JP2008150242A - Method of producing oxide - Google Patents

Method of producing oxide Download PDF

Info

Publication number
JP2008150242A
JP2008150242A JP2006339722A JP2006339722A JP2008150242A JP 2008150242 A JP2008150242 A JP 2008150242A JP 2006339722 A JP2006339722 A JP 2006339722A JP 2006339722 A JP2006339722 A JP 2006339722A JP 2008150242 A JP2008150242 A JP 2008150242A
Authority
JP
Japan
Prior art keywords
precipitate
particles
oxide
particle size
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339722A
Other languages
Japanese (ja)
Inventor
Mayuko Osaki
真由子 大崎
Akihiko Suda
明彦 須田
Toshio Yamamoto
敏生 山本
Toshitaka Tanabe
稔貴 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2006339722A priority Critical patent/JP2008150242A/en
Publication of JP2008150242A publication Critical patent/JP2008150242A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst support material having excellent heat resistance and keeping high specific surface area even when being used under a high temperature atmosphere for a long period of time by controlling the size of particles to have a desired optimum size. <P>SOLUTION: After an aqueous precipitate solution formed by a chemical reaction is aged, a step for making a raw material to become the source of particle growth, which is a particle having the same composition and smaller particle diameter, coexist and be subjected to aging again, and the step is repeated to grow the particle constituting the precipitate to have the desired particle size. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は酸化物の製造方法、特に触媒の担体として用いられる酸化物の粒子の粒径を制御し、所望する最適な大きさの粒径を有する酸化物を製造する方法に関する。   The present invention relates to a method for producing an oxide, and more particularly to a method for producing an oxide having a desired optimum particle size by controlling the particle size of oxide particles used as a catalyst support.

触媒の担体材料として、各種酸化物が広く使用されている。触媒性能を向上するには、触媒機能を発揮する貴金属の粒成長を抑制するため、触媒担体として比表面積が大きい材料を用いることが好ましい。比表面積を大きくするには、一般的には担体材料を多孔質化しあるいは担体材料の粒子径を微粒子化すればよい。   Various oxides are widely used as catalyst support materials. In order to improve the catalyst performance, it is preferable to use a material having a large specific surface area as the catalyst carrier in order to suppress grain growth of the noble metal exhibiting the catalytic function. In order to increase the specific surface area, generally, the support material should be made porous or the particle diameter of the support material should be made fine.

しかしながら、たとえば自動車の排気ガスのような高温の雰囲気中で使用する場合には、材料粒子が微粒子化するほど粒子の持つ表面エネルギーが高くなるため、高温雰囲気中では容易に焼結し、長時間にわたって高い比表面積を維持することができない。また、粒子径が大きい粒子は熱的耐久性には優れているが、比表面積が不十分で触媒活性を担う貴金属を十分な量を安定して保持することができない。これは高温での耐熱性を実現するためには、触媒担体を構成する材料粒子に、最適な粒子径が存在することを意味している。   However, when used in a high temperature atmosphere such as an automobile exhaust gas, the surface energy of the particles increases as the material particles become finer. It is not possible to maintain a high specific surface area. In addition, particles having a large particle diameter are excellent in thermal durability, but a specific surface area is insufficient and a sufficient amount of noble metal responsible for catalytic activity cannot be stably maintained. This means that in order to realize heat resistance at high temperatures, the material particles constituting the catalyst carrier have an optimum particle diameter.

通常、触媒担体は高比表面積の粉末を容易に合成できる共沈法などの液相法によってつくられる。しかしながら、共沈法などの従来の方法によって得られる材料粒子の結晶サイズは10nmに満たない微小なサイズである。このため、このような材料を、例えば高温の排ガス浄化用の触媒担体として用いるには耐熱性が十分でなく、長期に亘る使用には不向きである。   Usually, the catalyst carrier is produced by a liquid phase method such as a coprecipitation method that can easily synthesize a powder having a high specific surface area. However, the crystal size of material particles obtained by a conventional method such as a coprecipitation method is a minute size less than 10 nm. For this reason, such a material is insufficient in heat resistance to be used as, for example, a catalyst carrier for purifying high-temperature exhaust gas, and is not suitable for long-term use.

従来、例えばセリウム塩水溶液と炭酸アンモニウム水溶液を一定割合で混合し、50〜85℃の温度範囲で熱成し、得られたセリウムカーボネイトを乾燥後仮焼してナノ針状セリア粉末を方法が提案されている(例えば特許文献1参照)。この方法は熟成工程の工夫によって針状の結晶を合成する技術であるが、得られる結晶子のサイズは均一粒径で10nm近辺までの成長に満たない微細なものである。また、水酸化ジルコニウム沈殿物を含む水溶液を50℃以上の温度で熟成し、その酸化物を製造する方法が提案されている(例えば特許文献2参照)。しかしながら、この方法によって得られる酸化物もその比表面積が250m2/g 以上を有する超微細な粒子から構成されている。これらいずれの方法によって製造される酸化物も微細な酸化物粒子から構成されているため、1000℃近くでの高温雰囲気で使用する触媒担体としては適したものとはいえない。   Conventionally, for example, a method is proposed in which a cerium salt aqueous solution and an ammonium carbonate aqueous solution are mixed at a constant rate, thermally formed in a temperature range of 50 to 85 ° C., and the obtained cerium carbonate is dried and calcined to obtain nano-acicular ceria powder. (See, for example, Patent Document 1). This method is a technique for synthesizing needle-like crystals by devising the ripening process, but the crystallite size obtained is a fine one having a uniform particle diameter and less than the growth up to around 10 nm. In addition, a method for producing an oxide by aging an aqueous solution containing a zirconium hydroxide precipitate at a temperature of 50 ° C. or higher has been proposed (for example, see Patent Document 2). However, the oxide obtained by this method is also composed of ultrafine particles having a specific surface area of 250 m 2 / g or more. Since the oxide produced by any of these methods is composed of fine oxide particles, it cannot be said that it is suitable as a catalyst carrier for use in a high temperature atmosphere near 1000 ° C.

