JP2008150936A - Earthquake-damping grid body - Google Patents

Earthquake-damping grid body Download PDF

Info

Publication number
JP2008150936A
JP2008150936A JP2007305126A JP2007305126A JP2008150936A JP 2008150936 A JP2008150936 A JP 2008150936A JP 2007305126 A JP2007305126 A JP 2007305126A JP 2007305126 A JP2007305126 A JP 2007305126A JP 2008150936 A JP2008150936 A JP 2008150936A
Authority
JP
Japan
Prior art keywords
building
damping
lattice
assembled member
unit partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305126A
Other languages
Japanese (ja)
Inventor
Makoto Nakamura
允 中村
Yoshiaki Kanazawa
吉昭 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMACHU WOOD BASE KK
Original Assignee
EMACHU WOOD BASE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMACHU WOOD BASE KK filed Critical EMACHU WOOD BASE KK
Priority to JP2007305126A priority Critical patent/JP2008150936A/en
Publication of JP2008150936A publication Critical patent/JP2008150936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device, by placing in an appropriate place of an inner side of a wall of a wooden building, so as to reduce shaking motion of a whole building and to prevent the building from collapsing. <P>SOLUTION: An earthquake-damping grid body 1 is made by forming wood materials in a lattice shape. A contact point of a vertical member 2 and a lateral member 3 is not directly contacted to each other while a viscoelastic material 6 is filled in the space in the grid at the contact point, so that the vertical and lateral members are bonded and joined. By means of the joint, if either or both of the vertical and the lateral members are moved by some kind of force, the force applies mutually through the part bonded by the viscoelastic material. The grid body is placed within right/left pillars and top/bottom beams composing the building or in a single structural compartment 4 surrounded by sills. When a force from outside is applied and the building is going to be deformed, the gird body 1 is also deformed, but the viscoelastic material 6 filled in the contact point of the lattice part 7 produces viscoelastic deformation, so as to efficiently absorb the energy entering from outside and to reduce the deformation energy toward the other part of the building. Thus, the building can be safely maintained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建物の壁面内部に施工する制振格子体であり、建物の制振性能を高める効果を持つものである。   The present invention is a damping lattice body to be constructed inside a wall surface of a building, and has an effect of improving the damping performance of the building.

従来技術として、地震に耐える建物を実現する方策として、耐震、制震、免振の3種類がある。そのうち、耐震、制震について従来技術を挙げて説明する。   As conventional techniques, there are three types of measures for realizing a building that can withstand earthquakes: earthquake resistance, vibration control, and isolation. Among them, the conventional technology will be explained with regard to earthquake resistance and vibration control.

木造建物に対しては、各種の木製パネル等の「耐力壁パネル」の開発が盛んであり、多くの製品が供出されている。木製パネルといえば、耐力壁パネルの開発が全てであった。木造の建物はパネルを施工することによって強度が増す。これは建基準法にも明記され、製品ごとの強度表も確立されている。
以下、具体例を挙げて説明する。
For wooden buildings, the development of “bearing wall panels” such as various types of wooden panels is thriving, and many products are offered. Speaking of wooden panels, the development of load-bearing wall panels was all. Wooden buildings can be strengthened by installing panels. This is specified in the Building Standard Law, and a strength table for each product has been established.
Hereinafter, a specific example will be described.

特許文献1(特開平10−25921号公報)のプレキャスト耐震壁は、鉄筋コンクリート造(以下RC造ともいう)建物に利用する、梁および柱からなるプレキャスト耐震壁(以下PC壁ともいう)に係わるものである。   The precast earthquake-resistant wall of Patent Document 1 (Japanese Patent Laid-Open No. 10-25921) relates to a precast earthquake-resistant wall (hereinafter also referred to as a PC wall) composed of beams and columns used in a reinforced concrete (hereinafter also referred to as RC structure) building. It is.

特許文献2(特許第2989563号公報)の「耐震壁材」に示された装置は、面材と面材との間に粘弾性体を挿入した、一つの面パネルである。   The device shown in the “seismic wall material” of Patent Document 2 (Japanese Patent No. 2898563) is a single face panel in which a viscoelastic body is inserted between the face materials.

特許文献3(特許第3627184号公報)の「変形吸収層を形成する木質耐震壁」は、柱や梁が鉄骨構造もしくは鉄筋コンクリート構造の建物に適応される。   Patent Document 3 (Japanese Patent No. 3627184) “wooden earthquake resistant wall forming a deformation absorbing layer” is applied to a building in which columns and beams are steel structures or reinforced concrete structures.

また一方、近年では、建物に制振装置を取り付けるという発想が盛んに取り入れられるようになってきている。この制振装置の多くは、梁と柱の接合部近傍付近に取り付けられるような仕様のものが知られている。   On the other hand, in recent years, the idea of attaching a vibration control device to a building has been actively adopted. Many of the vibration damping devices are known to be attached near the joint between the beam and the column.

特許文献4(特開2000−110400号公報)の「制振ダンパー装置」の設置範囲は、柱や梁が鉄骨構造もしくは鉄筋コンクリート構造の建物に適応されるものである。   The installation range of the “damping damper device” disclosed in Patent Document 4 (Japanese Patent Application Laid-Open No. 2000-110400) is applicable to buildings having columns or beams of steel structure or reinforced concrete structure.

特許文献5(特開2004−239003号公報)の「制振装置」の設置範囲は、柱や梁が鉄骨構造もしくは鉄筋コンクリート構造の建物に適応されるものである。この発明では、ブロックを積み上げるときのブロック間に粘弾性のある物質を詰めることによって制振性を高めようとするものである。
特開平10−25921号公報 特許第2989563号公報 特許第3627184号公報 特開2000−110400号公報 特開2004−239003号公報
The installation range of the “vibration control device” in Patent Document 5 (Japanese Patent Application Laid-Open No. 2004-239003) is adapted to a building having a steel structure or a reinforced concrete structure with columns and beams. In the present invention, the vibration damping property is increased by packing a material having viscoelasticity between the blocks when the blocks are stacked.
Japanese Patent Laid-Open No. 10-25921 Japanese Patent No. 29998563 Japanese Patent No. 3627184 JP 2000-110400 A JP 2004-239003 A

しかしながら、耐力壁パネルを備える建物は、制振という観点とは異なる発想である。建物は強度が高くなればなるほど良いというわけでない。昨今の強度重視の流れに従って、強い壁を建物に全面的に張れば、強い家が出来ると錯覚してしまうことがあり、力学的にかえって弱い建物を安全であると信じさせてしまうような現象も現れている。例えば、市街地など、家が建て込んでいて家の左右には窓がとれず、前後に大きな窓を持つような家の場合、このような施工をしてしまうと、窓の無い部分とある部分では極端に強さが異なってくる。こうなると、かえって安全性の低い建物になってくるおそれがある。外乱力がこのような建物に加わると、窓のない側は剛性が高いため、壁全体が一塊になって、窓のある壁方向に働きかけ、窓のある部分の壁は弱いため、ねじれや曲がりを起こす。強度が高いように見えて、かえって弱い建物を造ってしまうという例である。耐力壁パネルを多くの部分にただ施工の簡便性から施工すると、バランスが崩れて剛性の偏重を招きかねないという欠点を持っている。   However, buildings with load-bearing wall panels are a different idea from the viewpoint of vibration control. Buildings are not as good as they get stronger. If you build a strong wall all over the building according to the recent trend of emphasizing strength, you may get the illusion that a strong house can be made, and it will make you believe that a weak building is safe on the contrary. Has also appeared. For example, in the case of a house built in a house such as an urban area where there are no windows on the left and right sides of the house, and there are large windows in the front and rear, if this construction is done, there will be a part with no window Then the strength is extremely different. If this happens, there is a risk that the building will be less secure. When a disturbance force is applied to such a building, the side without the window is stiff, so the entire wall will be united and work in the direction of the wall with the window, and the wall with the window will be weak, so twisting and bending Wake up. This is an example of building a weak building that looks strong. If the load-bearing wall panels are installed in many parts simply because of the ease of construction, there is a drawback that the balance may be lost and rigidity may be deviated.

前記した特許文献1の発明のように、PC製品を構造区画体内に設置することは重量的、強度的なバランスから出来ないという問題がある。   As in the invention of Patent Document 1 described above, there is a problem that the PC product cannot be installed in the structural compartment because of a balance between weight and strength.

前記した特許文献2の発明は、鉄骨構造もしくは鉄筋コンクリート構造のための装置であり、木造建物とは適応する構造物の範囲も異なっている。この装置のような仕組みを小規模木造軸組工法による建物に適用し、重量のある「耐震壁」を左右の柱および上下の梁(もしくは土台)の空間の中に取り付けた場合、「耐力壁」自体の重量によって骨組み自体の応力が奪われ、総合的には弱いものになってしまう。また、耐震パネル工法などで用いるパネルが、躯体の変形に伴って、躯体区画平面よりはみ出したり、筋違いが同様に躯体区画平面よりはみ出したりする場合があり(特許文献2の図1及び図2)、このような状態は、実際の建物では外乱力によって壁の破壊を招く現象となる。   The above-described invention of Patent Document 2 is an apparatus for a steel structure or a reinforced concrete structure, and the range of structures that can be applied differs from that of a wooden building. When a mechanism like this device is applied to a building using a small wooden frame construction method, and a heavy “seismic wall” is installed in the space of the left and right columns and upper and lower beams (or foundations), the “bearing wall” "The weight of the frame itself takes away the stress of the frame itself, making it weak overall. Moreover, the panel used by an earthquake-resistant panel construction method, etc. may protrude from a frame division plane with a deformation | transformation of a frame, and a muscle difference may protrude from a frame division plane similarly (FIG. 1 and FIG. 2 of patent document 2). Such a state is a phenomenon that causes a wall to be destroyed by disturbance force in an actual building.

前記した特許文献3で用いられている木材は、積層接着木質板などの「高強度の木材」であり、この高強度の木材と柱および梁との間に取り付けられた粘性素材により変形エネルギーを変形吸収層が吸収するという働きを持っている。高強度の木材によらない木造住宅、例えば、木造軸組の建物への適応は困難である。   The wood used in the above-mentioned Patent Document 3 is a “high-strength wood” such as a laminated adhesive wood board, and the deformation energy is obtained by the viscous material attached between the high-strength wood and the columns and beams. The deformation absorbing layer has the function of absorbing. It is difficult to adapt to a wooden house that does not depend on high-strength wood, for example, a wooden frame building.

また、従来の制振装置は、本発明の制振格子体とは「制振」という点では共通するが、小型の物が多く、木造建物の構造材との兼ね合いのため、設計値とかけ離れた性能しか出現させられないという現状があった。   In addition, the conventional vibration damping device is in common with the vibration damping grid body of the present invention in terms of “vibration suppression”, but many small-sized objects are far from the design value because of the balance with the structural material of the wooden building. There was a current situation that only the performance was allowed to appear.

即ち、木造建物の梁と柱の接合部近傍に取り付ける制振ダンパーでは、所望の性能を出すために構造区画体に囲まれた部分の全ての接合箇所に取り付けなければならないこともありうる。構造区画体の上部にダンパーを2個取り付け、その下部を通路又は部屋として使う場合には、壁をつくらなければならない。制振ダンパーがいくらコンパクトに出来ていたとしても、壁をつくらなければならないのなら、コンパクトの意味をなさない。したがって、現実的で安価な制振装置の提供は未だかつてされていなかった。   That is, in the vibration damper attached near the joint between the beam and the column of the wooden building, it may be necessary to attach to all the joints surrounded by the structural compartments in order to obtain a desired performance. If two dampers are attached to the top of the structural compartment and the lower part is used as a passage or room, walls must be created. No matter how compact the damping damper is, if you have to make a wall, it doesn't make sense to be compact. Therefore, the provision of a realistic and inexpensive vibration damping device has never been provided.

このような木造建物の梁と柱の接合部近傍に取り付ける制振ダンパーでは、ダンパーの能力を高めても、ある所までいくとリニアに性能が向上することがなく、それ以上の性能向上が望めなくなる。それは、ダンパーが取り付けられているのが梁と柱の接合部近傍であるため、柱および梁(もしくは土台)の性能がダンパーの性能より小さくなり、ダンパーが本来受けなければならない力が、柱や梁への変形力となってしまう現象が発生するからである。このような現象のため、ダンパーの設置箇所を多数として力を分散する必要があるが、接合部分の全てにダンパーを取り付けることは、ダンパーがコンパクトであることからくるはずの優位性(例えば、ダンパーを取り付けた部分でも壁にしなくてもよく、空間として利用できるなど)を損なうだけでなく、コンパクトであるという形状の必然性もなくなる。   With such a vibration damper installed near the joint between a beam and a column in a wooden building, even if the damper capacity is increased, the performance will not improve linearly until reaching a certain point, and further performance improvement can be expected. Disappear. Because the damper is installed near the joint between the beam and the column, the performance of the column and the beam (or foundation) is smaller than the performance of the damper, and the force that the damper originally must receive This is because a phenomenon that causes deformation force to the beam occurs. Because of this phenomenon, it is necessary to distribute the force with a large number of damper installation locations. However, installing dampers on all joints is an advantage that should come from the compactness of the dampers (for example, dampers). It is not necessary to use a wall even if it is attached to the wall, so that it can be used as a space, etc.), and the necessity of a compact shape is eliminated.

