JP2008147504A - Led epitaxial wafer, and led manufactured using same - Google Patents

Led epitaxial wafer, and led manufactured using same Download PDF

Info

Publication number
JP2008147504A
JP2008147504A JP2006334529A JP2006334529A JP2008147504A JP 2008147504 A JP2008147504 A JP 2008147504A JP 2006334529 A JP2006334529 A JP 2006334529A JP 2006334529 A JP2006334529 A JP 2006334529A JP 2008147504 A JP2008147504 A JP 2008147504A
Authority
JP
Japan
Prior art keywords
layer
active layer
wafer
dbr
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334529A
Other languages
Japanese (ja)
Other versions
JP5205752B2 (en
Inventor
Naoyuki Watanabe
尚之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006334529A priority Critical patent/JP5205752B2/en
Publication of JP2008147504A publication Critical patent/JP2008147504A/en
Application granted granted Critical
Publication of JP5205752B2 publication Critical patent/JP5205752B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED epitaxial wafer which has a uniform luminance characteristic distribution in a wafer surface even when the number of times of crystal growth becomes large and deposits stick on a holder, and to provide an LED manufactured using the same. <P>SOLUTION: The LED epitaxial wafer is constituted by providing, on a substrate 2, an active layer 6 which emits light, a light guide-out surface for guiding the light emitted by the active layer 6 out, and a DBR layer 4 which is provided between a substrate 2 and the active layer 6 for reflecting the light emitted by the active layer 6 to the light guide-out side. The DBR layer 4 is so designed that a reflection wavelength of the DBR layer 4 becomes equal to a light emission wavelength of the active layer 6 on a wafer outer peripheral side, and then formed so that the difference between the light emission wavelength of the active layer 6 and the reflection wavelength of the DBR layer 4 becomes minimum on the wafer outer peripheral side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LEDエピタキシャルウエハ及びそれを用いて製造したLEDに関し、特にウエハ面内の輝度特性分布が一定、一様なLEDエピタキシャルウエハに関するものである。   The present invention relates to an LED epitaxial wafer and an LED manufactured using the same, and more particularly to an LED epitaxial wafer having a uniform and uniform luminance characteristic distribution in the wafer surface.

近年、携帯電話、液晶ディスプレイ、信号機、車載、その他イルミネーション用途への発光ダイオードの普及が急速に進んでいる。LEDは、PN接合もしくはPIN接合を構成するように化合物半導体を基板上に成長させたエピタキシャルウエハを、プロセスにより電極形成、チップ化し、ワイヤボンディングで配線、樹脂でモールドしてランプとしたものである。信号機、車のテールランプなどでは、LEDを複数並べて表示(表示器)として使用することが多く、このような用途では高輝度が要求されるため、輝度向上のために、構造上、DBR(分布ブラグ反射)層を持つものが多い。   In recent years, light-emitting diodes are rapidly spreading in mobile phones, liquid crystal displays, traffic lights, in-vehicle, and other illumination applications. An LED is a lamp in which an epitaxial wafer on which a compound semiconductor has been grown on a substrate so as to form a PN junction or a PIN junction is formed into an electrode by a process, formed into a chip, wired by wire bonding, and molded by resin. . In traffic lights, car tail lamps, and the like, a plurality of LEDs are often used as a display (display). In such applications, high brightness is required. Many have reflective layers.

図2にDBR層を持つLEDの層構造の内、p型半導体がウエハ表面に位置する例の断面模式図を示す。   FIG. 2 shows a schematic cross-sectional view of an example in which a p-type semiconductor is located on the wafer surface in the layer structure of an LED having a DBR layer.

活性層6から放射される光の内、第2電極10の側(上側)に放射された光は、発光波長に対して透明であるように設計されたp−クラッド層7、p−電流拡散層8、p−コンタクト層9を通過して、第2電極10が形成されていない隙間から放射される。一方、活性層6から第1電極1の側(下側)に放射された光は、DBR層4で反射されて第2電極10の側(上側)に放射され、同じく第2電極10が形成されていない隙間から放射される。3はn−バッファ層、5はn−クラッド層である。   Of the light emitted from the active layer 6, the light emitted to the second electrode 10 side (upper side) is a p-cladding layer 7 designed to be transparent to the emission wavelength, p-current diffusion. The light passes through the layer 8 and the p-contact layer 9 and is emitted from a gap where the second electrode 10 is not formed. On the other hand, the light emitted from the active layer 6 to the first electrode 1 side (lower side) is reflected by the DBR layer 4 and emitted to the second electrode 10 side (upper side), and the second electrode 10 is also formed. Radiated from the gap that is not. 3 is an n-buffer layer and 5 is an n-cladding layer.

ここで、活性層6の下側にDBR層4がない場合、活性層6から第1電極1側に放射された光は、主に基板2に吸収されてしまうので、光は上側に反射されず、上面から放射されることはない。そのため、DBR層4はLEDの高輝度化のために有効な手段となる。   Here, when there is no DBR layer 4 below the active layer 6, light emitted from the active layer 6 to the first electrode 1 side is mainly absorbed by the substrate 2, so that the light is reflected upward. It is not emitted from the upper surface. Therefore, the DBR layer 4 is an effective means for increasing the brightness of the LED.

