JP2008145264A - Radiation measuring apparatus - Google Patents

Radiation measuring apparatus Download PDF

Info

Publication number
JP2008145264A
JP2008145264A JP2006332786A JP2006332786A JP2008145264A JP 2008145264 A JP2008145264 A JP 2008145264A JP 2006332786 A JP2006332786 A JP 2006332786A JP 2006332786 A JP2006332786 A JP 2006332786A JP 2008145264 A JP2008145264 A JP 2008145264A
Authority
JP
Japan
Prior art keywords
leakage current
measurement
measuring
radiation
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006332786A
Other languages
Japanese (ja)
Other versions
JP4814775B2 (en
Inventor
Akinori Iwamoto
明憲 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2006332786A priority Critical patent/JP4814775B2/en
Publication of JP2008145264A publication Critical patent/JP2008145264A/en
Application granted granted Critical
Publication of JP4814775B2 publication Critical patent/JP4814775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved technique to correct an error resulting from leakage current of an element. <P>SOLUTION: An ionization chamber 10 generates ionization current by detecting radiation. An electrometer circuit 20 includes an operational amplifier OP1 for measuring the ionization current. A potential which is generated as the ionization current and the leakage current flow through a resistor R1 appears in an output terminal T1 of the operational amplifier OP1. A leakage current measuring circuit 30 includes an operational amplifier OP2 having equivalent characteristics to the operational amplifier OP1. A potential which is generated as the leakage current flows through a resistor R1 appears in an output terminal T2 of the operational amplifier OP2. A leakage current compensation circuit 40 functions as a subtracting circuit, and potential difference between the output terminal T1 and the output terminal T2 appears in an output terminal TO of an operational amplifier OP3. Thus, the leakage current component included in the output of the electrometer circuit 20 is removed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線測定装置に関し、特に、放射線測定装置の測定精度を高める技術に関する。   The present invention relates to a radiation measurement apparatus, and more particularly to a technique for increasing the measurement accuracy of a radiation measurement apparatus.

放射線測定装置は、放射線の検出に伴って発生する微弱な検出信号を測定している。放射線の測定手法として、電離箱に放射線が入射することによって発生する微弱な電離電流を測定する手法や、放射線を受けたシンチレータから出る光を測定する手法などが知られている。   The radiation measuring apparatus measures a weak detection signal generated with the detection of radiation. As a method for measuring radiation, there are known a method for measuring a weak ionization current generated when radiation enters an ionization chamber, a method for measuring light emitted from a scintillator that has received radiation, and the like.

例えば、特許文献1〜3には、電離電流を介して放射線を測定する技術が記載されている。電離電流は微弱な電流であるため、電離電流を高い精度で測定することは容易ではない。特許文献1〜3には、微弱な電離電流の測定精度を高める技術が記載されている。   For example, Patent Documents 1 to 3 describe a technique for measuring radiation via an ionization current. Since the ionization current is a weak current, it is not easy to measure the ionization current with high accuracy. Patent Documents 1 to 3 describe techniques for increasing the measurement accuracy of weak ionization current.

特許文献1には、トランジスタの温度変化に伴う測定誤差を補償する旨の技術が記載されている。また、特許文献2には、電離箱放射線検出器の電極とグランド間のリーク電流を補正する旨の技術が記載されている。そして、特許文献3には、各チャンネルのオフセット電流を記憶しておき、記憶しておいた情報を利用して補正を行う旨の技術が記載されている。   Patent Document 1 describes a technique for compensating for a measurement error accompanying a temperature change of a transistor. Patent Document 2 describes a technique for correcting a leakage current between an electrode of an ionization chamber radiation detector and a ground. Patent Document 3 describes a technique for storing an offset current of each channel and performing correction using the stored information.

特開平1−113689号公報Japanese Patent Laid-Open No. 1-113689 特開昭61−225683号公報JP 61-225683 A 特開昭59−20865号公報JP 59-20865 A

上記のような背景において、本願発明者は、放射線を検出することによって得られる検出電流を高い精度で測定する技術について、特に、検出電流を測定するための素子のリーク電流に伴う誤差成分を補正する技術について研究開発を重ねてきた。   In the background as described above, the inventor of the present application corrects an error component associated with a leak current of an element for measuring a detection current, particularly for a technique for measuring a detection current obtained by detecting radiation with high accuracy. I have been researching and developing technologies to do this.