前記した特許文献4の「制振ダンパー装置」は、低降伏鋼などプレート間に粘弾性素材を挟み込むことによって、粘性抵抗を得、変形エネルギーを低減しようとするものであるが、鋼材は木材の20倍もの応力を持ち、木造の中で鋼素材の部材を使うとなると、その応力のバランスが悪くなり、木材等に対する負荷の局所的な増大化を招く可能性が高いため、余りよい方法ではない。特許文献4の「制振ダンパー装置」は、小規模な木造軸組の建物に適用されるものではない。   The above-mentioned “damping damper device” of Patent Document 4 attempts to obtain viscous resistance and reduce deformation energy by sandwiching a viscoelastic material between plates such as low yield steel, but the steel material is made of wood. Since it has a stress of 20 times and a steel member is used in a wooden structure, the balance of the stress is poor, and there is a high possibility of causing a local increase in load on wood, etc. Absent. The “damping damper device” of Patent Document 4 is not applied to a small wooden frame building.

前記した特許文献5の「制振装置」は、重量のあるブロック等を壁内に積み込むことはできないばかりでなく、もしそのようなことが可能だとしても、躯体の持つ強度とのバランスが悪くなるため、このような方法は、木造軸組の建物では採用することができない。   The above-mentioned “vibration control device” of Patent Document 5 cannot load heavy blocks or the like in the wall, and even if such a thing is possible, the balance with the strength of the casing is poor. Therefore, such a method cannot be employed in a wooden frame building.

そこで、本発明は、安価に製造することができ、建物、特に木造建物の壁面内部に適所に配置することによって、建物全体の振動を低減し、建物を崩壊させない働きをする制振格子体を提供する。   Therefore, the present invention provides a damping lattice body that can be manufactured at a low cost and reduces vibrations of the entire building and prevents the building from collapsing by being placed in an appropriate place inside the wall surface of the building, particularly a wooden building. provide.

従来、木造住宅等のために開発されてきたパネルは耐震性能を増加させるため開発されてきたのに対し、本発明の制振格子体はこれまでの耐震パネル或いは制振装置とは思想を全く異にしたものである。   Conventionally, panels developed for wooden houses and the like have been developed to increase the seismic performance, whereas the damping lattice body of the present invention is completely out of concept with conventional seismic panels or vibration control devices. It is different.

即ち、請求項1の発明は、前記課題に鑑みなされたものであり、木造建物の梁、柱、及び、土台又は梁によって構成された主構造体の単位区画体に複数本の縦組み部材と複数本の横組み部材とが前記単位区画体の空間内において格子状に取り付けられるものであって、前記縦組み部材と横組み部材の交差する部分に間隙が形成され、その間隙に粘弾性又は弾塑性特性を持つ充填材が充填されることにより、該充填材の接着力で前記縦組み部材と横組み部材を格子形状に保つ結合部が形成され、前記単位区画体に加えられる変形エネルギーによる振動を、前記結合部が主面方向に変位することにより、制御することを特徴とする制振格子体である。   That is, the invention of claim 1 has been made in view of the above problems, and a plurality of vertically assembled members are provided on a unit partition body of a main structure composed of beams, columns, and foundations or beams of a wooden building. A plurality of horizontally assembled members are attached in a lattice pattern in the space of the unit partition body, and a gap is formed at an intersecting portion of the vertically assembled member and the horizontally assembled member, and viscoelasticity or By being filled with a filler having elasto-plastic characteristics, a bonding portion is formed to keep the vertical assembly member and the horizontal assembly member in a lattice shape by the adhesive force of the filler, and due to the deformation energy applied to the unit compartment The vibration control lattice body is characterized in that the vibration is controlled by the coupling portion being displaced in the principal surface direction.

請求項1の制振格子体の結合部は、格子を構成する縦組み部材もしくは横組み部材のどちらか、又は、両者とも何らかの力で動けば、充填材の接着部分を介して相互に力が働く。建物に外からの力が働き、建物が変形しようとするとき、当該制振格子体も変形するが、格子の結合部に充填された粘弾性の充填材が弾性変形及び/又は塑性変形を起こし、外部から建物に入ってきたエネルギーを効率的に吸収し、建物の他の部分への変形エネルギーを低減させ、制振性能がいかんなく発揮させる働きをし、建物を安全に保つ働きを持つ。   The coupling portion of the damping grid body according to claim 1 is configured such that if either the vertical assembly member or the horizontal assembly member constituting the lattice, or both of them move with some force, the mutual force is exerted through the bonding portion of the filler. work. When an external force is applied to the building and the building is about to deform, the damping lattice body also deforms. However, the viscoelastic filler filled in the joint of the lattice causes elastic deformation and / or plastic deformation. It effectively absorbs the energy that has entered the building from the outside, reduces the deformation energy to other parts of the building, and works to make the vibration-damping performance fully demonstrated, and keeps the building safe.

請求項1の発明において、1つの結合部について制振減衰力を保有する粘弾性の充填材によるエネルギー吸収量(変形応力)は小さくてもよい。どの結合部でも変形エネルギーを吸収するようになっていることから、結合部の数が多くなれば変形応力が現れる箇所が多くなり、それぞれの結合部の少しの力が集合することによって、現実性能を発揮するのに十分な特質を持つものになる。つまり、本発明は、現状の建物強度だけ向上させる仕組みではなく、建物に粘弾性による制振効果を発現するものであり、建物の性能を総合的に向上させることが出来る。   In the first aspect of the present invention, the amount of energy absorbed (deformation stress) by the viscoelastic filler having vibration damping damping force for one coupling portion may be small. Since any joint is designed to absorb deformation energy, as the number of joints increases, there will be more places where deformation stress will appear, and a small amount of force at each joint will gather, resulting in real performance. It will have enough characteristics to demonstrate. That is, the present invention is not a mechanism for improving only the current building strength, but expresses a vibration damping effect due to viscoelasticity in the building, so that the performance of the building can be improved comprehensively.

前記単位区画体は、柱、梁、桁若しくは土台から構成される単位区画体の例が挙げられる。例えば、2本の柱、1本の梁又は桁、1本の土台から構成される矩形の単位区画体、2本の柱、1個の窓台(土台の一例)、1本の土台から構成される矩形の単位区画体が挙げられる。制振格子体は、当初から単一の単位区画体内に施工することが好ましい。単位区画体の全ての構造部材に緊密に取り付けられていることが好ましい。   Examples of the unit partition body include a unit partition body composed of columns, beams, girders, or foundations. For example, a rectangular unit block composed of two pillars, one beam or girder, and one base, two pillars, one window base (an example of a base), and one base The rectangular unit partition body is mentioned. It is preferable to construct the damping lattice body in a single unit compartment from the beginning. It is preferable that it is closely attached to all the structural members of the unit compartment.

前記充填材としては、ゲル物質、高分子ポリマー系物質、シリコンシーラント、シリコンコーキング、多重結合型オイル、ゴム(加硫ゴム、熱可塑性ゴム)等が挙げられる。   Examples of the filler include a gel material, a high molecular weight polymer material, silicon sealant, silicon caulking, multiple bond type oil, rubber (vulcanized rubber, thermoplastic rubber) and the like.

請求項2の発明は、前記横組み部材及び縦組み部材は木製であり、該木製の部材の断面積及び長さは、前記単位区画体を構成する構造材の断面積及び長さよりも小さく設定される請求項1の制振格子体である。   In the invention of claim 2, the horizontal assembly member and the vertical assembly member are made of wood, and the cross-sectional area and the length of the wooden member are set to be smaller than the cross-sectional area and the length of the structural material constituting the unit partition body. The damping lattice body according to claim 1.

請求項2の発明の作用は、縦横の組み部材の相互作用によって、格子点に変形力が発生することを特徴とする。   The operation of the invention of claim 2 is characterized in that a deformation force is generated at the lattice point by the interaction of the vertical and horizontal assembly members.

請求項3の発明は、前記縦組み部材と横組み部材とが交差し、前記縦組み部材の長辺が前記主面方向と平行になっている請求項1又は2の制振格子体である。   The invention according to claim 3 is the vibration damping lattice body according to claim 1 or 2, wherein the vertically assembled member and the horizontally assembled member intersect, and a long side of the vertically assembled member is parallel to the principal surface direction. .

請求項4の発明は、前記縦組み部材と横組み部材が木製であり、木造軸組在来工法に適合した形状及び寸法に設定され、建物の外壁の下地又は内壁の下地を兼ね、前記単位区画体を構成する柱と柱との中間部分には間柱部材を設け、前記縦組み部材又は横組み部材に間柱部材を添える請求項1乃至3いずれかの制振格子体である。   According to a fourth aspect of the present invention, the vertical assembly member and the horizontal assembly member are made of wood, set to a shape and size suitable for a wooden shaft conventional construction method, and also serves as a foundation for an outer wall or an inner wall of a building. 4. The vibration damping lattice body according to claim 1, wherein a spacer member is provided in an intermediate portion between the pillar and the pillar constituting the partition, and the spacer member is attached to the vertically assembled member or the horizontally assembled member.

請求項5の発明は、前記縦組み部材又は横組み部材の端部加工方法を選択することによって、建物の外壁パネルの下地と同等位置に設置し、柱表面と同一の面に施工する請求項1乃至4いずれかの制振格子体である。   Invention of Claim 5 is installed in the position equivalent to the foundation | substrate of the outer wall panel of a building by selecting the edge part processing method of the said vertical assembly member or a horizontal assembly member, and constructs in the same surface as a column surface. Any one of 1 to 4 damping lattice bodies.

請求項6の発明は、上記単位区画体に前記縦組み部材と横組み部材を取り付けるとき、該部材の端部を枠にて形成する請求項1又は3の制振格子体である。ここでいう「枠」とは請求項1の単位区画体の単一体を意味し、これを制振格子体に取り付けたものである。   A sixth aspect of the present invention is the damping lattice body according to the first or third aspect, wherein when the vertically assembled member and the horizontally assembled member are attached to the unit partition body, an end portion of the member is formed by a frame. Here, the “frame” means a single unit partition body according to claim 1 and is attached to the damping lattice body.

請求項7の発明は、木造建物の梁、柱、及び、土台又は梁によって構成された主構造体の単位区画体に複数本の縦組み部材と複数本の横組み部材とが前記単位区画体の空間内において格子状に取り付けられるものであって、前記縦組み部材と横組み部材の交差する部分に間隙が形成され、その間隙に粘弾性体又は弾塑性体が前記縦組み部材及び横組み部材に係合した状態で配置されることにより、該粘弾性体又は弾塑性体の弾性力で前記縦組み部材と横組み部材を格子形状に保つ結合部が形成され、前記単位区画体に加えられる変形エネルギーによる振動を、前記結合部が主面方向に変位することにより、制御することを特徴とする制振格子体である。結合部は、一体のものでもよいし、複数に分割されて、相互に嵌合するものでもよい。粘弾性体又は弾塑性体は、ゴム(加硫ゴム、熱可塑性ゴム)が好ましいが限定されるものではない。   In the invention of claim 7, a plurality of vertically assembled members and a plurality of horizontally assembled members are provided in the unit partition body of the main structure composed of beams, columns, and foundations or beams of a wooden building. And a gap is formed at an intersecting portion of the vertical assembly member and the horizontal assembly member, and a viscoelastic body or an elastic-plastic body is formed in the gap between the vertical assembly member and the horizontal assembly. By being arranged in a state of being engaged with the member, a connecting portion is formed to keep the vertically assembled member and the horizontally assembled member in a lattice shape by the elastic force of the viscoelastic body or elastic-plastic body. The vibration control lattice body controls vibration caused by deformation energy generated by the displacement of the coupling portion in the main surface direction. The coupling part may be an integral part, or may be divided into a plurality of parts and fitted together. The viscoelastic body or elastic-plastic body is preferably a rubber (vulcanized rubber, thermoplastic rubber), but is not limited.

請求項1記載の発明によれば、単位区画体がどのように変化、変形しても、制振格子体が単位区画体の主面方向に変形し、主面方向とは異なる方向(直交方向)から、はみ出す現象は発生せず、建物の変形によって副次的な破壊を発生させるような作用を持たない。   According to the first aspect of the present invention, no matter how the unit partition body changes or deforms, the damping lattice body deforms in the main surface direction of the unit partition body, and a direction different from the main surface direction (orthogonal direction) ), The phenomenon of protruding does not occur, and it does not have the effect of causing secondary destruction by deformation of the building.

