JP2008149372A - Die for material molding, material molding method and material molding device - Google Patents

Die for material molding, material molding method and material molding device Download PDF

Info

Publication number
JP2008149372A
JP2008149372A JP2006357237A JP2006357237A JP2008149372A JP 2008149372 A JP2008149372 A JP 2008149372A JP 2006357237 A JP2006357237 A JP 2006357237A JP 2006357237 A JP2006357237 A JP 2006357237A JP 2008149372 A JP2008149372 A JP 2008149372A
Authority
JP
Japan
Prior art keywords
mold
temperature
phase change
molding
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006357237A
Other languages
Japanese (ja)
Inventor
Itsuo Onaka
逸雄 大中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IE Solution Corp
Original Assignee
IE Solution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IE Solution Corp filed Critical IE Solution Corp
Priority to JP2006357237A priority Critical patent/JP2008149372A/en
Publication of JP2008149372A publication Critical patent/JP2008149372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die in which the change in the temperature of the surface in a cavity for material molding is reduced as possible, further, a suitable temperature distribution is obtained therein, and a sound produce in which a defect in gas involvement or the like is reduced can be economically produced, and to provide a working method and a device utilizing the same. <P>SOLUTION: A phase changing substance 2 absorbing latent heat in the vicinity of a temperature to which it is desirably held constant, and dissolved is arranged at a position close to the surface 1a of a cavity, and the phase changing substance is cooled, and heat is released to the outside of the die. If required, a flow passage 3 is further provided between the phase changing substance and the cavity 1, after a workpiece is packed into the cavity 1, water, heat resistant oil or the like are made to flow through the flow passage, and it is cooled to a product discharging temperature. If required, a phase changing substance with a different melting point is dispersedly arranged in the die, and a suitable temperature distribution is produced in the workpiece. By utilizing the die, the workpiece is inserted into the cavity at a low velocity in which air involvement or the like do not occur. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋳造、ダイカスト、射出成形、鍛造、粉末冶金など加熱された被加工材料を型内に挿入して成形する加工法に関するものである。  The present invention relates to a processing method in which a heated workpiece material such as casting, die casting, injection molding, forging, and powder metallurgy is inserted into a mold and molded.

鋳造、ダイカスト、射出成形、鍛造、粉末冶金など、加熱された被加工材料を型内に流し込みあるいは圧入して成形加工する種々の加工法がある。これらの成形加工法では、型温度を適切に制御あるいは調節することが健全な製品を経済的に製造するために極めて重要である。例えば、型温度が低過ぎると、被加工材料の温度が低下し過ぎて、型への充填が困難になり過大な動力が必要になるし、型温度が高すぎると焼き付きが生じる。また、型温度変化が大きいと寿命が短くなる。  There are various processing methods such as casting, die casting, injection molding, forging, powder metallurgy, and the like, in which a heated workpiece material is poured into a mold or press-fitted into the mold. In these molding processes, appropriately controlling or adjusting the mold temperature is extremely important for economical production of sound products. For example, if the mold temperature is too low, the temperature of the material to be processed decreases too much, making it difficult to fill the mold, and excessive power is required. If the mold temperature is too high, seizure occurs. Further, when the mold temperature change is large, the service life is shortened.

従来の型温度の制御は型内に設けた流路に水や油等を流し、また場合によってはヒータを型内に設置して行われているが、基本的には、被加工材料から型に伝わる熱流入と冷却による熱流出のバランスにより型の温度を調節している。従って、生産速度が一定に管理されている場合には良いが、実際には種々の要因で一定にはならず、最適状態を保つのが困難である。さらに従来方法では以下のような問題がある。  Conventional mold temperature control is performed by flowing water or oil through a flow path provided in the mold, and in some cases, a heater is installed in the mold. The temperature of the mold is adjusted by the balance between the heat inflow transmitted to the heat and the heat outflow due to cooling. Therefore, although it is good when the production speed is controlled to be constant, in practice, it is not constant due to various factors, and it is difficult to maintain the optimum state. Further, the conventional method has the following problems.

