JP2008149312A - Visible light responsive photocatalyst, catalytic activity accelerator of the same, and photolysis method of environmental pollution organic substance - Google Patents

Visible light responsive photocatalyst, catalytic activity accelerator of the same, and photolysis method of environmental pollution organic substance Download PDF

Info

Publication number
JP2008149312A
JP2008149312A JP2007228233A JP2007228233A JP2008149312A JP 2008149312 A JP2008149312 A JP 2008149312A JP 2007228233 A JP2007228233 A JP 2007228233A JP 2007228233 A JP2007228233 A JP 2007228233A JP 2008149312 A JP2008149312 A JP 2008149312A
Authority
JP
Japan
Prior art keywords
visible light
light responsive
responsive photocatalyst
copper
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228233A
Other languages
Japanese (ja)
Other versions
JP5578593B2 (en
Inventor
Takeo Arai
健男 荒井
Kazuhiro Sayama
和弘 佐山
Yoshiya Konishi
由也 小西
Hideki Sugihara
秀樹 杉原
Yasukazu Iwasaki
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nissan Motor Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nissan Motor Co Ltd
Priority to JP2007228233A priority Critical patent/JP5578593B2/en
Publication of JP2008149312A publication Critical patent/JP2008149312A/en
Application granted granted Critical
Publication of JP5578593B2 publication Critical patent/JP5578593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic activity accelerator capable of supplementing the photolysis action of a visible light responsive photocatalyst and promoting its photocatalytic activity irrespective of the kind of the catalysts to be used, a visible light responsive photocatalyst used together with the catalytic activity accelerator and an efficient photolysis method of environmental pollution organic substances using the visible light responsive catalyst. <P>SOLUTION: The catalytic activity accelerator of the visible light responsive photocatalyst configured by containing a copper compound. The catalytic activity accelerator where the copper compound is at least one kind of compound selected from copper (I) oxide, copper (II) oxide, copper (II) nitride and copper sulfate. The catalytic activity accelerator where the visible light responsive catalytic accelerator is a tungsten compound. The visible light responsive photocatalyst used together with these catalytic activity accelerators. The photolysis method of environmental pollution organic substances using these visible light responsive photocatalysts. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は可視光応答性光触媒とその触媒活性促進剤、そしてこの促進剤を併用した可視光応答性光触媒を用いる環境汚染有機物質の光分解法に関するものである。   The present invention relates to a visible light responsive photocatalyst, a catalyst activity promoter thereof, and a method for photodegrading an environmental pollutant organic substance using a visible light responsive photocatalyst using the accelerator in combination.

近年、環境汚染物質を吸着し太陽光や室内光によって分解除去する光触媒が注目され、その研究が精力的に行われている。酸化チタンはその代表的なものであり強力な光触媒活
性を示す。
In recent years, photocatalysts that adsorb environmental pollutants and decompose and remove them with sunlight or room light have attracted attention, and their research has been conducted energetically. Titanium oxide is a typical example and exhibits strong photocatalytic activity.

しかし、この酸化チタンはバンドギャップが大きく、紫外光には活性を示すが太陽光の大部分を占める可視光には吸収性がなく、可視光に対する触媒活性を示さないため、太陽光を十分に利用することができず、また紫外光が極めて弱い室内では機能しないことなどの問題があった。   However, this titanium oxide has a large band gap and is active in ultraviolet light, but is not absorbing in visible light, which occupies most of sunlight, and does not show catalytic activity for visible light. There is a problem that it cannot be used and does not function in a room where ultraviolet light is extremely weak.

このための対策として、窒素ドープなどで可視光を吸収できるようにするなどの酸化チタンの改良研究や可視光で光触媒として活性を示す新規な酸化物半導体の探索研究などが行われている(例えば、非特許文献1、2)。   As countermeasures for this, improvement research of titanium oxide, such as allowing visible light to be absorbed by nitrogen doping or the like, research for searching for a new oxide semiconductor that exhibits activity as a photocatalyst by visible light, and the like have been carried out (for example, Non-patent documents 1, 2).

たとえば、酸化チタンに比較してバンドギャップが小さいために可視光を吸収することができる、酸化タングステン、酸化鉄、酸化インジウム、酸化バナジウム、酸化ビスマスなどの半導体化合物(金属酸化物)は可視光活性な光触媒(可視光応答性光触媒)として期待されている。これらの半導体化合物では酸素の原子軌道による価電子帯への寄与が大きく、金属が異なっても価電子帯の位置はほとんど変化しない。バンドギャップが小さいのは伝導帯下端の位置が低くなったためである。この場合、バンドギャップが小さく可視光応答性であったとしても電子励起で価電子帯に生成する正孔は吸着した基質に対する酸化力を減少することはない。(一方、上記した窒素ドープ酸化チタンの場合、価電子帯より高い位置にドープ準位があり、可視光吸収によってそのドープ準位に生成する正孔の酸化力は、酸化チタンと比較して減少する。)
しかしながら、上記半導体化合物は、可視光触媒活性があまり強力ではなく、たとえば可視光による分解対象となる環境汚染有機物質によっては、これを十分に分解できない場合があり、光触媒活性の向上が課題であった。
For example, semiconductor compounds (metal oxides) such as tungsten oxide, iron oxide, indium oxide, vanadium oxide, and bismuth oxide that can absorb visible light due to a smaller band gap than titanium oxide are visible light active. It is expected as a new photocatalyst (visible light responsive photocatalyst). In these semiconductor compounds, the atomic orbital of oxygen contributes greatly to the valence band, and the position of the valence band hardly changes even if the metals are different. The band gap is small because the lower end of the conduction band is lowered. In this case, even if the band gap is small and visible light responsiveness, the holes generated in the valence band by electronic excitation do not decrease the oxidizing power for the adsorbed substrate. (On the other hand, in the case of the above-described nitrogen-doped titanium oxide, there is a doping level at a position higher than the valence band, and the oxidizing power of holes generated in the doping level by absorption of visible light is reduced compared to titanium oxide. To do.)
However, the above-mentioned semiconductor compound is not so strong in visible photocatalytic activity. For example, depending on the environmental pollutant organic substance to be decomposed by visible light, it may not be sufficiently decomposed, and improvement in photocatalytic activity has been a problem. .

すなわち、たとえば、アセトアルデヒドやホルムアルデヒドなどのアルデヒド類、酢酸や蟻酸などのカルボン酸類などの環境汚染有機物質を酸化タングステンなどの可視光応答性の光触媒を用いて可視光照射により分解除去しようとする場合、アルデヒドやカルボン酸の濃度が大きくなると、完全な分解によって最終的に生成する二酸化炭素にまで速やかに分解されるのはその一部分だけで、残りは二酸化炭素にまで速やかに分解されないという問題があった。   That is, for example, when trying to decompose and remove environmental pollutant organic substances such as aldehydes such as acetaldehyde and formaldehyde and carboxylic acids such as acetic acid and formic acid by visible light irradiation using a visible light responsive photocatalyst such as tungsten oxide, When the concentration of aldehyde or carboxylic acid increases, there is a problem that only a portion of the aldehyde or carboxylic acid is rapidly decomposed to carbon dioxide, which is finally produced by complete decomposition, and the rest is not rapidly decomposed to carbon dioxide. .

具体的に言えば、高濃度(2500ppm以上)のアセトアルデヒドを酸化タングステン光触媒により光分解しようとすると、光分解反応による二酸化炭素の生成が途中から著しく遅くなり、アセトアルデヒドを完全に分解した場合に発生する量には速やかには到達せず、またアセトアルデヒドは速やかには完全消失せず長時間にわたって残留し続けるといった難点があった。   Specifically, when high-concentration (2500 ppm or more) acetaldehyde is photodegraded with a tungsten oxide photocatalyst, carbon dioxide generation by the photodegradation reaction is remarkably slowed in the middle, which occurs when acetaldehyde is completely decomposed. The amount was not reached quickly, and acetaldehyde did not completely disappear quickly and remained for a long time.

