JP2008150681A - Apparatus for forming film by direct-current plasma - Google Patents

Apparatus for forming film by direct-current plasma Download PDF

Info

Publication number
JP2008150681A
JP2008150681A JP2006341252A JP2006341252A JP2008150681A JP 2008150681 A JP2008150681 A JP 2008150681A JP 2006341252 A JP2006341252 A JP 2006341252A JP 2006341252 A JP2006341252 A JP 2006341252A JP 2008150681 A JP2008150681 A JP 2008150681A
Authority
JP
Japan
Prior art keywords
cathode
film
film forming
plasma
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341252A
Other languages
Japanese (ja)
Other versions
JP5057768B2 (en
Inventor
Hirooki O
宏興 王
Akio Hiraki
昭夫 平木
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialight Japan Co Ltd
Original Assignee
Dialight Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialight Japan Co Ltd filed Critical Dialight Japan Co Ltd
Priority to JP2006341252A priority Critical patent/JP5057768B2/en
Publication of JP2008150681A publication Critical patent/JP2008150681A/en
Application granted granted Critical
Publication of JP5057768B2 publication Critical patent/JP5057768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming a film by direct-current plasma, which inhibits an occurrence of overdischarge on an electrode face of a cathode or on an insulation film of a cooling plate, by preventing electrons from being charged up in a carbon component even when the carbon component in a decomposing gas has deposited on the electrode face of the cathode or on the insulation film, and can form a carbon film that has uniform film thickness, high film quality and superior performance as a field electron emission source. <P>SOLUTION: The apparatus for forming the film by direct-current plasma has a cathode 12 and an anode 14 arranged inside a vacuum film-forming chamber 10 so that both electrode faces are opposed to each other. The cathode 12 is mounted on a region 16a for mounting the cathode thereon, which is set in the approximately middle of a cooling plate 16. An insulation film 18 is formed annularly on a circumferential region 16b which surrounds the perimeter of the region 16a annularly for mounting the cathode thereon in the cooling plate 16. The cathode 12 is made of a molybdenum material, and has a discharge-inhibiting material 36 made of the molybdenum material provided on the insulation film 18. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、陰極に直流負電圧を印加して陽極の電極面近傍に直流プラズマを発生させて炭素膜成膜用のガスを分解して当該陽極の電極面上に基板裏面を向けて配置した基板の表面に電界電子放出源として電界電子放出性能を有する、サイズがnmオーダーの炭素膜を成膜する直流プラズマ成膜(CVD)装置に関するものである。   In the present invention, a direct current negative voltage is applied to the cathode to generate direct current plasma in the vicinity of the electrode surface of the anode to decompose the gas for forming the carbon film, and the back surface of the substrate is disposed on the electrode surface of the anode. The present invention relates to a direct current plasma deposition (CVD) apparatus for depositing a carbon film having a size of the order of nm, which has field electron emission performance as a field electron emission source on the surface of a substrate.

図7を参照して従来の直流プラズマ成膜装置を説明すると、従来の直流プラズマ成膜装置では、真空成膜室10を有する。この真空成膜室10内の所定位置に陰極12と陽極14とを互いの電極面12a,14aが所定間隔を隔てて平行に対向するよう配置する。   A conventional DC plasma film forming apparatus will be described with reference to FIG. 7. The conventional DC plasma film forming apparatus has a vacuum film forming chamber 10. The cathode 12 and the anode 14 are arranged at predetermined positions in the vacuum film forming chamber 10 so that the electrode surfaces 12a and 14a face each other in parallel at a predetermined interval.

陰極12の裏面12bにSUS等の金属製である冷却板16が熱伝導結合状態に密着配置される。冷却板16は陰極12を熱伝導で冷却するためのものであり、陰極12よりも平面寸法が大きくまた板厚も厚く構成されて冷却容量が大きく構成されている。   A cooling plate 16 made of a metal such as SUS is disposed in close contact with the back surface 12b of the cathode 12 in a heat conductive coupling state. The cooling plate 16 is for cooling the cathode 12 by heat conduction, and is configured to have a larger planar dimension and a larger plate thickness than the cathode 12 to increase the cooling capacity.

冷却板16は、陰極12が搭載される面においてその略中央領域が陰極搭載領域16aとされ、その陰極搭載領域16aの外側に外周領域16bがある。冷却板16は陰極12と陽極14との間にのみプラズマが発生させるため例えばセラミックによる絶縁膜18が陰極搭載領域16aを除く外周面に形成されている。   The cooling plate 16 has a substantially central region as a cathode mounting region 16a on the surface on which the cathode 12 is mounted, and an outer peripheral region 16b outside the cathode mounting region 16a. Since the cooling plate 16 generates plasma only between the cathode 12 and the anode 14, an insulating film 18 made of ceramic, for example, is formed on the outer peripheral surface excluding the cathode mounting region 16a.