特開2003−252622号公報JP 2003-252622 A 特開2004−323257号JP 2004-323257 A

したがって、本発明は上記した従来方法の問題点を解消した方法を提供しようとするものであり、具体的には粒子径の大きさを、所望する最適な大きさに制御することができる酸化物の製造方法を提供すること目的としている。これによって、長期間に亘り高温雰囲気で使用しても、高い比表面積を維持することのできる熱的安定性に優れた触媒担体材料を提供しようとするものである。   Accordingly, the present invention is intended to provide a method that solves the problems of the conventional methods described above, and specifically, an oxide that can control the size of the particle diameter to a desired optimum size. It aims at providing the manufacturing method of. Accordingly, an object of the present invention is to provide a catalyst carrier material excellent in thermal stability that can maintain a high specific surface area even when used in a high temperature atmosphere for a long period of time.

上記した課題を解決するため、本発明は酸化物の前段階である、化学反応によって生成した沈殿物の水性沈殿液を熟成した後、この中に粒子成長の元となる原料、すなわち同一組成でかつより小さな粒径を持つ粒子を共存させ再び熟成することを繰り返し、所望する大きさの粒径まで沈殿物構成粒子を成長させようとの着想に基づいてなされた。課題を解決するための具体的手段は次のとおりである。   In order to solve the above-described problems, the present invention is a precursor of oxides, and after aging an aqueous precipitate of a precipitate generated by a chemical reaction, a raw material that is a source of particle growth, that is, a composition having the same composition. Moreover, it was made based on the idea of growing the particles constituting the precipitate to a desired particle size by repeating the ripening in the presence of particles having a smaller particle size. Specific means for solving the problems are as follows.

請求項1に記載した酸化物の製造方法は、化学反応によって生成した沈殿物を含む水性沈殿液から沈殿物を分離し、乾燥した後、焼成してその酸化物を製造する方法において、前記水性沈殿液を下記2つの工程:
(イ)水性沈殿液を加熱して沈殿物の構成粒子を熟成する第一の工程と、
(ロ)前記熟成された沈殿物粒子を含む水性沈殿液に、該沈殿物の構成粒子の平均粒径よりも小さい粒径を有する同一組成の粒子を共存させて再び加熱熟成する第二の工程と、
を含んで処理することを特徴とする。
The method for producing an oxide according to claim 1 is a method in which the precipitate is separated from an aqueous precipitate containing a precipitate generated by a chemical reaction, dried, and then fired to produce the oxide. The precipitation solution is divided into the following two steps
(A) a first step of heating the aqueous precipitation liquid to age the constituent particles of the precipitate;
(B) a second step in which particles having the same composition having a particle size smaller than the average particle size of the particles constituting the precipitate are coexisted in the aqueous precipitation liquid containing the aged precipitate particles, and the heat aging is performed again. When,
It is characterized by processing including.

請求項2に記載した酸化物の製造方法は、請求項1に記載した方法において第一の工程および第二の工程の加熱熟成が80〜250℃の温度で行われることを特徴とする。   The method for producing an oxide described in claim 2 is characterized in that the heat aging in the first step and the second step is performed at a temperature of 80 to 250 ° C. in the method described in claim 1.

請求項3に記載した酸化物の製造方法は、請求項1または請求項2に記載した方法において、第二の工程が、二回またはそれ以上繰り返して行われることを特徴とする。   The method for producing an oxide according to claim 3 is the method according to claim 1 or 2, wherein the second step is repeated twice or more times.

請求項4に記載した酸化物の製造方法は、請求項1から請求項3のいずれか一つに記載した方法において、上記第二の工程において熟成された沈殿物の構成粒子の平均粒径をB、共存させる同一組成の粒子の粒径をAとしたとき、両者が次の関係式:
1.5<B/A<1000
が成立するようにしたことを特徴とする。
The oxide production method according to claim 4 is the method according to any one of claims 1 to 3, wherein the average particle size of the constituent particles of the precipitate aged in the second step is set. B, where A is the particle size of the particles having the same composition to be coexisted, the relationship between them is
1.5 <B / A <1000
It is characterized in that is established.

請求項5に記載した酸化物の製造方法は、請求項1から請求項4のいずれか一つに記載した方法において、沈殿物が複数種の化合物から成る共沈殿物であることを特徴とする。   The method for producing an oxide according to claim 5 is the method according to any one of claims 1 to 4, wherein the precipitate is a coprecipitate composed of a plurality of types of compounds. .

請求項6に記載した酸化物の製造方法は、請求項1から請求項5のいずれか一つに記載した方法において、沈殿物が金属水酸化物から成ることを特徴とする。   The method for producing an oxide according to claim 6 is the method according to any one of claims 1 to 5, wherein the precipitate is made of a metal hydroxide.

請求項7に記載した酸化物の製造方法は、請求項1から請求項6のいずれか一つに記載した方法において、沈殿物が少なくとも一つの希土類元素の水酸化物を含んでいることを特徴とする。   The method for producing an oxide according to claim 7 is the method according to any one of claims 1 to 6, wherein the precipitate contains at least one hydroxide of a rare earth element. And

請求項8に記載した酸化物の製造方法は、請求項1ないし請求項7のいずれか一つに記載した方法において、沈殿物が水酸化セリウムおよび水酸化ジルコニウムを含んでいることを特徴とする。   The method for producing an oxide according to claim 8 is the method according to any one of claims 1 to 7, wherein the precipitate contains cerium hydroxide and zirconium hydroxide. .

本発明の方法によれば、高い比表面積を維持しながら、酸化物の粒子径の大きさを任意の大きさに制御できるので、使用目的などに応じた最適の熱的安定性を有する粒子径を持つ酸化物を製造することができる。   According to the method of the present invention, the particle size of the oxide can be controlled to an arbitrary size while maintaining a high specific surface area, so that the particle size having the optimum thermal stability according to the purpose of use, etc. It is possible to produce an oxide having

本発明において、化学反応によって生成した沈殿物とは、この沈殿物を焼成したとき酸化物を形成する沈殿物質を意味する。典型的には、例えばアルミニウム、シリコン、チタン、鉄、ジルコニウム、そしてセリウムその他の希土類元素のような金属の水酸化物がある。このような金属水酸化物は、その金属の強酸塩水溶液をアンモニア水のようなアルカリ性物質で中和することによって調製することができる。   In the present invention, a precipitate generated by a chemical reaction means a precipitated substance that forms an oxide when the precipitate is baked. Typically, there are metal hydroxides such as aluminum, silicon, titanium, iron, zirconium, and cerium and other rare earth elements. Such a metal hydroxide can be prepared by neutralizing an aqueous strong salt solution of the metal with an alkaline substance such as aqueous ammonia.

金属強酸塩としては硝酸塩、塩化物、硫酸塩およびオキシ硝酸塩、オキシ硫酸塩、オキシ塩化物などがあるが、もちろんこれらの化合物に限定されるものではない。自動車の排気ガス用触媒の担体を製造するため、特に好ましく使用できる金属塩化合物としては、硝酸セリウム(III )、硝酸セリウム(IV)アンモニウム、硫酸セリウム(III )、硫酸セリウム(IV)、塩化セリウム(III )、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウムなどがある。   Metal strong acid salts include nitrates, chlorides, sulfates and oxynitrates, oxysulfates, oxychlorides, but of course are not limited to these compounds. Metal salt compounds that can be particularly preferably used for the production of automobile exhaust gas catalyst carriers include cerium (III) nitrate, cerium (IV) ammonium nitrate, cerium sulfate (III), cerium sulfate (IV), and cerium chloride. (III), zirconium oxynitrate, zirconium oxychloride and the like.

また、アルカリ性物質としては、アンモニア水のような揮発性のアルカリ性物質を使用することが好ましい。この理由は、焼成後の酸化物に不純物として残留することがないからである。水酸化ナトリウムなどのアルカリ金属水酸化物はじめこれ以外のアルカリ性物質も使用する場合には、得られる金属水酸化物組織内にアルカリ性物質が残留しないよう、十分に洗浄を行うことが必要である。   As the alkaline substance, it is preferable to use a volatile alkaline substance such as ammonia water. This is because it does not remain as an impurity in the fired oxide. In the case of using an alkali metal hydroxide such as sodium hydroxide as well as other alkaline substances, it is necessary to perform sufficient washing so that the alkaline substance does not remain in the resulting metal hydroxide structure.

上記したような化学反応によって生成した沈殿物を含む水性沈殿液を、80℃〜250℃の温度、より好ましくは100℃以上の温度で加熱熟成することによって、沈殿物構成粒子の粒径を均一化するとともに粒子成長させることができる。熟成温度が80℃より低いと、オストワルド成長するための沈殿物微粒子の溶解と大きな粒子への再析出という平衡が十分に活性化しないため、熟成速度が遅すぎ、粒子の成長も十分に行なわれない。また、250℃の温度より高くなると、逆に沈殿物構成粒子の結晶構造の崩壊が始まり、本発明の意図する効果が得られない。   The aqueous precipitate containing the precipitate generated by the chemical reaction as described above is heated and aged at a temperature of 80 ° C. to 250 ° C., more preferably at a temperature of 100 ° C. or more, so that the particle size of the particles constituting the precipitate is uniform. And particle growth. If the ripening temperature is lower than 80 ° C, the equilibrium of dissolution of fine precipitate particles and reprecipitation into large particles for Ostwald growth cannot be activated sufficiently, so that the ripening rate is too slow and the particles are sufficiently grown. Absent. On the other hand, when the temperature is higher than 250 ° C., the crystal structure of the precipitate-constituting particles starts to collapse, and the intended effect of the present invention cannot be obtained.

100℃以上の温度で加熱熟成するには、水熱熟成法が用いられる。水熱熟成法とは、対象物試料をオートクレーブのような耐圧密封容器の中で、100℃以上の高温加圧下の水熱状態のもとで熟成する方法をいう。当然のことながら、大気圧下では水性沈殿液を100℃以上の温度に加熱することができず、100℃の温度以上で熟成するためには密封加圧下での加熱が必要となり、密封容器の中では水熱加圧の条件下で反応が行われている。本明細書において「加熱熟成」という用語は、この水熱熟成を含んだ意味で用いられている。しかしながら、水熱熟成によって処理し、あるいは処理した場合において、特にこれを水熱熟成と限定的な用語表現を用いた方が発明の理解のため好ましい場合には、「水熱熟成」の語を用いることとした。   In order to heat and age at a temperature of 100 ° C. or higher, a hydrothermal aging method is used. The hydrothermal aging method refers to a method in which an object sample is aged in a hydrothermal state under a high temperature and pressure of 100 ° C. or higher in a pressure-resistant sealed container such as an autoclave. As a matter of course, the aqueous precipitate cannot be heated to a temperature of 100 ° C. or higher under atmospheric pressure, and in order to mature at a temperature of 100 ° C. or higher, heating under sealed pressure is required. Among them, the reaction is carried out under hydrothermal pressure conditions. In this specification, the term “heat aging” is used in the meaning including hydrothermal aging. However, when treated by hydrothermal aging, or when treated, especially when it is preferable to use hydrothermal aging and a limited terminology for understanding the invention, the term “hydrothermal aging” is used. I decided to use it.

加熱熟成すると、水性沈殿液中の沈殿物に混在する大小粒子のうち小さい粒子が溶解し、冷却のプロセスで大きな粒子に析出し、粒子がその分成長すると共に粒径の分布も均一化し、小さくなる。一度、熟成が行われると、水性沈殿液中には粒子粒径の大小のバラツキがなくなるため、すなわち加熱しても溶解する小粒子の量が少なくなるため再度加熱熟成を行なったとしても、粒子の成長はほとんど起こらない。   When heat aging, small particles out of the large and small particles mixed in the precipitate in the aqueous precipitation liquid dissolve, precipitate into large particles in the cooling process, and as the particles grow, the particle size distribution becomes uniform and smaller. Become. Once ripening is performed, there is no variation in the particle size in the aqueous precipitation liquid, that is, the amount of small particles that dissolve even when heated is reduced. Little growth occurs.

本発明は、この加熱熟成した後の、小さな粒子の残存量が非常に少なくなった水性沈殿液に、より小さな粒子を共存させて再度加熱熟成することによって、粒子の成長を図ることに大きな特徴がある。このようにして粒径の小さな粒子を共存させながら加熱熟成する工程を繰り返すことによって、換言すれば常に小粒子の存在下で加熱熟成を多段階に行うことによって、沈殿物を構成する粒子径の大きさを、所望の大きさに成長させるよう制御することができる。これによって、例えば耐熱性に優れた粒子径をもつ酸化物を製造することができる。   The present invention is characterized in that the particles grow by re-heating and aging in the presence of smaller particles in the aqueous precipitation liquid in which the remaining amount of small particles is extremely small after the heat aging. There is. In this way, by repeating the process of heating and aging in the presence of particles having a small particle size, in other words, by constantly performing heating and aging in multiple stages in the presence of small particles, the size of the particles constituting the precipitate is increased. The size can be controlled to grow to the desired size. Thereby, for example, an oxide having a particle diameter excellent in heat resistance can be produced.

図1は250℃の温度で水熱熟成を繰り返すことによって、すなわち水熱熟成後の水性沈殿液に、より小さい粒径の粒子を共存させながら水熱熟成を行う工程を多段階に繰り返すことによって、得られる沈殿物の粒径分布と体積分率がどのように変化するかを示したグラフである。沈殿物自体についてそのような測定を行うことができないので、実際の測定は、沈殿物を分離乾燥した後、焼成して酸化物とし、この酸化物について行った。この図において体積分率とは、試料(酸化物〉全体の体積に占める特定の粒径を持つ粒子の割合を意味する。試験の方法は、硝酸セリウム(iv)、オキシ硝酸ジルコニウム、硝酸ランタンおよび硝酸プラセオジムの混合水溶液(酸化物換算重量比は CeO2:ZrO2:La23:Pr23=60:30:3:7)に、当量の1.2倍相当のアンモニア水を混合してこれら水酸化物の共沈殿物を調製し、オートクレーブを用いて、250℃の温度で4時間水熱熟成した。水熱熟成後の沈殿物液に前記した金属塩を同一の混合割合で溶解し(ただし添加量は当初の1/2)、アンモニア水を添加してバージンの水酸化物共沈殿物を生成させた。このようにして水熱熟成した沈殿物とバージンの沈殿物とが混在した水性沈殿液を再び前記したと同一条件で水熱熟成した。 FIG. 1 shows that by repeating hydrothermal ripening at a temperature of 250 ° C., that is, by repeating the hydrothermal ripening process in multiple stages while coexisting particles having a smaller particle size in the aqueous precipitate after hydrothermal ripening. It is the graph which showed how the particle size distribution and volume fraction of the precipitate which are obtained change. Since such a measurement cannot be performed on the precipitate itself, the actual measurement was performed on the oxide after the precipitate was separated and dried and then calcined to form an oxide. In this figure, the volume fraction means the ratio of particles having a specific particle size to the total volume of the sample (oxide) .The test method is cerium nitrate (iv), zirconium oxynitrate, lanthanum nitrate and A mixed aqueous solution of praseodymium nitrate (the weight ratio in terms of oxide is CeO 2 : ZrO 2 : La 2 O 3 : Pr 2 O 3 = 60: 30: 3: 7) is mixed with ammonia water equivalent to 1.2 times the equivalent amount. These hydroxide coprecipitates were prepared and hydrothermally aged for 4 hours using an autoclave at a temperature of 250 ° C. The above-mentioned metal salt was dissolved in the same mixture ratio in the precipitate liquid after hydrothermal aging. (However, the addition amount was 1/2 of the initial amount) Ammonia water was added to form a virgin hydroxide coprecipitate, and the hydrothermally aged precipitate and the virgin precipitate were mixed. Same conditions as above for aqueous precipitate again And hydrothermal aging.

図1のグラフから、化学反応によって生成した沈殿物は、幅広い粒径分布を有しており、その平均粒径も小さい(曲線A)。この状態で水熱熟成を行うと、水性沈殿液中の小さい粒子は溶解して大きな粒子に析出し、粒子が成長する。この結果、粒径分布曲線はシャープになり、粒径分布の広がりも小さくなる(曲線B、第一の熟成工程)。この状態で、この中に小さい粒径の粒子を共存させて再度水熱熟成を行うと、共存させた小さい粒子は溶解し大きな粒子に析出し、粒子がさらに成長する。このように水熱熟成の回数が増加するにしたがってその粒径分布は、右側につまり粒径が大きくなる方向に変化していく(曲線C、D、E。それぞれ第二の熟成工程で1回目、9回目そして19回目の熟成に対応)。   From the graph of FIG. 1, the precipitate produced by the chemical reaction has a wide particle size distribution, and the average particle size is also small (curve A). When hydrothermal aging is performed in this state, the small particles in the aqueous precipitation liquid dissolve and precipitate into large particles, and the particles grow. As a result, the particle size distribution curve becomes sharper and the spread of the particle size distribution becomes smaller (curve B, first aging step). In this state, when particles having a small particle size coexist in this state and hydrothermal aging is performed again, the small particles coexisting are dissolved and precipitated into larger particles, and the particles further grow. Thus, as the number of hydrothermal aging increases, the particle size distribution changes to the right, that is, in the direction in which the particle size increases (curves C, D, E. Each time in the second aging step, the first time). , Corresponding to the 9th and 19th maturation).

図1の測定に用いた酸化物試料および同一条件で調製したこれ以外の酸化物について、1000℃耐久後比表面積がどのような変化を示すか試験を行った。これは自動車の実際の使用状態を模擬した試験であり、高温の排気ガスに晒される、触媒担体材料である酸化物の耐久性を試験するため、酸化物を焼成炉に入れ、炉内に導入する可燃ガス量を調整することによって人工的に還元(Rich)および酸化(Lean)の雰囲気を交互に繰り返し形成しながら、1000℃の温度で5時間晒す。このような熱処理を行った後の酸化物の比表面積を、「1000℃ R/L耐久後比表面積」あるいは単に「1000℃耐久後比表面積」という。このような耐久試験を行う前の比表面積と比較することによって酸化物の劣化の程度を知ることができる。比表面積の測定は一般にガス吸着法が用いられる。
図2はこの試験の結果を示すグラフである。前記した熟成工程の回数を増やすほど粒子径は大きくなり、これに伴って1000℃耐久後比表面積も順次増加していく。しかしながら、7〜10回をピークにしてそれ以後、1000℃耐久後比表面積は、急激に減少する。第二の熟成工程を約20回繰り返した場合には、製造される酸化物の耐久後比表面積は第二の熟成工程1回目の場合とほぼ同水準になってしまう。この理由は次のように考えられる。熟成の繰り返しによって、沈殿物が長時間高温の熟成状態に置かれる結果、シンタリング類似の現象が起こり、粒径分布が拡がりながら粒子が大きくなり、耐熱前の初期の時点で比表面積がすでに小さくなってしまうためである。
With respect to the oxide sample used for the measurement in FIG. 1 and other oxides prepared under the same conditions, tests were performed to see what changes in specific surface area after 1000 ° C. endurance occurred. This is a test that simulates the actual usage condition of an automobile. In order to test the durability of the oxide that is the catalyst support material that is exposed to high-temperature exhaust gas, the oxide is put into a firing furnace and introduced into the furnace. By adjusting the amount of combustible gas to be produced, an atmosphere of reduction (Rich) and oxidation (Lean) is alternately and alternately formed, and then exposed at a temperature of 1000 ° C. for 5 hours. The specific surface area of the oxide after such heat treatment is referred to as “1000 ° C. R / L specific surface area after endurance” or simply “specific surface area after 1000 ° C. endurance”. The degree of deterioration of the oxide can be known by comparing with the specific surface area before performing such a durability test. A gas adsorption method is generally used for measuring the specific surface area.
FIG. 2 is a graph showing the results of this test. As the number of aging steps increases, the particle diameter increases, and the specific surface area after 1000 ° C. endurance increases accordingly. However, after the peak of 7 to 10 times, the specific surface area after 1000 ° C. endurance decreases rapidly thereafter. When the second aging step is repeated about 20 times, the specific surface area after the endurance of the oxide to be produced is almost the same as that in the first aging step. The reason is considered as follows. As a result of repeated aging, the precipitate is left in a high temperature aging state for a long time, resulting in a phenomenon similar to sintering, the particle size increases while the particle size distribution expands, and the specific surface area is already small at the initial time before heat resistance. This is because it becomes.

加熱熟成した水性沈殿液に、より小さい粒子を共存させるには、加熱熟成した水性沈殿液に熟成前の水性沈殿液を混合すればよい。これとは反対に、熟成前の水性沈殿液の中に加熱熟成した水性沈殿を混合してもよい。これらの方法のほかに加熱熟成した水性沈殿液の中で、最初のバージンの沈殿物をつくったと同じ方法で、すなわち金属強酸塩を溶解し、アルカリ物質を添付して中和して沈殿物を生成させてもよい。   In order to allow smaller particles to coexist in the heat-ripened aqueous precipitate, the aqueous precipitate before ripening may be mixed with the heat-ripened aqueous precipitate. On the contrary, an aqueous precipitate that has been heat-aged and aged may be mixed into an aqueous precipitate before aging. In addition to these methods, in the heat-ripened aqueous precipitate, the same method as that used to produce the first virgin precipitate, that is, dissolve the strong metal salt and attach the alkaline substance to neutralize the precipitate. It may be generated.

共存させる沈殿物と熟成沈殿物との間には、それらの構成粒子の粒径に関し、熟成された沈殿物の構成粒子の平均粒径をB、共存させる平均粒子の粒径をAとしたとき、次の関係式:
1.5<B/A<1000
を満足することが好ましい。その理由はこの比が1.5より小さいと、粒子Bに対し粒子Aが安定で溶解し難いためオストワルド成長を利用できないためであり、またこの比が1000よりも大きいと、粒子の核サイズに対し、溶液法で合成しうる最大級の粒子サイズ(結晶子)が1000倍以上であることは現実的でないからである。
Regarding the particle size of the constituent particles between the coexisting precipitate and the aged precipitate, when the average particle size of the component particles of the aged precipitate is B and the particle size of the coexisting average particles is A And the following relation:
1.5 <B / A <1000
Is preferably satisfied. The reason is that if this ratio is smaller than 1.5, the particle A is stable and difficult to dissolve with respect to the particle B, and Ostwald growth cannot be used. If this ratio is larger than 1000, the nucleus size of the particle is reduced. On the other hand, it is not realistic that the maximum particle size (crystallite) that can be synthesized by the solution method is 1000 times or more.

水熱熟成した水性沈殿液に、粒子粒径の小さい沈殿物を共存させて水熱熟成する工程の繰り返しの上限回数、あるいは最適回数は、共存させる小さい粒子の量によって変わり、一律に規定することはできない。一般に共存させる量が多いほど、上限回数も最適回数も少なくなる。しかしながら、共存させる量を、一度に大量にすると、水熱熟成温度における溶解度以上になり、粒子Aが溶解しきらず残ってしまうという不都合な問題が起こる可能性がある。水熱熟成した粒子の粒径が大きく成長するにつれ、次第に成長速度は遅くなるが、所望する粒径寸法と水熱熟成1回に共存させる沈殿物の量を勘案し、適宜選択すればよい。以下に、本発明の実施例について説明する。   The upper limit of the number of repetitions of hydrothermal aging in which a precipitate with a small particle size coexists in a hydrothermally aged aqueous precipitate, or the optimum number of times varies depending on the amount of small particles to be coexisted, and should be uniformly specified. I can't. Generally, the larger the amount of coexistence, the smaller the upper limit number and the optimum number. However, if the amount of coexistence is large at once, the solubility at the hydrothermal aging temperature is exceeded, and there is a possibility that an inconvenient problem that the particles A are not completely dissolved and remains. As the particle size of hydrothermally ripened particles grows larger, the growth rate gradually decreases. However, it may be appropriately selected in consideration of the desired particle size and the amount of precipitate that coexists in one hydrothermal ripening. Examples of the present invention will be described below.

下記の方法によってセリウムージルコニウムーランタンープラセオジムから成る種々の混成酸化物を調製し、高温処理してそれらの比表面積の劣化を比較した。
(イ)共沈水酸化物の調製
硝酸セリウム(iv)、オキシ硝酸ジルコニウム、硝酸ランタンおよび硝酸プラセオジムを、表1に示した割合で含む混合水溶液に、当量の1.2倍相当のアンモニア水を混合してこれら水酸化物の共沈殿物を調製した。
Various hybrid oxides composed of cerium-zirconium-lanthanum-praseodymium were prepared by the following method and treated at high temperature to compare the deterioration of their specific surface areas.
(I) Preparation of Coprecipitated Hydroxide Mixing aqueous solution containing cerium nitrate (iv), zirconium oxynitrate, lanthanum nitrate and praseodymium nitrate in the proportions shown in Table 1 was mixed with ammonia water equivalent to 1.2 times the equivalent amount. Coprecipitates of these hydroxides were prepared.

Figure 2008150242
Figure 2008150242

この沈殿物を分離し、精製水を用いて2度水洗した後、希硝酸水に解膠させて水性液を調製した。この水性沈殿液を8個の容器に等分に分割した。
(ロ)共沈水酸化物の水熱熟成(第一の工程)
前記した水性沈殿液を、オートクレーブに入れ、5個は150℃、他の3個は250℃の熟成温度でそれぞれ4時間、水熱加圧の条件下で熟成した。こうして熟成温度の異なる2種類の水性沈殿液8個調製した。
(ハ)小粒径粒子の共存(第二の工程の第一回目)
前記した8個の水性沈殿液のそれぞれに、初期の配合量の1/2相当量の各成分の塩を加えて攪拌し溶解した。次いでアンモニア水を添加して再び各成分の水酸化物の共沈殿物を形成させ、熟成した水酸化物共沈殿物とバージンの水酸化物共沈殿物とが混在した8個の水性沈殿液を調製した。
(ニ)水熱熟成(第二の工程の第一回目)
前記した水性沈殿液からそれぞれ沈殿物を分離し、精製水で2度洗浄した後、再び希硝酸に分散して解膠させた。これらの解膠した水性沈殿液をオートクレーブに入れ、155℃〜250℃の温度で4時間水熱熟成した。
(ホ)小粒径粒子の共存(第二の工程の第二回目)
熟成した水性沈殿液に、それぞれ初期の配合量の1/2相当量の各成分の塩を加えて攪拌し溶解した。次いでアンモニア水を添加して再び各成分の水酸化物の共沈殿物を形成させ、熟成した水酸化物共沈殿物とバージンの水酸化物共沈殿物とが混在した水性沈殿液を調製した。
(ヘ)水熱熟成(第二の工程の第二回目)
前記水性沈殿液からそれぞれ沈殿物を分離し、精製水で2度洗浄した後、再び希硝酸に分散して解膠させた。これら2種類の水性沈殿液を、オートクレーブに入れ、160〜250℃の温度で4時間水熱熟成した。
以上述べた処理を繰り返すことによって、表2に示したように水熱温度および熟成処理回数など水熱熟成条件を異にした8種類の水性沈殿液を調製した。
(ト)水熱処理後の水性液の中和
所定の熟成処理回数の終了後、水性沈殿液のそれぞれにアンモニア水を添加してpHを上げ、等電点で沈殿物を凝集させた。
(チ)乾燥焼成
沈殿物をろ過し、120℃の温度で乾燥した。乾燥後、この粉末を700℃(昇温速度300℃/ h)の温度で3時間保持して焼成し、上記した4種類の酸化物の試料を調製した。
[比較例試料の調製]
上記した実施例で述べた(イ)共沈水酸化物の調製および(ロ)共沈水酸化物の水熱熟成(第一の工程)に準じ、実施例と同一成分からなる混合水溶液を調製し、アンモニア水を添加して共沈殿物を調製した。この沈殿物を分離洗浄した後、希硝酸水に解膠し、種々の温度で4時間水熱熟成を行った。水熱熟成後、上記(チ)乾燥焼成において述べたと同じ方法によって実施例と同一成分からなる酸化物を調製した。
This precipitate was separated, washed twice with purified water, and then peptized with dilute nitric acid to prepare an aqueous liquid. This aqueous precipitate was divided equally into 8 containers.
(B) Hydrothermal aging of coprecipitated hydroxide (first step)
The aqueous precipitates described above were placed in an autoclave, and 5 pieces were aged at 150 ° C. and the other 3 pieces were aged at 250 ° C. for 4 hours under hydrothermal pressure. In this way, 8 types of two aqueous precipitation liquids having different aging temperatures were prepared.
(C) Coexistence of small-sized particles (first round of the second step)
To each of the eight aqueous precipitation liquids, the salt of each component corresponding to 1/2 of the initial blending amount was added and stirred to dissolve. Next, ammonia water was added to again form a hydroxide co-precipitate of each component, and eight aqueous precipitates mixed with aged hydroxide co-precipitate and virgin hydroxide co-precipitate were prepared. Prepared.
(D) Hydrothermal ripening (first round of the second step)
Each precipitate was separated from the aqueous precipitation solution described above, washed twice with purified water, then dispersed again in dilute nitric acid and peptized. These peptized aqueous precipitates were placed in an autoclave and hydrothermally aged for 4 hours at a temperature of 155 ° C to 250 ° C.
(E) Coexistence of small particles (second step of the second step)
To the aged aqueous precipitate, salts of each component corresponding to 1/2 of the initial blending amount were added and stirred to dissolve. Next, ammonia water was added to again form a hydroxide coprecipitate of each component, and an aqueous precipitation liquid in which an aged hydroxide coprecipitate and a virgin hydroxide coprecipitate were mixed was prepared.
(F) Hydrothermal aging (second time in the second step)
Each precipitate was separated from the aqueous precipitation solution, washed twice with purified water, then dispersed again in dilute nitric acid and peptized. These two kinds of aqueous precipitation liquids were put into an autoclave and hydrothermally aged at a temperature of 160 to 250 ° C. for 4 hours.
By repeating the treatment described above, eight types of aqueous precipitation liquids were prepared with different hydrothermal aging conditions such as the hydrothermal temperature and the number of aging treatments as shown in Table 2.
(G) Neutralization of aqueous liquid after hydrothermal treatment After completion of a predetermined number of aging treatments, ammonia water was added to each of the aqueous precipitation liquids to increase the pH, and the precipitates were aggregated at an isoelectric point.
(H) Dry calcination The precipitate was filtered and dried at a temperature of 120 ° C. After drying, this powder was calcined by holding at 700 ° C. (temperature rising rate 300 ° C./h) for 3 hours to prepare the above-mentioned four kinds of oxide samples.
[Preparation of Comparative Sample]
According to the preparation of the coprecipitation hydroxide and (b) hydrothermal aging of the coprecipitation hydroxide (first step) described in the above examples, a mixed aqueous solution consisting of the same components as the examples is prepared. Ammonia water was added to prepare a coprecipitate. The precipitate was separated and washed, then peptized in dilute nitric acid solution, and hydrothermally aged for 4 hours at various temperatures. After hydrothermal aging, an oxide composed of the same components as in Examples was prepared by the same method as described in the above (h) dry firing.

以上のようにして得られた酸化物を熱処理して1000℃耐久後比表面積(ガス吸着法)を測定し、耐久前の比表面積と比較した。この結果を表2に示す。   The oxide obtained as described above was heat-treated and the specific surface area after endurance at 1000 ° C. (gas adsorption method) was measured and compared with the specific surface area before endurance. The results are shown in Table 2.

Figure 2008150242
Figure 2008150242

この表において、XRD結晶子径とは、XRD(X線回折)にて検出されたCe−Zr酸化物の(111)ピークの拡がりをSherrer法のCauchy関数近似にて算出した結晶子の大きさをいう。またSAXS粒径分布値とはSAXS(X線小角散乱)法による粒径分布測定において、粒径分布がγ分布の形状を持つと仮定して算出した分散値をいう。   In this table, the XRD crystallite diameter is the size of a crystallite obtained by calculating the spread of the (111) peak of Ce-Zr oxide detected by XRD (X-ray diffraction) by Cauchy function approximation of the Sherrer method. Say. The SAXS particle size distribution value is a dispersion value calculated by assuming that the particle size distribution has a γ distribution shape in the particle size distribution measurement by the SAXS (X-ray small angle scattering) method.

以上のように、本発明の方法によれば酸化物粒子の粒径を任意の大きさに成長させることができ、耐熱性に優れた酸化物を調製することができる。   As described above, according to the method of the present invention, the particle size of the oxide particles can be grown to an arbitrary size, and an oxide having excellent heat resistance can be prepared.

加熱熟成回数によって得られる酸化物の粒径分布と体積分率の変化を表すグラフである。It is a graph showing the change of the particle size distribution and volume fraction of the oxide obtained by the heat aging frequency. 第一工程の加熱熟成後、第二工程の加熱熟成回数と、得られた酸化物の1000℃耐久後比表面積との関係を示すグラフである。It is a graph which shows the relationship between the heat aging frequency of a 2nd process after the heat aging of a 1st process, and the specific surface area after 1000 degreeC durability of the obtained oxide.

Claims (8)

化学反応によって生成した沈殿物を含む水性沈殿液から沈殿物を分離し、乾燥した後、焼成してその酸化物を製造する方法において、前記水性沈殿液を下記2つの工程:
(イ)水性沈殿液を加熱して該沈殿物の構成粒子を熟成する第一の工程と、
(ロ)前記熟成された沈殿物粒子を含む水性沈殿液に、該沈殿物の構成粒子の平均粒径よりも小さい粒径を有する同一組成の粒子を共存させて再び加熱熟成する第二の工程と、
を含んで処理することを特徴とする酸化物の製造方法。
In the method of separating the precipitate from the aqueous precipitate containing the precipitate generated by the chemical reaction, drying, and calcining to produce the oxide, the aqueous precipitate is divided into the following two steps:
(A) a first step of heating the aqueous precipitation liquid to ripen the constituent particles of the precipitate;
(B) a second step in which particles having the same composition having a particle size smaller than the average particle size of the particles constituting the precipitate are coexisted in the aqueous precipitation liquid containing the aged precipitate particles, and the heat aging is performed again. When,
A process for producing an oxide, comprising:
第一の工程および第二の工程の加熱熟成が80〜250℃の温度で行われることを特徴とする請求項1に記載した酸化物の製造方法。   The method for producing an oxide according to claim 1, wherein the heat aging in the first step and the second step is performed at a temperature of 80 to 250 ° C. 第二の工程が二回またはそれ以上繰り返して行われることを特徴とする請求項1または請求項2に記載した酸化物の製造方法。   The method for producing an oxide according to claim 1 or 2, wherein the second step is repeated twice or more times. 第二の工程において、熟成された沈殿物の構成粒子の平均粒径をB、共存させる同一組成の粒子の粒径をAとしたとき、両者の間に次の関係式:
1.5<B/A<1000
が成立するようにしたことを特徴とする請求項1から請求項3のいずれか一つに記載した酸化物の製造方法。
In the second step, when the average particle size of the constituent particles of the aged precipitate is B and the particle size of the particles having the same composition to coexist is A, the following relational expression is established between the two:
1.5 <B / A <1000
The method for producing an oxide according to any one of claims 1 to 3, wherein: is established.
沈殿物が複数種の化合物から成る共沈殿物であることを特徴とする請求項1から請求項4のいずれか一つに記載した酸化物の製造方法。   The method for producing an oxide according to any one of claims 1 to 4, wherein the precipitate is a coprecipitate composed of a plurality of kinds of compounds. 沈殿物が金属水酸化物から成ることを特徴とする請求項1から請求項5のいずれか一つに記載した酸化物の製造方法。   The method for producing an oxide according to any one of claims 1 to 5, wherein the precipitate comprises a metal hydroxide. 沈殿物が少なくとも一つの希土類元素の水酸化物を含んでいることを特徴とする請求項1から請求項6のいずれか一つに記載した酸化物の製造方法。   The method for producing an oxide according to any one of claims 1 to 6, wherein the precipitate contains at least one rare earth element hydroxide. 沈殿物が水酸化セリウムおよび水酸化ジルコニウムを含んでいることを特徴とする請求項1から請求項7のいずれか一つに記載した酸化物の製造方法。   The method for producing an oxide according to any one of claims 1 to 7, wherein the precipitate contains cerium hydroxide and zirconium hydroxide.
JP2006339722A 2006-12-18 2006-12-18 Method of producing oxide Pending JP2008150242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339722A JP2008150242A (en) 2006-12-18 2006-12-18 Method of producing oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339722A JP2008150242A (en) 2006-12-18 2006-12-18 Method of producing oxide

Publications (1)

Publication Number Publication Date
JP2008150242A true JP2008150242A (en) 2008-07-03

Family

ID=39652836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339722A Pending JP2008150242A (en) 2006-12-18 2006-12-18 Method of producing oxide

Country Status (1)

Country Link
JP (1) JP2008150242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956543B2 (en) 2014-03-28 2018-05-01 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9956543B2 (en) 2014-03-28 2018-05-01 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body and method for producing same

Similar Documents

Publication Publication Date Title
JP5326001B2 (en) Compositions comprising lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, process for preparation and use in catalysts
JP6471240B2 (en) Cerium-zirconium composite oxide, production method thereof and use of catalyst
KR100295168B1 (en) Method for preparing a mixed oxide based composition of zirconium and cerium, and the composition obtained therefrom and its use
EP1872851B1 (en) Cerium oxide-zirconium oxide-based mixed oxide and method for the production thereof
JP5564109B2 (en) Composition comprising cerium oxide and zirconium oxide with specific porosity, its preparation method and its use in catalysis
US6214306B1 (en) Composition based on zirconium oxide and cerium oxide, preparation method therefor and use thereof
US7247597B2 (en) Composite oxide, process for producing the same, and exhaust gas reducing co-catalyst
JP4579162B2 (en) Zirconium oxide and cerium oxide based compositions with low maximum reducible temperature, process for their preparation and their use as catalysts
CN105121351B (en) Precipitating based on zirconium oxide and cerium oxide and calcining composition
CN106824163B (en) Composite oxides and preparation method thereof
CN110252275B (en) Cerium-zirconium composite oxide with high specific surface area, and preparation method and application thereof
EP1563893A1 (en) Exhaust gas-purifying catalyst and method of manufacturing the same
JP2004529837A (en) Catalyst support material having high oxygen storage capacity and method for producing the same
JP2012519060A (en) Novel zirconia ceria composition
JP4582789B2 (en) Ceria-zirconia solid solution sol and method for producing the same
JP2003277059A (en) Ceria-zirconia compound oxide
KR20130084305A (en) Composition based on zirconium oxide and on at least one oxide of a rare earth other than cerium, having a specific porosity, processes for preparing same and use thereof in catalysis
WO2012096386A1 (en) Porous alumina material, process for producing same, and catalyst
JP2019521937A (en) Mixed oxides based on cerium and zirconium
JP2008150237A (en) Method for production of metal oxide
JP2008150242A (en) Method of producing oxide
CN113070083B (en) High-efficiency catalytic oxidation propane catalyst and preparation method thereof
CN105873882B (en) Inorganic composite oxide and preparation method thereof
JP2003265958A (en) Exhaust gas cleaning catalyst
JP5030573B2 (en) Composite oxide powder and method for producing the same