このため、従来の可視光応答性光触媒の光分解作用を補填し、かつ用いる光触媒の種類の如何を問わず、その光触媒活性を促進できる触媒活性促進剤の開発が強く求められているが、未だそのような活性促進剤が得られていないのが現状である。
「光触媒標準研究法」、東京図書、2005年1月 「室内対応型光触媒への挑戦」、工業調査会、2004年11月
Therefore, there is a strong demand for the development of a catalyst activity promoter that can compensate for the photodegradation action of the conventional visible light responsive photocatalyst and can promote the photocatalytic activity regardless of the type of photocatalyst used. The present condition is that such an activity promoter is not obtained.
"Photocatalyst Standard Research Method", Tokyo Books, January 2005 “Challenges for indoor photocatalysts”, Industrial Research Committee, November 2004

本発明は、可視光応答性光触媒の光分解作用を補填し、かつ用いる当該光触媒の種類の如何を問わず、その光触媒活性を促進できる触媒活性促進剤および該触媒活性促進剤を併用した可視光応答性光触媒、更には、該可視光応答性触媒を用いた環境汚染有機物質の効率的な光分解法を提供することを課題としている。   The present invention compensates for the photodegradation action of a visible light responsive photocatalyst and, regardless of the type of the photocatalyst used, a catalytic activity promoter capable of promoting the photocatalytic activity, and visible light using the catalytic activity promoter in combination. It is an object of the present invention to provide a responsive photocatalyst and an efficient photodecomposition method for environmental pollutant organic substances using the visible light responsive catalyst.

本発明者らは、上記課題を解決するために鋭意検討した結果、銅化合物が共存する可視光応答性光触媒の存在下では、可視光照射下でも高濃度の環境汚染有機物質、たとえばアルデヒドやカルボン酸がほとんど二酸化炭素まで速やかに分解し、長時間にわたり残留することがないことを知見し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that in the presence of a visible light responsive photocatalyst coexisting with a copper compound, a high concentration of environmental pollutant organic substances such as aldehydes and carboxylic acids even under visible light irradiation. It was found that the acid decomposes rapidly to almost carbon dioxide and does not remain for a long time, and the present invention has been completed.

すなわち、この出願は、以下の発明を提供するものである。
(1)銅化合物を含有してなることを特徴とする可視光応答性光触媒の触媒活性促進剤。
(2)銅化合物が、酸化銅、硝酸銅及び硫酸銅から選ばれた少なくとも一種の化合物であることを特徴とする上記(1)の触媒活性促進剤。
(3)可視光応答性光触媒がタングステン化合物であることを特徴とする上記(1)又は(2)の触媒活性促進剤。
(4)タングステン化合物が酸化タングステンであることを特徴とする上記(3)の触媒活性促進剤。
(5)上記(1)から(4)のうちのいずれかの触媒活性促進剤を併用してなることを特徴とする可視光応答性光触媒。
(6)触媒活性促進剤が可視光応答性光触媒に混合ないしは担持されていることを特徴とする上記(5)の可視光応答性光触媒。
(7)触媒活性促進剤と可視光応答性触媒とがそれぞれ離間されていること特徴とする上記(5)の可視光応答性光触媒。
(8)粉末状又は薄膜状であることを特徴とする上記(5)から(7)のうちのいずれかの可視光応答性光触媒。
(9)上記(5)から(8)のうちのいずれかの可視光応答性光触媒を使用することを特徴とする環境汚染有機物質の光分解法。
(10)環境汚染有機物質がアルデヒド類又はカルボン酸類であることを特徴とする上記(9)の光分解法。
That is, this application provides the following invention.
(1) A catalyst activity promoter for a visible light responsive photocatalyst comprising a copper compound.
(2) The catalyst activity promoter according to (1), wherein the copper compound is at least one compound selected from copper oxide, copper nitrate, and copper sulfate.
(3) The catalyst activity promoter according to (1) or (2) above, wherein the visible light responsive photocatalyst is a tungsten compound.
(4) The catalyst activity promoter according to (3) above, wherein the tungsten compound is tungsten oxide.
(5) A visible light responsive photocatalyst comprising the catalyst activity promoter according to any one of (1) to (4) above.
(6) The visible light responsive photocatalyst according to (5) above, wherein the catalyst activity promoter is mixed or supported on the visible light responsive photocatalyst.
(7) The visible light responsive photocatalyst according to (5) above, wherein the catalyst activity promoter and the visible light responsive catalyst are separated from each other.
(8) The visible light responsive photocatalyst according to any one of (5) to (7) above, wherein the visible light responsive photocatalyst is in the form of a powder or a thin film.
(9) A method for photodegrading an environmental pollutant organic substance, wherein the visible light responsive photocatalyst according to any one of (5) to (8) is used.
(10) The photolysis method according to (9) above, wherein the environmental pollutant organic substance is an aldehyde or a carboxylic acid.

本発明の触媒活性促進剤は、可視光応答性光触媒の光分解作用を補填し、かつ用いる当該光触媒の種類の如何を問わず、その光触媒活性を促進することができる。したがって、当該触媒活性促進剤を併用した可視光応答性光触媒を用いると高濃度の環境汚染有機物質、たとえば2500ppm以上のアルデヒド類やカルボン酸類を可視光照射下でもほとんど二酸化炭素にまで速やかに分解して除去することが可能となる。また、本発明に係る可視光応答性光触媒は可視光によって機能するため、太陽光を有効に利用したり、紫外光が極めて弱い室内において使用したりすることが期待できる。   The catalyst activity promoter of the present invention can compensate for the photodegradation action of the visible light responsive photocatalyst and can promote the photocatalytic activity regardless of the type of the photocatalyst used. Therefore, when a visible light responsive photocatalyst combined with the catalytic activity promoter is used, high-concentration organic pollutants such as aldehydes and carboxylic acids of 2500 ppm or more are rapidly decomposed to almost carbon dioxide even under visible light irradiation. Can be removed. In addition, since the visible light responsive photocatalyst according to the present invention functions by visible light, it can be expected to use sunlight effectively or use it in a room where ultraviolet light is extremely weak.

本発明の触媒活性促進剤は、銅化合物を含有することを特徴としている。   The catalyst activity promoter of the present invention is characterized by containing a copper compound.

このような銅化合物は可視光応答性光触媒の光分解作用を補填し、かつ用いる当該光触媒の種類の如何を問わず、その光触媒活性を促進することができる。ここで、本発明における「可視光応答性光触媒」とは、酸化チタンに比較して価電子帯の位置は変わらず伝導帯の位置が低くなることでバンドギャップが小さくなって可視光応答性になった半導体化合物(金属酸化物)、をいう。したがって、上述したように、価電子帯より高い位置にドープ準位があり、可視光吸収によってそのドープ準位に生成する正孔の酸化力が酸化チタンと比較して減少する、窒素ドープ酸化チタンは本発明における「可視光応答性光触媒」に含まれない。   Such a copper compound compensates for the photodegradation action of the visible light responsive photocatalyst and can promote the photocatalytic activity regardless of the type of the photocatalyst used. Here, the “visible light responsive photocatalyst” in the present invention means that the position of the valence band is not changed and the position of the conduction band is lower than that of titanium oxide, so that the band gap is reduced and the visible light response is improved. A semiconductor compound (metal oxide). Therefore, as described above, nitrogen-doped titanium oxide has a doped level at a position higher than the valence band, and the oxidizing power of holes generated in the doped level by visible light absorption is reduced as compared with titanium oxide. Is not included in the “visible light-responsive photocatalyst” in the present invention.

この触媒活性促進剤を可視光応答性光触媒と併用すると可視光照射によって、たとえば高濃度(2500ppm以上)のアルデヒド類やカルボン酸類がほとんど完全に二酸化炭素にまで速やかに分解され、長時間にわたり残留することもない。銅以外の金属の化合物が共存しても同様の効果は見られないのに対して、様々な銅化合物でこの効果が得られる。   When this catalytic activity promoter is used in combination with a visible light responsive photocatalyst, for example, high concentrations (2500 ppm or more) of aldehydes and carboxylic acids are almost completely decomposed rapidly into carbon dioxide by irradiation with visible light, and remain for a long time. There is nothing. Even if a metal compound other than copper coexists, the same effect is not seen, whereas this effect is obtained with various copper compounds.