陰極12の材料にはSUS、Fe、Cu、Al等の金属が用いられている。真空成膜室10は接地される。陽極14は接地され、陰極12には直流電源20の負極が接続される。直流電源20の正極は電源スイッチ22を介して接地される。電源スイッチ22が閉じられると、陰極12には直流負電圧が印加されるようになっている。また、真空成膜室10にはガス導入系24と、真空排気系26とが接続されている。   As the material of the cathode 12, metals such as SUS, Fe, Cu, and Al are used. The vacuum film forming chamber 10 is grounded. The anode 14 is grounded, and the cathode 12 is connected to the negative electrode of the DC power supply 20. The positive electrode of the DC power supply 20 is grounded via the power switch 22. When the power switch 22 is closed, a negative DC voltage is applied to the cathode 12. In addition, a gas introduction system 24 and a vacuum exhaust system 26 are connected to the vacuum film forming chamber 10.

以上の構成を有する直流プラズマ成膜装置においては、真空成膜室10の内圧は真空排気系26により所要の真空圧に制御され、また真空成膜室10内部にはガス導入系24により原料ガスとしての炭化水素とキャリアガスとしての水素との混合ガスが導入される。   In the DC plasma film forming apparatus having the above configuration, the internal pressure of the vacuum film forming chamber 10 is controlled to a required vacuum pressure by the evacuation system 26, and the source gas is introduced into the vacuum film forming chamber 10 by the gas introduction system 24. A mixed gas of hydrocarbons as hydrogen and hydrogen as a carrier gas is introduced.

この状態で陰極12に直流電源20から直流負電圧が印加されると、陽極14の電極面14a上近傍にプラズマ28が発生する。混合ガスはこのプラズマ28により分解され、これによって分解されたガス中の炭素成分が、陽極14の電極面14a上にその基板裏面を向けて配置された基板30の表面に、堆積され、その結果、当該基板30表面に電界電子放出源となる炭素膜が成膜されるようになっている。   In this state, when a DC negative voltage is applied to the cathode 12 from the DC power supply 20, plasma 28 is generated near the electrode surface 14 a of the anode 14. The mixed gas is decomposed by the plasma 28, and the carbon component in the decomposed gas is deposited on the surface of the substrate 30 disposed on the electrode surface 14a of the anode 14 with the back surface of the substrate facing, and as a result. A carbon film serving as a field electron emission source is formed on the surface of the substrate 30.

しかしながら、上記直流プラズマ成膜装置では真空成膜室10内の圧力が上記所要の真空度未満の低圧時には図8で示すように陰極12と陽極13との間のプラズマ28のみではなく冷却板16の外周領域16b上にもプラズマ29が広がって発生している。   However, in the DC plasma film forming apparatus, when the pressure in the vacuum film forming chamber 10 is a low pressure lower than the required vacuum level, not only the plasma 28 between the cathode 12 and the anode 13 but also the cooling plate 16 as shown in FIG. The plasma 29 is also spread and generated on the outer peripheral region 16b.

そのためプラズマ28,29により分解されたガス中の炭素成分の一部32,33が陰極12の電極面12aやその側面12c、絶縁膜18にも縞状等に堆積される。   For this reason, part 32 and 33 of the carbon component in the gas decomposed by the plasmas 28 and 29 are deposited in stripes or the like on the electrode surface 12 a of the cathode 12, its side surface 12 c, and the insulating film 18.

この場合、従来では陰極12の材料にSUS、Fe、Cu、Al等の金属が用いられているので、電極面12aや側面12cに堆積された炭素成分32は非導電性になっている。また、絶縁膜18上にも縞状に堆積した炭素成分33も非導電性になっている。   In this case, conventionally, metals such as SUS, Fe, Cu, and Al are used as the material of the cathode 12, and therefore the carbon component 32 deposited on the electrode surface 12a and the side surface 12c is non-conductive. In addition, the carbon component 33 deposited in a stripe pattern on the insulating film 18 is also non-conductive.

このとき、炭素成分32,33が非導電性であるために当該炭素成分32,33には電子がチャージアップされる。そして真空成膜室10内圧力が低圧の時に低密度で大きく生成されていたプラズマ28,29は該圧力が上昇すると縮小して小さくなる。   At this time, since the carbon components 32 and 33 are non-conductive, the carbon components 32 and 33 are charged with electrons. Then, the plasmas 28 and 29 which are generated at a low density and large when the pressure in the vacuum film forming chamber 10 is low are reduced and become smaller as the pressure increases.

そして、上記炭素成分32,33への電子のチャージアップ量が閾値を超えるとチャージアップ電子が陽極14の電極面14aに向けて放電(アーク放電)34,35することがある。   When the amount of electrons charged up to the carbon components 32 and 33 exceeds a threshold value, the charge-up electrons may discharge (arc discharge) 34 and 35 toward the electrode surface 14a of the anode 14.