このようなDBR層を成長させるためには、数十ナノメートルの厚さの薄層の成長が制御可能で、超高真空を必要とせず、量産性に優れたMOVPE法が用いられることが多い。MOVPE法は、反応炉の中に有機金属(以下、MOという)とガスを供給し、高温に加熱された基板上で熱分解反応を起こし、基板上に結晶(エピタキシャル層)を成長させる方法である。   In order to grow such a DBR layer, the growth of a thin layer having a thickness of several tens of nanometers can be controlled, and an MOVPE method that does not require an ultra-high vacuum and is excellent in mass productivity is often used. . The MOVPE method is a method in which an organic metal (hereinafter referred to as MO) and gas are supplied into a reaction furnace, a thermal decomposition reaction is caused on a substrate heated to a high temperature, and a crystal (epitaxial layer) is grown on the substrate. is there.

図3にMOVPE装置における反応炉の縦断面図を、図4に図3の4−4線矢視図を示す。   FIG. 3 is a longitudinal sectional view of the reactor in the MOVPE apparatus, and FIG. 4 is a view taken along line 4-4 in FIG.

図3に示すように、基板(GaAs基板)11をセットしたホルダ12を、シャフト13に接続されたディスク14の穴内に配置する。ホルダ12の外周には歯車15が形成されており、この歯車15と、ディスク14の周囲に設けられ、反応炉21に固定された外歯16とが噛み合うようになっている。図4に示すように、シャフト13がある方向に回転すると、ディスク14も同方向に回転するが、ディスク14の周囲の外歯16は反応炉21に固定されているため回転せず、外歯16と噛み合っているホルダ12がディスク14の穴内を反対方向に回転する。この結果、それぞれのホルダ12(基板11)は、ディスク14の穴を中心に自転しながら、シャフト13を中心に公転することになる。このような反応炉を自公転炉と呼んでいる。この自公転炉と、ホルダ12に歯車15の機構がなく、シャフト13を中心に単に公転のみを行う公転炉とを比較すると、自公転炉の方がウエハ面内の層厚の均一性に優れている。   As shown in FIG. 3, a holder 12 on which a substrate (GaAs substrate) 11 is set is placed in a hole of a disk 14 connected to a shaft 13. A gear 15 is formed on the outer periphery of the holder 12, and the gear 15 is engaged with external teeth 16 provided around the disk 14 and fixed to the reaction furnace 21. As shown in FIG. 4, when the shaft 13 rotates in a certain direction, the disk 14 also rotates in the same direction. However, the external teeth 16 around the disk 14 are fixed to the reaction furnace 21 and thus do not rotate. The holder 12 engaged with 16 rotates in the opposite direction in the hole of the disk 14. As a result, each holder 12 (substrate 11) revolves around the shaft 13 while rotating around the hole of the disk 14. Such a reactor is called a self-revolving converter. Comparing this revolving furnace with a revolving furnace in which the holder 12 does not have a gear 15 mechanism and only revolves around the shaft 13, the revolving furnace is superior in uniformity of the layer thickness in the wafer surface. ing.

特許第2778868号公報Japanese Patent No. 2778868

LEDを複数並べて表示器として使用する場合、全てのLEDの輝度が一様であることが必要である。そのため、製造上、ウエハ全面から所望の輝度レベル以上でかつ、ウエハ面内の輝度均一性良くチップを取得できることが、LEDの生産性を高める上で重要である。   When a plurality of LEDs are used as a display device, it is necessary that the brightness of all the LEDs is uniform. Therefore, in manufacturing, it is important to increase the productivity of LEDs that a chip can be obtained from the entire wafer surface at a desired luminance level or higher and with a uniform luminance within the wafer surface.

ところで、先に述べたMOVPE法を使用する場合、結晶成長の回数を重ねると、ウエハをセットするホルダにデポが付着し、特にウエハ周辺部(外周側)でMO、ガスの流れが遮られる。このため、ウエハの外周側では、MO、ガスの供給が少なくなってエピタキシャル成長が妨げられ、ウエハ外周側の層厚は中心部に比べて薄くなり、ウエハ面内の輝度特性分布が悪化する。   By the way, when the MOVPE method described above is used, if the number of times of crystal growth is repeated, deposits adhere to the holder for setting the wafer, and the flow of MO and gas is blocked particularly at the periphery (outer peripheral side) of the wafer. For this reason, on the outer peripheral side of the wafer, the supply of MO and gas is reduced and the epitaxial growth is hindered, the layer thickness on the outer peripheral side of the wafer becomes thinner than that in the central portion, and the luminance characteristic distribution in the wafer surface deteriorates.

前述したように、自公転炉は、ウエハを自転させることで、ウエハ同心円上(周方向)の層厚分布が均一になり、公転炉と比較してウエハ面内の層厚均一性に優れているが、ウエハ中心と外周側(径方向)ではどうしても層厚分布を持つことになる。   As described above, the revolution furnace makes the layer thickness distribution on the wafer concentric circle (circumferential direction) uniform by rotating the wafer, and the layer thickness uniformity in the wafer surface is superior to the revolution furnace. However, a layer thickness distribution is unavoidable at the wafer center and the outer peripheral side (radial direction).