例えば、Al合金のダイカストの場合、上記のような従来の方法では、湯回り不良とガス巻き込みを防ぐためキャビティ表面温度を400℃程度以上の高温にして溶湯を射出・成型することが容易でない。これは、水冷では温度が低下し過ぎて、射出前に型を加熱する時間がかかり過ぎ、冷却が弱過ぎると型温度が上がり過ぎて、焼付きが生じるからである。300℃以上で使用できる流体があれば、水冷の場合よりは容易に高温に保てるが、適切な流体がないし、高温流体を取り扱うことは作業の安全上好ましくない。従って、通常のダイカストでは、型温度を250℃程度以下として、湯回り不良欠陥を防ぐため、溶湯を60MPa程度以上の高圧、数10m/sの高速で射出し、キャビティを短時間で充満させている。しかし、溶湯流速を上げると溶湯がキャビティ内の空気や発生したガスを巻き込んで欠陥となる。また、高圧、大容量の油圧装置が必要で装置も大型化している。この巻き込み欠陥を防ぐため、キャビティを高真空にし、超高速で射出して巻き込んだ気泡を微細にするなどの工夫がなされているが、装置はますます大型化し、保守コストも上がるため問題となっている。  For example, in the case of die casting of an Al alloy, in the conventional method as described above, it is not easy to inject and mold the molten metal at a cavity surface temperature of about 400 ° C. or higher in order to prevent poor hot water and gas entrainment. This is because the temperature is too low in water cooling, and it takes too much time to heat the mold before injection, and if the cooling is too weak, the mold temperature increases too much and seizure occurs. If there is a fluid that can be used at 300 ° C. or higher, it can be easily maintained at a higher temperature than in the case of water cooling. Therefore, in a normal die casting, the mold temperature is set to about 250 ° C. or less, and in order to prevent defects in the hot water run, the molten metal is injected at a high pressure of about 60 MPa or more and at a high speed of several tens of m / s, and the cavity is filled in a short time. Yes. However, when the molten metal flow rate is increased, the molten metal entrains the air in the cavity and the generated gas and becomes a defect. In addition, a high-pressure, large-capacity hydraulic device is required, and the device is also enlarged. In order to prevent this entrainment defect, the cavities are made high vacuum, the ultra-high speed injection to make the entrained bubbles finer, etc., but the equipment becomes larger and the maintenance cost increases, which becomes a problem ing.

また、低圧鋳造では、湯口部が押し湯となるので、湯口に向かって凝固が進行する指向性凝固が実現されるように、金型温度を制御するが、従来法では温度が変化しやすく一度温度が下がり過ぎると、短時間で回復させることは容易でなく、やはり最適型温度を維持するのが容易でない。  In low pressure casting, the pouring gate part becomes a feeder, so the mold temperature is controlled so that directional solidification is achieved, where solidification proceeds toward the pouring gate. If the temperature is too low, it is not easy to recover in a short time, and again it is not easy to maintain the optimum temperature.

樹脂の射出成形などでは、上記のような高温ではないので、従来法でも型温度を制御できるが、より確実にかつ低コストで制御することが望まれている。また、鍛造や粉末冶金でも型温度を低コストで制御することが望まれている。  In resin injection molding or the like, the mold temperature can be controlled by the conventional method because the temperature is not high as described above, but it is desired to control the mold temperature more reliably and at low cost. In addition, it is desired to control the mold temperature at low cost in forging and powder metallurgy.

材料成形用のキャビティ表面の温度変化をなるべく小さくし、また、型内に適切な温度分布を実現し、ガス等の巻き込み欠陥が少ない健全な製品を経済的に製造できる型およびそれを利用した加工法および装置を提供する。  Mold that can reduce the temperature change of the cavity surface for material molding as much as possible, realize an appropriate temperature distribution in the mold, and economically produce a sound product with few entrapment defects such as gas, etc. and processing using it Provide methods and equipment.

キャビティ表面に近い位置に、保持したい温度付近で潜熱を吸収し溶解する相変化物質を配置する。必要に応じて、前記相変化物質を水や油、空気等で冷却して熱を型外へ放出する。また、必要に応じて、前記相変化物質とキャビティの間に冷却用の流路を設けておき、被加工材料がキャビティを充填した後、前記流路に水や耐熱油などを流して製品取り出し温度まで冷却する。さらに、必要に応じて、融点の異なる相変化物質を型内に分散配置して型に適切な温度分布を生じさせる。前記相変化物質としては保持温度が200℃程度以上の場合には主に純金属あるいは合金を、200℃程度以下では潜熱蓄熱材料として使用されている非金属物質を主に使用する。このような型を利用して、空気等の巻き込みが生じない低速で被加工材料をキャビティに挿入する。なお、型には主型、中子など全ての構成部品を含む。  A phase change material that absorbs and dissolves latent heat near the temperature to be maintained is disposed near the cavity surface. If necessary, the phase change material is cooled with water, oil, air or the like to release heat out of the mold. If necessary, a cooling flow path is provided between the phase change material and the cavity, and after the material to be processed fills the cavity, water or heat-resistant oil is poured into the flow path to take out the product. Cool to temperature. Further, if necessary, phase change materials having different melting points are dispersed in the mold to generate an appropriate temperature distribution in the mold. As the phase change material, a pure metal or an alloy is mainly used when the holding temperature is about 200 ° C. or higher, and a non-metallic material used as a latent heat storage material is mainly used when the holding temperature is about 200 ° C. or lower. Using such a mold, the material to be processed is inserted into the cavity at a low speed that does not involve air or the like. The mold includes all components such as a main mold and a core.