そして、この異常放電34,35が強いときは図9で示すようにプラズマ28が消失したり、異常放電34,35が部分的に発生するときは図10で示すようにプラズマ28が変形したり、また、異常放電34,35が弱い場合は図11で示すようにプラズマ28が縮小したりする。   When the abnormal discharges 34 and 35 are strong, the plasma 28 disappears as shown in FIG. 9, and when the abnormal discharges 34 and 35 are partially generated, the plasma 28 is deformed as shown in FIG. When the abnormal discharges 34 and 35 are weak, the plasma 28 is reduced as shown in FIG.

上記した異常放電34,35は基板30表面に炭素膜が成膜されなくなったり不均一に成膜されたりして炭素膜品質が低下する結果、炭素膜の電界電子放出源としての性能に影響してしまう。なお、直流プラズマ成膜装置として特許文献1等が提供されている。
特開2006−283970号公報
The above abnormal discharges 34 and 35 affect the performance of the carbon film as a field electron emission source as a result of the carbon film not being formed on the surface of the substrate 30 or being unevenly formed and the quality of the carbon film being deteriorated. End up. Patent Document 1 and the like are provided as a direct-current plasma film forming apparatus.
JP 2006-283970 A

そこで本発明は、上記した異常放電の発生を抑制して電界電子放出源として膜厚均一かつ高品質な膜質を持つ性能に優れた炭素膜の成膜を可能とする直流プラズマ成膜装置を提供することを解決すべき課題としている。   Therefore, the present invention provides a direct current plasma film forming apparatus capable of forming a carbon film having excellent performance with uniform film thickness and high quality as a field electron emission source by suppressing the occurrence of abnormal discharge described above. It is a problem to be solved.

本発明に係る直流プラズマ成膜装置は、真空成膜室内部に陰極と陽極とをその両電極面を対向させて配置し、陰極を冷却板の略中央に設定された陰極搭載領域に搭載すると共に当該冷却板における陰極搭載領域の外周を環状に囲む外周領域上に絶縁膜が環状に形成されている直流プラズマ成膜装置において、上記陰極の少なくともその電極面をモリブデン材で構成するかまたは該陰極の少なくともその電極面にモリブデン材を被着すると共に上記絶縁膜上にモリブデン材からなる放電防止材が設けられていることを特徴とするものである。   In the DC plasma film forming apparatus according to the present invention, a cathode and an anode are disposed in a vacuum film forming chamber with their electrode surfaces facing each other, and the cathode is mounted on a cathode mounting region set at a substantially center of a cooling plate. In addition, in the DC plasma film forming apparatus in which the insulating film is formed in an annular shape on the outer peripheral region surrounding the outer periphery of the cathode mounting region in the cooling plate, at least the electrode surface of the cathode is made of molybdenum material or the A molybdenum material is deposited on at least the electrode surface of the cathode, and a discharge preventing material made of molybdenum material is provided on the insulating film.

上記陰極はその電極面のみをモリブデン材で構成する場合、その電極面および側面をモリブデン材で構成する場合、陰極全体をモリブデン材で構成する場合のいずれも含む。上記陰極をモリブデン材で構成するのではなくその電極面にのみ、あるいは電極面および側面にモリブデン材を被着してもよい。   The cathode includes both the case where only the electrode surface is made of molybdenum material, the case where the electrode surface and side surfaces are made of molybdenum material, and the case where the whole cathode is made of molybdenum material. The cathode may not be made of molybdenum material, but may be deposited only on the electrode surface, or on the electrode surface and side surfaces.

上記絶縁膜上の放電防止材は、陰極搭載領域と陰極裏面との間から絶縁膜外周縁に至る盤状(円盤状等)や陰極搭載領域の外周縁を内径とし絶縁膜外周縁を外径とする環状としてもよい。上記放電防止材は半径方向に一定厚さの形状でも漸次厚さが減少する形状でもよい。   The discharge preventing material on the insulating film has a disk shape (disk shape or the like) extending from between the cathode mounting region and the cathode back surface to the outer peripheral edge of the insulating film, or the outer peripheral edge of the cathode mounting region as the inner diameter. It is good also as an annular. The discharge preventing material may have a shape with a constant thickness in the radial direction or a shape with a gradually decreasing thickness.

上記陰極を構成するモリブデン材と放電防止材は一体化の場合も別体の場合も含むことができる。   The molybdenum material and the discharge preventing material constituting the cathode can be integrated or separated.

陰極の裏面の平面視形状(平面方向から視た場合の形状)は円形、矩形のいずれも含み、冷却板の表面の平面視形状は円形、矩形のいずれも含む。   The planar view shape (the shape when viewed from the plane direction) of the back surface of the cathode includes both a circle and a rectangle, and the planar view shape of the surface of the cooling plate includes both a circle and a rectangle.

上記陰極の平面視形状、冷却板の平面視形状に応じて放電防止材の平面形状も種々であり、例えば円板状、矩形板状、円盤状、矩形盤状、環状板状、等である。   The planar shape of the discharge preventing material varies depending on the planar shape of the cathode and the planar shape of the cooling plate, for example, a disc shape, a rectangular plate shape, a disc shape, a rectangular disc shape, an annular plate shape, etc. .