通常、ウエハは、図5に示すように、ウエハ中心で活性層の発光波長とDBR層の反射波長とが一致するように設計される。このため、デポの影響でウエハ外周側の層厚が薄くなることで、活性層の発光波長とDBR層の反射波長との乖離が顕著となり、ウエハの中心から外周側にいくにつれて輝度が低下するという面内分布を持つことになる。特に活性層(LED)の発光波長が短波になればなる程、層厚の変化の影響を受けやすくなる。   Usually, as shown in FIG. 5, the wafer is designed so that the emission wavelength of the active layer and the reflection wavelength of the DBR layer coincide with each other at the center of the wafer. For this reason, since the layer thickness on the outer peripheral side of the wafer becomes thin due to the deposit, the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer becomes remarkable, and the luminance decreases from the center of the wafer toward the outer peripheral side. Will have an in-plane distribution. In particular, the shorter the emission wavelength of the active layer (LED), the more susceptible to changes in layer thickness.

そこで本発明の目的は、結晶成長の回数を重ね、ホルダにデポが付着した状態であっても、ウエハ面内の輝度特性分布が一様なLEDエピタキシャルウエハ及びそれを用いて製造したLEDを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an LED epitaxial wafer having a uniform luminance characteristic distribution within the wafer surface and an LED manufactured using the same even when the number of crystal growths is repeated and the deposit is attached to the holder. There is to do.

上記の目的を達成するために、請求項1の発明は、基板上に、光を発するための活性層と、その活性層から発せられた光を取出すための光取出し面と、前記基板と前記活性層の間に設けられ、活性層から発せられた光を光取出し面側に反射させるためのDBR層とを設けたLEDエピタキシャルウエハにおいて、ウエハ外周側で、前記DBR層の反射波長が前記活性層の発光波長に合うようにDBR層を設計し、活性層の発光波長とDBR層の反射波長の差がウエハ外周側で最小となるように形成したことを特徴とするLEDエピタキシャルウエハである。   In order to achieve the above object, an invention according to claim 1 comprises an active layer for emitting light on a substrate, a light extraction surface for extracting light emitted from the active layer, the substrate, and the substrate. In an LED epitaxial wafer provided between the active layers and provided with a DBR layer for reflecting the light emitted from the active layer to the light extraction surface side, the reflection wavelength of the DBR layer is the active wavelength on the outer peripheral side of the wafer. The LED epitaxial wafer is characterized in that the DBR layer is designed so as to match the emission wavelength of the layer and formed so that the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer is minimized on the outer peripheral side of the wafer.

請求項2の発明は、基板上に、光を発するための活性層と、その活性層から発せられた光を取出すための光取出し面と、前記基板と前記活性層の間に設けられ、活性層から発せられた光を光取出し面側に反射させるためのDBR層とを設けたLEDエピタキシャルウエハにおいて、ウエハ外周側で、前記活性層の発光波長が前記DBR層の反射波長に合うように活性層を設計し、活性層の発光波長とDBR層の反射波長の差がウエハ外周側で最小となるように形成したことを特徴とするLEDエピタキシャルウエハである。   According to a second aspect of the present invention, an active layer for emitting light, a light extraction surface for extracting light emitted from the active layer, and an active layer provided between the substrate and the active layer are provided on the substrate. In an LED epitaxial wafer provided with a DBR layer for reflecting light emitted from the layer to the light extraction surface side, on the outer periphery side of the wafer, the emission wavelength of the active layer is active so as to match the reflection wavelength of the DBR layer The LED epitaxial wafer is characterized in that the layer is designed so that the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer is minimized on the outer peripheral side of the wafer.

請求項3の発明は、ウエハ外周側で、上記活性層の発光波長と上記DBR層の反射波長の差が、
−10nm≦(活性層の発光ピーク波長)−(DBR層の反射ピーク波長)≦10nm…(1)
を満足するように、上記DBR層又は上記活性層を設計した請求項1又は2記載のLEDエピタキシャルウエハである。
In the invention of claim 3, the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer on the wafer outer peripheral side is:
−10 nm ≦ (emission peak wavelength of active layer) − (reflection peak wavelength of DBR layer) ≦ 10 nm (1)
The LED epitaxial wafer according to claim 1, wherein the DBR layer or the active layer is designed so as to satisfy the above.

請求項4の発明は、上記基板がGaAs基板、上記活性層が(Alx1Ga1-x1y1In1-y1Pウェル層(0≦x1≦0.5、0.4≦y1≦0.6)と(Alx2Ga1-x2y2In1-y2Pバリア層(0<x2≦1、x1<x2、0.4≦y2≦0.6)を重ね合わせた単位半導体を繰り返し積層した多重量子井戸(MQW)構造、上記DBR層がAlx3Ga1-x3As(0≦x3≦0.6)半導体とAlInP半導体を重ね合わせた単位半導体を繰り返し積層した多層構造である請求項1から3いずれかに記載のLEDエピタキシャルウエハである。 According to a fourth aspect of the invention, the substrate is a GaAs substrate, and the active layer is an (Al x1 Ga 1 -x1) y1 In 1 -y1 P well layer (0 ≦ x1 ≦ 0.5, 0.4 ≦ y1 ≦ 0. 6) and (it was Al x2 Ga 1-x2) Repeat y2 In 1-y2 P barrier layer (0 <x2 ≦ 1, x1 < unit semiconductor which has x2,0.4 ≦ y2 ≦ 0.6) the superposed laminated 2. A multiple quantum well (MQW) structure, wherein the DBR layer has a multilayer structure in which unit semiconductors in which an Al x3 Ga 1-x3 As (0 ≦ x3 ≦ 0.6) semiconductor and an AlInP semiconductor are stacked are repeatedly stacked. 3. The LED epitaxial wafer according to any one of 3 above.