銅化合物としては、銅を含む化合物であれば特に制限はないが、酸化銅や硝酸銅、硫酸銅、塩化銅などの銅化合物塩を用いることが好ましい。特に、CuO、Cu2O、Cu(NO3)2・3H2O、CuSO4・5H2O、CuCl2などが好ましく、そのうちCuOが特に好ましく使用される。 The copper compound is not particularly limited as long as it is a compound containing copper, but it is preferable to use a copper compound salt such as copper oxide, copper nitrate, copper sulfate, or copper chloride. In particular, CuO, Cu 2 O, Cu (NO 3 ) 2 .3H 2 O, CuSO 4 .5H 2 O, CuCl 2 and the like are preferable, and CuO is particularly preferably used.

これらの銅化合物は、一般的には、併用する可視光応答性光触媒に対して0.01重量%〜50重量%の範囲内において使用することが考慮される。この使用量については銅化合物と可視光応答性光触媒の種類、そして両者の併用の態様によって具体的に定めることができる。   It is considered that these copper compounds are generally used in the range of 0.01% by weight to 50% by weight with respect to the visible light responsive photocatalyst used in combination. About this usage-amount, it can determine concretely with the kind of copper compound and visible light responsive photocatalyst, and the aspect of combined use of both.

本発明に係る可視光応答性光触媒の触媒活性促進剤が、当該光触媒の機能を補填し、かつ用いる光触媒の種類に拘わらず、環境汚染有機物質の分解作用を促進する理由の詳細は現時点では明らかではないが、以下のように推定している。   Details of the reason why the catalyst activity promoter of the visible light responsive photocatalyst according to the present invention supplements the function of the photocatalyst and promotes the decomposition action of environmental pollutant organic substances regardless of the type of the photocatalyst used are clear at present. However, it is estimated as follows.

たとえば、可視光応答性光触媒を用いて高濃度(2500ppm以上)で存在するアルデヒド類を光分解する場合には、光触媒活性が強力でないと分解されにくい中間体が生成し、分解反応が進行しにくくなる。この場合、銅化合物が存在すると、この中間体の分解反応が促進される。銅化合物が単に可視光応答性光触媒の近傍に存在するだけで光分解反応が促進されるのはこのことによると考えられる。したがって、光触媒活性があまり強力でない可視光応答性光触媒を用いたとしても、これに銅化合物を共存併用させることにより、分解し難い中間体の分解が促進され、アルデヒド類がほとんど完全に二酸化炭素にまで速やかに分解される。   For example, when photodegrading aldehydes present at a high concentration (2500 ppm or more) using a visible light-responsive photocatalyst, an intermediate that is difficult to decompose is generated unless the photocatalytic activity is strong, and the decomposition reaction is unlikely to proceed. Become. In this case, if a copper compound is present, the decomposition reaction of this intermediate is promoted. It is considered that this is because the photodecomposition reaction is promoted only by the presence of the copper compound in the vicinity of the visible light responsive photocatalyst. Therefore, even when using a visible light responsive photocatalyst that does not have a strong photocatalytic activity, the coexistence of a copper compound promotes the decomposition of an intermediate that is difficult to decompose, and aldehydes are almost completely converted to carbon dioxide. It is quickly disassembled.

またカルボン酸類はもともと分解されにくく、光触媒活性があまり強力でない可視光応答性光触媒を用いて光分解しても分解速度は小さい。この場合、銅化合物が存在すると、もとのカルボン酸もしくはその分解途中で生成した中間体が銅化合物により可視光応答性光触媒によって分解されやすくなるために光分解が促進され分解速度も大きくなる。したがって、光触媒活性があまり強力でない可視光応答性光触媒を用いたとしても、これに銅化合物を共存併用させることにより、カルボン酸類がほとんど完全に二酸化炭素にまで速やかに分解される。   Carboxylic acids are hardly decomposed from the beginning, and the degradation rate is low even when photodegradation is performed using a visible light-responsive photocatalyst that is not very strong in photocatalytic activity. In this case, if the copper compound is present, the original carboxylic acid or an intermediate formed during the decomposition thereof is easily decomposed by the copper compound by the visible light responsive photocatalyst, so that photolysis is promoted and the decomposition rate is increased. Therefore, even if a visible light responsive photocatalyst having a less strong photocatalytic activity is used, the carboxylic acids are almost completely decomposed quickly to carbon dioxide by coexisting with the copper compound.

このように、可視光応答性光触媒を用いた環境汚染有機物質の光分解反応において、可視光応答性光触媒の光触媒活性があまり強力でない場合であっても、銅化合物はもとの環境汚染有機物質もしくは途中で生成する分解しにくい中間体を光触媒反応により分解されやすくさせることで反応を促進する。   As described above, in the photodecomposition reaction of the environmental pollutant organic substance using the visible light responsive photocatalyst, even if the photocatalytic activity of the visible light responsive photocatalyst is not so strong, the copper compound is the original environmental pollutant organic substance. Alternatively, the reaction is promoted by making the intermediate that is generated in the middle of being difficult to decompose easily decomposed by the photocatalytic reaction.

以上の理由から、本発明の触媒活性促進剤と併用できる可視光応答性光触媒としては、伝導帯の位置が低くなることによりバンドギャップが酸化チタンと比較して小さくて可視光を吸収できるものであれば、その光触媒活性の大小に拘わらず、従来公知の可視光応答性の半導体化合物(金属酸化物)の何れも使用できる。   For the above reasons, the visible light responsive photocatalyst that can be used in combination with the catalyst activity promoter of the present invention is capable of absorbing visible light with a lower band gap than titanium oxide due to the lower position of the conduction band. As long as the photocatalytic activity is large, any conventionally known visible light responsive semiconductor compound (metal oxide) can be used.

このような半導体化合物としては、酸化タングステン、酸化鉄、酸化インジウム、酸化バナジウム、酸化ビスマス、鉄―タングステン酸化物などが例示される。その中でも、酸化タングステンが特に好ましい。   Examples of such semiconductor compounds include tungsten oxide, iron oxide, indium oxide, vanadium oxide, bismuth oxide, and iron-tungsten oxide. Among these, tungsten oxide is particularly preferable.

本発明に係る上記銅化合物を併用した可視光応答性光触媒は、いくつかの態様を採ることができる。   The visible light responsive photocatalyst using the copper compound according to the present invention can take several modes.

その一つは銅化合物と可視光応答性光触媒を混合したものである。この場合、典型的には、それぞれの粉末を適宜の量をとり乳鉢を用いてよく粉砕・混合し、そのままの粉末状もしくは薄膜形状などに成形して光触媒として用いる。この態様のものは単に混合するだけなので様々な種類の銅化合物と可視光応答性光触媒を共存させることができる。   One of them is a mixture of a copper compound and a visible light responsive photocatalyst. In this case, typically, an appropriate amount of each powder is taken and pulverized and mixed well using a mortar, and is formed into a powder or thin film as it is and used as a photocatalyst. Since the thing of this aspect is only mixed, various types of copper compounds and visible light responsive photocatalysts can coexist.

以下に酸化タングステン粉末にCuO粉末を混合する場合を例として説明する。   Hereinafter, a case where CuO powder is mixed with tungsten oxide powder will be described as an example.