上記モリブデン材はモリブデンのみからなる材料に限定されず、モリブデンが高純度に含んでいれば他の金属との合金も含むことができる。   The molybdenum material is not limited to a material made only of molybdenum, and can contain alloys with other metals as long as the molybdenum contains high purity.

上記絶縁膜の膜材は特に限定しないが好ましくはセラミックである。   The film material of the insulating film is not particularly limited, but is preferably ceramic.

この直流プラズマ成膜装置では陽極を接地すると共に陰極に直流負電圧を印加し陰極と陽極との間の空間にプラズマを生成した際に、所定の真空圧に減圧されている真空成膜室に導入したガスがそのプラズマにより分解され、この分解で生成した炭素成分は陽極上に配置した基板の表面に電界電子放出源として成膜するようになっている。   In this DC plasma deposition apparatus, the anode is grounded and a negative DC voltage is applied to the cathode to generate plasma in the space between the cathode and the anode. The introduced gas is decomposed by the plasma, and the carbon component generated by the decomposition is formed as a field electron emission source on the surface of the substrate disposed on the anode.

そして、この場合、真空成膜室の内圧が上記所定の真空圧以下の低圧のときでも陰極と陽極との間だけでなく放電防止材上にも低密度のプラズマが発生しており、このプラズマによりガスが分解されて炭素成分が生成しその炭素成分の一部が陰極の外周面や放電防止材に縞状に堆積してくる。そして真空成膜室内圧が上記所定の真空圧に到達するようになると、上記プラズマが縮小し、陽極の電極面近傍に高密度のプラズマが生成されてくる。このとき、上記縞状に堆積した炭素成分は、陰極や放電防止材がモリブデン材で構成されていて導電性を持つようになっているので、電子はこの縞状の炭素成分にチャージアップされずに済み、このチャージアップされた電子により陽極の電極面上に配置した基板の成膜に影響することがなくなる。   In this case, low-density plasma is generated not only between the cathode and the anode but also on the discharge preventing material even when the internal pressure of the vacuum film forming chamber is a low pressure equal to or lower than the predetermined vacuum pressure. As a result, the gas is decomposed to generate a carbon component, and a part of the carbon component is deposited in stripes on the outer peripheral surface of the cathode and the discharge preventing material. When the vacuum film forming chamber pressure reaches the predetermined vacuum pressure, the plasma is reduced, and high-density plasma is generated in the vicinity of the electrode surface of the anode. At this time, since the carbon component deposited in the above-described stripe shape is made of a molybdenum material and the cathode and the discharge prevention material are made conductive, electrons are not charged up to the stripe-like carbon component. Thus, the charged electrons do not affect the film formation of the substrate disposed on the electrode surface of the anode.

したがって、本発明では陰極や上記絶縁膜上の放電防止材がモリブデン材で構成されているので、基板表面には陽極の電極面近傍のプラズマにより分解された炭素成分が膜厚均一かつ高品質な膜質で堆積されて電界電子放出源として性能に優れた炭素膜が成膜されるようになる。   Therefore, in the present invention, since the discharge preventing material on the cathode and the insulating film is made of molybdenum material, the carbon component decomposed by the plasma in the vicinity of the electrode surface of the anode has a uniform film thickness and high quality on the substrate surface. A carbon film having excellent performance as a field electron emission source is deposited by film quality.

本発明によれば、電界電子放出源としての炭素膜を基板表面に均等な膜厚でかつ高品質に成膜することができる。   According to the present invention, a carbon film as a field electron emission source can be formed on the substrate surface with a uniform film thickness and high quality.

以下、添付した図面を参照して、本発明の実施の形態に係る直流プラズマ成膜装置を説明する。図1は実施の形態の直流プラズマ成膜装置の構成を示す断面図である。同図において10は真空成膜室、12は陰極、14は陽極、16は冷却板、18は絶縁膜、20は直流電源、22は電源スイッチ、24はガス導入系、26は真空排気系、28は成膜プラズマ、30は基板である。上記基板30はその形状に限定されず、例えば断面円形に限らず、楕円や矩形等の非円形を含む。上記基板30は平板状の基板、線状の基板等を含む。線状とはその直径の大きさを限定しないものでありワイヤ状の概念を含むことができる。   Hereinafter, a DC plasma film forming apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a configuration of a DC plasma film forming apparatus according to an embodiment. In the figure, 10 is a vacuum film forming chamber, 12 is a cathode, 14 is an anode, 16 is a cooling plate, 18 is an insulating film, 20 is a DC power source, 22 is a power switch, 24 is a gas introduction system, 26 is a vacuum exhaust system, 28 is a film forming plasma, and 30 is a substrate. The said board | substrate 30 is not limited to the shape, For example, not only circular in cross section but non-circles, such as an ellipse and a rectangle, are included. The substrate 30 includes a flat substrate, a linear substrate, and the like. The linear shape does not limit the size of the diameter, and can include a wire-like concept.