請求項5の発明は、請求項1から4いずれかに記載のLEDエピタキシャルウエハを用いて製造したことを特徴とするLEDである。   The invention according to claim 5 is an LED manufactured using the LED epitaxial wafer according to any one of claims 1 to 4.

本発明に従えば、ウエハ面内の輝度特性分布が一様なLEDエピタキシャルウエハを製造することが可能となる。   According to the present invention, it is possible to manufacture an LED epitaxial wafer having a uniform luminance characteristic distribution in the wafer surface.

以下、本発明の実施の形態を添付図面に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係るLEDエピタキシャルウエハの、ウエハ面内における活性層の発光波長分布とDBR層の反射波長分布を図1に示す。   FIG. 1 shows the emission wavelength distribution of the active layer and the reflection wavelength distribution of the DBR layer in the wafer plane of the LED epitaxial wafer according to the preferred embodiment of the present invention.

本実施の形態に係るLEDエピタキシャルウエハの層構造は、図2に示した基板2の上面に、順に、n−バッファ層3、DBR層4、n−クラッド層5、活性層6、p−クラッド層7、p−電流拡散層8、p−コンタクト層(光取出し面)9を設けたものである。   The layer structure of the LED epitaxial wafer according to the present embodiment is such that an n-buffer layer 3, a DBR layer 4, an n-clad layer 5, an active layer 6, and a p-clad are formed on the upper surface of the substrate 2 shown in FIG. A layer 7, a p-current diffusion layer 8, and a p-contact layer (light extraction surface) 9 are provided.

基板2はGaAs基板、活性層6はアンドープのGaInP半導体とAlGaInP半導体を重ね合わせた単位半導体を1ペアとし、そのペアを繰り返し積層した多層構造、DBR層4はSiドープのGaAs半導体とAlInP半導体を重ね合わせた単位半導体を1ペアとし、そのペアを繰り返し積層した多層構造で構成される。   The substrate 2 is a GaAs substrate, the active layer 6 is a multi-layered structure in which unit semiconductors obtained by superimposing undoped GaInP semiconductors and AlGaInP semiconductors are stacked, and the DBR layer 4 is composed of Si-doped GaAs semiconductors and AlInP semiconductors. The stacked unit semiconductors constitute one pair, and are configured in a multilayer structure in which the pairs are repeatedly stacked.

DBR層4は、図1に示すように、ウエハ外周側で、DBR層4の反射波長が活性層6の発光波長に合うよう、すなわち、活性層6の発光波長とDBR層4の反射波長の差がウエハ外周側で最小となるよう設計されており、具体的には、
−10nm≦(活性層の発光ピーク波長)−(DBR層の反射ピーク波長)≦10nm…(1)
を満たすように設計される。この時、ウエハ中心での活性層6の発光波長とDBR層4の反射波長の波長差も上式(1)を満たしており、最大波長差は10nm以下である。
As shown in FIG. 1, the DBR layer 4 is arranged so that the reflection wavelength of the DBR layer 4 matches the emission wavelength of the active layer 6 on the wafer outer peripheral side, that is, the emission wavelength of the active layer 6 and the reflection wavelength of the DBR layer 4. The difference is designed to be the smallest on the outer periphery side of the wafer.
−10 nm ≦ (emission peak wavelength of active layer) − (reflection peak wavelength of DBR layer) ≦ 10 nm (1)
Designed to meet. At this time, the wavelength difference between the emission wavelength of the active layer 6 and the reflection wavelength of the DBR layer 4 at the wafer center also satisfies the above equation (1), and the maximum wavelength difference is 10 nm or less.

本実施の形態に係るLEDエピタキシャルウエハを用い、その基板2の下面に第1電極層(図示せず)を、p−コンタクト層9の上面に第2電極層(図示せず)を設けた後、フォトリソグラフィ工程及びエッチング工程を経て第1電極1及び第2電極10を形成し、その後、ダイシング工程を経てチップ化し、各チップとフレームをワイヤボンディングで配線した後、樹脂でモールドすることでLEDが得られる。   After the LED epitaxial wafer according to the present embodiment is used, the first electrode layer (not shown) is provided on the lower surface of the substrate 2 and the second electrode layer (not shown) is provided on the upper surface of the p-contact layer 9. The first electrode 1 and the second electrode 10 are formed through a photolithography process and an etching process, and then a chip is formed through a dicing process. Each chip and a frame are wired by wire bonding, and then molded by resin. Is obtained.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

先ず、DBR層4の層厚と反射波長、及び活性層6の層厚と発光波長の関係について説明する。   First, the relationship between the layer thickness and reflection wavelength of the DBR layer 4 and the layer thickness and emission wavelength of the active layer 6 will be described.

a)DBR層について
DBR層4を構成するエピタキシャル層の層厚dは、
層厚d=反射させたい波長λ/(4×エピタキシャル層の屈折率n)…(2)
という関係式で表される。
a) DBR layer The layer thickness d of the epitaxial layer constituting the DBR layer 4 is:
Layer thickness d = wavelength λ / (4 × refractive index n of epitaxial layer) to be reflected (2)
It is expressed by the relational expression.