請求項1の制振格子体は、現行のどの単位区画体(例えば柱)の寸法や形状であっても、単位区画体の内側に施工することが可能であり、建物に対して悪い影響を付加しないものである。建物の単位区画体に囲まれた部分の内側にある間柱・筋違いなど他の建物の構成部分へ影響を及ぼすことなく設置することが可能である。そのため、外壁もしくは内壁を形成する建築材料を取り付けるための補助となるような構造とすることができる。また、建物の単位区画体を維持するために取り付けられる金物等(例えば、ホールダウンアンカー金物)に接触しないような形状にすることもできる。建物を構成する他の部分に対する影響は、構造的な安定という付加的な状況を添付するだけであり、何ら建物にとって悪い働きをしない。また、各種の工法にあわせて取り付け方法を柔軟に変更することが可能となっている。一つの単位区画体で囲まれる壁部分全てに制振格子体が施工できない場合もありうるが、制振格子体の面積に比例して性能は充足されるため、制振格子を施工した部分の面積を元に制振性能を計算することも出来る。   The damping lattice body of claim 1 can be constructed inside the unit partition body regardless of the current size or shape of the unit partition body (for example, pillar), and has a bad influence on the building. It is not added. It can be installed without affecting other building components such as studs and streaks inside the part surrounded by the unit compartment of the building. Therefore, it can be set as the structure used as the assistance for attaching the building material which forms an outer wall or an inner wall. Moreover, it can also be made the shape which does not contact the hardware etc. (for example, hole down anchor hardware) attached in order to maintain the unit division body of a building. The impact on the other parts of the building only attaches the additional situation of structural stability and does not do anything bad for the building. In addition, it is possible to flexibly change the mounting method according to various methods. Although it may not be possible to construct the damping grid on the entire wall part surrounded by a single unit partition, the performance is satisfied in proportion to the area of the damping grid, so Damping performance can also be calculated based on the area.

請求項1の制振格子体は、建物が変形した折りに、制振格子体の変形は、単位区画体と同時に始まり、制振格子体の特性で柱と梁および土台に損害を与えることがないという特徴を持つ。   According to the first aspect of the present invention, when the building is deformed, the deformation of the damping lattice body starts at the same time as the unit partition body, and damages the pillars, beams and foundations due to the characteristics of the damping lattice body. It has the feature of not.

請求項1の制振格子体は、格子の数を自由に設定できるため、制振格子体の性能を自由に選定できる特徴をもち、柔軟な設計を可能とし、今までよりも空間の構成の自由度を増すことが出来る。例えば、構成される結合部の数を増減することによって、制振格子体の性能或いは重量を調整できる。例えば、木造住宅の現場の作業員が一人で効率的に施工できる範囲の重量とし、作業性の向上を図ることができる。また、制振性能とのバランスを考え、最終的な形状を決定できる合理的な制振格子体である。   Since the damping lattice body of claim 1 can freely set the number of the lattices, it has the feature that the performance of the damping lattice body can be freely selected, enables a flexible design, and has a configuration of a space more than before. The degree of freedom can be increased. For example, the performance or weight of the damping grid can be adjusted by increasing / decreasing the number of coupling portions configured. For example, it is possible to improve the workability by setting the weight within a range in which a worker on the site of a wooden house can efficiently perform the work alone. In addition, it is a rational damping grid that can determine the final shape in consideration of the balance with damping performance.

請求項1の制振格子体に入力される力の大きさ、および適応する建物の部分の特徴などによって、制振格子体の縦組み部材及び/又は横組み部材の断面積或いは長さ、結合部の数、充填材の種類等の変更が可能である。充填部材の物理的特性によっては、弾性を高めたり或いは塑性を高めたり、自由に設定できる。結合部の個々が制振特性を示し、広い範囲に適した応用が出来るものであるので、設計時に制振格子体の持つ制振応力を計算でき、建物の要求にあわせて結合部の数、充填材の厚み、取り付け方の違いなどの対応を柔軟にできるものとなっている。このように、制振格子体が適応される建物の性質によって、自由に制振格子体の性質も変更することが出来、真に建物の性能向上に寄与することが出来る。また、縦組み部材や横組み部材の断面積、形状、要求されるコスト、要求される応力などによって自由に変更でき、それぞれ所定の力を発揮できる。   Depending on the magnitude of the force input to the damping grid body of claim 1 and the characteristics of the building part to be adapted, etc. The number of parts, the type of filler, etc. can be changed. Depending on the physical characteristics of the filling member, the elasticity can be increased or the plasticity can be increased. Since each of the joints exhibits damping characteristics and can be applied to a wide range, the damping stress of the damping grid body can be calculated at the time of design, the number of joints according to the building requirements, It is possible to flexibly cope with differences in the thickness of the filler and the mounting method. As described above, the property of the damping grid can be freely changed according to the property of the building to which the damping grid is applied, which can contribute to the improvement of the performance of the building. Moreover, it can change freely with the cross-sectional area of a vertically assembled member or a horizontally assembled member, a shape, required cost, required stress, etc., and can each exhibit predetermined force.

請求項1の制振格子体は、建物の形状に合わせ、梁、柱等の主要な単位区画体で囲まれた部分だけでなく、腰壁や小壁のような二次的な単位区画体にも取り付けることが出来るため、必要とする粘弾性を簡便に建物に付加することが出来る。   The damping lattice body according to claim 1 is not only a portion surrounded by main unit partitions such as beams and columns, but also secondary unit partitions such as a waist wall and a small wall according to the shape of the building. Because it can be attached to the building, the necessary viscoelasticity can be easily added to the building.

請求項1の制振格子体は、建物の剛性バランスを向上させることが出来る。例えば、木軸工法、2×4等のパネル工法、それらのハイブリッド工法等が適用される建物に耐力壁パネルを設け、仕上がり厚を揃えた制振格子体を適所に配置し、耐力壁パネルの周辺部分の変形力が集中的に発生する窓側の無い箇所に施工することによって耐力壁パネルの施工箇所を減らし、窓側、窓の無い側の双方の壁の剛性アンバランスを是正し、建物に粘弾性が付加されることにより総合的に建物の耐震性能を向上させることができる。制振格子体は、制作の種類として耐力壁パネルと仕上がり厚が同等となる製品もあり、建物に不必要な剛性を付加することなく、建物に粘弾性又は弾塑性を付加することが出来る。   The damping lattice body according to claim 1 can improve the rigidity balance of the building. For example, a load-bearing wall panel is provided in a building to which the wooden shaft method, 2 × 4 panel method, or their hybrid method is applied, and a vibration-damping lattice body with the finished thickness is arranged in a proper position. By constructing the areas where there is no window side where the deformation force of the peripheral part is concentrated, the installation area of the load-bearing wall panel is reduced, and the rigidity imbalance of the walls on both the window side and the window-less side is corrected, and it is applied to the building. By adding elasticity, the seismic performance of the building can be improved comprehensively. There is also a product with the finished thickness equivalent to the load-bearing wall panel as a type of production, and the damping lattice body can add viscoelasticity or elastoplasticity to the building without adding unnecessary rigidity to the building.

請求項1の制振格子体はメンテナンスフリーであり、建物が存続する期間中、制振効果を発揮することが出来る。   The vibration damping lattice body of claim 1 is maintenance-free and can exhibit a vibration damping effect during the lifetime of the building.

請求項2に記載の発明によれば、制振格子体を構成する部材は木製であり、木製部材の大きさは構造材と比べると十分小さく、更に、長さも短い物を使用しているので、建物を構成する他の建材と仕上がりを同じように加工することが簡単にでき、特殊な工具等を用いなくとも、一般作業で取り付けられる。   According to the second aspect of the present invention, the members constituting the damping lattice body are made of wood, and the size of the wooden members is sufficiently smaller than that of the structural material. The finish can be easily processed in the same way as the other building materials that make up the building, and it can be installed in general work without using special tools.

断面積の小さな制振格子体の部材を組み合わせ、機能を発揮する要素部分を多くつくることによって、部材の小ささを補い、性能の向上をさせることができる。   By combining the members of the damping lattice body having a small cross-sectional area and creating a large number of element portions that exhibit functions, the smallness of the members can be compensated for and the performance can be improved.

本発明の制振格子体の構成部材は、建物の単位区画体の構成部材と断面積と大きさが異なっているので、構造部材の変形応力と対比し、結合部がこれよりもはるかに小さな変形応力しか持っていない。そのため、制振格子体が単位区画体に悪影響を与えることはあり得ない。また、結合部の近傍のごく狭い範囲だけで力の処理をしているのではなく、制振格子体が単位区画体に接触している全ての部分で力の処理をすることが可能であるため、制振格子体の性能を高めたとしても、構造躯体に変形を与えるような力を発生させることはない。構成部材の断面形状の大きさを単純に比較すれば、どの部材の剛性が高いかどうかを判断できる。   Since the structural member of the damping lattice body of the present invention is different in the cross-sectional area and size from the structural member of the unit partition body of the building, the joint portion is much smaller than this, in contrast to the deformation stress of the structural member. Has only deformation stress. For this reason, the damping lattice body cannot adversely affect the unit partition body. Moreover, it is possible not to process force only in a very narrow range in the vicinity of the coupling portion, but to process force in all portions where the damping grid body is in contact with the unit partition body. Therefore, even if the performance of the damping lattice body is improved, a force that deforms the structural housing is not generated. By simply comparing the sizes of the cross-sectional shapes of the constituent members, it can be determined which member has high rigidity.

木造の躯体には色々な方法で取り付けることができ、層間変位においても破壊することなく、建物の復帰と共に、原状回復できるという特徴を持つ。   It can be attached to the wooden frame in various ways, and it can be restored to its original state as the building is restored without being destroyed even by interlayer displacement.

間伐材のような材径の小さな木からも十分に生産をすることが出来る大きさであるので、昨今で問題になっている国産材の間伐材等の効率的な利用等に応用することが出来、社会問題化している森林の涵養政策にも対応することが可能である。木製であるため、撤去時についても、環境に優しい。   Because it is a size that can produce enough from thin trees such as thinned wood, it can be applied to the efficient use of thinned wood, etc., which is currently a problem in Japan It is possible to respond to forest recharge policies that are becoming social problems. Because it is made of wood, it is environmentally friendly when removed.

請求項3に記載の発明によれば、縦組み部材と横組み部材とが直交し、前記縦組み部材の長辺が前記主面方向と平行にしてあるのは、外力により変形を受けたとき、縦格子部材および横格子部材が、たわみや曲げ、せん断等の部材自体の変形力を最も受けにくいように、断面2次モーメントの発生方向を検討し、組み合わせているためである。   According to the third aspect of the present invention, the vertically assembled member and the horizontally assembled member are orthogonal to each other, and the long side of the vertically assembled member is parallel to the principal surface direction when deformed by an external force. This is because the generation direction of the secondary moment of the cross section is studied and combined so that the vertical lattice member and the horizontal lattice member are most unlikely to receive deformation force of the member itself such as bending, bending, and shearing.

請求項4の発明によれば、木造軸組工法の小規模建築に適応されるため、左右の柱および上下の梁(もしくは土台)を構成する物質は全て木材であり、鉄骨構造もしくは鉄筋コンクリート構造とは剛性の面で大きく異なる素材であり、木構造であるという特徴を十分に把握し、適当な強度を持つように施工することができる。単位区画体を構成する構造材よりも低い強度を保有し、単位区画体材の変形より安易に変形するような仕組みとすることができる。
本発明は、木造軸組の構造の特徴を勘案しており、重量が作業員1名で十分扱える範囲に収まり、取り付け後も、構造区体に負荷を掛けないようにしてある。そのため、構造を構成する部材は、構造と同等の木質であり、また格子状とすることによって、全面壁とするよりも、軽量化を図ることができる。
本発明が適用される建物が木造軸組構造であるため、制振格子体自体の剛性が高いものでは、かえって躯体を損傷しかねず、建物の強度に合わせて、結合部の数および構成する材料の剛性なども柔軟に変更できるようになっているため、最も効果的な作用をするように調整することができるという特性を持つ。
According to the invention of claim 4, since it is applied to a small-scale building of a wooden frame construction method, the materials constituting the left and right columns and the upper and lower beams (or foundations) are all wood, and have a steel structure or a reinforced concrete structure. Is a material that differs greatly in terms of rigidity, and can be constructed with sufficient strength by fully grasping the characteristics of being a wooden structure. It can be set as the mechanism which has the intensity | strength lower than the structural material which comprises a unit division body, and deform | transforms easily rather than a deformation | transformation of a unit division body material.
The present invention takes into consideration the characteristics of the structure of the wooden frame, and the weight is within a range that can be handled sufficiently by one worker, so that no load is applied to the structural section even after installation. For this reason, the members constituting the structure are of the same wood quality as the structure, and can be reduced in weight by using a lattice shape rather than a full wall.
Since the building to which the present invention is applied has a wooden frame structure, if the damping lattice body itself has a high rigidity, the housing may be damaged, and the number and structure of the coupling portions are configured in accordance with the strength of the building. Since the rigidity of the material can be changed flexibly, it has a characteristic that it can be adjusted to perform the most effective action.

さらに、制振格子体は外壁の下地や内壁の下地を兼ねることが出来る。木造軸組在来工法では、柱と柱との中間部分には、間柱を設けるが、制振格子体に間柱部材を添付することによって、間柱の役割を制振格子体に添付することが可能である。また、間柱を添付するのではなく、制振格子を構成している縦部材を前記間柱の役割を担うものとして代替的に使うことも出来る。その場合の部材も規格化されており、効率的な施工が可能である。   Furthermore, the damping lattice body can also serve as a base for the outer wall and a base for the inner wall. In the wooden shaft conventional construction method, an intermediate column is provided in the middle part between the columns, but the role of the intermediate column can be attached to the damping grid body by attaching the stud member to the damping grid body. It is. In addition, instead of attaching a stud, a vertical member constituting a damping lattice can be used as an alternative to play the role of the stud. The member in that case is also standardized, and efficient construction is possible.

請求項5の発明によれば、耐力壁パネルを用いた工法の木造住宅にも提供でき、十分に下地としての機能を果たす。この場合、パネルは柱面方から数ミリ出た状態で施工されるが、これと同じ施工仕上がりで制振格子を取り付けることにより、パネルと制振格子の仕上がり面の高さが同じとなり、外壁、内壁等の施工の折りに特別な配慮をすることなく施工できるようになる。   According to invention of Claim 5, it can provide also to the wooden house of the construction method using a load-bearing wall panel, and fully fulfill | performs the function as a foundation | substrate. In this case, the panel is constructed with a few millimeters protruding from the column surface, but by installing the damping grid with the same construction finish, the height of the finished surface of the panel and damping grid will be the same, and the outer wall It will be possible to perform construction without special consideration when folding the inner wall.

請求項6の発明によれば、単位区画体に縦組み部材と横組み部材とを取り付ける必要がなく、取り付けの簡便性を向上させることができる。   According to the invention of claim 6, it is not necessary to attach the vertically assembled member and the horizontally assembled member to the unit partition body, and the ease of attachment can be improved.

請求項7の発明によれば、請求項1と同様の効果を生じる。   According to the invention of claim 7, the same effect as that of claim 1 is produced.

以下に、本発明の好適な実施形態について図面を参照して説明する。尚、本発明の実施の形態は、下記の実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることは無論である。   Preferred embodiments of the present invention will be described below with reference to the drawings. The embodiment of the present invention is not limited to the following embodiment, and it goes without saying that various forms can be adopted as long as it belongs to the technical scope of the present invention.

[実施形態1]
本発明の制振格子体1の実施形態1につき図面を参照して説明する。この制振格子体1は、図1〜図5に示す通り、縦組み部材2と横組み部材3とを格子状に組み立て矩形の格子空間1aを設け、制振格子体1が木造建物の主構造部位である柱、梁、及び、土台又は梁から構成された主構造体の単位区画体4の内側領域に配置されるよう単位区画体4に取り付けられている。縦組み部材2と横組み部材3の交差する部分に間隙5が形成され、その間隙5に粘弾性特性を持つ充填材6が充填され、充填材6の接着力で縦組み部材2と横組み部材3を格子形状に保つ結合部7が形成されている。単位区画体4に加えられる変形エネルギーによる振動を、結合部7が主面方向に変位することにより、制御することを特徴とする。結合部7は、制振格子体1の交差部分(交差点)をいい、この交差部分に存在する縦組み部材2と横組み部材3と、充填材6とを含めたものである。
[Embodiment 1]
Embodiment 1 of a damping lattice body 1 of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 5, the damping lattice body 1 is formed by assembling the vertically assembled member 2 and the horizontally assembled member 3 in a lattice shape to provide a rectangular lattice space 1 a, and the damping lattice body 1 is a main building of a wooden building. It is attached to the unit partition body 4 so as to be arranged in an inner region of the unit partition body 4 of the main structure composed of pillars, beams, and bases or beams which are structural parts. A gap 5 is formed at the intersection of the vertically assembled member 2 and the horizontally assembled member 3, and the gap 5 is filled with a filler 6 having viscoelastic properties, and the vertically assembled member 2 and the horizontally assembled member are bonded by the adhesive force of the filler 6. A coupling portion 7 is formed to keep the member 3 in a lattice shape. The vibration due to the deformation energy applied to the unit partition body 4 is controlled by the displacement of the coupling portion 7 in the main surface direction. The coupling portion 7 refers to an intersecting portion (intersection) of the damping lattice body 1 and includes the vertically assembled member 2, the horizontally assembled member 3, and the filler 6 existing at the intersecting portion.

図1に示す通り、建物の左右の柱4a,4b、梁4c、及び土台4dの間に、縦組み部材2と横組み部材3で構成された制振格子体1を取り付けたものである。取り付け方は、柱4a,4bと、横組み部材3との結合は、粘弾性材にて固定する、もしくは、釘により固定する、接着剤で固定する、などの各種の方法にて固定することが出来る。梁4c及び土台4dと、縦組み部材2との結合も同様である。   As shown in FIG. 1, a damping lattice body 1 composed of a vertically assembled member 2 and a horizontally assembled member 3 is attached between left and right pillars 4a and 4b, a beam 4c, and a base 4d. As for the mounting method, the columns 4a, 4b and the horizontal assembly member 3 are fixed by various methods such as fixing with a viscoelastic material, fixing with a nail, or fixing with an adhesive. I can do it. The connection between the beam 4c and the base 4d and the vertically assembled member 2 is the same.

縦組み部材2及び横組み部材3は木製であり、木製の部材2,3の断面積及び長さは、単位区画体4を構成する構造材4a〜4dの断面積及び長さよりも小さく設定されている。図3に示す通り、縦組み部材2と横組み部材3とが直交し、縦組み部材2が横組み部材3の縦貫通孔3aを貫通する形状となっている。縦組み部材2の長辺が主面方向と平行で、短辺が直交している。横組み部材3の長辺が主面方向と平行で、短辺が直交している。複数の縦貫通孔3aが横組み部材3を上下方向に貫通し、所定個数が所定間隔又は適宜間隔で形成されている。   The vertically assembled member 2 and the horizontally assembled member 3 are made of wood, and the cross-sectional areas and lengths of the wooden members 2 and 3 are set to be smaller than the cross-sectional areas and lengths of the structural members 4 a to 4 d constituting the unit partition body 4. ing. As shown in FIG. 3, the vertically assembled member 2 and the horizontally assembled member 3 are orthogonal to each other, and the vertically assembled member 2 has a shape that penetrates the vertical through hole 3 a of the horizontally assembled member 3. The long side of the vertically assembled member 2 is parallel to the main surface direction, and the short sides are orthogonal. The long side of the horizontal member 3 is parallel to the main surface direction, and the short sides are orthogonal. A plurality of vertical through holes 3a penetrate the horizontal assembly member 3 in the vertical direction, and a predetermined number is formed at a predetermined interval or an appropriate interval.

図4及び図5に示す通り、直交する縦組み部材2と横組み部材3との間に、横断面が中明きの矩形の空隙5が縦組み部材2と横組み部材3の交差部分に形成され、縦組み部材2と横組み部材3とが直接接触しないように配置され、空隙5の横組み部材3軸方向の厚みが、該軸方向と直交する方向の厚みよりも多く設定されている。   As shown in FIGS. 4 and 5, a rectangular gap 5 having a bright cross section is formed between the vertically assembled member 2 and the horizontally assembled member 3 at the intersecting portion of the vertically assembled member 2 and the horizontally assembled member 3. Formed so that the vertically assembled member 2 and the horizontally assembled member 3 are not in direct contact with each other, and the thickness of the gap 5 in the axial direction of the horizontally assembled member 3 is set larger than the thickness in the direction orthogonal to the axial direction. Yes.

縦組み部材2と横組み部材3は木造軸組在来工法に適合した形状及び寸法に設定され、建物の外壁の下地又は内壁の下地を兼ねている。単位区画体4を構成する柱4bと、隣接する柱4cとの中間部分には間柱部材8を設ける。間柱部材8は、梁4c及び土台4dに結合させ、横組み部材3に結合する柱4bに隣接して間柱部材8を添えている。   The vertically assembled member 2 and the horizontally assembled member 3 are set in a shape and size suitable for a wooden shaft conventional construction method, and also serve as a foundation for the outer wall of the building or a foundation for the inner wall. An inter-column member 8 is provided at an intermediate portion between the column 4b constituting the unit partition body 4 and the adjacent column 4c. The spacer member 8 is connected to the beam 4c and the base 4d, and is attached to the spacer 4 adjacent to the pillar 4b connected to the horizontal member 3.

結合部7を構成する縦組み部材2、および横組み部材3は緊結されているのではなく、適当な空間を空けて接合され、その間の部分に、粘弾性充填材6をつめ込まれた構造になっている。充填材6は、格子を構成する縦組み部材2および横組み部材3が、建物の変形に従って動くとき、元の形状にとどまるよう抵抗を示す。このとき、変形エネルギーは粘弾性材の変形エネルギーとして変換され、建物全体へのエネルギーの投入は相対的に減少する。このことから、制振格子体が有効であることが示される。   The vertically assembled member 2 and the horizontally assembled member 3 constituting the coupling portion 7 are not tightly coupled, but are joined together with an appropriate space therebetween, and the viscoelastic filler 6 is inserted in a portion therebetween. It has become. The filler 6 shows resistance so that when the vertically assembled member 2 and the horizontally assembled member 3 constituting the lattice move according to the deformation of the building, they remain in their original shapes. At this time, the deformation energy is converted as the deformation energy of the viscoelastic material, and the input of energy to the entire building is relatively reduced. This indicates that the damping lattice body is effective.

制振格子体1の格子構成部材の縦組み部材2は、横組み部材3に開けられた穴を通して格子を構成する仕組みになっている。横組み部材3に開けられた穴は縦組み部材2の外形寸法よりも大きくなっている。その大きくなっている間隙5(空間箇所)に粘弾性充填材6を満たすことによって、各結合部7に粘性抵抗を示す働きを付加している。結合部7の縦組み部材2と横組み部材3とによって構成された部分の間隔は、粘弾性充填材6の量を決定づけるために重要な働きを持つ。この間隔の大きさにより、結合部7の持つ粘性抵抗力が決定され、制振格子体全体の粘性抵抗力の大きさが決定される。   The vertically assembled member 2 of the lattice constituting member of the damping lattice body 1 has a mechanism for constituting a lattice through holes formed in the horizontally assembled member 3. The hole opened in the horizontal assembly member 3 is larger than the outer dimension of the vertical assembly member 2. The viscoelastic filler 6 is filled in the large gap 5 (space location), thereby adding a function of exhibiting viscous resistance to each coupling portion 7. The interval between the parts formed by the vertically assembled member 2 and the horizontally assembled member 3 of the coupling portion 7 has an important function for determining the amount of the viscoelastic filler 6. The viscous resistance force of the coupling portion 7 is determined by the size of the interval, and the magnitude of the viscous resistance force of the entire damping lattice body is determined.

図4及び図5に示す充填材6としては次のものが挙げられる。ゲル物質は、自然素材であり、生態系の物質が多く、環境にも優しいという特徴を持つ。但し、水性の性質があり、保水および湿潤問題を持つ。高分子ポリマー系は、ゴムの性質から粘性性質を持つものまで数多く開発されている。シリコンシーラントは、いわゆるコーキング剤である。粘性をある程度持っているが、基本性質は硬化型である。変位が少ない場合には、効果を発揮する。多重結合型オイル、例えば、リンシードオイルなどの酸素重合型オイルは乾燥に長時間かかるが、制振装置のエネルギー吸収剤として使用可能である。以上の物質から適宜選択することで適切な性能を持つ充填材を見出すことができる。   Examples of the filler 6 shown in FIGS. 4 and 5 include the following. Gel substance is a natural material, has many ecological substances, and is characterized by being environmentally friendly. However, it is water-based and has water retention and wetting problems. Many high molecular weight polymer systems have been developed, ranging from rubber properties to viscous properties. Silicone sealant is a so-called caulking agent. It has a certain degree of viscosity, but its basic property is curable. The effect is exhibited when the displacement is small. Multi-bonded oils, for example, oxygen-polymerized oils such as linseed oil, take a long time to dry, but can be used as energy absorbers for vibration control devices. By appropriately selecting from the above substances, a filler having appropriate performance can be found.

実施形態1に係る制振格子体1の外乱力入力時の応答について説明する。地震もしくは風圧影響時には、制振格子体1は、図6のように、主面方向に対して、単位区画体4と共に変形をする。建物の変形は、単位区画体4を矩形状態から左右に平行四辺形状態へと形状を変化させる動きをするが、その場合、制振格子体1を構成する縦組み部材2および横組み部材3も、同様に矩形を構成する状態から平行四辺形の形状へと変化していくので、単位区画体4の形状変化と、制振格子1の形状変化は、相似形の関係にある。梁4cと土台4dを結ぶ縦組み部材2に関しては、上部と下部が左右にずれる現象が生じ、柱4aと柱4bとの間に取り付けられる横組み部材3に関しては、平行に移動することになる。部材1本毎の動きを見ると、制振格子体1の横組み部材3はほぼ平行に移動し、縦組み部材2は一端を中心とした円運動をする。各格子の縦組み部材2と横組み部材3との間の変形角は、どの点を取っても一定となっており、変形エネルギーが均一に分散されていることを特徴とする。この特徴のため、制振格子体1の構成面内に応力の不均一分布が発生しないため、きわめて安定した反応を示す。また、応力が均一分布であるため、応力の集中が生じない。制振格子体1は、単位区画体4の構造軸中に配置されており、なおかつ構造軸を構成する部材強度よりも十分に弱くなっているため、構造軸の変形が発生した折りには、構造軸の変形に追従して容易に変形を起こすようになっている。   The response at the time of the disturbance force input of the damping lattice body 1 according to the first embodiment will be described. At the time of earthquake or wind pressure influence, the damping lattice body 1 is deformed together with the unit partition body 4 in the main surface direction as shown in FIG. The deformation of the building moves the unit partition body 4 from a rectangular state to a parallelogram shape to the left and right. In this case, the vertical assembly member 2 and the horizontal assembly member 3 constituting the damping lattice body 1 are used. Similarly, since the shape changes from a rectangular shape to a parallelogram shape, the shape change of the unit partition 4 and the shape change of the damping lattice 1 are in a similar relationship. As for the vertically assembled member 2 connecting the beam 4c and the base 4d, a phenomenon occurs in which the upper part and the lower part are shifted to the left and right, and the horizontally assembled member 3 attached between the pillars 4a and 4b moves in parallel. . Looking at the movement of each member, the horizontally assembled member 3 of the damping lattice body 1 moves substantially in parallel, and the vertically assembled member 2 performs a circular motion around one end. The deformation angle between the vertically assembled member 2 and the horizontally assembled member 3 of each lattice is constant at any point, and the deformation energy is uniformly distributed. Because of this feature, a non-uniform distribution of stress does not occur in the constituent plane of the damping lattice body 1, and a very stable reaction is exhibited. Further, since the stress is uniformly distributed, no stress concentration occurs. Since the damping lattice body 1 is arranged in the structural axis of the unit partition body 4 and is sufficiently weaker than the strength of the members constituting the structural axis, Deformation easily occurs following the deformation of the structural axis.

図7に、制振格子体1の特性を示す。線で囲まれた面積が外乱力による変形エネルギーに対する吸収エネルギーの量を示す。1つの結合部7における制振減衰力を保有する粘弾性の充填材によるエネルギー吸収量(変形応力)は小さくてもよく、どの結合部7でも変形エネルギーを吸収するようになっていることから、結合部7の数が多くなれば変形応力が現れる箇所が多くなり、それぞれ結合部の少しの力が集合することによって、現実に制振性能を発揮するのに十分な特質を持つ。   FIG. 7 shows the characteristics of the damping lattice body 1. The area surrounded by the line indicates the amount of absorbed energy with respect to the deformation energy due to the disturbance force. The energy absorption amount (deformation stress) by the viscoelastic filler having the damping damping force in one coupling portion 7 may be small, and any coupling portion 7 is adapted to absorb deformation energy. When the number of the coupling parts 7 increases, the number of places where deformation stress appears increases, and a small amount of force at each coupling part gathers, so that it has characteristics sufficient to actually exhibit damping performance.

制振格子体1の建物への組み付けに関しては、建物本体との取り合わせ等で、数通りの方法を確立しある。単位区画体4の中に入れられる様に、枠組み込みをあらかじめしてある制振格子体、2×4工法用の制振格子組み付けなども、発展系として考慮してある。ホールダウン金物等の施工に配慮したものでなければならない。この制振格子体1は、基本的に耐力壁部分ではない所に施工するのが原則となる。施工の具体例については後述する。   Several methods have been established for assembling the damping lattice body 1 into the building by assembling it with the building body. As a development system, a damping lattice body that has been pre-installed in a frame so that it can be put in the unit partition body 4 and a damping lattice assembly for a 2 × 4 construction method are also considered. It must be considered for the construction of hole-down hardware. As a general rule, the damping lattice body 1 is constructed in a place that is not basically a bearing wall. Specific examples of construction will be described later.

充填材としてコーキング剤を用いる。制振格子体1のピッチを151mm×151mmのピッチ(縦組み部材2及び横組み部材3の中心軸間の距離)とし、柱4a、4bの長さが2595mm、縦組み部材2の軸方向の間隙が1019mm、横幅(長辺)が60mm、奥行き(短辺)が30mmとし、横組み部材3の軸方向の全長が910mm、高さ(短辺)が30mm、奥行き(長辺)が60mmとし、する。縦貫通孔の奥行き32mm、横幅80mm、高さ30mmである。空隙5の横断面において狭いほうの幅が1mmとし、長いほうの幅を10mmとする。間隙5の容積は、(32×80mm−30×60mm)×30mm(高さ)=22,800mm3(22.8cc)となる。この交差点が、85カ所あるので、完全に間隙に充填すると、22.8×85=1938(cc)の容量となる。縦組み部材と横組み部材とを30mm×60mmの部材としたのは、材の有効利用、および効率的に生産できるものだからである。格子のピッチは151×151mmのほか、90×90mm、200×200mm、303×303mm、180×151mm、175×151mmなどが挙げられる。 A caulking agent is used as a filler. The pitch of the damping lattice body 1 is 151 mm × 151 mm (the distance between the central axes of the vertically assembled member 2 and the horizontally assembled member 3), the lengths of the columns 4a and 4b are 2595 mm, and the axial direction of the vertically assembled member 2 is The gap is 1019 mm, the width (long side) is 60 mm, the depth (short side) is 30 mm, the overall length of the horizontal assembly 3 in the axial direction is 910 mm, the height (short side) is 30 mm, and the depth (long side) is 60 mm. To do. The vertical through hole has a depth of 32 mm, a horizontal width of 80 mm, and a height of 30 mm. In the cross section of the gap 5, the narrower width is 1 mm and the longer width is 10 mm. The volume of the gap 5 is (32 × 80 mm−30 × 60 mm) × 30 mm (height) = 22,800 mm 3 (22.8 cc). Since there are 85 intersections, when the gap is completely filled, the capacity is 22.8 × 85 = 1938 (cc). The reason why the vertically assembled member and the horizontally assembled member are 30 mm × 60 mm members is that they can be effectively used and produced efficiently. In addition to 151 × 151 mm, the pitch of the lattice includes 90 × 90 mm, 200 × 200 mm, 303 × 303 mm, 180 × 151 mm, 175 × 151 mm, and the like.

縦組み部材2の材料の形状は、長辺の大きさが、短辺の2倍という大きさであるので、弱い方向と、強い方向とでは、強さが8倍に異なっている。結合部7は、密度を高くすればするほど多くなる。基本的には、格子部7の変形は、どの格子点部分をとっても同じである。横組み部材3の変位は、縦組み部材2の変位との相対移動によって各の格子点(交点)に変形応力が確実に現れる。それぞれの交点は、計算上全て同じ働きをし、力を分担するから、格子数が多くなればなるほど、材料自体の必要強度は小さく出来るが、使用する材料も多くなり、重量も嵩んでくる。実際の現場での作業性を考慮すると、重くても、20Kg程度であることが望ましい。   The shape of the material of the vertically assembled member 2 is such that the length of the long side is twice that of the short side, so that the strength is 8 times different between the weak direction and the strong direction. The number of coupling portions 7 increases as the density increases. Basically, the deformation of the lattice portion 7 is the same regardless of the lattice point portion. With respect to the displacement of the horizontal member 3, deformation stress appears surely at each lattice point (intersection point) by relative movement with the displacement of the vertical member 2. Each intersection has the same function in calculation and shares the force. Therefore, the larger the number of lattices, the smaller the necessary strength of the material itself, but the more material is used and the weight increases. Considering workability at the actual site, it is desirable that it is about 20 kg even if it is heavy.

[実施形態2]
実施形態2の制振格子体11につき図8及び図9を参照して説明する。なお、共通する構成については部品番号を10番台とし実施形態1の図示及び説明を援用し、相違点につき説明する。制振格子体11は、縦組み部材2と横組み部材3の交差態様が異なる。制振格子体11を構成する縦組み部材12と横組み部材13は、一方が他方の穴を貫通する構造ではなく、隣接しながら交差する構造となっている。隣接した部分である空隙部15に粘弾性充填材16が充填されており、その充填材16の働きで、制振格子体1全体に粘性抵抗を与えようにされた構造である。
[Embodiment 2]
The damping grid body 11 of Embodiment 2 will be described with reference to FIGS. 8 and 9. In addition, about a common structure, parts numbers are set to the 10th level, and the difference and description are demonstrated using the illustration and description of Embodiment 1. FIG. The vibration control lattice 11 is different in the crossing mode of the vertically assembled member 2 and the horizontally assembled member 3. The vertically assembled member 12 and the horizontally assembled member 13 constituting the damping lattice body 11 have a structure in which one is not penetrating through the other hole but intersects while adjoining. In this structure, the adjacent gap 15 is filled with a viscoelastic filler 16, and the filler 16 gives a viscous resistance to the entire damping lattice body 1.

図10に示す通り、柱14bに横方向に溝14fが形成され、横組み部材13の右端が溝14fに嵌合されて固定される。左側の柱(図示略)も同様である。土台14dには縦貫通孔14gが形成され、縦組み部材12の下端が嵌合されて固定される。梁(図示略)も同様である。   As shown in FIG. 10, a groove 14 f is formed in the column 14 b in the lateral direction, and the right end of the horizontal assembly member 13 is fitted into the groove 14 f and fixed. The same applies to the left column (not shown). A vertical through-hole 14g is formed in the base 14d, and the lower end of the vertical assembly member 12 is fitted and fixed. The same applies to beams (not shown).

実施形態2の組み方の利点は、穴開け加工などの制振格子体1を構成するための付加的な加工をしなくても、済むことが上げられる。また、粘性抵抗の大きさは充填材の面積によって決定されるため、比較的大きな面積を確保でき、大きな粘性抵抗力を発揮することが出来る。   The advantage of the assembly method of the second embodiment is that it is not necessary to perform additional processing for constructing the damping lattice body 1 such as drilling. Further, since the magnitude of the viscous resistance is determined by the area of the filler, a relatively large area can be secured and a large viscous resistance force can be exhibited.

[実施形態3]
実施形態3の制振格子体21につき図11及び図12を参照して説明する。なお、共通する構成については部品番号を20番台とし実施形態1、2の図示及び説明を援用し、相違点につき説明する。制振格子体21を構成する縦組み部材22と横組み部材23の形状を変えたものである。本発明の制振格子体の特徴は、格子を構成する縦組み部材22と横組み部材23とが構成する交差点において、粘弾性材等の充填剤26により、粘性抵抗を発揮させることにある。そのため、格子を構成する部材である縦格子部材2と横格子部材3とが必ずしも、同一の寸法である必要はなく、結合部27の機能が十分であればよい。縦組み部材22の奥行き(厚み)は横組み部材23のそれよりも小さいが、縦組み部材22の横幅は横組み部材23の高さよりも大きく設定されている。
[Embodiment 3]
The damping grid body 21 of Embodiment 3 will be described with reference to FIGS. 11 and 12. In addition, about a common structure, a part number is made into 20 series, and the illustration and description of Embodiment 1, 2 are used and it demonstrates about a difference. The shapes of the vertically assembled member 22 and the horizontally assembled member 23 constituting the damping lattice body 21 are changed. A characteristic of the vibration damping lattice body of the present invention is that a viscous resistance is exhibited by a filler 26 such as a viscoelastic material at the intersection formed by the vertically assembled member 22 and the horizontally assembled member 23 constituting the lattice. Therefore, the vertical lattice member 2 and the horizontal lattice member 3 that are members constituting the lattice do not necessarily have the same dimensions, and it is sufficient that the function of the coupling portion 27 is sufficient. Although the depth (thickness) of the vertically assembled member 22 is smaller than that of the horizontally assembled member 23, the lateral width of the vertically assembled member 22 is set larger than the height of the horizontally assembled member 23.

[実施形態4]
実施形態4の制振格子体31につき図13を参照して説明する。なお、共通する構成については部品番号を30番台とし実施形態1〜3の図示及び説明を援用し、相違点につき説明する。実施形態3において、縦組み部材22と横組み部材23とを交換し、それぞれ、縦組み部材32、横組み部材33とした構成である。なお、柱34bにも溝34fが形成され、横組み部材33の右端が嵌合されて固定される。左側の柱(図示略)も同様である。土台34dには溝34gが形成され、縦組み部材32の下端が嵌合されて固定される。梁(図示略)も同様である。
[Embodiment 4]
The damping lattice body 31 of the fourth embodiment will be described with reference to FIG. In addition, about a common structure, a part number is made into 30 series, and the illustration and description of Embodiment 1-3 are used, and it demonstrates about difference. In the third embodiment, the vertically assembled member 22 and the horizontally assembled member 23 are exchanged to form a vertically assembled member 32 and a horizontally assembled member 33, respectively. A groove 34f is also formed in the pillar 34b, and the right end of the horizontal assembly member 33 is fitted and fixed. The same applies to the left column (not shown). A groove 34g is formed in the base 34d, and the lower end of the vertically assembled member 32 is fitted and fixed. The same applies to beams (not shown).

[実施形態5]
実施形態5の制振格子体51につき図14を参照して説明する。なお、共通する構成については部品番号を50番台とし実施形態1〜4の図示及び説明を援用し、相違点につき説明する。実施形態2と相違する点は、実施形態2の縦組み部材12が横組み部材13の一方側にのみ位置することに対し、実施形態5は縦組み部材52が横組み部材53の両側に互い違いに配置されることである。これに対応して、溝54gが軸方向に対して互い違いにずれた位置に形成されることである。
[Embodiment 5]
The damping grid body 51 of the fifth embodiment will be described with reference to FIG. In addition, about a common structure, a part number is made into 50 series, and the illustration and description of Embodiment 1-4 are used, and it demonstrates about a difference. The difference from the second embodiment is that the vertically assembled member 12 of the second embodiment is located only on one side of the horizontally assembled member 13, whereas the vertically assembled member 52 is alternately arranged on both sides of the horizontally assembled member 53. Is to be placed in. Corresponding to this, the grooves 54g are formed at positions shifted alternately with respect to the axial direction.