以上の構成において上記直流プラズマ成膜装置では、陰極12の全体をモリブデン材で構成すると共に陰極12と冷却板16との間に盤形状のモリブデン材からなる放電防止材36を配置したことを特徴とするものである。   In the above-described configuration, the DC plasma film forming apparatus is characterized in that the entire cathode 12 is made of a molybdenum material, and the discharge preventing material 36 made of a disk-shaped molybdenum material is disposed between the cathode 12 and the cooling plate 16. It is what.

上記では陰極12の全体がモリブデン材で構成されているが、陰極12の電極面12aのみ、あるいは電極面12aおよび側面12cを所定厚さを有するモリブデン材で構成するか、陰極12の電極面12a上、あるいは電極面12aおよび側面12cにモリブデン材を被着してもよい。   In the above, the entire cathode 12 is made of molybdenum material. However, only the electrode surface 12a of the cathode 12 or the electrode surface 12a and the side surface 12c are made of molybdenum material having a predetermined thickness, or the electrode surface 12a of the cathode 12 is made. Molybdenum material may be applied to the upper surface or the electrode surface 12a and the side surface 12c.

放電防止材36は、平板状ないしは円盤状をなし、陰極12の外径より大きい外径を有して絶縁膜18上に延びている。この放電防止材36は、絶縁膜18の途中部位まで、あるいは絶縁膜18の外周縁にまで延長して配置してもよい。   The discharge preventing material 36 has a flat plate shape or a disk shape, and has an outer diameter larger than the outer diameter of the cathode 12 and extends on the insulating film 18. The discharge preventing material 36 may be disposed so as to extend to an intermediate portion of the insulating film 18 or to the outer peripheral edge of the insulating film 18.

以下、説明すると、真空成膜室10内部には陰極12と陽極14とがその両電極面を平行に対向させて配置されている。陰極12は冷却板16の陰極搭載領域16a上に搭載されている。放電防止材36は冷却板16の陰極搭載領域16aからその外周領域16b上の絶縁膜18を覆う大きさの盤状である。   In the following, in the vacuum film forming chamber 10, a cathode 12 and an anode 14 are arranged with their electrode surfaces facing each other in parallel. The cathode 12 is mounted on the cathode mounting area 16 a of the cooling plate 16. The discharge preventing material 36 has a disk shape that covers the insulating film 18 on the outer peripheral region 16b from the cathode mounting region 16a of the cooling plate 16.

以上の構成を備えた直流プラズマ成膜装置において、真空成膜室10の内圧を真空排気系26により減圧し、真空成膜室10内にガス導入系24により炭化水素と水素との混合ガスを導入するとともに陰極12に直流電源20から直流負電圧を印加すると、図2で示すように、真空成膜室10内の真空圧が低圧のときに陰極12と陽極14との間および絶縁膜18上に大きいが低密度のプラズマ28,29が発生する。そして、ガスはプラズマ28,29により分解され、ガス中の炭素成分32,33が、陰極12の外周面と絶縁膜18上に島状、縞状、粒子状等の各種パターン形状に堆積してくるようになる。   In the DC plasma film forming apparatus having the above configuration, the internal pressure of the vacuum film forming chamber 10 is reduced by the evacuation system 26, and a mixed gas of hydrocarbon and hydrogen is supplied into the vacuum film forming chamber 10 by the gas introduction system 24. When the DC negative voltage is applied to the cathode 12 from the DC power source 20, as shown in FIG. 2, when the vacuum pressure in the vacuum film forming chamber 10 is low, the space between the cathode 12 and the anode 14 and the insulating film 18 are reduced. Large but low density plasmas 28 and 29 are generated. The gas is decomposed by the plasmas 28 and 29, and the carbon components 32 and 33 in the gas are deposited on the outer peripheral surface of the cathode 12 and the insulating film 18 in various pattern shapes such as islands, stripes, and particles. Come to come.

そして、真空成膜室10内の真空圧が高圧に制御されると、図3で示すように上記プラズマ28,29は縮小し、プラズマ29は実質無視し得る程度に縮小しプラズマ28だけになる。このプラズマ28は陽極14の電極面14a近傍に生成し基板30の表面に電界電子放出源となる炭素膜を堆積させるプラズマとなる。   When the vacuum pressure in the vacuum film forming chamber 10 is controlled to be high, the plasmas 28 and 29 are reduced as shown in FIG. 3, and the plasma 29 is reduced to a level that can be substantially ignored, so that only the plasma 28 is obtained. . This plasma 28 is generated in the vicinity of the electrode surface 14 a of the anode 14 and becomes a plasma in which a carbon film serving as a field electron emission source is deposited on the surface of the substrate 30.