よって、ウエハ外周側のエピタキシャル層の層厚dが、結晶成長の回数を重ねることによって薄層化するにつれて、反射させたい波長λの値も小さくなっていく。ここで、LEDの発光波長が、上式(2)の反射させたい波長λと合っていなければ、DBR層4がLEDの反射膜として有効に作用しないので、LEDの発光出力が低下することになる。   Therefore, as the layer thickness d of the epitaxial layer on the outer peripheral side of the wafer is reduced by increasing the number of times of crystal growth, the value of the wavelength λ to be reflected also decreases. Here, if the light emission wavelength of the LED does not match the wavelength λ desired to be reflected in the above equation (2), the DBR layer 4 does not function effectively as a reflective film of the LED, so that the light emission output of the LED is reduced. Become.

b)活性層について
多重量子井戸(MQW)からなる活性層6であれば、層厚と発光波長に相関関係がある。MQWは、ウエル層とバリア層(ウエル層よりもバンドギャップ大)と呼ばれる2つのエピタキシャル層を交互に積層した構成からなり、ウエル層の層厚を薄層化していくと短波長になり、厚層化していくと長波長になる。
b) Active layer In the case of the active layer 6 made of multiple quantum wells (MQW), there is a correlation between the layer thickness and the emission wavelength. The MQW has a structure in which two epitaxial layers called a well layer and a barrier layer (having a larger band gap than the well layer) are alternately stacked. When the thickness of the well layer is reduced, the wavelength becomes shorter. The longer the layer, the longer the wavelength.

ここで、例えば全体的にDBR層4及び活性層6の各エピタキシャル層が薄くなる場合を考える。DBR層4を構成するエピタキシャル層の層厚が5%薄くなると、DBR層4の反射波長が30nmほど短波長側にシフトする(上式(2)でλ=560〜650nmとし、層厚が5%薄くなった時)。一方、活性層6を構成するエピタキシャル層の層厚が5%薄くなったとしても、活性層6の発光波長が短波長側にシフトするのはせいぜい数nmである。これらの理由により、結晶成長の回数を重ねることにより、DBR層4及び活性層6の各エピタキシャル層の層厚が当初の設計よりもずれて薄くなると、ウエハ外周側で活性層6の発光波長とDBR層4の反射波長の乖離が大きくなってしまい、LEDの発光出力が低下してしまう。例えば、図2に示したホルダ12にデポが付着することで、ウエハ外周側でのMO、ガスの供給が少なくなり、ウエハ外周側の層厚が薄くなるが、その影響は、図1に示すように、DBR層4の反射波長の方が、活性層6の発光波長よりも受けやすい。その結果、ウエハ中心で発光波長を設計したウエハでは、デポの付着が進むと、DBR層4の反射ピーク波長がウエハ外周側で短波となり、設計値より最も外れることになる。   Here, for example, consider a case where the epitaxial layers of the DBR layer 4 and the active layer 6 become thin as a whole. When the layer thickness of the epitaxial layer constituting the DBR layer 4 is reduced by 5%, the reflection wavelength of the DBR layer 4 is shifted to the short wavelength side by about 30 nm (λ = 560 to 650 nm in the above equation (2), and the layer thickness is 5 % When thinned). On the other hand, even if the thickness of the epitaxial layer constituting the active layer 6 is reduced by 5%, the emission wavelength of the active layer 6 is shifted to the short wavelength side at most several nm. For these reasons, if the thickness of each epitaxial layer of the DBR layer 4 and the active layer 6 becomes thinner than the original design by increasing the number of times of crystal growth, the emission wavelength of the active layer 6 on the outer peripheral side of the wafer The deviation of the reflection wavelength of the DBR layer 4 increases, and the light emission output of the LED decreases. For example, the deposition of the deposit on the holder 12 shown in FIG. 2 reduces the supply of MO and gas on the wafer outer peripheral side, and the layer thickness on the wafer outer peripheral side becomes thinner. The influence is shown in FIG. As described above, the reflection wavelength of the DBR layer 4 is more easily received than the emission wavelength of the active layer 6. As a result, in a wafer whose emission wavelength is designed at the center of the wafer, when deposition of deposits progresses, the reflection peak wavelength of the DBR layer 4 becomes a short wave on the outer peripheral side of the wafer, and is far from the design value.

そこで、本実施の形態に係るLEDエピタキシャルウエハは、活性層6の発光波長をウエハ中心で設計し、また、DBR層4の反射波長をウエハ外周側の活性層6の発光波長に合わせて設計することで、LEDエピタキシャルウエハ面内で輝度分布が均一になるようにしている。   Therefore, in the LED epitaxial wafer according to the present embodiment, the emission wavelength of the active layer 6 is designed at the center of the wafer, and the reflection wavelength of the DBR layer 4 is designed according to the emission wavelength of the active layer 6 on the outer periphery side of the wafer. Thus, the luminance distribution is made uniform in the LED epitaxial wafer surface.

具体的には、DBR層4の反射波長をウエハ外周側の活性層6の発光波長に合わせて設計し、かつ、ウエハ中心の活性層6の発光波長とDBR層4の反射波長の差を10nm以下とすることが、ウエハ面内の輝度分布を一定にする上で最適な条件となる。   Specifically, the reflection wavelength of the DBR layer 4 is designed to match the emission wavelength of the active layer 6 on the outer peripheral side of the wafer, and the difference between the emission wavelength of the active layer 6 at the wafer center and the reflection wavelength of the DBR layer 4 is 10 nm. The following conditions are optimum conditions for making the luminance distribution in the wafer surface constant.