ちなみに、特許文献2には、リーク電流に関する技術が記載されているものの、そのリーク電流は、電離箱の電極とグランド間に発生するものであり、検出電流を測定するための素子に発生するものではない。また、特許文献3に記載された技術では、記憶しておいた情報を利用して補正を行うため、例えば、電流の変化等に応じてリアルタイムに補正を行うことができない。   Incidentally, although Patent Document 2 describes a technique relating to leakage current, the leakage current is generated between the electrode of the ionization chamber and the ground, and is generated in an element for measuring the detection current. is not. Moreover, in the technique described in Patent Document 3, since correction is performed using stored information, for example, correction cannot be performed in real time according to a change in current or the like.

本発明は、このような状況において成されたものであり、その目的は、検出電流を測定するための素子のリーク電流に伴う誤差を補正する改良技術を提供することにある。   The present invention has been made in such a situation, and an object of the present invention is to provide an improved technique for correcting an error associated with a leakage current of an element for measuring a detection current.

上記目的を達成するために、本発明の好適な態様である放射線測定装置は、放射線を検出して検出電流を発生する放射線検出部と、検出電流を測定するための検出電流用素子を備え、検出電流用素子を利用して検出電流を測定することにより測定信号を得る検出電流測定回路と、検出電流用素子の特性と同等な特性のリーク電流用素子を備え、リーク電流用素子のリーク電流を測定することにより、検出電流用素子のリーク電流に対応した校正信号を得るリーク電流測定回路と、検出電流測定回路から出力される測定信号とリーク電流測定回路から出力される校正信号とを比較処理することにより、測定信号に含まれるリーク電流の成分を除去するリーク電流補償回路を有することを特徴とする。   In order to achieve the above object, a radiation measuring apparatus according to a preferred aspect of the present invention includes a radiation detection unit that detects a radiation and generates a detection current, and a detection current element for measuring the detection current, A detection current measurement circuit that obtains a measurement signal by measuring a detection current using a detection current element and a leakage current element having characteristics equivalent to those of the detection current element are provided. Compare the measurement signal output from the detection current measurement circuit with the calibration signal output from the leakage current measurement circuit to obtain a calibration signal corresponding to the leakage current of the detection current element. It is characterized by having a leakage current compensation circuit that removes a leakage current component included in the measurement signal by processing.

望ましい態様において、前記検出電流用素子と前記リーク電流用素子は、互いに同一の集積回路用パッケージ内に実装される半導体素子であることを特徴とする。   In a preferred aspect, the detection current element and the leakage current element are semiconductor elements mounted in the same integrated circuit package.

望ましい態様において、前記検出電流測定回路は、放射線のバックグランドレベルの測定に対応したバックグランド測定用抵抗を備え、前記測定信号として、検出電流を含んだ電流がバックグランド測定用抵抗を流れることによって発生する電圧信号を出力し、前記リーク電流測定回路は、バックグランド測定用抵抗と同じ抵抗値のリーク電流測定用抵抗を備え、前記校正信号として、リーク電流用素子のリーク電流がリーク電流測定用抵抗を流れることによって発生する電圧信号を出力し、前記リーク電流補償回路は、測定信号の電圧信号と校正信号の電圧信号との間の電圧差を出力することを特徴とする。   In a preferred aspect, the detection current measurement circuit includes a background measurement resistor corresponding to the measurement of the background level of radiation, and a current including the detection current flows through the background measurement resistor as the measurement signal. The leakage current measuring circuit includes a leakage current measuring resistor having the same resistance value as the background measuring resistor, and the leakage current of the leakage current element is used for measuring the leakage current as the calibration signal. A voltage signal generated by flowing through the resistor is output, and the leakage current compensation circuit outputs a voltage difference between the voltage signal of the measurement signal and the voltage signal of the calibration signal.

望ましい態様において、前記検出電流測定回路は、放射線の測定感度を切り替えるための感度変更用抵抗を備え、バックグランド測定用抵抗に対して感度変更用抵抗が並列接続されて合成抵抗値を変化させることにより測定感度が切り替えられることを特徴とする。   In a preferred aspect, the detection current measuring circuit includes a sensitivity changing resistor for switching the measurement sensitivity of radiation, and the sensitivity changing resistor is connected in parallel to the background measuring resistor to change the combined resistance value. The measurement sensitivity can be switched by.