この場合、陰極12がモリブデン材で構成され絶縁膜18上にモリブデン材からなる放電防止材36が配置されているので、炭素膜32,33は導電性となっており、したがって、これら炭素膜32,33には電子がチャージアップされないから、当該炭素膜32,33から放電が発生することはない。その結果、陽極14の電極面14a近傍のプラズマ28は高質で高密度に保たれる結果、基板30表面には電界電子放出源として膜厚均一かつ高品質な膜質を持つ性能に優れた炭素膜が成膜されるようになる。この炭素膜は針状の炭素膜(先端に向かうほど直径が小さくなって針状となる炭素膜)からなり、多数の微細突起への電界集中により電子を高性能高効率で放出する電界電子放出源となる。   In this case, since the cathode 12 is made of molybdenum material and the discharge preventing material 36 made of molybdenum material is disposed on the insulating film 18, the carbon films 32 and 33 are conductive. , 33 is not charged up with electrons, so that no discharge occurs from the carbon films 32, 33. As a result, the plasma 28 in the vicinity of the electrode surface 14a of the anode 14 is maintained at high quality and high density. As a result, carbon having excellent film quality and uniform quality as a field electron emission source on the surface of the substrate 30 is obtained. A film is formed. This carbon film consists of a needle-like carbon film (a carbon film that has a needle shape with a diameter decreasing toward the tip), and emits electrons with high performance and high efficiency by concentrating the electric field on a large number of fine protrusions. The source.

なお上記陰極12を構成するモリブデン材および放電防止材36を構成するモリブデン材は99%以上の高純度であることが好ましい。またモリブデンが高純度に含まれるのであれば高温特性等の機能が向上するために他の金属と合金したモリブデン合金であっても良い。   The molybdenum material composing the cathode 12 and the molybdenum material composing the discharge preventing material 36 preferably have a high purity of 99% or more. If molybdenum is included in high purity, a molybdenum alloy alloyed with another metal may be used in order to improve functions such as high temperature characteristics.

モリブデンとしては単結晶高純度のモリブデンがより好ましい。また、モリブデンは電界増倍係数βが大きく、直流高電界下での陰極12表面からの電界電子放出特性に優れる。   As molybdenum, single crystal high purity molybdenum is more preferable. Molybdenum has a large electric field multiplication factor β and is excellent in the field electron emission characteristics from the surface of the cathode 12 under a direct current high electric field.

なお、陰極12と放電防止板36は図4で示すように中実一体化されたモリブデン材で構成されたものでよい。   The cathode 12 and the discharge prevention plate 36 may be made of a solid integrated molybdenum material as shown in FIG.

あるいは、図5で示すように陰極12の外周面を覆うモリブデン材からなる陰極側放電防止材38と上記絶縁膜側放電防止材36とを一体化した中空の放電防止材40とした構成でもよい。   Alternatively, as shown in FIG. 5, a hollow discharge preventing material 40 in which the cathode side discharge preventing material 38 made of molybdenum covering the outer peripheral surface of the cathode 12 and the insulating film side discharge preventing material 36 are integrated may be used. .

あるいは、図6で示すようにモリブデン材からなる陰極12の外周囲を取り囲むモリブデン材からなる環状板形状の放電防止材42で構成してもよい。   Alternatively, as shown in FIG. 6, it may be constituted by an annular plate-shaped discharge preventing material 42 made of molybdenum material surrounding the outer periphery of the cathode 12 made of molybdenum material.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載した範囲内で、種々な変更ないしは変形を含むものである。   The present invention is not limited to the above-described embodiments, and includes various changes or modifications within the scope described in the claims.

図1は、本発明の実施の形態に係る直流プラズマ成膜装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a DC plasma film forming apparatus according to an embodiment of the present invention. 図2は、図1の直流プラズマ成膜装置の動作中の断面図である。FIG. 2 is a cross-sectional view of the DC plasma film forming apparatus of FIG. 1 during operation. 図3は、直流プラズマ成膜装置の真空成膜室内圧が低圧のときの要部断面図である。FIG. 3 is a cross-sectional view of the main part when the vacuum film forming chamber pressure of the DC plasma film forming apparatus is low. 図4は、陰極と放電防止材との構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the cathode and the discharge preventing material. 図5は、陰極と放電防止材との他の構成例を示す図である。FIG. 5 is a diagram showing another configuration example of the cathode and the discharge preventing material. 図6は、陰極と放電防止材とのさらに他の構成例を示す図である。FIG. 6 is a diagram showing still another configuration example of the cathode and the discharge preventing material. 図7は、従来の直流プラズマ成膜装置の断面図である。FIG. 7 is a cross-sectional view of a conventional DC plasma film forming apparatus. 図8は、動作中の従来の直流プラズマ成膜装置の断面図である。FIG. 8 is a cross-sectional view of a conventional DC plasma film forming apparatus in operation. 図9は、従来の直流プラズマ成膜装置の陰極から陽極に強い異常放電が発生した場合の断面図である。FIG. 9 is a cross-sectional view when a strong abnormal discharge occurs from the cathode to the anode of the conventional DC plasma film forming apparatus. 図10は、従来の直流プラズマ成膜装置の陰極から陽極に部分異常放電が発生した場合の断面図である。FIG. 10 is a cross-sectional view when a partial abnormal discharge occurs from the cathode to the anode of a conventional DC plasma film forming apparatus. 図11は、従来の直流プラズマ成膜装置の陰極から陽極に弱い異常放電が発生した場合の課題の説明に供する断面図である。FIG. 11 is a cross-sectional view for explaining a problem when a weak abnormal discharge occurs from the cathode to the anode of the conventional DC plasma film forming apparatus.