このように、DBR層4の反射波長をウエハ外周側の活性層6の発光波長に合わせて設計することで、結晶成長の回数を重ねて、本来なら輝度のウエハ面内分布が悪化するデポ厚の領域であっても、ウエハの外周側で最適な反射条件が得られようになるため、ホルダにデポが付着することに伴うウエハ外周側の輝度低下分を補うことができる。したがって、輝度分布が一定なLEDエピタキシャルウエハを得ることができ、その結果、そのLEDエピタキシャルウエハを用いて製造した各LEDにおいては一定輝度が維持される。すなわち、輝度分布の均一性の高い本実施の形態に係るLEDエピタキシャルウエハを使用することで、エピタキシャルウエハ全面から所望の輝度レベル以上で、かつ、ウエハ面内の輝度均一性良くチップを取得することができ、チップ製造工程での輝度ランクの仕分け工程を省略することが可能となり、LEDの生産性が向上する。   In this way, by designing the reflection wavelength of the DBR layer 4 in accordance with the emission wavelength of the active layer 6 on the outer peripheral side of the wafer, the thickness of the deposit is deteriorated by increasing the number of times of crystal growth and originally deteriorating the luminance distribution in the wafer surface. Even in this region, since the optimum reflection condition can be obtained on the outer peripheral side of the wafer, it is possible to compensate for the decrease in luminance on the outer peripheral side of the wafer due to the deposition of the deposit on the holder. Therefore, an LED epitaxial wafer having a constant luminance distribution can be obtained. As a result, a constant luminance is maintained in each LED manufactured using the LED epitaxial wafer. That is, by using the LED epitaxial wafer according to the present embodiment having a high uniformity of luminance distribution, a chip can be obtained from the entire epitaxial wafer over the desired luminance level and with good luminance uniformity within the wafer surface. It is possible to omit the luminance rank sorting step in the chip manufacturing process, and the productivity of the LED is improved.

本実施の形態に係るLEDエピタキシャルウエハにおいては、DBR層4の反射波長をウエハ外周側の活性層6の発光波長に合わせて設計する場合を例に挙げて説明を行ったが、活性層6の発光波長をウエハ外周側のDBR層4の反射波長に合わせて設計することでも同様の効果が得られる。   In the LED epitaxial wafer according to the present embodiment, the case where the reflection wavelength of the DBR layer 4 is designed according to the emission wavelength of the active layer 6 on the outer peripheral side of the wafer has been described as an example. A similar effect can be obtained by designing the emission wavelength to match the reflection wavelength of the DBR layer 4 on the outer peripheral side of the wafer.

キャリア濃度1×1018cm-3、直径3インチのSiドープGaAs基板の上面に、先ず、キャリア濃度1×1018cm-3、膜厚200nm、SiドープGaAsからなるn−バッファ層を形成した。 Carrier concentration of 1 × 10 18 cm -3, the top surface of the Si-doped GaAs substrate of 3 inches in diameter, first, a carrier concentration of 1 × 10 18 cm -3, film thickness 200 nm, to form a Si-doped consisting GaAs n-buffer layer .

次に、そのn−バッファ層の上面に、キャリア濃度1×1018cm-3、膜厚45nmのSiドープGaAs半導体とキャリア濃度1×1018cm-3、膜厚50nmのSiドープAlInP半導体を重ね合わせた単位半導体を1ペアとし、そのペアを20ペア繰り返し積層してDBR層を形成した。そのDBR層の上面に、キャリア濃度5×1017cm-3、膜厚500nm、SiドープAlInPからなるn−クラッド層を形成した。 Next, the upper surface of the n- buffer layer, a carrier concentration of 1 × 10 18 cm -3, Si doped GaAs semiconductor and the carrier concentration of the film thickness 45nm 1 × 10 18 cm -3, the Si-doped AlInP semiconductor having a film thickness of 50nm One unit of the stacked unit semiconductors was used, and 20 pairs were repeatedly stacked to form a DBR layer. On the upper surface of the DBR layer, an n-cladding layer made of Si-doped AlInP with a carrier concentration of 5 × 10 17 cm −3 and a film thickness of 500 nm was formed.

次に、そのn−クラッド層の上面に、膜厚5nmのアンドープGaInP半導体と膜厚10nmのアンドープ(Al0.5Ga0.50.5In0.5P半導体を重ね合わせた単位半導体を1ペアとし、そのペアを50ペア繰り返し積層して活性層を形成した。 Next, a unit semiconductor in which an undoped GaInP semiconductor having a thickness of 5 nm and an undoped (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P semiconductor having a thickness of 10 nm are superposed on the upper surface of the n-cladding layer is taken as one pair. 50 pairs were repeatedly laminated to form an active layer.