まず、発明の原理を図2で説明する。図2は材料を成形する型のキャビティ近傍に前記相変化物質を配置した場合の温度分布をキャビティ面からの距離に対して示したものである。被加工材料がキャビティを充填すると被加工材料の熱エネルギで型温度は上昇する。ある時間経つと(図2で4s後)熱エネルギは前記相変化物質に伝わり、前記相変化物質が潜熱を吸収して溶解するため、前記相変化物質の温度は融点近傍でほぼ一定となる(溶解され液相になった部分の温度は上昇するが、対流が生じるのでほぼ一様な温度分布となる)。さらに時間が経つと(図2で6s後)、被加工材料の温度が低下し、型温度も低下する。一方、前記相変化物質の一端(キャビティと逆側)は冷却されているが(強制冷却しなくても自然対流や金型への熱移動で十分な場合もある)、前記相変化物質は蓄積した凝固潜熱を放出するので凝固が終了するまで温度はほぼ一定となる。従って、型の初期温度を前記相変化物質の融点近傍(ただし、融点以下)としておけば、キャビティ近傍の温度を前記相変化物質の融点前後の温度に保った状態で加熱された被加工材料で型を充満し、製品として取り出すことができる。なお、前記相変化物質に被加工材料の熱が到達するまでは型温度が上昇するので、前記相変化物質をキャビティ面に近い位置に設置するほど温度変化が少ない。  First, the principle of the invention will be described with reference to FIG. FIG. 2 shows the temperature distribution with respect to the distance from the cavity surface when the phase change material is arranged in the vicinity of the cavity of the mold for molding the material. When the work material fills the cavity, the mold temperature rises due to the heat energy of the work material. After a certain time (after 4 s in FIG. 2), the heat energy is transferred to the phase change material, and the phase change material absorbs latent heat and dissolves, so that the temperature of the phase change material becomes substantially constant near the melting point ( The temperature of the dissolved and liquid phase rises, but convection occurs, resulting in a substantially uniform temperature distribution). As time passes (after 6 s in FIG. 2), the temperature of the material to be processed decreases and the mold temperature also decreases. On the other hand, one end of the phase change material (on the opposite side of the cavity) is cooled (natural convection or heat transfer to the mold may be sufficient without forced cooling), but the phase change material accumulates. Since the solidified latent heat is released, the temperature becomes substantially constant until solidification is completed. Therefore, if the initial temperature of the mold is set near the melting point of the phase change material (but below the melting point), the workpiece material heated while maintaining the temperature near the cavity at a temperature around the melting point of the phase change material. The mold can be filled and taken out as a product. Since the mold temperature rises until the heat of the material to be processed reaches the phase change substance, the temperature change is smaller as the phase change substance is placed closer to the cavity surface.

上記の原理を利用することで以下のような種々の効果が得られる。例えば、図1はAl合金のダイカストで、前記相変化物質として工業用純Znを使用した例である。工業用純Znは約410℃で約100kJ/kgの融解潜熱を吸収して溶解するので、前記のようにキャビティ近傍の温度を400℃程度に容易に保つことができる。型温度を400℃程度の高温に保持できると、凝固時間が長くなるので、溶湯を高圧・高速で射出する必要はなく、キャビティ内の空気やガスを巻き込まない低速で充填させることができる。すなはち、プランジャ速度を0.5m/s以下、型内の溶湯速度を数m/s以下(例えば5m/s以下)、溶湯射出圧力を60MPa以下にできる(非特許文献1)。なお、冷却を早くして製品取り出し時間を短縮したい場合には、前記相変化物質とキャビティ面の間に、冷却流路を設けておき、前記相変化物質がある程度溶解した後取り出し時刻まで冷却すれば良い。このような冷却を加えても、前記相変化物質の温度は潜熱を放出するまでは低下しないので、型内温度は低下しにくく、次のサイクルで被加工材料を挿入する際に型温度を上昇する時間とエネルギを節約できる。  By utilizing the above principle, the following various effects can be obtained. For example, FIG. 1 is an example of die casting of an Al alloy and using industrial pure Zn as the phase change material. Industrial pure Zn absorbs and melts about 100 kJ / kg of latent heat of fusion at about 410 ° C., so that the temperature in the vicinity of the cavity can be easily maintained at about 400 ° C. as described above. If the mold temperature can be maintained at a high temperature of about 400 ° C., the solidification time becomes longer. Therefore, it is not necessary to inject the molten metal at a high pressure and a high speed, and it is possible to fill the cavity at a low speed without involving air or gas. That is, the plunger speed can be 0.5 m / s or less, the molten metal speed in the mold can be several m / s or less (for example, 5 m / s or less), and the molten metal injection pressure can be 60 MPa or less (Non-patent Document 1). In order to shorten the product removal time by speeding up the cooling, a cooling flow path is provided between the phase change material and the cavity surface, and the phase change material is dissolved to some extent and then cooled until the removal time. It ’s fine. Even if such cooling is applied, the temperature of the phase change material does not decrease until the latent heat is released, so that the temperature inside the mold does not easily decrease, and the mold temperature is increased when the work material is inserted in the next cycle. Saving time and energy.