符号の説明Explanation of symbols

10 真空成膜室
12 陰極
12a 電極面
12b 側面
12c 裏面
14 陽極
14a 電極面
16 冷却板
16a 陰極搭載領域
16b 外周領域
18 絶縁膜
20 直流電源
28 プラズマ
29 プラズマ
30 基板
32 炭素成分
33 炭素成分
36−42 放電防止材
DESCRIPTION OF SYMBOLS 10 Vacuum film-forming chamber 12 Cathode 12a Electrode surface 12b Side surface 12c Back surface 14 Anode 14a Electrode surface 16 Cooling plate 16a Cathode mounting area 16b Outer peripheral area 18 Insulating film 20 DC power supply 28 Plasma 29 Plasma 30 Substrate 32 Carbon component 33 Carbon component 36-42 Discharge prevention material

Claims (5)

真空成膜室の内部に陰極と陽極とをその両電極面を平行に対向して配置し、陰極を少なくともその陰極側表面が絶縁膜で被覆された冷却板上に搭載した直流プラズマ成膜装置において、上記陰極の少なくともその電極面をモリブデン材で構成するかまたは該陰極の少なくともその電極面にモリブデン材を被着すると共に上記絶縁膜上にモリブデン材からなる放電防止材が設けられている、ことを特徴とする直流プラズマ成膜装置。   A direct current plasma film forming apparatus in which a cathode and an anode are arranged in a vacuum film forming chamber with their electrode surfaces facing each other in parallel, and the cathode is mounted on a cooling plate having at least the cathode side surface coated with an insulating film. Wherein at least the electrode surface of the cathode is made of molybdenum material, or a molybdenum material is deposited on at least the electrode surface of the cathode, and a discharge preventing material made of molybdenum material is provided on the insulating film. A direct current plasma film forming apparatus. 上記陰極は、その全体がモリブデン材で構成されている、ことを特徴とする請求項1に記載の直流プラズマ成膜装置。   2. The DC plasma deposition apparatus according to claim 1, wherein the cathode is entirely made of a molybdenum material. 上記放電防止材が、冷却板の陰極搭載領域と外周領域とを含む盤状や板状等の形状に構成され、冷却板と陰極との間に介装されている、ことを特徴とする請求項1または2に記載の直流プラズマ成膜装置。   The discharge preventing material is formed in a plate shape or a plate shape including a cathode mounting region and an outer peripheral region of a cooling plate, and is interposed between the cooling plate and the cathode. Item 3. The direct-current plasma deposition apparatus according to Item 1 or 2. 上記放電防止材が、絶縁膜を覆う環状板形状に構成されている、ことを特徴とする請求項1または2に記載の直流プラズマ成膜装置。   The DC plasma film forming apparatus according to claim 1, wherein the discharge preventing material is formed in an annular plate shape covering an insulating film. 上記陰極と上記放電防止材とが一体化されている、ことを特徴とする請求項1ないし4のいずれかに記載の直流プラズマ成膜装置。   5. The direct-current plasma film forming apparatus according to claim 1, wherein the cathode and the discharge preventing material are integrated.
JP2006341252A 2006-12-19 2006-12-19 DC plasma deposition system Active JP5057768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341252A JP5057768B2 (en) 2006-12-19 2006-12-19 DC plasma deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341252A JP5057768B2 (en) 2006-12-19 2006-12-19 DC plasma deposition system

Publications (2)

Publication Number Publication Date
JP2008150681A true JP2008150681A (en) 2008-07-03
JP5057768B2 JP5057768B2 (en) 2012-10-24

Family

ID=39653169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341252A Active JP5057768B2 (en) 2006-12-19 2006-12-19 DC plasma deposition system

Country Status (1)