本発明により、検出電流を測定するための素子のリーク電流に伴う誤差を補正する改良技術が提供される。例えば、本発明の好適な態様により、検出電流用素子の特性と同等な特性のリーク電流用素子のリーク電流から校正信号を得て、測定信号に含まれるリーク電流の成分を除去することが可能になる。   The present invention provides an improved technique for correcting an error associated with a leakage current of an element for measuring a detection current. For example, according to a preferred embodiment of the present invention, it is possible to obtain a calibration signal from the leakage current of a leakage current element having characteristics equivalent to those of the detection current element, and to remove the leakage current component included in the measurement signal become.

以下、本発明の好適な実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

図1には、本発明に係る放射線測定装置の好適な実施形態が示されており、図1はその主要部分の回路構成図である。本実施形態の放射線測定装置は、例えば、サーベイメータ、モニタリングポスト、エリアモニタなどである。   FIG. 1 shows a preferred embodiment of a radiation measuring apparatus according to the present invention, and FIG. 1 is a circuit configuration diagram of the main part thereof. The radiation measurement apparatus of this embodiment is, for example, a survey meter, a monitoring post, an area monitor, or the like.

電離箱10は、入射する放射線を検出して電離電流を出力する。電離箱10には、電源Vによって、例えばマイナス数百〜マイナス数千ボルトのバイアスが印加される。電離箱10内に放射線が入射すると電離箱10内のガスが電離し、電離の結果発生する帯電体(例えば電子)が集電極に引き寄せられる。こうして、集電極に集められた電離電流(IR)が電離箱10から出力される。ちなみに、電離箱10は、バイアスの極性を変えて、電離の結果発生する帯電体として正電荷を集電極に引き寄せるタイプのものでもよい。 The ionization chamber 10 detects incident radiation and outputs an ionization current. A bias of, for example, minus hundreds to minus thousands of volts is applied to the ionization chamber 10 by a power source V. When radiation enters the ionization chamber 10, the gas in the ionization chamber 10 is ionized, and charged bodies (for example, electrons) generated as a result of ionization are attracted to the collector electrode. Thus, the ionization current (I R ) collected at the collector electrode is output from the ionization chamber 10. Incidentally, the ionization chamber 10 may be of a type in which the polarity of the bias is changed and a positive charge is attracted to the collecting electrode as a charged body generated as a result of ionization.

なお、電離箱10に接続された電源Vのマイナス側は、図1内において共通の基準電位端子(例えば、グランドやマイナス側の基準電位端子)に接続される。   Note that the negative side of the power source V connected to the ionization chamber 10 is connected to a common reference potential terminal (for example, a ground or negative reference potential terminal) in FIG.

エレクトロメータ回路20は、電離箱10から出力される電離電流を計測する回路である。エレクトロメータ回路20は、オペアンプOP1、抵抗R1〜R3、リレーK2,K3を備えている。   The electrometer circuit 20 is a circuit that measures the ionization current output from the ionization chamber 10. The electrometer circuit 20 includes an operational amplifier OP1, resistors R1 to R3, and relays K2 and K3.

エレクトロメータ回路20の抵抗R1〜R3は、各々、オペアンプOP1に対して並列接続されている。つまり、抵抗R1〜R3は、各々、オペアンプOP1の反転入力端子(−端子)と出力端子(端子T1)の間に設けられている。なお、抵抗R2に対してリレーK2が直列接続されており、抵抗R3に対してリレーK3が直列接続されている。また、オペアンプOP1の非反転入力端子(+端子)は、図1内において共通の基準電位端子に接続される。   The resistors R1 to R3 of the electrometer circuit 20 are respectively connected in parallel to the operational amplifier OP1. That is, the resistors R1 to R3 are each provided between the inverting input terminal (− terminal) and the output terminal (terminal T1) of the operational amplifier OP1. Note that a relay K2 is connected in series with the resistor R2, and a relay K3 is connected in series with the resistor R3. Further, the non-inverting input terminal (+ terminal) of the operational amplifier OP1 is connected to a common reference potential terminal in FIG.

