11548546B2 (en) 2017-08-03 2023-01-10 Oiles Corporation Bearing and steering mechanism
JP2019077235A (en) * 2017-10-20 2019-05-23 マツダ株式会社 Rack bush and steering mechanism
DE112018004628T5 (en) 2017-10-20 2020-07-16 Mazda Motor Corp. GEAR RACK AND STEERING MECHANISM
US11254347B2 (en) 2017-10-20 2022-02-22 Mazda Motor Corporation Rack bush and steering mechanism
WO2019078254A1 (en) * 2017-10-20 2019-04-25 マツダ株式会社 Rack bush and steering mechanism
CN110553061A (en) * 2018-05-31 2019-12-10 日本电产三协株式会社 motor and valve drive device
US10935071B2 (en) * 2018-05-31 2021-03-02 Nidec Sankyo Corporation Motor and valve drive device
CN110553061B (en) * 2018-05-31 2021-08-27 日本电产三协株式会社 Motor and valve drive device
US20190368539A1 (en) * 2018-05-31 2019-12-05 Nidec Sankyo Corporation Motor and valve drive device
JPWO2020017503A1 (en) * 2018-07-20 2021-08-02 日本精工株式会社 Rack and pinion type steering gear unit
JP7156379B2 (en) 2018-07-20 2022-10-19 日本精工株式会社 Rack and pinion type steering gear unit

Also Published As

Publication number Publication date
JP4940931B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4940931B2 (en) Plain bearing
JP5461350B2 (en) Plain bearing
JP5481777B2 (en) Bearing mechanism with sliding bearing
JP4657590B2 (en) Sliding bearing and bearing mechanism including the same
JP4548150B2 (en) Bearing mechanism with sliding bearing
JP2007187285A (en) Bush bearing and rack-pinion type steering device of automobile using the same
US10279835B2 (en) Steering system
JP4899374B2 (en) Bearing device and sliding bearing used therefor
JP2004183780A (en) Bush bearing
JP5062135B2 (en) Telescopic rotation transmission shaft
JP6572624B2 (en) Sliding bearing and bearing mechanism including the same
JP2003322165A (en) Bush bearing
JP4947184B2 (en) Bearing mechanism with sliding bearing
JP2013142451A (en) Sliding bearing
WO2016125547A1 (en) Slide bearing
JP5953676B2 (en) Bearing mechanism with sliding bearing
JP4811521B2 (en) Sliding bearing and bearing mechanism including the same
KR20120114986A (en) Cage for ball bearing
JP2003239948A (en) Sliding bearing for steering column and steering column mechanism furnished with this sliding bearing
JP2009068656A (en) Synthetic resin gear
JP2005212573A (en) Steering device
JP2006144989A (en) Vibration absorbing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250