例えば、酸化タングステン粉末とCuO粉末を混合したものに高濃度のアセトアルデヒド存在下で420nmより長波長の可視光を照射するとアセトアルデヒドをほとんどすべて二酸化炭素にまで完全に分解できる。銅化合物の添加量、照射光の強度・照射時間などの最適条件は添加する銅化合物や可視光応答性光触媒の種類、形状などを考慮し適宜設定するが、酸化タングステン粉末に、市販されている比較的粒子径が大きいCuO粉末を混合する場合では、CuO粉末は酸化タングステン粉末に対して1重量%〜5重量%が好ましく、より好ましくは1重量%〜2重量%である。   For example, when a mixture of tungsten oxide powder and CuO powder is irradiated with visible light having a wavelength longer than 420 nm in the presence of a high concentration of acetaldehyde, almost all acetaldehyde can be completely decomposed into carbon dioxide. Optimum conditions such as the amount of copper compound added, the intensity of irradiation light, and the irradiation time are set as appropriate in consideration of the type and shape of the added copper compound and visible light responsive photocatalyst, but are commercially available for tungsten oxide powders. In the case of mixing a CuO powder having a relatively large particle size, the CuO powder is preferably 1% by weight to 5% by weight, more preferably 1% by weight to 2% by weight with respect to the tungsten oxide powder.

また、銅化合物と可視光応答性光触媒を併用する別の態様としては、可視光応答性光触媒に銅化合物を担持させたものを挙げることができる。この場合、担持方法により担持される銅化合物は異なるが、とくにCuOとして担持させることが好ましい。例えば、可視光応答性光触媒の粉末に硫酸銅や硝酸銅の水溶液やエタノール溶液などを加えて混合し70℃〜80℃で乾燥させてから500℃〜550℃で焼成するとCuOを担持することができる。   Moreover, as another aspect which uses a copper compound and a visible light responsive photocatalyst together, what carried the copper compound on the visible light responsive photocatalyst can be mentioned. In this case, the copper compound supported by the supporting method is different, but it is particularly preferable to support it as CuO. For example, an aqueous solution of copper sulfate or copper nitrate or an ethanol solution is added to a visible light responsive photocatalyst powder, mixed, dried at 70 ° C. to 80 ° C., and then baked at 500 ° C. to 550 ° C. to carry CuO. it can.

銅化合物を担持させる最適な条件は、担持する銅化合物や可視光応答性光触媒の種類、形状などを考慮し適宜設定される。   The optimum conditions for supporting the copper compound are appropriately set in consideration of the type and shape of the supported copper compound and visible light responsive photocatalyst.

例えば、添加するCuO粉末の粒子径が小さくて表面積が大きい場合は最適な添加量も小さくなる傾向がある。それで、市販のCuO粉末は粒子径が大きくて比較的表面積が小さいのに対して、湿式低温合成したCuO粉末や低温での含浸担持法などで担持したCuOは超微粒子となっていて表面積が大きいので、必要とされる添加量も少なくできる。   For example, when the particle diameter of the CuO powder to be added is small and the surface area is large, the optimum addition amount tends to be small. Therefore, while the commercially available CuO powder has a large particle size and a relatively small surface area, CuO powder synthesized by wet low temperature and the CuO supported by impregnation support method at low temperature are ultrafine particles and have a large surface area. Therefore, the required addition amount can be reduced.

この態様の可視光応答性光触媒は、担持により銅化合物を添加することから、銅化合物が可視光応答性光触媒のすぐ近くに存在するため大きな触媒活性促進効果が期待できることや銅化合物が均一に分散されて光触媒の光吸収を妨げにくいことなどの利点がある。   Since the visible light responsive photocatalyst of this embodiment is added with a copper compound by loading, the copper compound is present in the immediate vicinity of the visible light responsive photocatalyst, so that a large catalytic activity promoting effect can be expected and the copper compound is uniformly dispersed. Thus, there is an advantage that it is difficult to prevent light absorption of the photocatalyst.

本発明による可視光応答性光触媒は上記したような銅化合物と可視光応答性光触媒を混合や担持した態様に限定されるものではなく、混合や担持することなくそれぞれを別体として存在させることも可能である。   The visible light responsive photocatalyst according to the present invention is not limited to the embodiment in which the copper compound and the visible light responsive photocatalyst are mixed or supported as described above, and may exist separately as a separate body without being mixed or supported. Is possible.

たとえば、銅化合物と可視光応答性光触媒を同一基板の別々の箇所に配置して共存させ一体としてこれを機能させることにより、非混合状態の可視光応答性光触媒を作製することができる。   For example, a non-mixed visible light responsive photocatalyst can be produced by arranging a copper compound and a visible light responsive photocatalyst at different locations on the same substrate and causing them to coexist and function together.

この態様のものは、添加する銅化合物が可視光応答性光触媒の光吸収を妨げないようにするなど使用する状況に適するように形状を設計できるといった利点を有するものである。   The thing of this aspect has an advantage that a shape can be designed so that it may be suitable for a use situation, such as preventing the optical absorption of the visible light responsive photocatalyst from adding the copper compound.

本発明に係る可視光応答性光触媒においては、銅化合物を可視光応答性光触媒と接触させておくことが好ましいが、必ずしもそのような態様のものに限定されず、両者が離間した場合であっても近傍に存在すれば、その光触媒効果が十分に期待できる。   In the visible light responsive photocatalyst according to the present invention, it is preferable to keep the copper compound in contact with the visible light responsive photocatalyst. However, the present invention is not necessarily limited to such a mode, and the two are separated from each other. If it exists in the vicinity, the photocatalytic effect can be sufficiently expected.

また、本発明の可視光応答性光触媒においては、銅化合物と可視光応答性光触媒の両者に可視光を照射することが望ましいが、銅化合物に光が直接照射されなくても所望の光触媒活性を得ることができる。   In the visible light responsive photocatalyst of the present invention, it is desirable to irradiate both the copper compound and the visible light responsive photocatalyst with visible light, but the desired photocatalytic activity can be obtained even if the copper compound is not directly irradiated with light. Obtainable.

本発明による可視光応答性光触媒は粉末形状に限定されるものではなく、薄膜などに形成して使用することもできる。例えば、上記した可視光応答性光触媒粉末と銅化合物粉末の混合体を薄膜形状に形成して使用することができる。また銅化合物と可視光応答性光触媒をそれぞれ別途に薄膜に形成し共存させたり、可視光応答性光触媒薄膜上に銅化合物の薄膜を積層させたりして使用することもできる。薄膜の作製は通常に用いられているドクターブレード法やスピンコート法などによって行う。これらの薄膜の形状は可視光応答性光触媒ができるだけ銅化合物に妨げられることなく光を吸収できるように最適化する。   The visible light responsive photocatalyst according to the present invention is not limited to a powder form, and can be used by being formed into a thin film or the like. For example, the above-mentioned mixture of visible light responsive photocatalyst powder and copper compound powder can be used in the form of a thin film. In addition, the copper compound and the visible light responsive photocatalyst can be separately formed on a thin film and coexist, or a copper compound thin film can be laminated on the visible light responsive photocatalyst thin film. The thin film is produced by a commonly used doctor blade method, spin coating method, or the like. The shape of these thin films is optimized so that the visible light responsive photocatalyst can absorb light as much as possible without being obstructed by the copper compound.

本発明に係る可視光応答性光触媒は、環境汚染有機物質を光分解するための触媒として極めて有効である。   The visible light responsive photocatalyst according to the present invention is extremely effective as a catalyst for photodegrading environmental pollutant organic substances.

環境汚染有機物質としては、アセトアルデヒドやホルムアルデヒドなどのアルデヒド類、酢酸や蟻酸などカルボン酸類、ベンゼン・トルエンなどの芳香族化合物類、ジクロロメタンなどのハロゲン化アルキル類などが挙げられる。またアルコール類やケトン類、エステル類、炭化水素類等にも有効である。さらに、有機物質だけでなく、COやNOx分解など無機物の無害化にも有効である。   Examples of environmental pollutants include aldehydes such as acetaldehyde and formaldehyde, carboxylic acids such as acetic acid and formic acid, aromatic compounds such as benzene and toluene, and alkyl halides such as dichloromethane. It is also effective for alcohols, ketones, esters, hydrocarbons and the like. Furthermore, it is effective for detoxifying not only organic substances but also inorganic substances such as CO and NOx decomposition.