その後、活性層の上面に、順に、キャリア濃度1×1018cm-3、膜厚500nm、ZnドープAlInPからなるp−クラッド層、キャリア濃度5×1018cm-3、膜厚10000nm、ZnドープGaPからなるp−電流拡散層、キャリア濃度1×1019cm-3、膜厚10nm、ZnドープGaAsからなるp−コンタクト層を形成し、エピタキシャルウエハ(直径3インチ)を作製した。このDBR層の反射波長のウエハ面内分布(Max−Min)は8nm、活性層の発光波長のウエハ面内分布(Max−Min)は3nmであった。 Thereafter, on the upper surface of the active layer, a p-cladding layer made of Zn-doped AlInP with a carrier concentration of 1 × 10 18 cm −3 and a film thickness of 500 nm, a carrier concentration of 5 × 10 18 cm −3 , a film thickness of 10000 nm and a Zn-doped layer. A p-current diffusion layer made of GaP, a carrier concentration of 1 × 10 19 cm −3 , a film thickness of 10 nm, and a p-contact layer made of Zn-doped GaAs were formed to produce an epitaxial wafer (3 inches in diameter). The reflection wavelength of the DBR layer in the wafer surface (Max-Min) was 8 nm, and the emission wavelength of the active layer in the wafer surface (Max-Min) was 3 nm.

得られたエピタキシャルウエハの層構造を表1に示す。   Table 1 shows the layer structure of the obtained epitaxial wafer.

Figure 2008147504
Figure 2008147504

このエピタキシャルウエハは、ウエハ外周側のDBR層の薄層化を見越した上で、かつ、ウエハ外周側の活性層の発光波長とDBR層の反射波長が合うようにDBR層の設計がなされているため、ウエハ中心及びウエハ外周側のどちらにおいても活性層の発光波長とDBR層反射波長の差が10nm以下と小さく、輝度分布は均一であった。   In this epitaxial wafer, the DBR layer is designed so that the DBR layer on the outer peripheral side of the epitaxial wafer is anticipated to be thin, and the emission wavelength of the active layer on the outer peripheral side of the wafer matches the reflection wavelength of the DBR layer. Therefore, the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer was as small as 10 nm or less at both the wafer center and the wafer outer peripheral side, and the luminance distribution was uniform.

本発明の好適一実施の形態に係るLEDエピタキシャルウエハの、ウエハ面内における活性層の発光波長分布とDBR層の反射波長分布を示す図である。It is a figure which shows the light emission wavelength distribution of the active layer in the wafer surface, and the reflection wavelength distribution of a DBR layer in the LED epitaxial wafer which concerns on suitable one Embodiment of this invention. DBR層を有するLEDの層構造を示す断面図である。It is sectional drawing which shows the layer structure of LED which has a DBR layer. MOVPE装置における反応炉(自公転炉)の縦断面図である。It is a longitudinal cross-sectional view of the reaction furnace (self-revolving converter) in a MOVPE apparatus. 図3の4−4線矢視図である。Fig. 4 is a view taken along line 4-4 in Fig. 3. 従来のLEDエピタキシャルウエハの、ウエハ面内における活性層の発光波長分布とDBR層の反射波長分布を示す図である。It is a figure which shows the light emission wavelength distribution of the active layer in the wafer surface, and the reflection wavelength distribution of a DBR layer in the conventional LED epitaxial wafer.

符号の説明Explanation of symbols

2 基板
4 DBR層
6 活性層
2 Substrate 4 DBR layer 6 Active layer

Claims (5)