リーク電流測定回路30は、オペアンプOP2と抵抗R1とリレーK1を備えており、オペアンプOP2のリーク電流を測定することにより、オペアンプOP1のリーク電流に対応したリーク電流成分を測定する回路である。オペアンプOP2の非反転入力端子(+端子)は、図1内において共通の基準電位端子に接続される。また、抵抗R1は、オペアンプOP2に対して並列接続される。つまり、抵抗R1は、オペアンプOP2の反転入力端子(−端子)と出力端子(端子T2)の間に設けられる。また、リレーK1は、オペアンプOP2の出力端子に直列接続される。   The leakage current measurement circuit 30 includes an operational amplifier OP2, a resistor R1, and a relay K1, and measures a leakage current component corresponding to the leakage current of the operational amplifier OP1 by measuring the leakage current of the operational amplifier OP2. The non-inverting input terminal (+ terminal) of the operational amplifier OP2 is connected to a common reference potential terminal in FIG. The resistor R1 is connected in parallel to the operational amplifier OP2. That is, the resistor R1 is provided between the inverting input terminal (− terminal) and the output terminal (terminal T2) of the operational amplifier OP2. The relay K1 is connected in series to the output terminal of the operational amplifier OP2.

リーク電流補償回路40は、エレクトロメータ回路20で計測された測定結果から、リーク電流測定回路30で測定されたリーク電流成分を減算する回路である。リーク電流補償回路40は、オペアンプOP3と4つの抵抗R4を備えている。   The leakage current compensation circuit 40 is a circuit that subtracts the leakage current component measured by the leakage current measurement circuit 30 from the measurement result measured by the electrometer circuit 20. The leak current compensation circuit 40 includes an operational amplifier OP3 and four resistors R4.

オペアンプOP3の反転入力端子(−端子)は、1つの抵抗R4とリレーK1を介して、リーク電流測定回路30のオペアンプOP2の出力端子(端子T2)に接続される。一方、オペアンプOP3の非反転入力端子(+端子)は、1つの抵抗R4を介して、エレクトロメータ回路20のオペアンプOP1の出力端子(端子T1)に接続される。   The inverting input terminal (− terminal) of the operational amplifier OP3 is connected to the output terminal (terminal T2) of the operational amplifier OP2 of the leakage current measuring circuit 30 through one resistor R4 and the relay K1. On the other hand, the non-inverting input terminal (+ terminal) of the operational amplifier OP3 is connected to the output terminal (terminal T1) of the operational amplifier OP1 of the electrometer circuit 20 through one resistor R4.

また、オペアンプOP3に対して1つの抵抗R4が並列接続されている。つまり、オペアンプOP3の反転入力端子(−端子)と出力端子(端子TO)の間に抵抗R4が設けられている。さらに、オペアンプOP3の非反転入力端子(+端子)は、1つの抵抗R4を介して、図1内において共通の基準電位端子に接続される。   One resistor R4 is connected in parallel to the operational amplifier OP3. That is, the resistor R4 is provided between the inverting input terminal (− terminal) and the output terminal (terminal TO) of the operational amplifier OP3. Further, the non-inverting input terminal (+ terminal) of the operational amplifier OP3 is connected to a common reference potential terminal in FIG. 1 through one resistor R4.

次に、図1に示す回路の動作について説明する。放射線のバックグランドレベルを測定する高感度測定の場合、図示しない制御部などによる制御に応じて、リレーK1が接続状態とされ、リレーK2とリレーK3が開放状態(非接続状態)とされる。つまり、リレーK1が接続状態とされることにより、リーク電流測定回路30とリーク電流補償回路40が電気的に接続され、また、リレーK2とリレーK3が開放状態とされることにより、抵抗R2と抵抗R3がオペアンプOP1から電気的に切り離される。   Next, the operation of the circuit shown in FIG. 1 will be described. In the case of high-sensitivity measurement for measuring the background level of radiation, the relay K1 is connected and the relay K2 and the relay K3 are opened (not connected) according to control by a control unit (not shown). That is, when the relay K1 is connected, the leakage current measurement circuit 30 and the leakage current compensation circuit 40 are electrically connected, and when the relay K2 and the relay K3 are opened, the resistor R2 The resistor R3 is electrically disconnected from the operational amplifier OP1.