本発明に係る可視光応答性光触媒は、この中でもカルボン酸類やアルデヒド類に対して特に有効である。   The visible light responsive photocatalyst according to the present invention is particularly effective for carboxylic acids and aldehydes among them.

また環境汚染有機物質は気相に存在するものだけではなく、水などの液体に溶解しているものも本発明の可視光応答性光触媒を用いて分解することができる。液相において本発明の可視光応答性光触媒を用いると添加した銅化合物がイオンとして溶解する場合もあるが、そのような場合でも光触媒活性は促進される。   Moreover, not only those which are present in the gas phase but also those which are dissolved in a liquid such as water can be decomposed using the visible light responsive photocatalyst of the present invention. When the visible light responsive photocatalyst of the present invention is used in the liquid phase, the added copper compound may be dissolved as ions, but even in such a case, the photocatalytic activity is promoted.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。
<実施例1、比較例1>
酸化タングステン粉末(高純度化学、99.99%)にCuO粉末(和光純薬工業、99.9%)を1重量%、2重量%および5重量%の各々を加えて乳鉢を用いてよく粉砕・混合し、本発明の可視光応答性光触媒粉末を作製した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
<Example 1, comparative example 1>
Add 1% by weight, 2% by weight and 5% by weight of CuO powder (Wako Pure Chemical Industries, 99.9%) to tungsten oxide powder (high purity chemical, 99.99%) and pulverize them well using a mortar. -Mixed to produce a visible light responsive photocatalyst powder of the present invention.

この光触媒を4mlのバイアルびんにおよそ150mg入れ、これにアセトアルデヒドの気体を約40μl(10000ppm)加えて300WのXeランプを420nmより短波長をフィルターによりカットした可視光条件で照射し、ガスクロマトグラフィーにより光分解で生じる二酸化炭素の量の時間変化をモニターした。また比較例1として酸化タングステン粉末のみを用いて同様の実験を行った。図1に結果を示す。
なお、本例では、存在するアセトアルデヒドが完全に二酸化炭素にまで分解するとおよそ20000ppmの二酸化炭素が理論的に発生する。
Approximately 150 mg of this photocatalyst is placed in a 4 ml vial, about 40 μl (10000 ppm) of acetaldehyde gas is added, and a 300 W Xe lamp is irradiated under visible light conditions with a wavelength shorter than 420 nm cut by a filter. The change over time in the amount of carbon dioxide produced by photolysis was monitored. As Comparative Example 1, the same experiment was performed using only tungsten oxide powder. The results are shown in FIG.
In this example, when the existing acetaldehyde completely decomposes into carbon dioxide, approximately 20000 ppm of carbon dioxide is theoretically generated.

図1に示すように、比較例1では90分照射後、9000ppm程度の二酸化炭素が発生するものの、その後270分照射しても、二酸化炭素の発生量はほとんど増加しなくなった。   As shown in FIG. 1, in Comparative Example 1, about 9000 ppm of carbon dioxide was generated after 90 minutes of irradiation, but the amount of generated carbon dioxide hardly increased even after irradiation of 270 minutes.

これに対して、CuO粉末を混合したものでは初期の二酸化炭素の発生量は少なくなるものの、270分経過後の二酸化炭素発生量は、比較例1のおよそ1.6〜1.9倍となった。
<実施例2、比較例2>
酸化タングステン粉末(高純度化学、99.99%)にCuO粉末(和光純薬工業、99.9%)、Cu2O粉末(和光純薬工業、99.5%)、Cu(NO3)2・3H2O粉末(和光純薬工業、99.9%)、CuSO4・5H2O粉末(和光純薬工業、特級)をそれぞれ2重量%ずつ加えて乳鉢を用いてよく粉砕・混合し、本発明の可視光応答性光触媒を4種類作製した。
On the other hand, in the case of mixing CuO powder, the initial carbon dioxide generation amount is small, but the carbon dioxide generation amount after 270 minutes has passed is approximately 1.6 to 1.9 times that of Comparative Example 1. It was.
<Example 2, comparative example 2>
Tungsten oxide powder (high purity chemistry, 99.99%), CuO powder (Wako Pure Chemical Industries, 99.9%), Cu 2 O powder (Wako Pure Chemical Industries, 99.5%), Cu (NO 3 ) 2・ 3H 2 O powder (Wako Pure Chemical Industries, 99.9%), CuSO 4・ 5H 2 O powder (Wako Pure Chemical Industries, special grade) were added 2% each by weight and pulverized and mixed well using a mortar. Four types of visible light responsive photocatalysts of the present invention were prepared.

これらの光触媒を4mlのバイアルびんにそれぞれおよそ150mg入れ、これにアセトアルデヒドの気体を約40μl(10000ppm)加えて300WのXeランプを18時間にわたってAM1.5フィルターによる疑似太陽光条件で照射し、ガスクロマトグラフィーにより最終的な二酸化炭素生成量を調べた。また、比較例2として酸化タングステン粉末のみを用いて同様の実験を行った。表1に結果を示す。   Approximately 150 mg of each of these photocatalysts was placed in a 4 ml vial, about 40 μl (10000 ppm) of acetaldehyde gas was added thereto, and a 300 W Xe lamp was irradiated for 18 hours under simulated sunlight conditions using an AM1.5 filter. The final carbon dioxide production was examined by graphy. Further, as Comparative Example 2, a similar experiment was performed using only tungsten oxide powder. Table 1 shows the results.

なお、本例の場合も、アセトアルデヒドが完全に二酸化炭素にまで分解すると理論的におよそ20000ppmの二酸化炭素が発生する。   In the case of this example, when acetaldehyde is completely decomposed into carbon dioxide, approximately 20000 ppm of carbon dioxide is theoretically generated.

表1に示すように、比較例2ではおよそ14840ppmの二酸化炭素しか発生しなかったが、CuOの添加では21032ppm、Cu2Oの添加では20148ppm、CuSO4・5H2Oの添加では22108ppmの二酸化炭素が発生しておりアセトアルデヒドは完全に二酸化炭素に分解した。またCu(NO3)2・3H2Oの添加では16919ppmの二酸化炭素が発生しており比較例2よりも分解反応が進んでいた。 As shown in Table 1, only about 14840 ppm of carbon dioxide was generated in Comparative Example 2, but 21032 ppm with addition of CuO, 20148 ppm with addition of Cu 2 O, and 22108 ppm of carbon dioxide with addition of CuSO 4 .5H 2 O. The acetaldehyde was completely decomposed into carbon dioxide. Moreover, the addition of Cu (NO 3 ) 2 .3H 2 O generated 16919 ppm of carbon dioxide, and the decomposition reaction proceeded more than Comparative Example 2.

Figure 2008149312
<実施例3、比較例3>
以下の方法によって酸化タングステンにCuOを担持させた、本発明の可視光応答性光触媒を作製した。
Figure 2008149312
<Example 3, Comparative Example 3>
The visible light responsive photocatalyst of the present invention in which CuO was supported on tungsten oxide was produced by the following method.

酸化タングステン粉末(高純度化学、99.99%)1.003gに対して0.5M 硫酸銅水溶液を513μl(CuOとして2重量%に相当)加えてホットプレート上でかき混ぜながら蒸発乾固させ、さらにエタノールで再分散させ、再びホットプレート上でかき混ぜながら蒸発乾固させた後、電気炉内で加熱した。加熱は空気雰囲気において500℃で2時間行った。   Add 513 μl of 0.5M aqueous copper sulfate solution (corresponding to 2% by weight as CuO) to 1.003 g of tungsten oxide powder (high purity chemistry, 99.99%) and stir on a hot plate to evaporate to dryness. It was redispersed and evaporated to dryness while stirring again on a hot plate, and then heated in an electric furnace. Heating was performed at 500 ° C. for 2 hours in an air atmosphere.