図3は融点の異なる3つの相変化物質を、ゲートからもっとも離れた場所には融点が最も低い相変化物質2aを、中間には融点が多少高い相変化物質2bを、ゲート8に近い部分には融点がより高い相変化物質2cを配置して、凝固が製品先端からゲート8に向かって一方向的に進行するようにしたものである。この原理は低圧鋳造にも適用できる。また指向性凝固が実現できれば加圧力が小さくてもひけ巣のない製品を得ることができるので、ダイカストの場合でも油圧駆動ではなく電動サーボモータ駆動による溶湯射出が可能となり装置の小型化、省エネルギが可能となる。また、樹脂の射出成型でも、低加圧で引け巣の少ない健全な製品が得られる。  FIG. 3 shows three phase change materials having different melting points, a phase change material 2a having the lowest melting point at a position farthest from the gate, a phase change material 2b having a slightly higher melting point in the middle, and a portion close to the gate 8. The phase change material 2c having a higher melting point is arranged so that solidification proceeds in one direction from the front end of the product toward the gate 8. This principle can also be applied to low pressure casting. In addition, if directional solidification can be achieved, products with no shrinkage can be obtained even if the applied pressure is small. Therefore, even in the case of die casting, molten metal injection can be performed by electric servo motor drive instead of hydraulic drive, miniaturizing the equipment and saving energy. Is possible. In addition, even a resin injection molding can provide a sound product with low shrinkage and less shrinkage.

型温度を高く保持できると、低速でキャビティを充填できるので型への熱及び衝撃負荷が減り、寸法精度が高い製品が製造でき、鋳型寿命も長くなる(ある程度の温度以下であれば型寿命には温度分布の変動が大きく関係する)。また、前記相変化物質の融点が低いので、前記相変化物質中に流路を金属性パイプ等として鋳包むことが容易であり、従来の切削加工による流路形成加工より低コストとなる。さらに、切削加工が困難な場所でも冷却可能となるし、水冷流路に亀裂が発生して冷却水が漏れ、溶湯と反応して爆発するような危険性もない。なお、製品取り出しのサイクルがある程度長ければ、水冷せず前記相変化物質をキャビティ近傍に封入して置くだけでも熱は型を通して放出されるので、例えば、押し出しピンなど、水冷が容易出ない場所にも利用できる。  If the mold temperature can be kept high, the cavity can be filled at low speed, reducing the heat and impact load on the mold, producing a product with high dimensional accuracy, and extending the mold life (if the temperature is below a certain level, Is greatly related to fluctuations in temperature distribution). Further, since the melting point of the phase change material is low, it is easy to cast the flow path in the phase change material as a metallic pipe or the like, and the cost is lower than the flow path forming process by the conventional cutting process. Furthermore, cooling can be performed even in places where cutting is difficult, and there is no danger of cracks occurring in the water-cooled flow path, leakage of cooling water, and explosion due to reaction with the molten metal. If the product removal cycle is somewhat long, heat is released through the mold even if the phase change material is enclosed in the vicinity of the cavity without water cooling. For example, in places where water cooling does not easily occur, such as an extrusion pin. Can also be used.

樹脂の射出成形のような型への熱衝撃が小さい場合でも高寸法精度の製品を製造するには型の温度を一定に保つ方が、熱膨張誤差を小さくできるので望ましい。この場合も前記相変化物質を利用すると従来の場合より容易に温度調節ができる。  Even when the thermal shock to the mold, such as resin injection molding, is small, it is desirable to keep the mold temperature constant in order to manufacture a product with high dimensional accuracy because the thermal expansion error can be reduced. Also in this case, the temperature can be adjusted more easily by using the phase change material than in the conventional case.