高感度測定の場合、リレーK2とリレーK3が開放状態とされているため、電離箱10から出力される電離電流IRは、抵抗R1へ流れ込む。抵抗R1の抵抗値R1は、例えば、数テラオーム程度であり、また、バックグランドレベルにおいて、電離電流IRは、例えば、10-14アンペア程度のものとなる。抵抗R1には、オペアンプOP1において発生するリーク電流ILも流れ込んでしまう。リーク電流ILは、例えば、電離電流IRの数十パーセント程度の大きさである。その結果、オペアンプOP1の出力端子の電位はリーク電流の成分を含んだ電位となる。つまり、端子T1の電位ERLは次式のようになる。 In the case of high sensitivity measurement, since the relay K2 and the relay K3 are opened, the ionization current I R output from the ionization chamber 10 flows into the resistor R1. The resistance value R 1 of the resistor R1 is, for example, about several teraohms, and the ionization current I R is, for example, about 10 −14 amperes at the background level. The resistor R1, will flow into even the leakage current I L generated in the operational amplifier OP1. The leakage current I L is, for example, a size of about several tens of percent of ionizing current I R. As a result, the potential of the output terminal of the operational amplifier OP1 becomes a potential including a leakage current component. That is, the potential E RL of the terminal T1 is as follows.

RL=(IR+IL)×R1 ・・・ (1) E RL = (I R + I L ) × R 1 (1)

また、高感度測定の場合、リレーK1が接続状態とされているため、リーク電流測定回路30とリーク電流補償回路40が電気的に接続される。リーク電流測定回路30のオペアンプOP2は、エレクトロメータ回路20のオペアンプOP1と同等な特性のオペアンプである。例えば、オペアンプOP1とオペアンプOP2は、互いに同一の半導体基板上に形成され、そして、互いに同一のIC(集積回路)パッケージ内に実装される。   In the case of high sensitivity measurement, since the relay K1 is in a connected state, the leakage current measurement circuit 30 and the leakage current compensation circuit 40 are electrically connected. The operational amplifier OP2 of the leakage current measuring circuit 30 is an operational amplifier having characteristics equivalent to those of the operational amplifier OP1 of the electrometer circuit 20. For example, the operational amplifier OP1 and the operational amplifier OP2 are formed on the same semiconductor substrate and mounted in the same IC (integrated circuit) package.

オペアンプOP2とオペアンプOP1の特性が揃えられているため、オペアンプOP2のリーク電流とオペアンプOP1のリーク電流は、互いに等しい電流値となり、オペアンプOP2からリーク電流ILが発生する。なお、オペアンプOP2のリーク電流とオペアンプOP1のリーク電流は、互いに完全に等しい電流値となることが望ましいものの、実質的に等しいとみなせる程度であっても効果が十分期待できる。 Since the characteristics of the operational amplifier OP2 and the operational amplifier OP1 are aligned, leakage current of the leakage current and the operational amplifier OP1 of the operational amplifier OP2 becomes mutually equal current value, the leakage current I L is generated from the operational amplifier OP2. Although it is desirable that the leakage current of the operational amplifier OP2 and the leakage current of the operational amplifier OP1 are completely equal to each other, the effect can be sufficiently expected even when the leakage current is considered to be substantially equal.

オペアンプOP2において発生するリーク電流ILは抵抗R1に流れ込み、その結果、オペアンプOP2の出力端子の電位、つまり端子T2の電位ELは、次式のようになる。なお、オペアンプOP2に並列接続される抵抗R1の抵抗値R1は、オペアンプOP1に並列接続される抵抗R1の抵抗値と同じ値であり、例えば、数テラオーム程度である。 The leakage current I L generated in the operational amplifier OP2 flows into the resistor R1, and as a result, the potential of the output terminal of the operational amplifier OP2, that is, the potential E L of the terminal T2 is expressed by the following equation. The resistance value R 1 of the resistor R1 connected in parallel to the operational amplifier OP2 is the same value as the resistance value of the resistor R1 connected in parallel to the operational amplifier OP1, for example, about several Teraomu.

L=IL×R1 ・・・ (2) E L = I L × R 1 (2)

そして、高感度測定の場合、リーク電流補償回路40によって、エレクトロメータ回路20の端子T1の電位ERLとリーク電流測定回路30の端子T2の電位ELの電位差が算出される。つまり、リーク電流補償回路40の4つの抵抗R4が、全て同一の抵抗値に揃えられており、そのため、リーク電流補償回路40が、減算回路として機能する。なお、抵抗R4の抵抗値は、例えば、数十キロオーム程度である。 In the case of high sensitivity measurement, the leak current compensation circuit 40 calculates the potential difference between the potential E RL at the terminal T1 of the electrometer circuit 20 and the potential E L at the terminal T2 of the leak current measurement circuit 30. That is, the four resistors R4 of the leakage current compensation circuit 40 are all set to the same resistance value, and therefore the leakage current compensation circuit 40 functions as a subtraction circuit. Note that the resistance value of the resistor R4 is, for example, about several tens of kilohms.

リーク電流補償回路40が減算回路として機能するため、オペアンプOP3の出力端子の電位、つまり端子TOの電位EOUTは、次式のようになる。 Since the leakage current compensation circuit 40 functions as a subtraction circuit, the potential of the output terminal of the operational amplifier OP3, that is, the potential E OUT of the terminal TO is expressed by the following equation.

OUT=ERL−EL=IR×R1 ・・・ (3) E OUT = E RL -E L = I R × R 1 (3)

(3)式に示す端子TOの電位EOUTには、(1)式に示す端子T1の電位ERLに含まれていたリーク電流ILに伴う電位成分が含まれていない。つまり、リーク電流補償回路40によって、リーク電流の成分が除去され、極めて高い精度で放射線の測定を行うことが可能になる。 (3) The potential E OUT terminal TO shown in the expression does not contain a potential component due to the leakage current I L contained in the potential E RL terminal T1 shown in (1). That is, the leakage current compensation circuit 40 removes the leakage current component, and radiation can be measured with extremely high accuracy.

放射線のバックグランドレベルを測定する高感度測定の場合の動作は、上記のとおりである。一方、放射線の通常の測定の場合には、図示しない制御部などによる制御に応じて、リレーK1が開放状態(非接続状態)とされ、リレーK2とリレーK3が適宜接続状態とされる。つまり、リレーK1が開放状態とされることにより、リーク電流測定回路30とリーク電流補償回路40が電気的に切り離され、また、リレーK2とリレーK3が適宜接続状態とされることにより、抵抗R2と抵抗R3が必要に応じてオペアンプOP1に電気的に接続される。   The operation in the case of high-sensitivity measurement for measuring the background level of radiation is as described above. On the other hand, in the case of normal measurement of radiation, the relay K1 is opened (not connected) and the relay K2 and relay K3 are appropriately connected in accordance with control by a control unit (not shown). That is, when the relay K1 is opened, the leakage current measuring circuit 30 and the leakage current compensation circuit 40 are electrically disconnected, and when the relay K2 and the relay K3 are appropriately connected, the resistor R2 And the resistor R3 are electrically connected to the operational amplifier OP1 as necessary.

抵抗R2と抵抗R3は、測定感度を変更するための抵抗であり、抵抗R2の抵抗値は、例えば抵抗R1の抵抗値の1/100程度に設定され、抵抗R3の抵抗値は、例えば抵抗R2の抵抗値の1/100程度に設定される。   The resistors R2 and R3 are resistors for changing the measurement sensitivity. The resistance value of the resistor R2 is set to, for example, about 1/100 of the resistance value of the resistor R1, and the resistance value of the resistor R3 is, for example, the resistor R2 It is set to about 1/100 of the resistance value.

そして、例えば、図示しない制御部が、ユーザによって設定された測定感度に応じて、リレーK2とリレーK3のうちの少なくとも一方を接続状態とすることにより、抵抗R1〜R3による合成抵抗の抵抗値が変更され、その合成抵抗の抵抗値に応じた電位が端子T1に発生する。   Then, for example, a control unit (not shown) sets at least one of the relay K2 and the relay K3 in a connected state in accordance with the measurement sensitivity set by the user, so that the resistance value of the combined resistor by the resistors R1 to R3 is set. As a result, a potential corresponding to the resistance value of the combined resistor is generated at the terminal T1.

また、放射線の通常の測定の場合には、リレーK1が開放状態とされているため、端子T1の電位が、端子TOにそのまま出力される。こうして、例えばユーザによって設定された測定感度に応じた測定結果が端子TOに出力される。   Further, in the case of normal measurement of radiation, since the relay K1 is in an open state, the potential at the terminal T1 is output to the terminal TO as it is. Thus, for example, a measurement result corresponding to the measurement sensitivity set by the user is output to the terminal TO.