[実施形態6]
実施形態6の制振格子体61につき図15及び図16を参照して説明する。なお、共通する構成については部品番号を60番台とし実施形態1〜5の図示及び説明を援用し、相違点につき説明する。実施形態2と相違する点は、実施形態2の縦組み部材12が1枚の横組み部材13と交差するのに対し、実施形態5は縦組み部材62が2枚の横組み部材63aと63bに挟まれるように交差していることである。充填材66a及び66bが縦組み部材62の両側に充填される。
[Embodiment 6]
The damping grid 61 of the sixth embodiment will be described with reference to FIGS. 15 and 16. In addition, about a common structure, a part number is set to 60s, and it demonstrates about difference with the illustration and description of Embodiment 1-5. The difference from the second embodiment is that the vertical assembly member 12 of the second embodiment intersects with one horizontal assembly member 13, while the vertical assembly member 62 of the second embodiment has two horizontal assembly members 63a and 63b. It is crossing so as to be sandwiched between. Fillers 66 a and 66 b are filled on both sides of the vertically assembled member 62.

[実施形態7]
実施形態7の制振格子体71につき図17及び図18を参照して説明する。なお、共通する構成については部品番号を70番台とし実施形態6の図示及び説明を援用し、相違点につき説明する。実施形態6の制振格子体61を構成する縦組み部材62と横組み部材63の形状を変えたものである。縦格子部材2と横格子部材3とは必ずしも、同一の寸法である必要はなく、結合部77の機能が十分であればよい。縦組み部材72の奥行き(厚み)は横組み部材73a、73bのそれよりも小さいが、縦組み部材72の横幅は横組み部材73a、73bの高さよりも大きく設定されている。
[Embodiment 7]
A damping grid body 71 of Embodiment 7 will be described with reference to FIGS. 17 and 18. In addition, about a common structure, a part number is set to 70 series, and the difference and description are demonstrated using the illustration and description of Embodiment 6. FIG. The shapes of the vertically assembled member 62 and the horizontally assembled member 63 constituting the damping lattice body 61 of the sixth embodiment are changed. The vertical lattice member 2 and the horizontal lattice member 3 do not necessarily have the same dimensions, and it is sufficient that the function of the coupling portion 77 is sufficient. Although the depth (thickness) of the vertically assembled member 72 is smaller than that of the horizontally assembled members 73a and 73b, the lateral width of the vertically assembled member 72 is set to be larger than the height of the horizontally assembled members 73a and 73b.

[実施形態8]
実施形態8の制振格子体81につき図19を参照して説明する。なお、共通する構成については部品番号を80番台とし実施形態7の図示及び説明を援用し、相違点につき説明する。実施形態2において、縦組み部材22を1枚増加し、2枚の縦組み部材82a、82bが両側から1枚の横組み部材83を挟むように対向して配置したものである。充填材86a、86bが横組み部材83の両側に充填される。横貫通孔84f及び縦貫通孔84gもそれぞれ一対で形成されている。
[Embodiment 8]
The damping grid body 81 of the eighth embodiment will be described with reference to FIG. In addition, about a common structure, a part number is set to 80s, and it demonstrates about difference with the illustration and description of Embodiment 7 being used. In the second embodiment, the vertically assembled member 22 is increased by one, and the two vertically assembled members 82a and 82b are arranged to face each other so as to sandwich the horizontally assembled member 83 from both sides. Fillers 86 a and 86 b are filled on both sides of the horizontal member 83. A pair of horizontal through holes 84f and vertical through holes 84g are also formed.

[実施形態9]
実施形態9の制振格子体91につき図20を参照して説明する。なお、共通する構成については部品番号を90番台とし実施形態8の図示及び説明を援用し、相違点につき説明する。実施形態8において、縦組み部材82、横組み部材83の形状を変更したものである。これに伴い、縦貫通孔84gを溝94gに変更している。
[Embodiment 9]
The vibration damping grid 91 of the ninth embodiment will be described with reference to FIG. In addition, about a common structure, a part number is set to 90 series, and the difference and description are demonstrated using the illustration and description of Embodiment 8. FIG. In the eighth embodiment, the shapes of the vertically assembled member 82 and the horizontally assembled member 83 are changed. Accordingly, the vertical through hole 84g is changed to the groove 94g.

[実施形態10]
実施形態10の制振格子体101につき図21を参照して説明する。なお、共通する構成については部品番号を100番台とし実施形態9の図示及び説明を援用し、相違点につき説明する。実施形態9において、対向する一対の縦組み部材92を1枚とし、且つ、横組み部材93の軸方向に対して互い違いに配置したものである。
[Embodiment 10]
The damping grid body 101 of the tenth embodiment will be described with reference to FIG. In addition, about a common structure, a part number is set to 100 series, and the difference and description are demonstrated using the illustration and description of Embodiment 9. FIG. In the ninth embodiment, one pair of vertically assembled members 92 facing each other is arranged in a staggered manner with respect to the axial direction of the horizontally assembled member 93.

[実施形態11]
実施形態11の制振格子体201につき図22を参照して説明する。なお、共通する構成については部品番号を200番台とし実施形態1〜10の図示及び説明を適宜援用し、相違点につき説明する。通常、制振格子体1〜101は、左右の柱および上下の梁もしくは桁もしくは土台に囲まれた空間に取り付けるのであるが、実施形態11の場合は、建物の内装用もしくは外装用面材のための下地を制振格子体1が兼用することの出来る取り付け構造としたものである。即ち、耐震パネルが単位区画体と胴縁の間に配置され、胴縁の外側に外壁、或いは内側に内装材が取り付けられている建物において、この耐震パネルの代わりに制振格子体201を配置したものであり、横組み部材203が前方向(又は後方向)に位置をずらせて柱204bに結合されていることで、柱204bの外表面から横組み部材203が所定長さ突出して配置されるようになるのである。土台、梁等についても同様な構造でよい。外壁・内壁下地(胴縁)の厚さ同縁施工を省略することが出来るだけでなく、他の部分との均一な出(胴縁等を施工した後の出)と同等であるため、仕上がり時の美観を損なうことがない。
[Embodiment 11]
The damping grid body 201 of the eleventh embodiment will be described with reference to FIG. In addition, about a common structure, a part number is set to 200 series, illustration and description of Embodiment 1-10 are used suitably, and a difference is demonstrated. Usually, the damping lattice bodies 1 to 101 are attached to the space surrounded by the left and right columns and the upper and lower beams or girders or foundations. For this reason, the mounting structure is such that the damping grating body 1 can also be used as a base for this purpose. That is, in a building where an earthquake-resistant panel is arranged between the unit compartment and the trunk edge and an outer wall is attached to the outer side of the trunk edge or an interior material is attached to the inner side of the trunk edge, the damping grid 201 is arranged instead of the earthquake-resistant panel. Since the horizontal assembly member 203 is displaced in the forward direction (or rearward direction) and coupled to the column 204b, the horizontal assembly member 203 is disposed so as to protrude a predetermined length from the outer surface of the column 204b. It comes to be. A similar structure may be used for the foundation and the beam. Not only can the thickness of the outer wall / inner wall base (trunk edge) be omitted, but it is equivalent to a uniform exit with other parts (outside after the trunk edge is constructed), so the finish is finished. There is no loss of the beauty of time.

[実施形態12]
実施形態12の制振格子体301につき図23を参照して説明する。なお、共通する構成については部品番号を300番台とし実施形態1〜11の図示及び説明を適宜援用し、相違点につき説明する。制振格子体301の端部を、左右の柱および上下の梁もしくは桁もしくは土台で囲まれた空間に取り付ける際、これらの構造材にぴったり合う枠材309を用いて取り付ける構造を示す。この場合の枠309は、制振格子体1の格子の形状に合わせて、切り欠き、あるいは、穴開けが施工されており、制振格子の能力を損なわない十分に狭い空間的なゆとりで構造区画材4に直接施工できるように加工されている。欠き込みの部分は、縦組み部材および横組み部材の変形時の動きを考慮し、取り付け方を次のように工夫する。即ち、縦組み部材302の端部取り付け方としては、縦組み部材302はどちらかの端部を起点に円運動をするため、しっかり固定することなく、粘弾性の接着剤等を用い、可動点とする。こうすることによって、格子を構成する縦組み部材302の変形力を極力少なくし、必要以外の変形を発生させないようにする。また、横組み部材303の端部の取り付け方としては、格子を構成する横組み部材303は、建物の変形に応じて平行移動をするような動きをするので、この特徴を考慮に入れた取り付け方とする。即ち、格子を構成する横組み部材303はしっかり固定することなく、粘弾性の接着剤等を用い、可動点とするか、1点のみを固定する様な方式の施工方法を採用する。固定する材料は、制振格子体301の設計強度に合わせて木ねじ釘等を使い分ける。
[Embodiment 12]
The damping grid body 301 of Embodiment 12 will be described with reference to FIG. In addition, about a common structure, a part number is made into 300 series, illustration and description of Embodiment 1-11 are used suitably, and a difference is demonstrated. A structure in which the end of the damping grid 301 is attached using a frame material 309 that fits these structural members when the left and right pillars and upper and lower beams or beams or girders or a base are enclosed is shown. In this case, the frame 309 is notched or drilled according to the shape of the lattice of the damping lattice body 1, and has a sufficiently narrow spatial space that does not impair the ability of the damping lattice. It is processed so that it can be directly applied to the partition material 4. The notched portion is devised as follows in consideration of the movement of the vertically assembled member and the horizontally assembled member during deformation. That is, as the method of attaching the end of the vertically assembled member 302, the vertically assembled member 302 moves circularly starting from one of the ends, so that it is not fixed firmly and a viscoelastic adhesive or the like is used. And By doing so, the deformation force of the vertically assembled members 302 constituting the lattice is reduced as much as possible so that deformation other than necessary is not generated. In addition, as a method of attaching the end of the horizontal member 303, the horizontal member 303 constituting the lattice moves so as to move in parallel according to the deformation of the building. And That is, the horizontal assembly member 303 constituting the lattice is not fixed firmly, but a viscoelastic adhesive or the like is used as a movable point, or a construction method of fixing only one point is adopted. As the material to be fixed, wood screw nails or the like are properly used in accordance with the design strength of the damping lattice body 301.

[実施形態13]
実施形態13の制振格子体401につき図24を参照して説明する。なお、共通する構成については部品番号を400番台とし実施形態1〜12の図示及び説明を適宜援用し、相違点につき説明する。左右を柱、上下を梁もしくは土台によって構成される構造区画内に施工される制振格子体401は、間柱などの下地材を兼ねることが出来るが、片面の下地だけでなく、適切な部材を(間柱等の部材)用いることによって他の一面の壁下地についても実現することが出来る。片面側で外壁の下地を兼ねて(胴縁の巾と同等の厚さを外側に持ち出したもの)反対側に、柱面にあわせて、間柱の機能を持たせた部材408を施工した例である。この場合だけでなく、内壁の下地に胴縁をもちいる場合、内壁側が和室仕上げ(真壁納め)などの場合にも、対応できる。また、断熱材等の施工に関しても、十分なクリアランスがあり、断熱材を規定以上に圧縮して、性能をなくすようなことはない。
[Embodiment 13]
A damping grid 401 of Embodiment 13 will be described with reference to FIG. In addition, about a common structure, parts number is made into 400 series, illustration and description of Embodiment 1-12 are used suitably, and a difference is demonstrated. The damping grid 401 constructed in the structural section composed of pillars on the left and right and beams or foundations on the top and bottom can also serve as a base material such as a stud, but not only a single-sided base but also an appropriate member. By using (a member such as a spacer), it is possible to realize a wall base on the other surface. An example in which a member 408 having the function of a stud is installed on the opposite side to serve as the base of the outer wall on one side (thickness that is the same as the width of the trunk edge). is there. Not only in this case, it is also possible to use the case where the inner edge of the inner wall has a trunk edge, and the case where the inner wall side is a Japanese-style finish (with a wall). In addition, there is a sufficient clearance for the construction of the heat insulating material and the like, and the performance of the heat insulating material is not compressed and compressed.

[実施形態14]
実施形態14の制振格子体501につき図25を参照して説明する。なお、共通する構成については部品番号を500番台とし実施形態1〜13の図示及び説明を適宜援用し、相違点につき説明する。施工する場所によってホールダウンアンカー504Hと抵触する場合がある。そのような場合には抵触する部分を切り欠き、自由に施工することが出来る。切り欠いた場合には、それだけ格子の結合部の数が少なくなる場合があるが、結合部一つづつの応力計算が出来ているため、欠けた結合部の数、欠いた後の形状が分かれば、それに併せて適切な補強をすることも出来るし、あらかじめ、切り欠きを考慮に入れて施工することも出来る。
[Embodiment 14]
A damping grid body 501 of Embodiment 14 will be described with reference to FIG. In addition, about a common structure, a part number is made into the 500 series, and illustration and description of Embodiment 1-13 are used suitably, and a difference is demonstrated. Depending on the construction site, there may be a conflict with the hole-down anchor 504H. In such a case, the conflicting part can be cut out and installed freely. If there are notches, the number of joints in the lattice may be reduced accordingly, but since the stress can be calculated for each joint, if the number of missing joints and the shape after the lack are known, In conjunction with this, it is possible to reinforce appropriately, or it is possible to construct in consideration of notches in advance.