鍛造や粉末や金においても、型温度をある程度一定に保てると被加工材料の加工性が上がりより低荷重で加工できるし、型寿命が延びる。また、型内で一定温度に保つ必要がある熱処理を兼ねることが可能になりコスト低減に役立つ。
非特許文献
1 2006日本ダイカスト会議論文集、(2006.11),p.121 (社)日本ダイカスト協会
In forging, powder, and gold, if the mold temperature is kept constant to some extent, the workability of the material to be processed increases, and the mold can be processed with a lower load, and the mold life is extended. In addition, it is possible to serve as a heat treatment that needs to be maintained at a constant temperature in the mold, which helps to reduce costs.
Non-Patent Document 1 2006 Japan Die Casting Conference Proceedings, (2006.11), p. 121 Japan Die Casting Association

図1は実施例1における型の側面図であり,キャビティ表面1aから2mm〜50mm以内の位置4箇所に相変化物質2を配置している。各相変化物質中には流路4が設置されており、定常状態では、ほぼ一定の抜熱速度で、被加工材料が型に伝えた熱エネルギを型外へ放出する。もし、製品取り出しまでにキャビティ表面温度が所定の温度に低下するのに時間がかかり過ぎる場合には、前記相変化物質がある程度溶解した後、キャビティ面近くに設置した流路3に水または耐熱油を流して冷却速度を上げる。もし、製品取り出し後、キャビティ面の温度が下がりすぎた場合には、キャビティ面をふく射加熱あるいは高温ガス加熱する。場合によっては、成型加工開始時に流路3、4に温度の高い流体を流して型温度を上げることもできる。
さらに、厚さ1、2mm以下のAl合金やMg合金の薄肉製品をダイカストで製造する場合には、前期相変化物質として例えば工業用純Znを使用してキャビティ表面温度を400℃程度として溶湯射出速度を従来の数10m/s以上ではなく、5m/s以下で射出する。このため従来の油圧駆動ではなく電動サーボモータ駆動により溶湯を射出してもよい。
なお、前記相変化物質の寸法、配置位置は、被加工材料の材質、寸法、形状、キャビティへの挿入・取り出しサイクル、型の材質、許容寿命等を考慮してキャビティ面から2〜400mmの間の適切な範囲に配置する。
FIG. 1 is a side view of a mold in Example 1, and phase change substances 2 are arranged at four positions within 2 mm to 50 mm from the cavity surface 1a. A flow path 4 is provided in each phase change material, and in a steady state, the heat energy transmitted from the work material to the mold is released from the mold at a substantially constant heat removal rate. If it takes too much time for the cavity surface temperature to drop to a predetermined temperature before product removal, the phase change material is dissolved to some extent, and then water or heat resistant oil is added to the flow path 3 installed near the cavity surface. To increase the cooling rate. If the temperature of the cavity surface drops too much after taking out the product, the cavity surface is heated by radiation or high temperature gas. In some cases, the mold temperature can be raised by flowing a high-temperature fluid through the flow paths 3 and 4 at the start of molding.
Furthermore, when manufacturing thin products of Al alloy or Mg alloy with a thickness of 1 or 2 mm or less by die casting, for example, industrial pure Zn is used as the phase change material, and the cavity surface temperature is set to about 400 ° C. Injection is performed at a speed of 5 m / s or less instead of the conventional several tens of m / s or more. For this reason, the molten metal may be injected not by a conventional hydraulic drive but by an electric servo motor drive.
In addition, the dimension and arrangement position of the phase change substance are between 2 and 400 mm from the cavity surface in consideration of the material, dimensions, and shape of the material to be processed, the insertion / removal cycle into the cavity, the material of the mold, the allowable life, etc. Place it in the appropriate range.

図3は実施例2で,ゲート8から最も離れたキャビティ近傍に融点の低い相変化物質2aを、中間部には多少融点の高い相変化物質2bを、ゲート近傍には融点が高い相変化物質2cを配置して型に温度分布をつけてプランジャチップ7で材料を挿入したものである。プランジャチップ7を使用せず、ガス圧で溶湯を押し上げてキャビティに溶湯を挿入しても良い。また、プランジャチップは油圧でなくても電動サーボモータで駆動してもよい。  FIG. 3 shows a phase change material 2a having a low melting point near the cavity farthest from the gate 8, a phase change material 2b having a slightly high melting point in the middle, and a phase change material having a high melting point near the gate. The material is inserted by the plunger tip 7 with the temperature distribution in the mold by arranging 2c. Instead of using the plunger tip 7, the molten metal may be pushed up by gas pressure and inserted into the cavity. Further, the plunger tip may be driven by an electric servo motor instead of hydraulic pressure.