この光触媒を4mlのバイアルびんにおよそ150mg入れ、これにアセトアルデヒドの気体を約40μl(10000ppm)加えて300WのXeランプを18時間にわたってAM1.5フィルターによる疑似太陽光条件で照射し、ガスクロマトグラフィーにより最終的な二酸化炭素生成量を調べた。比較例3として酸化タングステン粉末のみを用いて同様の実験を行った。   Approximately 150 mg of this photocatalyst is placed in a 4 ml vial, about 40 μl (10000 ppm) of acetaldehyde gas is added, and a 300 W Xe lamp is irradiated for 18 hours under simulated sunlight conditions using an AM1.5 filter. The final carbon dioxide production was examined. As Comparative Example 3, a similar experiment was performed using only tungsten oxide powder.

なお、本例の場合もアセトアルデヒドが完全に二酸化炭素にまで分解するとおよそ20000ppmの二酸化炭素が発生する。   In the case of this example, approximately 20000 ppm of carbon dioxide is generated when acetaldehyde is completely decomposed into carbon dioxide.

実験の結果、比較例3では12356ppmの二酸化炭素しか発生しなかったが、CuOを担持させたものでは18270ppmの二酸化炭素が発生しており、アセトアルデヒドはほぼ完全に二酸化炭素に分解した。   As a result of the experiment, in Comparative Example 3, only 12356 ppm of carbon dioxide was generated, but in the case of supporting CuO, 18270 ppm of carbon dioxide was generated, and acetaldehyde was almost completely decomposed into carbon dioxide.

またこのような含浸法により酸化タングステンにCuOを担持する場合についてCuO担持量の影響を調べたところ、担持量を0.1重量%付近まで減少させてもアセトアルデヒドはほぼ完全に二酸化炭素に分解し、かつその付近が二酸化炭素発生速度の最大となる最適な担持量であった。この結果は、本発明の可視光応答性光触媒はその調製条件が異なると最適な添加量も異なることを示している。
<実施例4、比較例4>
酸化タングステン粉末(高純度化学、99.99%)にCuO粉末(和光純薬工業、99.9%)を2重量%加えて乳鉢を用いてよく粉砕・混合して本発明の可視光応答性光触媒粉末を作製した。
In addition, when the effect of CuO loading was investigated when CuO was supported on tungsten oxide by such impregnation method, acetaldehyde was almost completely decomposed into carbon dioxide even if the loading was reduced to near 0.1% by weight, and The vicinity was the optimum loading amount that maximized the carbon dioxide generation rate. This result shows that the optimum addition amount of the visible light responsive photocatalyst of the present invention varies depending on the preparation conditions.
<Example 4, comparative example 4>
Visible light response of the present invention by adding 2% by weight of CuO powder (Wako Pure Chemical Industries, 99.9%) to tungsten oxide powder (high purity chemistry, 99.99%) and pulverizing and mixing them well using a mortar. A photocatalyst powder was prepared.

この光触媒を4mlのバイアルびんにおよそ150mg入れ、これに液体の酢酸を約10μl加えて300WのXeランプをAM1.5フィルターによる疑似太陽光条件で照射し、ガスクロマトグラフィーにより光分解で生じる二酸化炭素の量の時間変化をモニターした。また比較例4として酸化タングステン粉末のみを用いて同様の実験を行った。図2に結果を示す。   About 150 mg of this photocatalyst is placed in a 4 ml vial, about 10 μl of liquid acetic acid is added, and a 300 W Xe lamp is irradiated under simulated sunlight conditions with an AM1.5 filter, and carbon dioxide generated by photolysis by gas chromatography. The amount of time was monitored over time. As Comparative Example 4, a similar experiment was performed using only tungsten oxide powder. The results are shown in FIG.

図2に示すように、比較例4では二酸化炭素は発生するものの発生速度は小さく、180分照射しても、8000ppm程度の二酸化炭素しか発生しなかった。   As shown in FIG. 2, in Comparative Example 4, although carbon dioxide was generated, the generation rate was low, and even when irradiated for 180 minutes, only about 8000 ppm of carbon dioxide was generated.

これに対して、CuO粉末を混合したものでは二酸化炭素の発生速度は著しく大きくなり、180分経過後の二酸化炭素発生量はおよそ37000ppmで、比較例4のおよそ4.6倍となった。
<実施例5、比較例5>
酸化タングステン粉末(関東化学、>99%)にCuO粉末(和光純薬工業、99.9%)を2重量%加えて乳鉢を用いてよく粉砕・混合して本発明の可視光応答性光触媒粉末を作製した。
In contrast, when the CuO powder was mixed, the carbon dioxide generation rate was remarkably increased, and the carbon dioxide generation amount after 180 minutes was about 37000 ppm, which was about 4.6 times that of Comparative Example 4.
<Example 5, Comparative Example 5>
Visible light-responsive photocatalyst powder of the present invention by adding 2% by weight of CuO powder (Wako Pure Chemical Industries, 99.9%) to tungsten oxide powder (Kanto Chemical Co.,> 99%) and pulverizing and mixing them well using a mortar. Was made.

この光触媒を4.4mlのバイアルびんにおよそ150mg入れ、これに様々な種類の液体の有機物を約2μl(アセトアルデヒドでは気相で9000ppm分に相当)加えて300WのXeランプを3時間にわたってそのまま全光照射し、ガスクロマトグラフィーにより最終的な二酸化炭素生成量を調べた。またそれぞれについて比較例5として酸化タングステン粉末のみを用いて同様の実験を行った。図3に結果を示す。   About 150 mg of this photocatalyst is put in a 4.4 ml vial, and about 2 μl of various kinds of liquid organic substances (corresponding to 9000 ppm in the gas phase in acetaldehyde) is added to this, and a 300 W Xe lamp is irradiated for 3 hours as it is. The final carbon dioxide production was examined by gas chromatography. Moreover, the same experiment was conducted using only tungsten oxide powder as Comparative Example 5 for each. The results are shown in FIG.

どの有機物についても、酸化タングステンを単独で用いた比較例5よりもCuO粉末を混合したものの方が多量の二酸化炭素が発生した。この結果は、酸化タングステンにCuOを添加した本発明の可視光応答性光触媒は多くの有機物の分解に対して有効であることを示している。
<実施例6、比較例6>
酸化タングステン粉末(和光純薬工業、>99%)を4.4mlのバイアルびんにおよそ150mg入れ、それにCuの量が1μmolとなるように銅化合物塩(CuSO4またはCuCl2)と水40μlを添加した。このとき銅化合物塩の一部は水に溶解している。さらにこれに分解する有機物として液体のギ酸を約2μl加えて300WのXeランプを420nmより短波長をフィルターによりカットした可視光条件で照射し、ガスクロマトグラフィーにより光分解で生じる二酸化炭素の量の時間変化をモニターした。また比較例6として銅化合物塩を添加せずに同様の実験を行った。図4に結果を示す。
For any organic matter, a larger amount of carbon dioxide was generated when the CuO powder was mixed than with Comparative Example 5 where tungsten oxide was used alone. This result shows that the visible light-responsive photocatalyst of the present invention in which CuO is added to tungsten oxide is effective for the decomposition of many organic substances.
<Example 6, comparative example 6>
Approximately 150 mg of tungsten oxide powder (Wako Pure Chemical Industries,> 99%) was put in a 4.4 ml vial, and copper compound salt (CuSO 4 or CuCl 2 ) and 40 μl of water were added so that the amount of Cu was 1 μmol. . At this time, a part of the copper compound salt is dissolved in water. Furthermore, about 2 μl of liquid formic acid is added as an organic substance to be decomposed, and a 300 W Xe lamp is irradiated under visible light conditions with a wavelength shorter than 420 nm cut by a filter, and the amount of carbon dioxide generated by photolysis by gas chromatography. Changes were monitored. Further, as Comparative Example 6, the same experiment was performed without adding a copper compound salt. The results are shown in FIG.