基板上に、光を発するための活性層と、その活性層から発せられた光を取出すための光取出し面と、前記基板と前記活性層の間に設けられ、活性層から発せられた光を光取出し面側に反射させるためのDBR層とを設けたLEDエピタキシャルウエハにおいて、ウエハ外周側で、前記DBR層の反射波長が前記活性層の発光波長に合うようにDBR層を設計し、活性層の発光波長とDBR層の反射波長の差がウエハ外周側で最小となるように形成したことを特徴とするLEDエピタキシャルウエハ。   An active layer for emitting light, a light extraction surface for extracting light emitted from the active layer, and a light emitted from the active layer provided between the substrate and the active layer on the substrate. In an LED epitaxial wafer provided with a DBR layer for reflection on the light extraction surface side, the DBR layer is designed on the outer periphery side of the wafer so that the reflection wavelength of the DBR layer matches the emission wavelength of the active layer. An LED epitaxial wafer characterized in that the difference between the emission wavelength of light and the reflection wavelength of the DBR layer is minimized on the outer peripheral side of the wafer. 基板上に、光を発するための活性層と、その活性層から発せられた光を取出すための光取出し面と、前記基板と前記活性層の間に設けられ、活性層から発せられた光を光取出し面側に反射させるためのDBR層とを設けたLEDエピタキシャルウエハにおいて、ウエハ外周側で、前記活性層の発光波長が前記DBR層の反射波長に合うように活性層を設計し、活性層の発光波長とDBR層の反射波長の差がウエハ外周側で最小となるように形成したことを特徴とするLEDエピタキシャルウエハ。   An active layer for emitting light, a light extraction surface for extracting light emitted from the active layer, and a light emitted from the active layer provided between the substrate and the active layer on the substrate. In an LED epitaxial wafer provided with a DBR layer for reflection on the light extraction surface side, the active layer is designed so that the emission wavelength of the active layer matches the reflection wavelength of the DBR layer on the outer periphery side of the wafer. An LED epitaxial wafer characterized in that the difference between the emission wavelength of light and the reflection wavelength of the DBR layer is minimized on the outer peripheral side of the wafer. ウエハ外周側で、上記活性層の発光波長と上記DBR層の反射波長の差が、
−10nm≦(活性層の発光ピーク波長)−(DBR層の反射ピーク波長)≦10nm…(1)
を満足するように、上記DBR層又は上記活性層を設計した請求項1又は2記載のLEDエピタキシャルウエハ。
On the wafer outer peripheral side, the difference between the emission wavelength of the active layer and the reflection wavelength of the DBR layer is
−10 nm ≦ (emission peak wavelength of active layer) − (reflection peak wavelength of DBR layer) ≦ 10 nm (1)
The LED epitaxial wafer according to claim 1 or 2, wherein the DBR layer or the active layer is designed to satisfy the following.
上記基板がGaAs基板、上記活性層が(Alx1Ga1-x1y1In1-y1Pウェル層(0≦x1≦0.5、0.4≦y1≦0.6)と(Alx2Ga1-x2y2In1-y2Pバリア層(0<x2≦1、x1<x2、0.4≦y2≦0.6)を重ね合わせた単位半導体を繰り返し積層した多重量子井戸(MQW)構造、上記DBR層がAlx3Ga1-x3As(0≦x3≦0.6)半導体とAlInP半導体を重ね合わせた単位半導体を繰り返し積層した多層構造である請求項1から3いずれかに記載のLEDエピタキシャルウエハ。 The substrate is a GaAs substrate, the active layer is (Al x1 Ga 1-x1 ) y1 In 1 -y1 P well layer (0 ≦ x1 ≦ 0.5, 0.4 ≦ y1 ≦ 0.6) and (Al x2 Ga 1-x2 ) y2 In 1-y2 Multiple quantum well (MQW) structure in which unit semiconductors laminated with P barrier layers (0 <x2 ≦ 1, x1 <x2, 0.4 ≦ y2 ≦ 0.6) are repeatedly stacked 4. The LED according to claim 1, wherein the DBR layer has a multilayer structure in which a unit semiconductor in which an Al x3 Ga 1-x3 As (0 ≦ x3 ≦ 0.6) semiconductor and an AlInP semiconductor are stacked is repeatedly stacked. Epitaxial wafer. 請求項1から4いずれかに記載のLEDエピタキシャルウエハを用いて製造したことを特徴とするLED。   An LED manufactured using the LED epitaxial wafer according to claim 1.
JP2006334529A 2006-12-12 2006-12-12 LED epitaxial wafer and LED manufactured using the same Expired - Fee Related JP5205752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334529A JP5205752B2 (en) 2006-12-12 2006-12-12 LED epitaxial wafer and LED manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334529A JP5205752B2 (en) 2006-12-12 2006-12-12 LED epitaxial wafer and LED manufactured using the same

Publications (2)

Publication Number Publication Date
JP2008147504A true JP2008147504A (en) 2008-06-26
JP5205752B2 JP5205752B2 (en) 2013-06-05

Family

ID=39607325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334529A Expired - Fee Related JP5205752B2 (en) 2006-12-12 2006-12-12 LED epitaxial wafer and LED manufactured using the same

Country Status (1)

Country Link
JP (1) JP5205752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020177026A1 (en) * 2019-03-01 2020-09-10 厦门市三安光电科技有限公司 Light-emitting diode and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071820A (en) * 2006-09-12 2008-03-27 Stanley Electric Co Ltd Method for manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008071820A (en) * 2006-09-12 2008-03-27 Stanley Electric Co Ltd Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020177026A1 (en) * 2019-03-01 2020-09-10 厦门市三安光电科技有限公司 Light-emitting diode and manufacturing method therefor

Also Published As

Publication number Publication date
JP5205752B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN101017869B (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
US8816365B2 (en) Hybrid light emitting diode chip and light emitting diode device having the same, and manufacturing method thereof
JP2008288248A (en) Semiconductor light-emitting element
WO2010146390A2 (en) Light emitting diodes
JP4894411B2 (en) Semiconductor light emitting device
JP5032033B2 (en) Light emitting diode
JPWO2007136065A1 (en) Manufacturing method of semiconductor light emitting device
TWI495152B (en) Light emitting diode and method for producing the same
JP4911347B2 (en) Semiconductor light emitting device
WO2020196411A1 (en) Point source light emitting diode and method for manufacturing same
JP2008192790A (en) Light-emitting diode
CN103811614B (en) Light emitting element with hetero-material structure and manufacturing method thereof
KR101666836B1 (en) Growth technique for phosphor-free white light emitting diode
JP2006147787A (en) Light emitting element and its manufacturing method
TW201347226A (en) Light emitting diode and manufacturing method thereof
US11557698B2 (en) Conversion element and radiation-emitting semiconductor device comprising a conversion element of said type
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
JP2005005557A (en) Manufacturing method of semiconductor light emitting device
JP5205752B2 (en) LED epitaxial wafer and LED manufactured using the same
US6278139B1 (en) Semiconductor light-emitting diode
JP4710764B2 (en) Semiconductor light emitting device
JP2020109819A (en) Multiple wavelength light-emitting diode epitaxial structure
TWI484661B (en) Epitaxial wafer for light emitting diode
WO2017127958A1 (en) Optical pumping light-emitting device and preparation method for monolithic integrated optical pumping light-emitting device
JP6858899B2 (en) Point light source type light emitting diode and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees