JP2008145341A - Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method - Google Patents

Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method Download PDF

Info

Publication number
JP2008145341A
JP2008145341A JP2006334663A JP2006334663A JP2008145341A JP 2008145341 A JP2008145341 A JP 2008145341A JP 2006334663 A JP2006334663 A JP 2006334663A JP 2006334663 A JP2006334663 A JP 2006334663A JP 2008145341 A JP2008145341 A JP 2008145341A
Authority
JP
Japan
Prior art keywords
raw fish
calibration curve
fish body
quality
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006334663A
Other languages
Japanese (ja)
Inventor
Kenichi Kawasaki
賢一 川▲崎▼
Yasuyuki Tsukamasa
泰之 塚正
Masashi Ando
正史 安藤
Kanetetsu Fukuda
錦▲哲▼ 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN FOODS CO Ltd
Original Assignee
GREEN FOODS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN FOODS CO Ltd filed Critical GREEN FOODS CO Ltd
Priority to JP2006334663A priority Critical patent/JP2008145341A/en
Publication of JP2008145341A publication Critical patent/JP2008145341A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming raw fish body quality calibration curve and a raw fish body quality discrimination method capable of discriminating the quality of a raw fish body as a material for processing or cooking, in an easy and nondestructive manner, with high certainty. <P>SOLUTION: By carrying out multivariate analysis performed relative to a near infrared reflection spectrum of a raw fish body sample and a quality by sensory evaluation of a processed or cooked product of the raw fish body sample, one or two or more latent variables are derived, relative to the near infrared reflection spectrum of the raw fish body sample; and a calibration curve for discriminating the quality of the raw fish body as the material for processing or cooking, based on the near infrared reflection spectrum of the raw fish body is acquired; and the quality of the raw fish body is discriminated, by using the calibration curve based on the near infrared reflection spectrum of the raw fish body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種の加工又は調理の材料としての生魚体の品質判別ための生魚体品質検量線作成方法及び生魚体品質判別法に関する。   The present invention relates to a raw fish body quality calibration curve creation method and a raw fish body quality discrimination method for discriminating the quality of raw fish bodies as various processing or cooking materials.

加工食品の原料又は調理の材料として生魚を提供する場合、提供先において行われる加工や調理に適した生魚を予め選別することが望まれる。   When providing raw fish as a raw material of processed food or a cooking material, it is desired to select in advance a raw fish suitable for processing and cooking performed at the supplier.

従来は、このような選別は主に経験や勘に頼っていた。これに対し、魚体の品質を分析又は管理する技術としては、例えば、特開2004−78571号公報(特許文献1)記載の技術を挙げることができる。   Traditionally, such sorting has relied mainly on experience and intuition. On the other hand, as a technique for analyzing or managing the quality of a fish body, for example, a technique described in Japanese Patent Application Laid-Open No. 2004-78571 (Patent Document 1) can be given.

同公報には、漁獲魚体の肉質分析手段の例として、漁獲魚体を切断し、超音波装置やコンピュータ断層撮影装置によって、磁気判別・電気抵抗などにより判別し得る「色差、鮮度(K値)、脂肪含有率」を数値化することが記載されている。K値とは、((H×R+Hx)/(ATP+ADP+AMP+IMP+HxR+Hx))×100(%)で表されるHxRとHxの蓄積割合である。   In the same publication, as an example of a meat quality analysis means of a fish body, a fish body is cut, and can be discriminated by magnetic discrimination / electric resistance by an ultrasonic device or a computer tomography apparatus, such as “color difference, freshness (K value), It is described that the “fat content” is quantified. The K value is an accumulation ratio of HxR and Hx expressed by ((H × R + Hx) / (ATP + ADP + AMP + IMP + HxR + Hx)) × 100 (%).

この技術は加工前の魚体の品質を分析するものであるが、提供先において行われる加工や調理に適した生魚を予め選別するためのものではない。而も、漁獲魚体を切断して分析するものであって、非破壊的に分析を行なうものではない。
特開2004−78571号公報
This technique is to analyze the quality of fish before processing, but is not intended to preliminarily select raw fish suitable for processing and cooking performed at the supplier. However, the fish body is cut and analyzed, and not analyzed non-destructively.
JP 2004-78571 A

本発明者は、加工又は調理の材料としての生魚体の品質と、その水分含有率や脂肪含有率との対応性が高いことを見出し、近赤外線スペクトル分析により生魚体の水分含有率と脂肪含有率を推定して、加工又は調理の材料としての生魚体の品質を非破壊的に判別することを検討した。この方法によれば、加工又は調理の材料としての生魚体の品質を従来よりも確実に非破壊的に判別することができることがわかったが、より実用性を高めるには、更に確実性高く判別し得る手段が必要である。   The present inventor has found that the quality of raw fish as a processing or cooking material is highly compatible with its water content and fat content, and the water content and fat content of raw fish by near infrared spectrum analysis. We estimated the rate and examined non-destructively the quality of raw fish as a processing or cooking ingredient. According to this method, it was found that the quality of raw fish as a processing or cooking material can be determined more reliably and non-destructively than before, but in order to improve practicality, it is determined with higher certainty. There is a need for possible means.

本発明は、加工又は調理の材料としての生魚体の品質を、非破壊的に容易に而も確実性高く判別することができる生魚体品質検量線作成方法及び生魚体品質判別法を提供することを目的とする。   The present invention provides a raw fish quality calibration curve creation method and a raw fish quality discrimination method that can easily and non-destructively discriminate the quality of a raw fish body as a processing or cooking material. With the goal.

上記目的を達成する本発明の生魚体品質検量線作成方法は、
生魚体の近赤外線反射スペクトルに基づき生魚体の品質を判別する検量線を作成する方法であって、
生魚体サンプルの近赤外線反射スペクトルと、その生魚体サンプルの加工又は調理品の官能評価による品質に関し、多変量解析を行うことにより、生魚体サンプルの近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して加工又は調理の材料としての生魚体の品質を判別する検量線を得るものである。
The raw fish body quality calibration curve creation method of the present invention that achieves the above object
A method for creating a calibration curve for determining the quality of a raw fish based on the near-infrared reflection spectrum of the raw fish,
By conducting a multivariate analysis on the near-infrared reflectance spectrum of a raw fish sample and the quality of the raw fish sample processed or cooked products, one or more potential in the near-infrared reflectance spectrum of the raw fish sample A calibration curve for determining the quality of raw fish as a material for processing or cooking by deriving variables is obtained.

生魚体サンプルの近赤外線反射スペクトルと、その生魚体サンプルの加工又は調理品の官能評価による品質に関し、多変量解析を行うことにより、生魚体サンプルの近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して加工又は調理の材料としての生魚体の品質を判別する検量線を作成することによって、生魚体の近赤外線反射スペクトルと加工又は調理の材料としての生魚体の品質との間に高い相関係数を有する検量線が得られる。   By conducting a multivariate analysis on the near-infrared reflectance spectrum of a raw fish sample and the quality of the raw fish sample processed or cooked products, one or more potential in the near-infrared reflectance spectrum of the raw fish sample By creating a calibration curve that derives variables and discriminates the quality of raw fish as a processing or cooking material, between the near-infrared reflectance spectrum of the raw fish and the quality of the raw fish as a processing or cooking material A calibration curve with a high correlation coefficient is obtained.

この作成方法により作成された検量線を用いることにより、生魚体の近赤外線反射スペクトルに基づき、生魚体に損傷や悪影響を与えることなく、加工又は調理の材料としての生魚体の品質を容易に而も確実性高く判別することができる。   By using the calibration curve created by this production method, the quality of the raw fish body as a processing or cooking material can be easily determined based on the near-infrared reflection spectrum of the raw fish body without damaging or adversely affecting the raw fish body. Can be determined with high certainty.

本発明の生魚体品質検量線作成方法は、上記の生魚体サンプルの加工又は調理品の官能評価による品質が、複数の等級のうち何れであるかを判定するパネルの官能評価により判定される品質であり、
前記パネルを構成する各パネリストによる前記判定は、各等級に該当する標準的な加工又は調理品を全パネリストに共通の基準とする判定であることが好ましい。
The raw fish quality calibration curve creation method of the present invention is the quality determined by sensory evaluation of the panel for determining which of the plurality of grades is the quality of the raw fish sample processed or the sensory evaluation of the cooked product. And
The determination by each panelist constituting the panel is preferably a determination that uses a standard processed or cooked product corresponding to each grade as a standard common to all panelists.

生魚体サンプルの加工又は調理品の官能評価による品質が、複数の等級のうち何れであるかを判定するパネルの官能評価により判定される品質であり、パネルを構成する各パネリストによる判定が、各等級に該当する標準的な加工又は調理品を全パネリストに共通の基準とする判定であるものとすることによって、より精度の良い検量線が得られる。   The quality of the raw fish sample processed or sensory evaluation of the cooked product is the quality determined by the sensory evaluation of the panel to determine which is a plurality of grades, and the determination by each panelist constituting the panel is A calibration curve with higher accuracy can be obtained by determining that the standard process or cooked product corresponding to the grade is a standard common to all panelists.

また、本発明の生魚体品質検量線作成方法は、上記近赤外線反射スペクトルが、生魚体サンプルのうち腹腔の影響を排除できる部位についての近赤外線反射スペクトルであることが好ましい。   Moreover, it is preferable that the said near-infrared reflectance spectrum is a near-infrared reflectance spectrum about the site | part which can exclude the influence of an abdominal cavity among raw fish body samples.

近赤外線反射スペクトルを、生魚体サンプルのうち腹腔の影響を排除できる部位についての近赤外線反射スペクトルとすることによって、より精度の良い検量線が得られる。   A calibration curve with higher accuracy can be obtained by using the near-infrared reflection spectrum as a near-infrared reflection spectrum for a portion of the raw fish sample that can eliminate the influence of the abdominal cavity.

また、本発明の生魚体品質検量線作成方法は、上記近赤外線反射スペクトルが、生魚体サンプルのうち肛門より後ろの腹側についての近赤外線反射スペクトルであることが好ましい。   Moreover, it is preferable that the said near-infrared reflection spectrum is a near-infrared reflection spectrum about the abdominal side after an anus among raw fish body samples.

近赤外線反射スペクトルを、生魚体サンプルのうち肛門より後ろの腹側についての近赤外線反射スペクトルとすることによって、より精度の良い検量線が得られる。   A calibration curve with higher accuracy can be obtained by using the near-infrared reflection spectrum as the near-infrared reflection spectrum for the ventral side behind the anus in the raw fish body sample.

また、本発明の生魚体品質検量線作成方法は、上記多変量解析が、PLS、PCR、PCA又はMRAによるものであることが好ましい。   In the method for preparing a raw fish quality calibration curve of the present invention, the multivariate analysis is preferably performed by PLS, PCR, PCA or MRA.

多変量解析を、PLS(Partial Least Squares)、PCR(Principal Component Regression)、PCA(Principal Component Analysis)又はMRA(Multiple Regression Analysis)によるものとすることによって、より精度の良い検量線が得られる。   By performing multivariate analysis by PLS (Partial Least Squares), PCR (Principal Component Regression), PCA (Principal Component Analysis) or MRA (Multiple Regression Analysis), a more accurate calibration curve can be obtained.

また、本発明の生魚体品質検量線作成方法は、加工又は調理の方法を複数種有し、複数種の加工又は調理の方法のそれぞれについて検量線を得るものとすることが好ましい。   Moreover, it is preferable that the raw fish body quality calibration curve preparation method of the present invention has a plurality of types of processing or cooking methods, and obtains a calibration curve for each of the plurality of types of processing or cooking methods.

加工又は調理の方法を複数種有する場合、複数種の加工又は調理の方法のそれぞれについて検量線を得ることにより、加工又は調理の方法ごとに、加工又は調理の材料としての生魚体の品質を判別することができる。   When there are multiple types of processing or cooking methods, by obtaining a calibration curve for each of the multiple types of processing or cooking methods, the quality of the raw fish body as a processing or cooking material is determined for each processing or cooking method can do.

また、本発明の生魚体品質検量線作成方法は、加工又は調理の方法が、煮込み、焼き及び揚げから選ばれたものとすることができる。   In the raw fish body quality calibration curve creation method of the present invention, the processing or cooking method may be selected from stew, grill and fried.

また、本発明の生魚体品質検量線作成方法は、生魚体を体重により複数のグループに分類し、それらのグループのうち1又は2以上のグループについて検量線を作成するものとすることができる。   In addition, the raw fish body quality calibration curve creation method of the present invention can classify live fish bodies into a plurality of groups based on body weight, and create a calibration curve for one or more of these groups.

生魚体を体重により複数のグループに分類し、それらのグループのうち1又は2以上のグループについて検量線を作成することにより、すなわち、各グループに属する生魚体サンプルの近赤外線反射スペクトルと、その生魚体サンプルの加工又は調理品の官能評価による品質に関し、多変量解析を行うことにより、そのグループに属する生魚体サンプルの近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して加工又は調理の材料としてのそのグループに属する生魚体の品質を判別する検量線を得る。これによって、より精度の良い検量線が得られる。   By classifying raw fish bodies into a plurality of groups based on body weight and creating a calibration curve for one or more of these groups, that is, near-infrared reflectance spectra of raw fish samples belonging to each group, and the raw fish With regard to the quality of processed body samples or sensory evaluation of cooked products, multivariate analysis is performed to derive one or more latent variables for the near-infrared reflectance spectra of raw fish samples belonging to the group, and to process or cook A calibration curve is obtained for discriminating the quality of raw fish belonging to the group as the material of the fish. As a result, a more accurate calibration curve can be obtained.

また、本発明の生魚体品質検量線作成方法は、生魚体サンプルの加工又は調理品の官能評価を複数種有し、複数種の官能評価のそれぞれについて検量線を得るものとすることが好ましい。   Moreover, it is preferable that the raw fish body quality calibration curve preparation method of the present invention has a plurality of types of sensory evaluation of processed raw fish samples or cooked products, and obtains a calibration curve for each of the plurality of types of sensory evaluation.

生魚体サンプルの加工又は調理品の官能評価を複数種有する場合、複数種の官能評価のそれぞれについて検量線を得ることにより、官能評価ごとに、加工又は調理の材料としての生魚体の品質を判別することができる。   When there are multiple types of sensory evaluation of raw fish sample processing or cooked products, the quality of raw fish as a material for processing or cooking is determined for each sensory evaluation by obtaining a calibration curve for each of the multiple types of sensory evaluation can do.

また、本発明の生魚体品質検量線作成方法は、生魚体サンプルの加工又は調理品の官能評価が、旨み、柔らかさ、脂ののり、及び総合から選ばれたものとすることができる。   Moreover, the raw fish body quality calibration curve preparation method of the present invention may be such that processing of raw fish body samples or sensory evaluation of cooked products is selected from umami, softness, greasy paste, and synthesis.

また、本発明の生魚体品質検量線作成方法は、上記生魚体の近赤外線反射スペクトルに加えて生魚体についての非破壊測定の値に基づき、加工又は調理の材料としての生魚体の品質を判別する検量線を得るものとすることが好ましい。   In addition, the raw fish body quality calibration curve creation method of the present invention determines the quality of the raw fish body as a processing or cooking material based on the value of the non-destructive measurement of the raw fish body in addition to the near-infrared reflection spectrum of the raw fish body. It is preferable to obtain a calibration curve.

生魚体の近赤外線反射スペクトルに加えて生魚体についての非破壊測定の値に基づき、加工又は調理の材料としての生魚体の品質を判別する検量線を得ることによって、すなわち、生魚体の近赤外線反射スペクトルと生魚体についての非破壊測定の値を説明変数とし、加工又は調理の材料としての生魚体の品質を目的変数とすることによって、より精度の良い検量線が得られる。   By obtaining a calibration curve that distinguishes the quality of raw fish as a processing or cooking material based on the non-destructive measurement values of the raw fish in addition to the near-infrared reflection spectrum of the raw fish, that is, the near-infrared of the raw fish A calibration curve with higher accuracy can be obtained by using the reflection spectrum and the value of the nondestructive measurement of the raw fish body as explanatory variables and the quality of the raw fish body as a processing or cooking material as the objective variable.

上記本発明の生魚体品質検量線作成方法は、上記生魚体がアナゴの魚体であることが好ましい。   In the raw fish body quality calibration curve creating method of the present invention, the raw fish body is preferably a fish of an anago.

本発明の生魚体品質判別法は、
生魚体の近赤外線反射スペクトルに基づき検量線を用いて生魚体の品質を判別する方法であって、
前記検量線が、上記本発明の生魚体品質検量線作成方法の何れかにより得られた検量線である。
The raw fish body quality discrimination method of the present invention is
A method for determining the quality of a raw fish body using a calibration curve based on the near-infrared reflection spectrum of the raw fish body,
The calibration curve is a calibration curve obtained by any one of the methods for creating a raw fish quality calibration curve of the present invention.

本発明の生魚体品質検量線作成方法によれば、生魚体の近赤外線反射スペクトルと加工又は調理の材料としての生魚体の品質との間に高い相関係数を有する検量線が得られる。この検量線を用いることにより、生魚体の近赤外線反射スペクトルに基づき、生魚体に損傷や悪影響を与えることなく、加工又は調理の材料としての生魚体の品質を、非破壊的に容易に而も確実性高く判別することができる。   According to the method for preparing a raw fish quality calibration curve of the present invention, a calibration curve having a high correlation coefficient between the near-infrared reflection spectrum of the raw fish and the quality of the raw fish as a processing or cooking material can be obtained. By using this calibration curve, based on the near-infrared reflection spectrum of the raw fish body, the quality of the raw fish body as a processing or cooking material can be easily and non-destructively processed without damaging or adversely affecting the raw fish body. The determination can be made with high certainty.

本発明の生魚体品質判別法によれば、生魚体の近赤外線反射スペクトルに基づき、生魚体に損傷や悪影響を与えることなく、加工又は調理の材料としての生魚体の品質を容易に而も確実性高く判別することができる。   According to the raw fish body quality discrimination method of the present invention, the quality of the raw fish body as a processing or cooking material can be easily and reliably determined based on the near-infrared reflection spectrum of the raw fish body without damaging or adversely affecting the raw fish body. It is possible to discriminate highly.

(1)生魚体
本発明の生魚体品質検量線作成方法により作成される検量線及びその検量線を用いる本発明の生魚体品質判別法は、養殖魚に比し品質のばらつきが大きい天然魚の判別において特に効果的に利用することができる。尤も、本発明の対象となる生魚体は、天然魚に限るものではない。
(1) Raw fish body The calibration curve created by the raw fish body quality calibration curve creation method of the present invention and the live fish body quality discrimination method of the present invention using the calibration curve are used to discriminate natural fish with large variations in quality compared to cultured fish. Can be used particularly effectively. However, the raw fish body that is the subject of the present invention is not limited to natural fish.

生魚体は、即殺した生の魚体を含む他、生きているものも除外されない。本発明における加工又は調理の材料としての生魚体としては、即殺後に内臓を除去して開いた魚体も含む。   Live fish includes live fish killed immediately, and live fish are not excluded. The raw fish body as a material for processing or cooking in the present invention includes a fish body that has been opened by removing the internal organs after immediate killing.

検量線作成のための生魚体サンプルの状態は、判別対象とする生魚体の状態に合致することが好ましい。   It is preferable that the state of the raw fish body sample for preparing the calibration curve matches the state of the raw fish body to be discriminated.

加工又は調理の材料としての生魚体品質検量線作成及び品質判別の対象とする生魚体は必ずしも限定されず、アナゴ、ウナギ等を挙げることができる。好ましいものの具体例としてはアナゴを挙げることができる。特に天然のアナゴである。   The raw fish body which is the target of raw fish quality calibration curve creation and quality discrimination as a processing or cooking material is not necessarily limited, and examples include anago and eel. Specific examples of preferable ones include anago. Especially natural anago.

アナゴの例としては、メダマアナゴ、ゴテンアナゴ、ハナアナゴ、クロアナゴ、マアナゴ、ギンアナゴ、ヒモアナゴ、アイアナゴ等のアナゴ科魚類を挙げることができる。本発明において好ましいアナゴとしては、マアナゴを挙げることができる。
(2)近赤外線反射スペクトル
Examples of the coral fish include the coral fishes such as the coral fish, the coral fish, the coral fish, the black coral fish, the coral fish, the sea coral fish, the catfish, the coral fish, and the like. In the present invention, an example of a preferred locust is a giant locust.
(2) Near-infrared reflection spectrum

検量線作成のための生魚体サンプル及び品質判別対象である生魚体の近赤外線反射スペクトルの測定に用いる近赤外線の波長は、例えば600−2500nmの何れも可能である。好ましくは1000nm以上、より好ましくは1100nm以上であり、例えば1100−2000nmとすることができる。可視部から1000nmまでの近赤外線を用いることも可能だが、その場合は、精度を高める上で測定部位について遮光することが望ましい。近赤外線反射スペクトルの測定は、オンラインで連続処理するには生魚体に対し非接触で行なうことが望ましい。その意味でも、遮光を要せずとも良好な測定精度が得られる1000nm以上(より好ましくは1100nm以上)の波長の近赤外線を用いることが好ましい。   The near-infrared wavelength used for the measurement of the near-infrared reflection spectrum of the raw fish sample for preparing a calibration curve and the raw fish body that is the object of quality discrimination can be, for example, 600 to 2500 nm. Preferably it is 1000 nm or more, More preferably, it is 1100 nm or more, for example, can be set to 1100-2000 nm. Although it is possible to use near infrared rays from the visible portion to 1000 nm, in that case, it is desirable to shield the measurement site from light in order to improve accuracy. It is desirable to measure the near-infrared reflection spectrum in a non-contact manner with respect to the live fish body for online processing. In that sense, it is preferable to use near infrared rays having a wavelength of 1000 nm or more (more preferably 1100 nm or more), which can obtain good measurement accuracy without requiring light shielding.

また、近赤外線反射スペクトルの測定に用いる近赤外線の波長は、測定波長範囲において所定の一定波長間隔又は可変波長間隔毎の波長とすることができる。例えば、測定に用いる範囲が1000−2000nmである場合において1乃至5nm程度の一定間隔毎の波長である。   Further, the near infrared wavelength used for the measurement of the near infrared reflection spectrum can be set to a predetermined wavelength interval or a variable wavelength interval in the measurement wavelength range. For example, when the range used for measurement is 1000 to 2000 nm, the wavelength is a constant interval of about 1 to 5 nm.

生魚体の近赤外線反射スペクトルは、原スペクトルを用いるほか、フーリエ変換により得られるスペクトル、一次微分や二次微分等の波形処理を行ったものなどのように、前処理を施したものを用いてもよい。   The near-infrared reflection spectrum of a raw fish body uses not only the original spectrum but also a spectrum obtained by Fourier transform, and a pre-processed one such as a waveform obtained by waveform processing such as first and second derivatives. Also good.

また、検量線作成のための生魚体サンプル及び品質判別対象である生魚体についての近赤外線反射スペクトルの測定は、精度をより良くする上で、腹腔の影響を排除できる部位について行うことが好ましい。より好ましくは、肛門より後方の部分、特に腹側である。更に好ましくは、肛門より後方部分のうち前半部分の腹側である。腹腔付近は良好な分析結果が得られ難い。生魚体の肛門より後方の部分における広い範囲又は分散した複数箇所について測定を行なうことによって、より良い精度の分析結果を得ることが可能であり、測定可能範囲が広いためオンライン測定にも適する。肛門より前(頭側)の部分について測定を行なう場合は、背側の狭い範囲に測定域を限定しなければ、よい分析の精度が得られ難い。而も、範囲が狭いため、オンライン測定に適するとは言えず、精度をより良いものとすることが困難である。
(3)加工又は調理
Moreover, it is preferable to measure the near-infrared reflection spectrum of the raw fish body sample for preparing the calibration curve and the raw fish body that is the object of quality discrimination for a part that can eliminate the influence of the abdominal cavity in order to improve accuracy. More preferably, it is the part behind the anus, especially the ventral side. More preferably, it is the ventral side of the first half part of the rear part from the anus. Good analysis results are difficult to obtain near the abdominal cavity. It is possible to obtain an analysis result with better accuracy by measuring a wide range or a plurality of dispersed points in the rear part of the anus of the raw fish body, and it is also suitable for online measurement because the measurable range is wide. When the measurement is performed on the part in front of the anus (head side), it is difficult to obtain good analysis accuracy unless the measurement range is limited to a narrow range on the back side. However, since the range is narrow, it cannot be said that it is suitable for online measurement, and it is difficult to improve the accuracy.
(3) Processing or cooking

生魚体を材料として行なわれる加工又は調理は特に限定されず、例えば、煮、揚(天ぷらを含む)、焼、炒等、並びに、更に特定した加工又は調理を対象とすることができる。   Processing or cooking performed using raw fish as a material is not particularly limited, and for example, boiled, fried (including tempura), grilled, fried, etc., and further specified processing or cooking can be targeted.

アナゴについての生魚体を材料とする加工又は調理品の例としては、煮アナゴ、焼きアナゴ、天ぷらアナゴ等を挙げることができる。特に好ましいのは煮アナゴである。煮アナゴは、例えば、未加工アナゴを、脊髄切断(血抜き)、背びれ除去、二枚開き、頭部切断、小骨除去、洗浄(ヌメリ除去)を経た上で、釜にてタレで煮込むことにより製造することができる。
(4)官能評価
Examples of processed or cooked foods made from raw fish for the fish include boiled fish, grilled fish, tempura fish, and the like. Particularly preferred is boiled anago. Boiled sea eels, for example, by simmering raw sea eels with spinal cord cutting (bleeding), dorsal fin removal, double-opening, head cutting, bone removal, washing (removing slime), and then boiling in a saucer Can be manufactured.
(4) Sensory evaluation

生魚体サンプルの加工又は調理品の官能評価による品質は、複数の等級(例えば3乃至7の等級、好ましくは4乃至6の等級)のうち何れであるかを判定するパネルの官能評価により判定されるものとすることができる。更に、パネルを構成する各パネリストによる前記判定は、パネリスト間の判定基準のばらつきを低減させるために、各自の基準による判定ではなく、各等級に該当する標準的な加工又は調理品を全パネリストに共通の基準とする判定とすることができる。   The quality of processed raw fish samples or sensory evaluation of cooked foods is determined by sensory evaluation of the panel that determines which of the multiple grades (eg, grades 3-7, preferably grades 4-6). Can be. Furthermore, the above-mentioned determination by each panelist constituting the panel is not based on the determination based on each of the individual standards but to reduce the variation of the determination standards among the panelists to all panelists. It can be determined as a common reference.

生魚体サンプルの加工又は調理品の官能評価は、複数種(例えば旨み、柔らかさ、脂ののり、及び総合等)の何れか1又は2以上についてそれぞれ行うものとすることができ、複数種の官能評価のそれぞれについて検量線を得るものとすることができる。
(5)多変量解析
Processing of raw fish samples or sensory evaluation of cooked products can be performed for any one or more of a plurality of types (for example, umami, softness, greasy paste, synthesis, etc.). A calibration curve can be obtained for each sensory evaluation.
(5) Multivariate analysis

生魚体サンプル(できるだけ多数であることが好ましい)の近赤外線反射スペクトルと、その生魚体サンプルの加工又は調理品の官能評価による品質に関し、多変量解析を行うことにより、生魚体サンプルの近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して、生魚体の近赤外線反射スペクトル(説明変数)に基づき加工又は調理の材料としての生魚体の品質(目的変数)を判別する検量線を得る。   The near-infrared reflection spectrum of a raw fish sample by performing multivariate analysis on the near-infrared reflectance spectrum of a raw fish sample (preferably as many as possible) and the quality of the raw fish sample processed or sensory evaluation of the cooked product One or more potential variables are derived for the spectrum, and a calibration curve is obtained for discriminating the quality (objective variable) of the raw fish body as a processing or cooking material based on the near-infrared reflection spectrum (explanatory variable) of the raw fish body. .

生魚体を体重により複数のグループに分類し、それらのグループのうち1又は2以上のグループについて検量線を作成するものとすることができる。尤も、必ずしもこのようにグループに分類して検量線を作成することを要するものではない。また、グループ分けは必ずしも体重により行わなければならないものではない。他の非破壊測定値(例えば生魚体の体長、体重、所定位置の周囲長、肛門位置魚体幅、体重/体長等)を1又は2以上採用することもできる。   Raw fish bodies can be classified into a plurality of groups based on body weight, and a calibration curve can be created for one or more of these groups. However, it is not always necessary to create a calibration curve by classifying into groups. Moreover, grouping does not necessarily have to be performed based on body weight. One or more other non-destructive measurement values (for example, the body length and weight of a raw fish body, the perimeter length of a predetermined position, the body width of an anal position, the body weight / body length, etc.) may be employed.

多変量解析としては、例えばPLS(Partial Least Squares)、PCR(Principal Component Regression)、PCA(Principal Component Analysis)又はMRA(Multiple Regression Analysis)等を採用することができる。好ましくはPLSである。   As the multivariate analysis, for example, PLS (Partial Least Squares), PCR (Principal Component Regression), PCA (Principal Component Analysis), MRA (Multiple Regression Analysis) or the like can be employed. PLS is preferable.

検量線のクロスバリデーションによる相関係数は、0.80以上であることが好ましい。より好ましくは0.85以上、更に好ましくは0.90以上、更に好ましくは0.92以上、更に好ましくは0.95以上、更に好ましくは0.97以上である。また、検量線の相関係数は、0.90以上であることが好ましい。より好ましくは0.90以上、更に好ましくは0.92以上、更に好ましくは0.95以上、更に好ましくは0.97以上、更に好ましくは0.98以上である。
(6)生魚体についての近赤外線反射スペクトル以外の非破壊測定値
The correlation coefficient by cross validation of the calibration curve is preferably 0.80 or more. More preferably, it is 0.85 or more, More preferably, it is 0.90 or more, More preferably, it is 0.92 or more, More preferably, it is 0.95 or more, More preferably, it is 0.97 or more. The correlation coefficient of the calibration curve is preferably 0.90 or more. More preferably, it is 0.90 or more, More preferably, it is 0.92 or more, More preferably, it is 0.95 or more, More preferably, it is 0.97 or more, More preferably, it is 0.98 or more.
(6) Non-destructive measurement values other than near-infrared reflectance spectrum for raw fish

生魚体の近赤外線反射スペクトルを必須の又は主要な説明変数とし、目的変数である加工又は調理の材料としての生魚体の品質を判別する検量線を得るものとすることができる。その場合の説明変数としては、生魚体についての近赤外線反射スペクトル以外に、例えば非破壊測定値を用いることができる。このような近赤外線反射スペクトル以外の非破壊測定の値としては、生魚体の体長、体重、所定位置の周囲長、肛門位置魚体幅、体重/体長等を挙げることができる例えば、近赤外線反射スペクトルと体長を説明変数とすることができるほか、近赤外線反射スペクトルと体重を説明変数とする(体重でグループ分けする場合もグループ分けしない場合も含む)こともできる。
(7)生魚体の品質判別
The near-infrared reflection spectrum of the raw fish body is an essential or main explanatory variable, and a calibration curve for discriminating the quality of the raw fish body as a processing or cooking material that is an objective variable can be obtained. As an explanatory variable in that case, for example, a non-destructive measurement value can be used in addition to the near-infrared reflection spectrum of the raw fish body. Examples of such nondestructive measurement values other than the near-infrared reflection spectrum include the length and weight of the raw fish body, the perimeter length of the predetermined position, the fish width of the anal position, the weight / body length, and the like. The body length can be used as an explanatory variable, and the near-infrared reflection spectrum and the body weight can be used as explanatory variables (including cases where the body weight is grouped or not grouped).
(7) Quality discrimination of raw fish

判別対象生魚体の近赤外線反射スペクトルを測定して多変量解析により得られた検量線を用いることにより、加工又は調理の材料としての生魚体の品質を判別する   Determine the quality of raw fish as a processing or cooking material by measuring the near-infrared reflection spectrum of the raw fish to be discriminated and using a calibration curve obtained by multivariate analysis

実施例
生アナゴ(マアナゴ)について、近赤外線反射スペクトルに基づき加工又は調理の材料としての生アナゴの品質を判別する検量線を次のように作成した。
(1)試料
EXAMPLE A calibration curve for discriminating the quality of a raw locust as a processing or cooking material was prepared as follows based on the near-infrared reflection spectrum.
(1) Sample

生アナゴの試料(サンプル)として、大10検体(体重191g以上)、中60検体(体重86g以上191g未満)、小60検体(体重86g未満)の即殺アナゴ(ラウンド)を用いた。
(2)近赤外線反射スペクトル測定
As the raw eel samples (samples), 10 large specimens (weight 191 g or more), medium 60 specimens (weight 86 g or more and less than 191 g), and small 60 specimens (weight 86 g or less) were used.
(2) Near-infrared reflection spectrum measurement

非接触型の検出プローブを装着した近赤外測定装置を用いて、上記各生アナゴ試料の腹側の肛門よりも尾側に2cmから3.5cmの位置で近赤外線反射スペクトルの測定を行った。測定には、1100nmから1750nmまでの2nm間隔で326種の波長を用いた。
(3)加工又は調理
Using a near-infrared measuring device equipped with a non-contact type detection probe, a near-infrared reflection spectrum was measured at a position 2 cm to 3.5 cm closer to the caudal side than the anus on the ventral side of each raw locust sample. . In the measurement, 326 kinds of wavelengths were used at intervals of 2 nm from 1100 nm to 1750 nm.
(3) Processing or cooking

上記生アナゴ試料を加工して、煮アナゴ、焼きアナゴ及び天ぷらアナゴを得た。   The raw fish sample was processed to obtain boiled fish, grilled fish and tempura fish.

煮アナゴには、上記生アナゴのうち、大サイズ5検体、中サイズ20検体、小サイズ20検体を用いた。   Of the raw fish, 5 large samples, 20 medium samples, and 20 small samples were used as the boiled fish.

焼きアナゴには、上記生アナゴのうち、大サイズ5検体、中サイズ20検体、小サイズ20検体を用いた。   Of the raw locusts, 5 large size samples, 20 medium size samples, and 20 small size samples were used for the grilled locusts.

天ぷらアナゴは、上記生アナゴのうち、中サイズ20検体(検体番号1−10は揚げた天ぷらをそのまま冷却したもの、検体番号11−20は揚げた天ぷらの皮にふり塩をして冷却したもの)、小サイズ20検体を用いた。
(4)官能評価
The tempura sea bream is the above-mentioned raw sea eel, medium-sized 20 specimens (specimen number 1-10 is obtained by cooling fried tempura as it is, specimen number 11-20 is obtained by fried salted tempura skin and cooled. ), 20 small samples were used.
(4) Sensory evaluation

生魚体サンプルの加工品の官能評価は、旨み、柔らかさ、脂ののり、及び総合の4項目について、最悪、不可、可、良、優の5等級のうち何れであるかを5名のパネリストからなるパネルが判定することにより行い、それぞれ、0点(最悪)、1点(不可)、2点(可)、3点(良)、4点(優)の点数とした。   Sensory evaluation of processed products of raw fish samples is panelists of 5 people who choose the worst, impossible, good, good or excellent grades for the four items of taste, softness, greasy paste, and total This was determined by a panel consisting of 0 points (worst), 1 point (impossible), 2 points (possible), 3 points (good), and 4 points (excellent).

パネルを構成する各パネリストによる前記判定は、試料とは別の生アナゴを加工して得た煮アナゴ、焼きアナゴ及び天ぷらアナゴのうち、各加工法による各等級に該当する標準的な加工品を全パネリストに共通の基準として判定した。
(5)多変量解析
The judgment by each panelist constituting the panel is a standard processed product corresponding to each grade according to each processing method among boiled eel, baked eel and tempura eel obtained by processing a raw eel other than the sample. Judged as a standard common to all panelists.
(5) Multivariate analysis

各加工法による各サイズのグループの加工品の材料である生アナゴ試料の近赤外線反射スペクトルと、前記加工品の官能評価による品質に関し、異常値を除いた後、処理手法が異なる(用いる潜在的変数の個数などが異なる)2種類のソフトウエア(CAMO社製のUnscrambler、エスティジャパン社製のSirius)を用いてそれぞれPLS(Partial Least Squares)解析を行うことにより、生アナゴ試料の近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して、生アナゴの近赤外線反射スペクトル(説明変数)に基づき各加工法(煮、焼、天ぷら)による加工の材料としての生アナゴの品質[目的変数](旨み、柔らかさ、脂ののり、及び総合評価)を判別する検量線を得た。但し、Siriusによる解析は、総合評価についてのみ行った。   Regarding the near-infrared reflection spectrum of the raw locust sample, which is the material of the processed product of each size group by each processing method, and the quality by the sensory evaluation of the processed product, after removing the abnormal value, the processing method is different (the potential used Near infrared reflection spectra of raw eel samples by performing PLS (Partial Least Squares) analysis using two types of software (Unscrambler from CAMO and Sirius from Estee Japan) respectively. Deriving one or two or more potential variables for the quality of raw locust as a material for processing by each processing method (boiled, baked, tempura) based on the near-infrared reflectance spectrum (explanatory variable) of raw locust [objective variable A calibration curve was obtained for discriminating the taste (taste, softness, oil paste, and overall evaluation). However, Sirius analysis was performed only for comprehensive evaluation.

両ソフトウエアにより得られた検量線の相関係数(Calibration)及びその検量線のクロスバリデーションによる相関係数(Validation)を表1(煮アナゴ)、表2(焼きアナゴ)、及び表3(天ぷらアナゴ)における「Unscramblerスペクトル」欄及び「Siriusスペクトル」欄に示す。
(6)生アナゴ試料についての近赤外線反射スペクトル以外の非破壊測定値
The correlation coefficient (Calibration) of the calibration curve obtained by both softwares and the correlation coefficient (Validation) by cross validation of the calibration curve are shown in Table 1 (boiled eel), Table 2 (baked eel), and Table 3 (tempura). In “Unscrambler spectrum” column and “Sirius spectrum” column.
(6) Non-destructive measurement values other than near-infrared reflectance spectra for raw eel samples

説明変数として、生アナゴ試料についての近赤外線反射スペクトルと生アナゴ試料の体長を用いて、ソフトウエアとしてSiriusを用いたPLS(Partial Least Squares)解析を行って、説明変数に基づき各加工法(煮、焼、天ぷら)による加工の材料としての生アナゴの品質[目的変数](総合評価のみ)を判別する検量線を得た。得られた検量線の相関係数(Calibration)及びクロスバリデーションによる相関係数(Validation)を、表1(煮アナゴ)、表2(焼きアナゴ)、及び表3(天ぷらアナゴ)における「Siriusスペクトル+体長」欄に示す。   As explanatory variables, PLS (Partial Least Squares) analysis using Sirius as software was performed using near-infrared reflection spectra of raw eel samples and body length of raw eel samples. We obtained a calibration curve that discriminates the quality [objective variable] (only the comprehensive evaluation) of raw locusts as a material for processing by tempering, baking, and tempura. The correlation coefficient (Calibration) of the obtained calibration curve and the correlation coefficient (Validation) by cross validation are shown in Table 1 (boiled eel), Table 2 (baked eel), and Table 3 (tempura eel) in “Sirius spectrum + Shown in the “Length” column.

Figure 2008145341
Figure 2008145341

Figure 2008145341
Figure 2008145341

Figure 2008145341
(7)生魚体の品質判別
Figure 2008145341
(7) Quality discrimination of raw fish

判別対象生アナゴの近赤外線反射スペクトルを測定して多変量解析により得られた検量線を用いることにより、加工又は調理の材料としての生アナゴの品質を確実性高く判別することができる。   By measuring a near-infrared reflection spectrum of a discrimination target raw locust and using a calibration curve obtained by multivariate analysis, the quality of the raw locust as a processing or cooking material can be determined with high certainty.

比較例Comparative example

生アナゴについての近赤外線反射スペクトルに基づき水分含有率及び脂肪含有率を定量する検量線(相関係数は0.93乃至0.99)を用いて、上記生アナゴ試料について近赤外線反射スペクトル測定に基づき水分含有率及び脂肪含有率を定量し、その水分含有率及び脂肪含有率と加工品の官能評価による品質との相関を検討した。   Using a calibration curve (correlation coefficient is 0.93 to 0.99) for quantifying the moisture content and fat content based on the near-infrared reflection spectrum of the raw locust, the near-infrared reflection spectrum of the raw locust sample is measured. Based on this, the moisture content and fat content were quantified, and the correlation between the moisture content and fat content and the quality of the processed product was evaluated.

その結果、煮アナゴ及び焼きアナゴについては有意な相関が認められたが、このうち最も高い相関係数が、焼きアナゴの脂ののりと水分の間の相関係数で、−0.745であった。天ぷらアナゴについては有意な相関は得られなかった。   As a result, a significant correlation was observed for boiled and baked salmon, but the highest correlation coefficient among them was the correlation coefficient between fat paste and moisture of baked salmon, which was -0.745. It was. No significant correlation was obtained for the tempura locust.

Claims (15)

生魚体の近赤外線反射スペクトルに基づき生魚体の品質を判別する検量線を作成する方法であって、
生魚体サンプルの近赤外線反射スペクトルと、その生魚体サンプルの加工又は調理品の官能評価による品質に関し、多変量解析を行うことにより、生魚体サンプルの近赤外線反射スペクトルについて1又は2以上の潜在的変数を導出して加工又は調理の材料としての生魚体の品質を判別する検量線を得る生魚体品質検量線作成方法。
A method for creating a calibration curve for determining the quality of a raw fish based on the near-infrared reflection spectrum of the raw fish,
By conducting a multivariate analysis on the near-infrared reflectance spectrum of a raw fish sample and the quality of the raw fish sample processed or cooked products, one or more potential in the near-infrared reflectance spectrum of the raw fish sample A raw fish quality calibration curve creation method for obtaining a calibration curve for deriving variables and discriminating the quality of a raw fish body as a material for processing or cooking.
上記検量線のクロスバリデーションによる相関係数が0.80以上である請求項1記載の生魚体品質検量線作成方法。   2. The raw fish body quality calibration curve creation method according to claim 1, wherein a correlation coefficient by cross validation of the calibration curve is 0.80 or more. 上記の生魚体サンプルの加工又は調理品の官能評価による品質が、複数の等級のうち何れであるかを判定するパネルの官能評価により判定される品質であり、
前記パネルを構成する各パネリストによる前記判定は、各等級に該当する標準的な加工又は調理品を全パネリストに共通の基準とする判定である請求項1又は2記載の生魚体品質検量線作成方法。
The quality determined by the sensory evaluation of the panel that determines whether the quality of the raw fish body processing or the sensory evaluation of the cooked product is a plurality of grades,
The raw fish body quality calibration curve creation method according to claim 1 or 2, wherein the determination by each panelist constituting the panel is a determination using a standard processed or cooked product corresponding to each grade as a standard common to all panelists. .
上記近赤外線反射スペクトルが、生魚体サンプルのうち腹腔の影響を排除できる部位についての近赤外線反射スペクトルである請求項1、2又は3記載の生魚体品質検量線作成方法。   4. The raw fish body quality calibration curve creation method according to claim 1, wherein the near infrared reflectance spectrum is a near infrared reflectance spectrum for a portion of the raw fish body sample from which the influence of the abdominal cavity can be eliminated. 上記近赤外線反射スペクトルが、生魚体サンプルのうち肛門より後ろの腹側についての近赤外線反射スペクトルである請求項1、2又は3記載の生魚体品質検量線作成方法。   4. The raw fish body quality calibration curve generation method according to claim 1, wherein the near infrared reflectance spectrum is a near infrared reflectance spectrum of a raw fish body sample on the ventral side behind the anus. 多変量解析が、PLS、PCR、PCA又はMRAによるものである請求項1乃至5の何れかに記載の生魚体品質検量線作成方法。   6. The raw fish body quality calibration curve generation method according to claim 1, wherein the multivariate analysis is performed by PLS, PCR, PCA, or MRA. 加工又は調理の方法を複数種有し、複数種の加工又は調理の方法のそれぞれについて検量線を得る請求項1乃至6の何れかに記載の生魚体品質検量線作成方法。   The raw fish body quality calibration curve creation method according to any one of claims 1 to 6, wherein a plurality of types of processing or cooking methods are provided, and a calibration curve is obtained for each of the plurality of types of processing or cooking methods. 加工又は調理の方法が、煮込み、焼き及び揚げから選ばれたものである請求項1乃至7の何れかに記載の生魚体品質検量線作成方法。   8. The raw fish body quality calibration curve preparation method according to any one of claims 1 to 7, wherein the processing or cooking method is selected from stew, grill and fried. 生魚体を体重により複数のグループに分類し、それらのグループのうち1又は2以上のグループについて検量線を作成する請求項1乃至8の何れかに記載の生魚体品質検量線作成方法。   The raw fish quality calibration curve creation method according to any one of claims 1 to 8, wherein the raw fish bodies are classified into a plurality of groups according to body weight, and a calibration curve is created for one or more of these groups. 生魚体サンプルの加工又は調理品の官能評価を複数種有し、複数種の官能評価のそれぞれについて検量線を得る請求項1乃至9の何れかに記載の生魚体品質検量線作成方法。   The raw fish body quality calibration curve creation method according to any one of claims 1 to 9, wherein a plurality of types of sensory evaluation of raw fish sample processing or cooked products are provided, and a calibration curve is obtained for each of the plurality of types of sensory evaluation. 生魚体サンプルの加工又は調理品の官能評価が、旨み、柔らかさ、脂ののり、及び総合から選ばれたものである請求項1乃至10の何れかに記載の生魚体品質検量線作成方法。   The method for preparing a raw fish body quality calibration curve according to any one of claims 1 to 10, wherein the processing of the raw fish body sample or the sensory evaluation of the cooked product is selected from umami, softness, greasy paste, and synthesis. 上記生魚体の近赤外線反射スペクトルに加えて生魚体についての非破壊測定の値に基づき、加工又は調理の材料としての生魚体の品質を判別する検量線を得る請求項1乃至11の何れかに記載の生魚体品質検量線作成方法。   The calibration curve for discriminating the quality of the raw fish body as a processing or cooking material is obtained based on the non-destructive measurement value of the raw fish body in addition to the near-infrared reflection spectrum of the raw fish body. The raw fish quality calibration curve creation method described. 生魚体についての非破壊測定の値が生魚体の体長である請求項12記載の生魚体品質検量線作成方法。   The method for preparing a raw fish quality calibration curve according to claim 12, wherein the value of the non-destructive measurement for the raw fish body is the length of the raw fish body. 上記生魚体がアナゴの魚体である請求項1乃至13の何れかに記載の生魚体品質検量線作成方法。   The raw fish quality calibration curve creation method according to any one of claims 1 to 13, wherein the raw fish body is a fish of an anago. 生魚体の近赤外線反射スペクトルに基づき検量線を用いて生魚体の品質を判別する方法であって、
前記検量線が、請求項1乃至14の何れかにより得られた検量線である生魚体品質判別法。
A method for determining the quality of a raw fish body using a calibration curve based on the near-infrared reflection spectrum of the raw fish body,
The raw fish body quality discrimination method, wherein the calibration curve is a calibration curve obtained according to any one of claims 1 to 14.
JP2006334663A 2006-12-12 2006-12-12 Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method Pending JP2008145341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334663A JP2008145341A (en) 2006-12-12 2006-12-12 Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334663A JP2008145341A (en) 2006-12-12 2006-12-12 Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method

Publications (1)

Publication Number Publication Date
JP2008145341A true JP2008145341A (en) 2008-06-26

Family

ID=39605672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334663A Pending JP2008145341A (en) 2006-12-12 2006-12-12 Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method

Country Status (1)

Country Link
JP (1) JP2008145341A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454240A (en) * 2013-08-30 2013-12-18 上海海洋大学 Establishing method of model for rapidly evaluating grade of frozen minced fillet
CN104165861A (en) * 2014-08-22 2014-11-26 云南中烟工业有限责任公司 Near infrared spectrum quantitative model simplification method based on principal component analysis
CN104483288A (en) * 2014-12-23 2015-04-01 深圳因特安全技术有限公司 Perfluoro-isopropyl-hexanone fire extinguishing agent recognition and detection method
CN109507145A (en) * 2018-12-28 2019-03-22 山东益丰生化环保股份有限公司 A kind of method of near infrared detection industrial liquid thiocarbamide content
CN113029980A (en) * 2021-02-10 2021-06-25 河南中烟工业有限责任公司 Rapid nondestructive testing method for sensory quality stability of tobacco sheets
CN114414732A (en) * 2021-12-10 2022-04-29 湖北省水产科学研究所 Method for detecting quality of mandarin fish meat and performing sensory tasting verification

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454240A (en) * 2013-08-30 2013-12-18 上海海洋大学 Establishing method of model for rapidly evaluating grade of frozen minced fillet
CN104165861A (en) * 2014-08-22 2014-11-26 云南中烟工业有限责任公司 Near infrared spectrum quantitative model simplification method based on principal component analysis
CN104483288A (en) * 2014-12-23 2015-04-01 深圳因特安全技术有限公司 Perfluoro-isopropyl-hexanone fire extinguishing agent recognition and detection method
CN109507145A (en) * 2018-12-28 2019-03-22 山东益丰生化环保股份有限公司 A kind of method of near infrared detection industrial liquid thiocarbamide content
CN113029980A (en) * 2021-02-10 2021-06-25 河南中烟工业有限责任公司 Rapid nondestructive testing method for sensory quality stability of tobacco sheets
CN113029980B (en) * 2021-02-10 2023-11-21 河南中烟工业有限责任公司 Rapid nondestructive testing method for stability of sensory quality of tobacco sheet
CN114414732A (en) * 2021-12-10 2022-04-29 湖北省水产科学研究所 Method for detecting quality of mandarin fish meat and performing sensory tasting verification

Similar Documents

Publication Publication Date Title
Cheng et al. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet
Schoeman et al. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure
Cheng et al. Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafoods: Current research and potential applications
Kamruzzaman et al. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression
Jiang et al. Tenderness classification of fresh broiler breast fillets using visible and near-infrared hyperspectral imaging
Kamruzzaman et al. Non-destructive assessment of instrumental and sensory tenderness of lamb meat using NIR hyperspectral imaging
ElMasry et al. Meat quality evaluation by hyperspectral imaging technique: an overview
Holman et al. The use of conventional laboratory-based methods to predict consumer acceptance of beef and sheep meat: A review
Shackelford et al. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy
Park et al. Principal component regression of near–infrared reflectance spectra for beef tenderness prediction
Chen et al. Recent advances for rapid identification of chemical information of muscle foods by hyperspectral imaging analysis
Trinderup et al. Comparison of a multispectral vision system and a colorimeter for the assessment of meat color
Aheto et al. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat
Su et al. Multivariate analysis of hyper/multi-spectra for determining volatile compounds and visualizing cooking degree during low-temperature baking of tubers
Garrido-Novell et al. Quantification and spatial characterization of moisture and NaCl content of Iberian dry-cured ham slices using NIR hyperspectral imaging
Rust et al. Predicting beef tenderness using near-infrared spectroscopy
Wold On-line and non-destructive measurement of core temperature in heat treated fish cakes by NIR hyperspectral imaging
JP2008145341A (en) Method for forming raw fish body quality calibration curve, and raw fish body quality discrimination method
O’farrell et al. Combining principal component analysis with an artificial neural network to perform online quality assessment of food as it cooks in a large-scale industrial oven
ElMasry et al. Meat quality assessment using a hyperspectral imaging system
Narsaiah et al. Nondestructive methods for carcass and meat quality evaluation
Tian et al. Monitoring microstructural changes and moisture distribution of dry‐cured pork: a combined confocal laser scanning microscopy and hyperspectral imaging study
Valous et al. Emerging non-contact imaging, spectroscopic and colorimetric technologies for quality evaluation and control of hams: a review
ElMasry et al. Noninvasive sensing of thermal treatments of J apanese seafood products using imaging spectroscopy
Tian et al. An evaluation of biochemical, structural and volatile changes of dry‐cured pork using a combined ion mobility spectrometry, hyperspectral and confocal imaging approach