図4に示したように、銅化合物塩を添加しない比較例6では二酸化炭素の発生速度は著しく小さく、180分間照射しても、わずかの二酸化炭素しか発生しなかった。   As shown in FIG. 4, in Comparative Example 6 in which no copper compound salt was added, the generation rate of carbon dioxide was remarkably small, and only a small amount of carbon dioxide was generated even after irradiation for 180 minutes.

これに対して、銅化合物塩を添加したものでは二酸化炭素の発生速度が著しく大きくなり、180分経過後の二酸化炭素発生量では、比較例6に対して、CuSO4添加でおよそ15倍、CuCl2添加でおよそ47倍となった。この結果は、本発明の可視光応答性光触媒を液相中で用いることにより、銅化合物がイオンとして溶解する場合でも、水などの液体に溶解している環境汚染有機物質であっても分解できることを示している。 On the other hand, when the copper compound salt is added, the carbon dioxide generation rate is remarkably increased. With respect to the amount of carbon dioxide generated after the lapse of 180 minutes, the addition of CuSO 4 is about 15 times the CuCl 4 addition, and the CuCl. Addition of 2 resulted in a 47-fold increase. This result shows that by using the visible light responsive photocatalyst of the present invention in the liquid phase, even if the copper compound is dissolved as an ion, it can be decomposed even if it is an environmental pollutant organic substance dissolved in a liquid such as water. Is shown.

酸化タングステン粉末にCuO粉末を混合した光触媒を用いてアセトアルデヒドを可視光の照射により光分解したときの二酸化炭素生成量の時間変化を示した図である。It is the figure which showed the time change of the carbon dioxide production amount when acetaldehyde was photolyzed by irradiation of visible light using the photocatalyst which mixed the CuO powder with the tungsten oxide powder. 酸化タングステン粉末にCuO粉末を混合した光触媒を用いて酢酸を疑似太陽光の照射により光分解したときの二酸化炭素生成量の時間変化を示した図である。It is the figure which showed the time change of the carbon dioxide production amount when acetic acid was photolyzed by irradiation of pseudo-sunlight using the photocatalyst which mixed the CuO powder with the tungsten oxide powder. 酸化タングステン粉末にCuO粉末を混合した光触媒を用いて様々な種類の有機物を3時間にわたるXeランプの全光照射により光分解したときの二酸化炭素生成量を示した図である。It is the figure which showed the carbon dioxide production amount when photo-degrading various kinds of organic matter by the total light irradiation of the Xe lamp over 3 hours using the photocatalyst which mixed the CuO powder with the tungsten oxide powder. 酸化タングステン粉末に銅化合物塩を添加した光触媒を用いて水溶液中で蟻酸を可視光の照射により光分解したときの二酸化炭素生成量の時間変化を示した図である。It is the figure which showed the time change of the carbon dioxide production amount when formic acid is photolyzed by irradiation of visible light in aqueous solution using the photocatalyst which added the copper compound salt to the tungsten oxide powder.

Claims (10)

銅化合物を含有してなることを特徴とする可視光応答性光触媒の触媒活性促進剤。   A catalyst activity promoter for a visible light responsive photocatalyst, comprising a copper compound. 銅化合物が、酸化銅、硝酸銅及び硫酸銅から選ばれた少なくとも一種の化合物であることを特徴とする請求項1に記載の触媒活性促進剤。   The catalyst activity promoter according to claim 1, wherein the copper compound is at least one compound selected from copper oxide, copper nitrate, and copper sulfate. 可視光応答性光触媒がタングステン化合物であることを特徴とする請求項1又は2に記載の触媒活性促進剤。   The catalyst activity promoter according to claim 1 or 2, wherein the visible light responsive photocatalyst is a tungsten compound. タングステン化合物が酸化タングステンであることを特徴とする請求項3に記載の触媒活性促進剤。   The catalyst activity promoter according to claim 3, wherein the tungsten compound is tungsten oxide. 請求項1から4のうちのいずれか1項に記載の触媒活性促進剤を併用してなることを特徴とする可視光応答性光触媒。   A visible light responsive photocatalyst comprising the catalyst activity promoter according to any one of claims 1 to 4 in combination. 触媒活性促進剤が可視光応答性光触媒に混合ないしは担持されていることを特徴とする請求項5に記載の可視光応答性光触媒。   6. The visible light responsive photocatalyst according to claim 5, wherein the catalyst activity promoter is mixed or supported on the visible light responsive photocatalyst. 触媒活性促進剤と可視光応答性触媒とがそれぞれ離間されていること特徴とする請求項5に記載の可視光応答性光触媒。   The visible light responsive photocatalyst according to claim 5, wherein the catalyst activity promoter and the visible light responsive catalyst are separated from each other. 粉末状又は薄膜状であることを特徴とする請求項5から7のうちのいずれか1項に記載の可視光応答性光触媒。   The visible light responsive photocatalyst according to any one of claims 5 to 7, wherein the visible light responsive photocatalyst is in a powder form or a thin film form. 請求項5から8のうちのいずれか1項に記載の可視光応答性光触媒を使用することを特徴とする環境汚染有機物質の光分解法。   A visible light responsive photocatalyst according to any one of claims 5 to 8, wherein the photodecomposition method of an environmental pollutant organic substance. 環境汚染有機物質がアルデヒド類又はカルボン酸類であることを特徴とする請求項9に記載の光分解法。   10. The photolysis method according to claim 9, wherein the environmental pollutant organic substance is an aldehyde or a carboxylic acid.
JP2007228233A 2006-11-20 2007-09-03 Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants Active JP5578593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228233A JP5578593B2 (en) 2006-11-20 2007-09-03 Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006313611 2006-11-20
JP2006313611 2006-11-20
JP2007228233A JP5578593B2 (en) 2006-11-20 2007-09-03 Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants

Publications (2)

Publication Number Publication Date
JP2008149312A true JP2008149312A (en) 2008-07-03
JP5578593B2 JP5578593B2 (en) 2014-08-27

Family

ID=39652086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228233A Active JP5578593B2 (en) 2006-11-20 2007-09-03 Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants

Country Status (1)

Country Link
JP (1) JP5578593B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116627A1 (en) * 2008-03-21 2009-09-24 国立大学法人東京大学 Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and apparatus for production of oxidizing agent
WO2011049068A1 (en) 2009-10-19 2011-04-28 国立大学法人 東京大学 Method for inactivating virus and article provided with antiviral properties
JP2011101876A (en) * 2009-10-14 2011-05-26 Sekisui Jushi Co Ltd Photocatalyst, coating agent, interior material, and method for manufacturing the photocatalyst
WO2011078203A1 (en) 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
WO2012005384A2 (en) 2010-07-09 2012-01-12 Showa Denko K.K. Process for producing dispersion of copper ion-modified tungsten oxide photocatalyst
JP2012091143A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Environment-resistant visible light responsive photocatalyst film structure and photocatalyst promoter
JP2012120967A (en) * 2010-12-07 2012-06-28 Nissan Motor Co Ltd Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same
WO2012111709A1 (en) 2011-02-16 2012-08-23 独立行政法人産業技術総合研究所 Novel visible-light-responsive photocatalyst with environmental resistance
US8652991B2 (en) 2011-06-07 2014-02-18 Showa Denko K.K. Tungsten oxide photocatalyst and method for producing the same
WO2015025715A1 (en) * 2013-08-22 2015-02-26 シャープ株式会社 Photocatalyst material
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
CN105873677A (en) * 2014-01-28 2016-08-17 夏普株式会社 Photocatalyst material and method for producing same
JP6137716B1 (en) * 2016-01-22 2017-05-31 ダイニック株式会社 Antiviral wallpaper
CN110560136A (en) * 2019-09-24 2019-12-13 桂林理工大学 Photocatalytic film and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160327A (en) * 2002-11-12 2004-06-10 National Institute For Materials Science MOx-ZnO COMPOSITE ZINC OXIDE PHOTOCATALYST AND PRODUCTION METHOD THEREFOR
JP2004330047A (en) * 2003-05-06 2004-11-25 Univ Kanazawa Metal or metal oxide-carrying bismuth vanadate photocatalyst for photodecomposition of endocrine disruptor
JP2005179618A (en) * 2003-12-24 2005-07-07 Matsushita Electric Ind Co Ltd Antifouling membrane and member or instrument equipped with the same
JP2008126121A (en) * 2006-11-20 2008-06-05 Nissan Motor Co Ltd Photocatalyst system for automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160327A (en) * 2002-11-12 2004-06-10 National Institute For Materials Science MOx-ZnO COMPOSITE ZINC OXIDE PHOTOCATALYST AND PRODUCTION METHOD THEREFOR
JP2004330047A (en) * 2003-05-06 2004-11-25 Univ Kanazawa Metal or metal oxide-carrying bismuth vanadate photocatalyst for photodecomposition of endocrine disruptor
JP2005179618A (en) * 2003-12-24 2005-07-07 Matsushita Electric Ind Co Ltd Antifouling membrane and member or instrument equipped with the same
JP2008126121A (en) * 2006-11-20 2008-06-05 Nissan Motor Co Ltd Photocatalyst system for automobile