図4は実施例3で、相変化物質を一箇所にまとめ、溶解した相変化物質内での対流抵抗を小さくしてより激しい対流を生じさせ、より一定温度となるようにしたものである。
なお、流路4の固定支持がサポート9では不十分な場合には、流路4と型の一部が常に固相で接続されるような冷却とすることが望ましい。
FIG. 4 shows a third embodiment in which the phase change substances are collected in one place, and the convection resistance in the dissolved phase change substance is reduced to generate more intense convection so that the temperature is more constant.
When the support 9 is insufficient for fixing and supporting the flow path 4, it is desirable to perform cooling so that the flow path 4 and a part of the mold are always connected in solid phase.

前記相変化物質としては、融点、潜熱、コスト、型との反応等を考慮して適切なものを選択するが、約200℃以上の融点が必要な場合は、元素の周期律表でIA,IIA,IVBVIII,IB,IIB,IIIA,IVA,VA,VIA族に属する元素の純金属あるいは工業用純金属、あるいは前記の族に含まれる元素を二元素以上組み合わせて、融点を適切にした合金を使用する。同じような融点の場合には、潜熱が大きく、液相線温度と固相線温度の差が小さい合金あるいは純金属(低コストの工業用純金属でよい)を選択する。融点が約200℃以下では、低融点合金を使用してもよいが、潜熱蓄熱材料として利用されているあるいは候補となる有機、無機系物質から上記と同様に選択することができる。前記相変化物質の配置場所は、成形される製品の熱物性値、寸法、製造サイクル等を考慮して適切に決定されるが、型の強度に問題がない範囲でキャビティ面に近い方が良い。また、上記の相変化物質の多くは溶解時に膨張するので、あらかじめ前記相変化物質の周囲に適切な空間を設けて膨張体積を吸収できるようにしておく方が良い。
また、型としては、金属の他にセラミックス型や砂型でも利用できる。ただし、溶解した相変化物質が流出するような砂型などの場合には相変化物質を金属ケース中に収納しておく必要がある。
As the phase change substance, an appropriate one is selected in consideration of the melting point, latent heat, cost, reaction with the mold, etc. If a melting point of about 200 ° C. or higher is required, IA, IIA, IVBVIII, IB, IIB, IIIA, IVA, VA, VIA pure metal or industrial pure metal, or an alloy having an appropriate melting point by combining two or more elements included in the above group use. In the case of similar melting points, an alloy or pure metal (which may be a low-cost industrial pure metal) having a large latent heat and a small difference between the liquidus temperature and the solidus temperature is selected. When the melting point is about 200 ° C. or lower, a low melting point alloy may be used, but it can be selected in the same manner as described above from organic and inorganic substances that are used or candidates as latent heat storage materials. The location of the phase change material is appropriately determined in consideration of the thermophysical value, dimensions, production cycle, etc. of the product to be molded, but it is better to be close to the cavity surface as long as there is no problem with the mold strength . In addition, since many of the above phase change substances expand when dissolved, it is better to provide an appropriate space around the phase change substance in advance so that the expansion volume can be absorbed.
Moreover, as a type | mold, a ceramic type | mold and a sand type | mold other than a metal can also be utilized. However, in the case of a sand mold or the like where the dissolved phase change material flows out, it is necessary to store the phase change material in a metal case.

鋳造、ダイカスト、射出成型、鍛造、粉末や金などの成型加工に利用できる.  It can be used for casting, die casting, injection molding, forging, molding of powder and gold.

実施例1の側面図である。1 is a side view of Example 1. FIG. キャビティ近傍での温度変化および型内の温度分布を示す図である。It is a figure which shows the temperature change in the cavity vicinity, and the temperature distribution in a type | mold. 実施例2の側面図および型内の温度分布を示す図である。It is a figure which shows the side view of Example 2, and the temperature distribution in a type | mold. 実施例3の側面図である。6 is a side view of Example 3. FIG.

符号の説明Explanation of symbols

1 キャビティ
1a キャビティ表面
2,2a,2b,2c 相変化物質
3 流路
4 流路
5,5’ 金型
6 押し出しピン
7 プランジャチップ
8 ゲート
9 パイプサポート
DESCRIPTION OF SYMBOLS 1 Cavity 1a Cavity surface 2, 2a, 2b, 2c Phase change material 3 Flow path 4 Flow path 5, 5 'Die 6 Extrusion pin 7 Plunger tip 8 Gate 9 Pipe support

Claims (7)

加熱された被加工材料を型に挿入して成形する加工法において、ある温度以上になると潜熱を吸収して溶解する相変化物質を型内に配置して型の温度調節をすることを特徴とする材料成形用の型(中子を含む)および成形加工法  In a processing method in which a heated workpiece material is inserted into a mold and molded, a phase change material that absorbs and dissolves latent heat when the temperature exceeds a certain temperature is placed in the mold, and the temperature of the mold is adjusted. Molds (including cores) for molding materials and molding methods 上記請求項1で融点が異なる相変化物質を型内に分散配置して型の温度調節をすることを特徴とする材料成形用の型および成形加工法  A mold for molding a material and a molding method, wherein the temperature of the mold is adjusted by dispersing and arranging phase change substances having different melting points in the mold according to claim 1 上記請求項1および2において記載の相変化物質内に流体を流す流路を設けて型の温度調節をすることを特徴とする材料成形用の型および成形加工法  3. A mold for molding a material and a molding method, wherein a flow path for flowing a fluid is provided in the phase change substance according to claim 1 and temperature of the mold is adjusted. 上記請求項1から3において記載の相変化物質と型のキャビティ面の間に冷却あるいは加熱のための流路を設けて型の温度調節をすることを特徴とする材料成形用の型および成形加工法  4. A mold for molding a material and a molding process, characterized in that a flow path for cooling or heating is provided between the phase change material according to claim 1 and the cavity surface of the mold to adjust the temperature of the mold. Law 上記請求項1から4に記載の相変化物質として、元素の周期律表でIA,IIA,IVBVIII,IB,IIB,IIIA,IVA,VA,VIA族に属する元素で融点が900℃以下の純金属あるいは工業用純金属、あるいは前記の族に含まれる元素を二元素以上組み合わせて、融点を900℃以下とした合金を使用することを特徴とする材料成形用の型およびこの型を使用することを特徴とする成形加工法  The phase change material according to any one of claims 1 to 4, wherein the element is a pure metal having a melting point of 900 ° C or lower and belonging to the group IA, IIA, IVBVIII, IB, IIB, IIIA, IVA, VA, VIA in the periodic table of elements. Alternatively, an industrial pure metal, or an alloy having a melting point of 900 ° C. or lower using a combination of two or more elements included in the above group and a mold for forming a material, and using this mold Characteristic molding process 上記請求項1から4に記載の相変化物質として、KNO/LiNO/NaNO、MgCl・6HO、Al(SO・10HO、NHAl(SO・12HO、KAl(SO・12HO、Mg(NO・6HO、Sr(OH)・8HO、LiNO/NHNO/NHCl、Ba(OH)・8HO、Mg(NO・6HO/Al(NO・9HO、Mg(NO・6HO/MgCl・6HO、NaCHCOO・3HOなどの塩類、珪化物、パラフィン、酢酸ナトリウム、高密度ポリエチレン、エステル、脂肪酸で融点が500℃以下の物質を使用することを特徴とする材料成形用の型およびこの型を使用することを特徴とする成形加工法As the phase change material according to any one of claims 1 to 4, KNO 3 / LiNO 3 / NaNO 3 , MgCl 2 .6H 2 O, Al 2 (SO 4 ) 3 .10H 2 O, NH 4 Al (SO 4 ) 2 12H 2 O, KAl (SO 4 ) 2 · 12H 2 O, Mg (NO 3 ) 2 · 6H 2 O, Sr (OH) 2 · 8H 2 O, LiNO 3 / NH 4 NO 3 / NH 4 Cl, Ba (OH) 2 · 8H 2 O, Mg (NO 3 ) 2 · 6H 2 O / Al (NO 3 ) 3 · 9H 2 O, Mg (NO 3 ) 2 · 6H 2 O / MgCl 2 · 6H 2 O, NaCH 3 COO 3H 2 O and other salts, silicides, paraffin, sodium acetate, high-density polyethylene, esters, fatty acids and materials having a melting point of 500 ° C. or less Use Forming method, characterized in that 上記請求項1から6に記載の材料成形用の型を使用することを特徴とする材料成形装置  7. A material molding apparatus using the material molding die according to claim 1.
JP2006357237A 2006-12-13 2006-12-13 Die for material molding, material molding method and material molding device Pending JP2008149372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006357237A JP2008149372A (en) 2006-12-13 2006-12-13 Die for material molding, material molding method and material molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006357237A JP2008149372A (en) 2006-12-13 2006-12-13 Die for material molding, material molding method and material molding device

Publications (1)

Publication Number Publication Date
JP2008149372A true JP2008149372A (en) 2008-07-03

Family

ID=39652130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006357237A Pending JP2008149372A (en) 2006-12-13 2006-12-13 Die for material molding, material molding method and material molding device

Country Status (1)