[実施形態15]
実施形態15の制振格子体601につき図26を参照して説明する。なお、共通する構成については部品番号を600番台とし実施形態1〜14の図示及び説明を適宜援用し、相違点につき説明する。制振格子体601は、左右の柱上下の梁もしくは土台に囲まれた単一の構造区画内だけでなく、窓の下部分604c(或いは、窓の上部分、ドアの上部分など)の箇所にも施工することが出来る。また、このように切り欠いた場合でも、機能的には、こういう場合の計算方式が確定しているために、所望の効果を求めることが簡単にできる。
[Embodiment 15]
The damping grid body 601 of the fifteenth embodiment will be described with reference to FIG. In addition, about a common structure, parts number is made into 600 series, illustration and description of Embodiment 1-14 are used suitably, and a difference is demonstrated. The damping grid 601 is not only in a single structural section surrounded by beams above and below the left and right columns, but also in the lower part of the window 604c (or the upper part of the window, the upper part of the door, etc.) Can also be constructed. Even in the case of such a cut-out, a desired effect can be easily obtained because the calculation method in such a case is fixed functionally.

本実施形態では、前記実施形態および施工例では、縦組み部材と横組み部材とを区別して示したが、必ずしも縦組み部材を縦にする必要はなく、縦組み部材を横組み部材に、横組み部材を縦組み部材にすることも可能である。制振装置の開発に当たって、仕口廻りに付ける小型の装置の開発をするという方法もあるが、装置が取り付けられる木材の物性上の問題が生じることもあり、十分に能力の発揮できるものとはならない。能力の高い制振格子体とするためには、既存工法の枠組みの中で制振格子を取り付けること、例えば、910mm、1000mm等の長さ単位を備えるモジュールの一つのスパンに対して制振格子を取り付けて行うような大きな面で考えるようにすることで効率的なものとなる。   In this embodiment, in the said embodiment and construction example, although the vertical assembly member and the horizontal assembly member were distinguished and shown, the vertical assembly member does not necessarily need to be vertical, a vertical assembly member is made into a horizontal assembly member, The assembled member may be a vertically assembled member. In developing vibration control devices, there is a method of developing a small device attached to the joint, but there may be problems with the physical properties of the wood to which the device is attached, so that it can fully demonstrate its capabilities Don't be. In order to obtain a damping grid body having high capability, the damping grid is attached within the framework of the existing construction method, for example, the damping grid for one span of a module having a length unit of 910 mm, 1000 mm, etc. It becomes efficient by thinking in a big aspect like attaching.

[実施形態16]
実施形態16の制振格子体701につき図27及び図28を参照して説明する。なお、共通する構成については部品番号を700番台とし実施形態1〜15の図示及び説明を適宜援用し、相違点につき説明する。制振格子体701は、粘弾性材が加硫ゴム又は熱可塑性ゴムであって、図27に示す通り、制振格子体701の結合部が示され、ゴム体706a及び706bを左右一対、合計で4個設けて粘弾性材を構成したものである。まず、縦組み部材702と横組み部材703とを間隙705を開けて直交させて配置し、その隙間705に逆L字形状のゴム体706aと、ゴム体706aと同じ形状のゴム体706bをゴム体706aに対して上下逆方向(ゴム体706aは上方向、ゴム体706bは下方向)から突き合わせて挿入し結合したものである。図28に示す通り、このゴム体706aは、逆L字形状(L字形状を上下反転した形状)であり、左右方向(横組み部材703と直交する方向)に延び出す横部711と、横部711の内側(縦組み部材702の長手方向端部と対面する側)に形成され縦方向に延び出す上部凹溝712と、上部凹溝712とは反対方向端部に形成され左方向に突出する凸部713と、凸部713の基部から下方に延び出し横部711の端部に直交してその端部が結合する縦部714と、縦部714の側面内側において上部凹溝712の下方領域に側面から山形状に突出形成された(山を90°回転した形状)複数の側面突部715と、側面突部715に隣接する部位に前後方向に形成される、側面突部715の形状に適合した形状、例えば多角形(図では六角形)の貫通孔716と、外側(縦組み部材702から遠ざかる側、図28(b)では裏面)に形成される内側突部717と、縦部714の下端を構成する下端部718と、下端部718から外側に突出するフック部719と、逆L字形状の内側に形成される正面720と、を備えている。なお、ゴム体706bも同じ構造であり、逆さまに配置(L字形状を左右に反転した形状)されるものであるので、説明は略す。また、ゴム体706a、706bの弾性率は変形時において50〜70%程度、塑性率は30%〜50%程度が好ましいが、適宜の率を採用できる。さらにゴム体706a、bには、適宜、傾斜面が形成されている。なお、ゴム体706a、706bの形状は一例を示すものであり、複数のゴム体を組み合わせて嵌合し、縦組み部材702の長手方向端部に配置して、縦組み部材702と横組み部材703とに係合する構造であれば、適宜な構造を採用できる。
[Embodiment 16]
A damping grid body 701 of Embodiment 16 will be described with reference to FIGS. 27 and 28. FIG. In addition, about a common structure, parts number is made into 700 series, illustration and description of Embodiment 1-15 are used suitably, and a difference is demonstrated. The damping lattice body 701 is a vulcanized rubber or thermoplastic rubber as a viscoelastic material, and as shown in FIG. 27, a coupling portion of the damping lattice body 701 is shown, and the rubber bodies 706a and 706b are combined in a pair of left and right. Are provided to constitute a viscoelastic material. First, the vertically assembled member 702 and the horizontally assembled member 703 are disposed so as to be perpendicular to each other with a gap 705, and an inverted L-shaped rubber body 706a and a rubber body 706b having the same shape as the rubber body 706a are inserted into the gap 705 as rubber. The body 706a is abutted and inserted in the upside down direction (the rubber body 706a is upward and the rubber body 706b is downward) and coupled. As shown in FIG. 28, the rubber body 706a has an inverted L-shape (a shape obtained by vertically inverting the L-shape), a lateral portion 711 extending in the left-right direction (a direction orthogonal to the lateral assembly member 703), An upper groove 712 formed on the inner side of the portion 711 (side facing the longitudinal end of the vertically assembled member 702) and extending in the longitudinal direction, and the upper groove 712 is formed at the opposite end and protrudes to the left. A convex portion 713 that extends downward from the base portion of the convex portion 713, a vertical portion 714 that is orthogonal to the end portion of the horizontal portion 711, and an end portion of the horizontal portion 714, and a lower portion of the upper concave groove 712 inside the side surface of the vertical portion 714. A plurality of side surface protrusions 715 formed in a mountain shape protruding from the side surface in the region (a shape obtained by rotating the mountain 90 °), and a shape of the side surface protrusion 715 formed in the front-rear direction at a portion adjacent to the side surface protrusion 715 A shape that conforms to, for example, a polygon (six Shaped through-hole 716, an inner protrusion 717 formed on the outer side (the side away from the vertical assembly member 702, the back surface in FIG. 28B), a lower end 718 constituting the lower end of the vertical 714, and a lower end A hook portion 719 protruding outward from the portion 718 and a front surface 720 formed inside the inverted L-shape are provided. The rubber body 706b has the same structure and is arranged upside down (a shape obtained by inverting the L-shape to the left and right), and thus the description thereof is omitted. Further, the elastic modulus of the rubber bodies 706a and 706b is preferably about 50 to 70% and the plastic modulus is preferably about 30% to 50% at the time of deformation, but an appropriate rate can be adopted. Furthermore, the rubber bodies 706a and b are appropriately formed with inclined surfaces. Note that the shapes of the rubber bodies 706a and 706b are examples, and a plurality of rubber bodies are combined and fitted, and arranged at the longitudinal ends of the vertically assembled member 702 so that the vertically assembled member 702 and the horizontally assembled member are arranged. Any structure that engages with 703 can be used.

図27の制振格子体701の組み付け状態では、ゴム体706aの上部凹溝712に、ゴム体706bの下端部718が挿入され、また、ゴム体706bの上部凹溝712に、ゴム体706aの下端部718が挿入されている。図では挿入された空間に隙間が設けてあるが、なくしても良い。ゴム体706aと706bの内側突部717が凸部713の側面に当接する。ゴム体706aのフック部719の先端が、ゴム体706bの凸部713の下面に係合し、ゴム体706bのフック部719の先端が、ゴム体706aの凸部713の上面に係合し、また、ている。ゴム体706aと706bの側面突部715の側面同士が対面した状態で嵌合している。該嵌合が行われる際、側面突部715が上下に摺動し、貫通孔716の周囲のゴム体が変形し、嵌合後に、貫通孔716の形状が元の形状に復元する。ゴム体706aと706bの正面720で縦材702の前後の端面(長手方向端面)を挟持している。ゴム体706aと706bの凸部713の内側面で横材703の上面と下面とを上下に挟持している。   27, the lower end portion 718 of the rubber body 706b is inserted into the upper concave groove 712 of the rubber body 706a, and the rubber body 706a is inserted into the upper concave groove 712 of the rubber body 706b. A lower end 718 is inserted. In the figure, a gap is provided in the inserted space, but it may be omitted. The inner protrusions 717 of the rubber bodies 706a and 706b are in contact with the side surfaces of the protrusions 713. The tip of the hook portion 719 of the rubber body 706a is engaged with the lower surface of the convex portion 713 of the rubber body 706b, and the tip of the hook portion 719 of the rubber body 706b is engaged with the upper surface of the convex portion 713 of the rubber body 706a. It is also. The rubber bodies 706a and 706b are fitted in a state in which the side surfaces of the side surface protrusions 715 face each other. When the fitting is performed, the side protrusion 715 slides up and down, the rubber body around the through hole 716 is deformed, and the shape of the through hole 716 is restored to the original shape after the fitting. The front and rear end faces (longitudinal end faces) of the longitudinal member 702 are sandwiched between the front surfaces 720 of the rubber bodies 706a and 706b. The upper and lower surfaces of the cross member 703 are vertically sandwiched between the inner surfaces of the convex portions 713 of the rubber bodies 706a and 706b.

本実施形態では、粘弾性材を加硫ゴム又は熱可塑性ゴムとしたので、耐用年数が向上するという効果がある。また、一対のゴム体706aと706bを、縦部材702の両端部の2箇所で嵌合し組み付けたので、制振効果が高まるという効果がある。ゴム体706aと706bの組みつけ時に貫通孔716が変形するので、組み付けが容易であり、また、制振による変形量をゴム体706aと706bにより吸収することができる。   In this embodiment, since the viscoelastic material is vulcanized rubber or thermoplastic rubber, there is an effect that the service life is improved. In addition, since the pair of rubber bodies 706a and 706b are fitted and assembled at two locations on both ends of the vertical member 702, there is an effect that the vibration damping effect is enhanced. Since the through-hole 716 is deformed when the rubber bodies 706a and 706b are assembled, the assembly is easy, and the deformation amount due to vibration suppression can be absorbed by the rubber bodies 706a and 706b.

以上、本発明の好適な実施形態について図面を参照して説明したが、本発明は、上記の実施形態に何ら限定されるものではなく、種々の形態を採り得ることは無論であり、本発明の趣旨を逸脱しない範囲で、種々の形態が本発明の技術的範囲に属することとなる。   The preferred embodiment of the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can take various forms. Various forms belong to the technical scope of the present invention without departing from the spirit of the present invention.

本発明は、特に木造建物の制振性能を高めた、低コストな制振格子体を提供する。   The present invention provides a low-cost vibration control lattice body with improved vibration control performance, particularly for wooden buildings.

本発明の実施形態1の制振格子体1を取り付けた単位区画体4の外観斜視図である。It is an external appearance perspective view of the unit division body 4 which attached the damping lattice body 1 of Embodiment 1 of this invention. (a)は実施形態1の制振格子体1を取り付けた単位区画体4の横断面図、(b)は同制振格子体1と単位区画体4の縦断面図、(c)は同正面図である。(A) is a cross-sectional view of the unit partition body 4 to which the damping grid body 1 of Embodiment 1 is attached, (b) is a longitudinal sectional view of the damping grid body 1 and the unit partition body 4, and (c) is the same. It is a front view. 実施形態1の縦組み部材2と横組み部材の斜視図である。It is a perspective view of the vertically assembled member 2 and the horizontally assembled member of the first embodiment. 実施形態1の結合部の斜視図である。FIG. 3 is a perspective view of a coupling portion according to the first embodiment. (a)は実施形態1の結合部の横断面平面図、(b)は(a)のA−A´線の断面図、(c)は正面図、(d)は(a)のB−B´線の断面図である。(A) is the cross-sectional top view of the coupling | bond part of Embodiment 1, (b) is sectional drawing of the AA 'line of (a), (c) is a front view, (d) is B- of (a). It is sectional drawing of a B 'line. 外乱力入力時の制振格子体の応答を示す正面図である。It is a front view which shows the response of the damping lattice body at the time of disturbance force input. 制振格子体の制振効果を示すグラフである。It is a graph which shows the damping effect of a damping lattice body. 実施形態2の結合部の斜視図である。FIG. 6 is a perspective view of a coupling part according to Embodiment 2. (a)は同実施形態2の結合部の横断面図、(b)は同正面図、(c)は同縦断面図である。(A) is the cross-sectional view of the coupling | bond part of Embodiment 2, (b) is the same front view, (c) is the same longitudinal cross-sectional view. (a)は実施形態2の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is a partial front view of the second embodiment, (b) is a cross-sectional view of the same, (c) is a plan view of the base, (d) is a vertical cross-sectional view, and (e) is a side view of the same column. is there. 実施形態3の結合部の斜視図である。FIG. 10 is a perspective view of a coupling portion according to Embodiment 3. (a)は同実施形態3の結合部の横断面図、(b)は同正面図、(c)は同縦断面図である。(A) is the cross-sectional view of the coupling | bond part of Embodiment 3, (b) is the same front view, (c) is the same longitudinal cross-sectional view. (a)は実施形態4の制振格子体及び単位区画体の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is the partial front view of the damping lattice body and unit division body of Embodiment 4, (b) is the transverse cross section, (c) is the top view of the base, (d) is the longitudinal cross section, e) is a side view of the column. (a)は実施形態5の制振格子体及び単位区画体の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is the partial front view of the damping lattice body and unit division body of Embodiment 5, (b) is the horizontal cross-sectional view, (c) is the top view of the base, (d) is the vertical cross-sectional view, ( e) is a side view of the column. 実施形態6の結合部の斜視図である。FIG. 10 is a perspective view of a coupling part according to a sixth embodiment. (a)は同実施形態6の結合部の横断面図、(b)は同正面図、(c)は同縦断面図である。(A) is the cross-sectional view of the coupling | bond part of Embodiment 6, (b) is the same front view, (c) is the same longitudinal cross-sectional view. 実施形態7の結合部の斜視図である。FIG. 10 is a perspective view of a coupling part according to a seventh embodiment. (a)は同実施形態7の結合部の横断面図、(b)は同正面図、(c)は同縦断面図である。(A) is the cross-sectional view of the coupling | bond part of Embodiment 7, (b) is the same front view, (c) is the same longitudinal cross-sectional view. (a)は実施形態8の制振格子体及び単位区画体の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is the partial front view of the damping lattice body and unit division body of Embodiment 8, (b) is the horizontal cross-sectional view, (c) is the top view of the base, (d) is the vertical cross-sectional view, e) is a side view of the column. (a)は実施形態9の制振格子体及び単位区画体の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is the partial front view of the damping lattice body and unit division body of Embodiment 9, (b) is the transverse cross-sectional view, (c) is the top view of the base, (d) is the longitudinal cross-sectional view, ( e) is a side view of the column. (a)は実施形態10の制振格子体及び単位区画体の部分正面図、(b)は同横断面図、(c)は同土台の平面図、(d)は同縦断面図、(e)は同柱の側面図である。(A) is the partial front view of the damping lattice body and unit division body of Embodiment 10, (b) is the horizontal cross-sectional view, (c) is the top view of the base, (d) is the vertical cross-sectional view, e) is a side view of the column. 実施形態11の制振格子体及び単位区画体の部分斜視部である。It is a partial perspective part of the damping lattice body and unit division body of Embodiment 11. 実施形態12の制振格子体及び単位区画体の部分斜視部である。It is a partial perspective part of the damping lattice body of Embodiment 12, and a unit division body. 実施形態13の制振格子体及び単位区画体の部分斜視部である。It is a partial perspective part of the damping lattice body of Embodiment 13, and a unit division body. 実施形態14の制振格子体及び単位区画体の部分斜視部である。It is a partial perspective part of the damping lattice body and unit division body of Embodiment 14. 実施形態15の制振格子体及び単位区画体の部分斜視部である。It is a partial perspective part of the damping lattice body and unit division body of Embodiment 15. (a)は実施形態16の制振格子体及び単位区画体の部分横断面図、(b)は同部分縦断面図、(c)(d)は同側面断面図である。(A) is the partial cross-sectional view of the damping lattice body and unit division body of Embodiment 16, (b) is the same partial longitudinal cross-sectional view, (c) (d) is the same side cross-sectional view. (a)は実施形態16の制振格子体及び単位区画体の平面図、(b)は同正面図、(c)は同右側面図である。(A) is a top view of the damping lattice body and unit division body of Embodiment 16, (b) is the same front view, (c) is the right side view.

符号の説明Explanation of symbols

1…制振格子体 2…縦組み部材 3…横組み部材 1a…格子空間
4…単位区画体 5…間隙 6…充填材 7…結合部 4a,4b…柱
4c…梁 4d…土台 8…間柱部材
DESCRIPTION OF SYMBOLS 1 ... Damping lattice body 2 ... Vertical assembly member 3 ... Horizontal assembly member 1a ... Lattice space 4 ... Unit division body 5 ... Gap 6 ... Filler 7 ... Connection part 4a, 4b ... Column 4c ... Beam 4d ... Base 8 ... Space column Element

Claims (7)

木造建物の梁、柱、及び、土台又は梁によって構成された主構造体の単位区画体に複数本の縦組み部材と複数本の横組み部材とが前記単位区画体の空間内において格子状に取り付けられるものであって、
前記縦組み部材と横組み部材の交差する部分に間隙が形成され、その間隙に粘弾性体又は弾塑性体である充填材が充填されることにより、該充填材の接着力で前記縦組み部材と横組み部材を格子形状に保つ結合部が形成され、
前記単位区画体に加えられる変形エネルギーによる振動を、前記結合部が主面方向に変位することにより、制御することを特徴とする制振格子体。
A plurality of vertically assembled members and a plurality of horizontally assembled members are arranged in a lattice pattern in the space of the unit partition body in the unit partition body of the main structure composed of beams, columns, and foundations or beams of a wooden building. It can be attached,
A gap is formed at an intersecting portion of the vertical assembly member and the horizontal assembly member, and the gap is filled with a filler that is a viscoelastic body or an elastic-plastic body, so that the vertical assembly member can be bonded with the adhesive force of the filler. And a connecting part is formed to keep the horizontally assembled member in a lattice shape,
A vibration control lattice body, wherein vibration due to deformation energy applied to the unit partition body is controlled by the coupling portion being displaced in a main surface direction.
前記横組み部材及び縦組み部材は木製であり、該木製の部材の断面積及び長さは、前記単位区画体を構成する構造材の断面積及び長さよりも小さく設定される請求項1の制振格子体。   The horizontal assembly member and the vertical assembly member are made of wood, and the cross-sectional area and the length of the wooden member are set smaller than the cross-sectional area and the length of the structural material constituting the unit partition body. Tremor body. 前記縦組み部材と横組み部材とが交差し、前記縦組み部材の長辺が前記主面方向と平行になっている請求項1又は2の制振格子体。   The damping lattice body according to claim 1 or 2, wherein the vertically assembled member and the horizontally assembled member intersect, and a long side of the vertically assembled member is parallel to the main surface direction. 前記縦組み部材と横組み部材が木製であり、木造軸組在来工法に適合した形状及び寸法に設定され、建物の外壁の下地又は内壁の下地を兼ね、前記単位区画体を構成する柱と柱との中間部分には間柱部材を設けることができ、前記縦組み部材又は横組み部材に間柱部材を添えることができる請求項1又は3のいずれかの制振格子体。   The vertical assembly member and the horizontal assembly member are made of wood, and are set in a shape and size suitable for a wooden shaft conventional construction method, and also serve as a base of the outer wall of the building or a base of the inner wall, and a column constituting the unit partition body The damping lattice body according to any one of claims 1 and 3, wherein a spacer member can be provided in an intermediate portion with the pillar, and the spacer member can be attached to the vertically assembled member or the horizontally assembled member. 前記縦組み部材又は横組み部材の端部加工方法を選択することによって、建物の外壁パネルの下地と同等位置に設置し、下地面と同一の面に施工する請求項1乃至4いずれかの制振格子体。   5. The control according to claim 1, wherein by installing an edge processing method of the vertically assembled member or the horizontally assembled member, it is installed at the same position as the foundation of the outer wall panel of the building and is constructed on the same surface as the foundation surface. Tremor body. 上記単位区画体に前記縦組み部材と横組み部材を取り付けるとき、該部材の端部を枠にて形成する請求項1又は3の制振格子体。   The damping lattice body according to claim 1 or 3, wherein when the vertically assembled member and the horizontally assembled member are attached to the unit partition body, an end portion of the member is formed by a frame. 木造建物の梁、柱、及び、土台又は梁によって構成された主構造体の単位区画体に複数本の縦組み部材と複数本の横組み部材とが前記単位区画体の空間内において格子状に取り付けられるものであって、
前記縦組み部材と横組み部材の交差する部分に間隙が形成され、その間隙に粘弾性体又は弾塑性体が前記縦組み部材及び横組み部材に係合した状態で配置されることにより、該粘弾性体又は弾塑性体の弾性力で前記縦組み部材と横組み部材を格子形状に保つ結合部が形成され、
前記単位区画体に加えられる変形エネルギーによる振動を、前記結合部が主面方向に変位することにより、制御することを特徴とする制振格子体。
A plurality of vertically assembled members and a plurality of horizontally assembled members are arranged in a lattice pattern in the space of the unit partition body in the unit partition body of the main structure composed of beams, columns, and foundations or beams of a wooden building. It can be attached,
A gap is formed at an intersecting portion of the vertical assembly member and the horizontal assembly member, and a viscoelastic body or an elasto-plastic body is disposed in the gap while being engaged with the vertical assembly member and the horizontal assembly member. A coupling portion is formed to keep the vertically assembled member and the horizontally assembled member in a lattice shape by the elastic force of the viscoelastic body or the elastic-plastic body,
A vibration control lattice body, wherein vibration due to deformation energy applied to the unit partition body is controlled by the coupling portion being displaced in a main surface direction.
JP2007305126A 2006-11-24 2007-11-26 Earthquake-damping grid body Pending JP2008150936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305126A JP2008150936A (en) 2006-11-24 2007-11-26 Earthquake-damping grid body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006317266 2006-11-24
JP2007305126A JP2008150936A (en) 2006-11-24 2007-11-26 Earthquake-damping grid body

Publications (1)

Publication Number Publication Date
JP2008150936A true JP2008150936A (en) 2008-07-03

Family

ID=39653399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305126A Pending JP2008150936A (en) 2006-11-24 2007-11-26 Earthquake-damping grid body

Country Status (1)

Country Link
JP (1) JP2008150936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032203A1 (en) 2009-07-03 2011-01-05 Ali Riza Coskun External wall system for building, has hollow bricks including external and internal walls, and metal grid arranged between internal wall and thermal insulation layer for transmitting thermal energy using electrical heating conductor
JP2011111868A (en) * 2009-11-30 2011-06-09 Sekisui House Ltd Partition bearing wall structure
JP2011190634A (en) * 2010-03-16 2011-09-29 Ikkyu Kenchikushi Jimusho Nbas:Kk Damping panel and seismic strengthening structure using the same
JP2015224480A (en) * 2014-05-28 2015-12-14 株式会社竹中工務店 Vibration control element
JP2022092031A (en) * 2018-12-21 2022-06-21 株式会社竹中工務店 Structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032203A1 (en) 2009-07-03 2011-01-05 Ali Riza Coskun External wall system for building, has hollow bricks including external and internal walls, and metal grid arranged between internal wall and thermal insulation layer for transmitting thermal energy using electrical heating conductor
JP2011111868A (en) * 2009-11-30 2011-06-09 Sekisui House Ltd Partition bearing wall structure
JP2011190634A (en) * 2010-03-16 2011-09-29 Ikkyu Kenchikushi Jimusho Nbas:Kk Damping panel and seismic strengthening structure using the same
JP2015224480A (en) * 2014-05-28 2015-12-14 株式会社竹中工務店 Vibration control element
JP2022092031A (en) * 2018-12-21 2022-06-21 株式会社竹中工務店 Structure
JP7263677B2 (en) 2018-12-21 2023-04-25 株式会社竹中工務店 Structure

Similar Documents

Publication Publication Date Title
JP2008150936A (en) Earthquake-damping grid body
JP2008248673A (en) Building
JP2007046235A (en) Vibration control panel and building
CN106368349A (en) Fabricated buckling-resistant steel plate damping wall capable of being combined in parallel flexibly
KR101652621B1 (en) Aseismic structure for existing building
JP2000352218A (en) Earthquake resistant structure of wooden building
Fairhurst Dynamic analysis of the FFTT system
JP5032232B2 (en) Building
JP2006348551A (en) Vibration damping material
JP2006063566A (en) Structure of earthquake-resisting wall
JP4206069B2 (en) Damping wall and reinforced structure of frame provided with the same
JP6251701B2 (en) Vibration control device
JP4093491B2 (en) Bearing wall arrangement structure and bearing wall used therefor
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP2007056623A (en) Unit type building
JP4687755B2 (en) Vibration absorber and damping structure using the same
JP3209800U (en) Damping structure and damping panel
JP2008308906A (en) Method of aseismic response control of wooden building
CN110409705B (en) Manufacturing method of light steel frame composite wall structure with anti-seismic unit
JP2016037845A (en) Reinforcement structure and building
KR102348136B1 (en) Open type damping system for seismic retrofit of existing structure and constructing method for the same
JP7278587B2 (en) Bracing hardware and joint structure of wooden building using it
JP7371824B2 (en) Building load-bearing wall structure and building load-bearing wall construction method
JP5456461B2 (en) Seismic isolation structure
JP2011132690A (en) Vibration control structure