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012008042; ASHOKKUMAR, M. et al: 'Preparation and characterization of doped WO3 photocatalyst powders' Journal of Materials Science Vol.24, No.6, 198906, p.2135-2139 *
JPN6012008043; MARUTHAMUTHU, P. et al: 'Hydrogen generation using Cu(II)/WO3 and oxalic acid by visible light' International Journal of Hydrogen Energy Vol.13, No.11, 1988, p.677-680 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226299A (en) * 2008-03-21 2009-10-08 Univ Of Tokyo Photocatalytic material, method for decomposing organic material, interior component, air cleaner, oxidizing agent manufacturing apparatus
WO2009116627A1 (en) * 2008-03-21 2009-09-24 国立大学法人東京大学 Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and apparatus for production of oxidizing agent
US8536084B2 (en) 2008-03-21 2013-09-17 The University Of Tokyo Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and apparatus for preparation of oxidizing agent
JP2011101876A (en) * 2009-10-14 2011-05-26 Sekisui Jushi Co Ltd Photocatalyst, coating agent, interior material, and method for manufacturing the photocatalyst
WO2011049068A1 (en) 2009-10-19 2011-04-28 国立大学法人 東京大学 Method for inactivating virus and article provided with antiviral properties
WO2011078203A1 (en) 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator
US9572347B2 (en) 2009-12-24 2017-02-21 The University Of Tokyo Method for inactivating a virus
US9061272B2 (en) 2010-02-16 2015-06-23 Showa Denko K.K. Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
WO2011102353A1 (en) 2010-02-16 2011-08-25 昭和電工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
CN102762302A (en) * 2010-02-16 2012-10-31 昭和电工株式会社 Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
WO2012005384A2 (en) 2010-07-09 2012-01-12 Showa Denko K.K. Process for producing dispersion of copper ion-modified tungsten oxide photocatalyst
JP2012091143A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Environment-resistant visible light responsive photocatalyst film structure and photocatalyst promoter
JP2012120967A (en) * 2010-12-07 2012-06-28 Nissan Motor Co Ltd Visible light-responsive photocatalyst, hydrophilic member including the same, and method for producing the same
US9533284B2 (en) 2011-02-16 2017-01-03 National Institute Of Advanced Industrial Science And Technology Visible-light-responsive photocatalyst with environmental resistance
EP2676729A4 (en) * 2011-02-16 2014-12-24 Nat Inst Of Advanced Ind Scien Novel visible-light-responsive photocatalyst with environmental resistance
WO2012111709A1 (en) 2011-02-16 2012-08-23 独立行政法人産業技術総合研究所 Novel visible-light-responsive photocatalyst with environmental resistance
EP2676729A1 (en) * 2011-02-16 2013-12-25 National Institute of Advanced Industrial Science And Technology Novel visible-light-responsive photocatalyst with environmental resistance
US8652991B2 (en) 2011-06-07 2014-02-18 Showa Denko K.K. Tungsten oxide photocatalyst and method for producing the same
CN110354844A (en) * 2013-08-22 2019-10-22 夏普株式会社 Photocatalyst material
JP2015061719A (en) * 2013-08-22 2015-04-02 シャープ株式会社 Photocatalytic material
CN105163848A (en) * 2013-08-22 2015-12-16 夏普株式会社 Photocatalyst material
US20160107145A1 (en) * 2013-08-22 2016-04-21 Sharp Kabushiki Kaisha Photocatalyst material
US10576459B2 (en) 2013-08-22 2020-03-03 Sharp Kabushiki Kaisha Photocatalyst material
WO2015025715A1 (en) * 2013-08-22 2015-02-26 シャープ株式会社 Photocatalyst material
CN105873677A (en) * 2014-01-28 2016-08-17 夏普株式会社 Photocatalyst material and method for producing same
JP2019181469A (en) * 2014-01-28 2019-10-24 シャープ株式会社 Photocatalytic material and method for producing the same
US10507454B2 (en) 2014-01-28 2019-12-17 Sharp Kabushiki Kaisha Photocatalyst material and method for producing same
JPWO2015146830A1 (en) * 2014-03-26 2017-04-13 新日鉄住金化学株式会社 Photocatalyst and method for producing the same
WO2015146830A1 (en) * 2014-03-26 2015-10-01 新日鉄住金化学株式会社 Photocatalyst and method for producing same
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
JP6137716B1 (en) * 2016-01-22 2017-05-31 ダイニック株式会社 Antiviral wallpaper
JP2017128836A (en) * 2016-01-22 2017-07-27 ダイニック株式会社 Antiviral wallpaper
CN110560136A (en) * 2019-09-24 2019-12-13 桂林理工大学 Photocatalytic film and preparation method and application thereof

Also Published As

Publication number Publication date
JP5578593B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5578593B2 (en) Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants
Descorme Catalytic wastewater treatment: Oxidation and reduction processes. Recent studies on chlorophenols
Liu et al. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene
Tizhoosh et al. Ultrasound-engineered synthesis of WS2@ CeO2 heterostructure for sonocatalytic degradation of tylosin
Ben-Moshe et al. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts
Ji et al. Recent advances in visible light-responsive titanium oxide-based photocatalysts
Kashif et al. Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2
Kambur et al. Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles
Sherly et al. Visible-light-induced photocatalytic performances of ZnO–CuO nanocomposites for degradation of 2, 4-dichlorophenol
Rengaraj et al. Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2
Liao et al. Efficient microwave-assisted photocatalytic degradation of endocrine disruptor dimethyl phthalate over composite catalyst ZrOx/ZnO
Silva et al. Photocatalytic Oxidation of Phenolic Compounds by Using a Carbon Nanotube‐Titanium Dioxide Composite Catalyst
Zhang Enhanced photocatalytic activity for titanium dioxide by co-modification with copper and iron
JP2011195412A (en) Carbon nitride involving metal, and method for production thereof
Debnath et al. Efficient dye degradation catalyzed by manganese oxide nanoparticles and the role of cation valence
Colmenares et al. Sonication‐Assisted Low‐Temperature Routes for the Synthesis of Supported Fe–TiO2 Econanomaterials: Partial Photooxidation of Glucose and Phenol Aqueous Degradation
Li et al. Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation
Golestanbagh et al. Preparation, characterization and photocatalytic properties of visible-light-driven CuO/SnO 2/TiO 2 photocatalyst
Mohamed et al. Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photocatalytic reduction of Hg (II) ions
CN108816233A (en) A kind of preparation method of the copper-cobalt composite oxide catalysts for benzene catalysis oxidation
Silva et al. Catalytic and photocatalytic nitrate reduction over Pd-Cu loaded over hybrid materials of multi-walled carbon nanotubes and TiO2
Que et al. Application of silver nanoparticles for water treatment
US9339795B2 (en) Process of using a catalyst for photo-catalytic degradation of contaminant in water
JP4986149B2 (en) Visible light responsive photocatalyst and photodegradation method of environmental pollutants
Sharfalddin et al. Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130304

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5578593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250