Country Link
JP (1) JP2008149372A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485848A (en) * 2010-11-29 2012-05-30 Halliburton Energy Serv Inc Making moulds by 3d printing and making bodies in moulds
CN102490330A (en) * 2011-12-02 2012-06-13 北京化工大学 Temperature control method based on phase-transition energy-accumulation material
US8663537B2 (en) 2012-05-18 2014-03-04 3M Innovative Properties Company Injection molding apparatus and method
JP2017018977A (en) * 2015-07-09 2017-01-26 トヨタ自動車株式会社 Forging method
US9790744B2 (en) 2010-11-29 2017-10-17 Halliburton Energy Services, Inc. Forming objects by infiltrating a printed matrix
JP2019514758A (en) * 2016-05-10 2019-06-06 ロックツール Method and apparatus for heating mold
JP2019166825A (en) * 2018-03-22 2019-10-03 本田技研工業株式会社 Reusable mold for injection molding and molding method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485848A (en) * 2010-11-29 2012-05-30 Halliburton Energy Serv Inc Making moulds by 3d printing and making bodies in moulds
EP2910322A1 (en) * 2010-11-29 2015-08-26 Halliburton Energy Services, Inc. Improvements in heat flow control for molding downhole equipment
US9790744B2 (en) 2010-11-29 2017-10-17 Halliburton Energy Services, Inc. Forming objects by infiltrating a printed matrix
GB2485848B (en) * 2010-11-29 2018-07-11 Halliburton Energy Services Inc Improvements in heat flow control for molding downhole equipment
US10399258B2 (en) 2010-11-29 2019-09-03 Halliburton Energy Services, Inc. Heat flow control for molding downhole equipment
CN102490330A (en) * 2011-12-02 2012-06-13 北京化工大学 Temperature control method based on phase-transition energy-accumulation material
US8663537B2 (en) 2012-05-18 2014-03-04 3M Innovative Properties Company Injection molding apparatus and method
JP2017018977A (en) * 2015-07-09 2017-01-26 トヨタ自動車株式会社 Forging method
JP2019514758A (en) * 2016-05-10 2019-06-06 ロックツール Method and apparatus for heating mold
JP2019166825A (en) * 2018-03-22 2019-10-03 本田技研工業株式会社 Reusable mold for injection molding and molding method
JP7263029B2 (en) 2018-03-22 2023-04-24 本田技研工業株式会社 Reusable mold and molding method for injection molding

Similar Documents

Publication Publication Date Title
JP2008149372A (en) Die for material molding, material molding method and material molding device
CN1326646C (en) Vacuum pump impeller integral casting process
US9278389B2 (en) Induction stirred, ultrasonically modified investment castings and apparatus for producing
CN101602102B (en) Solidification process control method using small external temperature gradient to eliminate shrinkage cavities and porosity in casting
CN102814465B (en) Spheroidal graphite cast iron casting mould and riser-free casting method adopting same
JP2009274098A (en) Sand mold for low-pressure casting and low-pressure casting apparatus utilizing the same
CN101934367A (en) Thermal-insulation baffle plate for liquid metal cooling and oriented solidification casting equipment
CN102189240A (en) Method and device for controlling mold temperature of die casting mold
US20090133848A1 (en) One-Piece Lost Mould for Metal Castings and Method for Producing It
CN103350216B (en) Cast ingot homogenizing control method
CN113172216A (en) Method and device for enhancing cooling of casting in casting process
JP2008221320A (en) Casting apparatus
RU2549817C2 (en) Control system composed of bar and feed pipe for heating of distribution pipe structures used at metal casting
CN102941338A (en) Method and device for controlling cooling speed of core assembling casting
CN102350485A (en) Device and process for repairing shrinkage holes during steel billet casting through intermediate-frequency electric heating
JP2011240392A (en) Casting apparatus, die structure, and casting method
CN104014742A (en) Casting process and casting mould of large propeller hub body
CN102527998A (en) Preparation method and device for dual-metal multi-layer pipeline
JP6017203B2 (en) Semi-solid metal manufacturing apparatus, semi-solid forming apparatus, semi-solid metal manufacturing method and semi-solid forming method
CN104185519B (en) The mold of the continuous casting of the ingot casting be made up of titanium or titanium alloy and possess the continuous casting apparatus of this mold
JP4296566B2 (en) Casting equipment for casting
CN203044873U (en) Water cooling device for controlling cooling rate in core assembly casting
JP2011235337A (en) Method for low-pressure die casting of cylinder head
Naplocha et al. Enhancement of heat transfer in PCM by cellular Zn-Al structure
CN107243613A (en) The casting method and mold of a kind of pick housing of pneumatic pick