Country Link
JP (1) JP5057768B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224499A (en) * 1985-03-29 1986-10-06 富士通株式会社 Cooling construction
JPH0226894A (en) * 1988-07-13 1990-01-29 Fujitsu Ltd Method and device for synthesizing diamond in vapor phase
JPH02138469A (en) * 1988-11-16 1990-05-28 Hitachi Ltd Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JPH02196096A (en) * 1989-01-24 1990-08-02 Matsushita Electric Ind Co Ltd Method for synthesizing thin diamond film
JPH02236283A (en) * 1989-03-10 1990-09-19 Nissin Electric Co Ltd Thin film forming device and thin film formation
JPH06280030A (en) * 1993-03-29 1994-10-04 Ulvac Japan Ltd Thin film forming device
JPH07214140A (en) * 1993-10-27 1995-08-15 General Electric Co <Ge> Diamond crossing die with a plurality of particle
JPH0967674A (en) * 1995-08-28 1997-03-11 Sony Corp Formation of thin film and device therefor
JP2000109979A (en) * 1998-10-05 2000-04-18 Tokujiro Okui Surface treatment method by dc arc discharge plasma
JP2002302766A (en) * 2001-04-05 2002-10-18 Anelva Corp High frequency magnetron sputtering apparatus
JP2002313737A (en) * 2001-04-13 2002-10-25 Tdk Corp Plasma treating equipment
JP2002327272A (en) * 2001-05-02 2002-11-15 Sony Corp Film forming apparatus
JP2004193566A (en) * 2002-11-26 2004-07-08 Tokyo Electron Ltd Plasma processing system and plasma processing method
JP2005332619A (en) * 2004-05-18 2005-12-02 Toshiba Corp Method and device for cooling substrate
JP2006093543A (en) * 2004-09-27 2006-04-06 Tokyo Electron Ltd Thermal processing apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224499A (en) * 1985-03-29 1986-10-06 富士通株式会社 Cooling construction
JPH0226894A (en) * 1988-07-13 1990-01-29 Fujitsu Ltd Method and device for synthesizing diamond in vapor phase
JPH02138469A (en) * 1988-11-16 1990-05-28 Hitachi Ltd Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JPH02196096A (en) * 1989-01-24 1990-08-02 Matsushita Electric Ind Co Ltd Method for synthesizing thin diamond film
JPH02236283A (en) * 1989-03-10 1990-09-19 Nissin Electric Co Ltd Thin film forming device and thin film formation
JPH06280030A (en) * 1993-03-29 1994-10-04 Ulvac Japan Ltd Thin film forming device
JPH07214140A (en) * 1993-10-27 1995-08-15 General Electric Co <Ge> Diamond crossing die with a plurality of particle
JPH0967674A (en) * 1995-08-28 1997-03-11 Sony Corp Formation of thin film and device therefor
JP2000109979A (en) * 1998-10-05 2000-04-18 Tokujiro Okui Surface treatment method by dc arc discharge plasma
JP2002302766A (en) * 2001-04-05 2002-10-18 Anelva Corp High frequency magnetron sputtering apparatus
JP2002313737A (en) * 2001-04-13 2002-10-25 Tdk Corp Plasma treating equipment
JP2002327272A (en) * 2001-05-02 2002-11-15 Sony Corp Film forming apparatus
JP2004193566A (en) * 2002-11-26 2004-07-08 Tokyo Electron Ltd Plasma processing system and plasma processing method
JP2005332619A (en) * 2004-05-18 2005-12-02 Toshiba Corp Method and device for cooling substrate
JP2006093543A (en) * 2004-09-27 2006-04-06 Tokyo Electron Ltd Thermal processing apparatus

Also Published As

Publication number Publication date
JP5057768B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US8036341B2 (en) Stationary x-ray target and methods for manufacturing same
US7109660B2 (en) Plasma processing device and baffle plate thereof
JP4141234B2 (en) Plasma processing equipment
JPH07245292A (en) Plasma etching system
JP5965345B2 (en) High voltage electrode insulation structure and high voltage insulation method for ion implanter
EP1282909A1 (en) Enhanced electron emissive surfaces for a thin film deposition system using ion sources
JP3546945B2 (en) Cold cathode device
JP2005281773A (en) Deposition-preventive cover, substance generation apparatus, and treated object
JP5057768B2 (en) DC plasma deposition system
KR20080014984A (en) Plasma amplifier for plasma treatment plant
US20020104756A1 (en) Sputtering apparatus
JP2008150682A (en) Apparatus for forming film direct-current plasma
JP2006054334A (en) Semiconductor manufacturing apparatus, sputtering apparatus, dry etching apparatus, and semiconductor device manufacturing method
JP2008150680A (en) Apparatus for forming film by direct-current plasma
JP5764789B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
US9966234B2 (en) Film forming device
JPWO2014132308A1 (en) Sputtering equipment
JP2002050616A (en) Method and apparatus for plasma processing
JP4455689B2 (en) Magnetron cathode of sputtering equipment
US20110039414A1 (en) Plasma processing method and plasma processing apparatus
JP2008293967A (en) Electron source and method of manufacturing electron source
JP2004076160A (en) Shielding apparatus
JP4414975B2 (en) Ion beam sputtering apparatus, ion beam sputtering method, and ion gun
JP4393156B2 (en) Sputtering equipment
US20230238224A1 (en) Member for semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5057768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250