以上、本発明の好適な実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。本発明は、その本質を逸脱しない範囲で各種の変形形態を包含する。   As mentioned above, although preferred embodiment of this invention was described, embodiment mentioned above is only a mere illustration in all the points, and does not limit the scope of the present invention. The present invention includes various modifications without departing from the essence thereof.

本発明に係る放射線測定装置の主要部分の回路構成図である。It is a circuit block diagram of the principal part of the radiation measuring device which concerns on this invention.

符号の説明Explanation of symbols

10 電離箱、20 エレクトロメータ回路、30 リーク電流測定回路、40 リーク電流補償回路。   10 ionization chamber, 20 electrometer circuit, 30 leak current measurement circuit, 40 leak current compensation circuit.

Claims (4)

放射線を検出して検出電流を発生する放射線検出部と、
検出電流を測定するための検出電流用素子を備え、検出電流用素子を利用して検出電流を測定することにより測定信号を得る検出電流測定回路と、
検出電流用素子の特性と同等な特性のリーク電流用素子を備え、リーク電流用素子のリーク電流を測定することにより、検出電流用素子のリーク電流に対応した校正信号を得るリーク電流測定回路と、
検出電流測定回路から出力される測定信号とリーク電流測定回路から出力される校正信号とを比較処理することにより、測定信号に含まれるリーク電流の成分を除去するリーク電流補償回路と、
を有する、
ことを特徴とする放射線測定装置。
A radiation detector that detects radiation and generates a detection current;
A detection current measuring circuit that includes a detection current element for measuring the detection current, and obtains a measurement signal by measuring the detection current using the detection current element;
A leakage current measuring circuit having a leakage current element having characteristics equivalent to the characteristics of the detection current element, and obtaining a calibration signal corresponding to the leakage current of the detection current element by measuring the leakage current of the leakage current element; ,
A leakage current compensation circuit for removing a leakage current component included in the measurement signal by comparing the measurement signal output from the detection current measurement circuit and the calibration signal output from the leakage current measurement circuit;
Having
A radiation measuring apparatus characterized by that.
請求項1に記載の放射線測定装置において、
前記検出電流用素子と前記リーク電流用素子は、互いに同一の集積回路用パッケージ内に実装される半導体素子である、
ことを特徴とする放射線測定装置。
The radiation measurement apparatus according to claim 1,
The detection current element and the leakage current element are semiconductor elements mounted in the same integrated circuit package.
A radiation measuring apparatus characterized by that.
請求項2に記載の放射線測定装置において、
前記検出電流測定回路は、放射線のバックグランドレベルの測定に対応したバックグランド測定用抵抗を備え、前記測定信号として、検出電流を含んだ電流がバックグランド測定用抵抗を流れることによって発生する電圧信号を出力し、
前記リーク電流測定回路は、バックグランド測定用抵抗と同じ抵抗値のリーク電流測定用抵抗を備え、前記校正信号として、リーク電流用素子のリーク電流がリーク電流測定用抵抗を流れることによって発生する電圧信号を出力し、
前記リーク電流補償回路は、測定信号の電圧信号と校正信号の電圧信号との間の電圧差を出力する、
ことを特徴とする放射線測定装置。
The radiation measurement apparatus according to claim 2,
The detection current measurement circuit includes a background measurement resistor corresponding to measurement of a radiation background level, and a voltage signal generated when a current including the detection current flows through the background measurement resistor as the measurement signal. Output
The leakage current measuring circuit includes a leakage current measuring resistor having the same resistance value as the background measuring resistor, and a voltage generated when the leakage current of the leakage current element flows through the leakage current measuring resistor as the calibration signal. Output signal,
The leakage current compensation circuit outputs a voltage difference between the voltage signal of the measurement signal and the voltage signal of the calibration signal.
A radiation measuring apparatus characterized by that.
請求項3に記載の放射線測定装置において、
前記検出電流測定回路は、放射線の測定感度を切り替えるための感度変更用抵抗を備え、バックグランド測定用抵抗に対して感度変更用抵抗が並列接続されて合成抵抗値を変化させることにより測定感度が切り替えられる、
ことを特徴とする放射線測定装置。
The radiation measurement apparatus according to claim 3.
The detection current measuring circuit includes a sensitivity changing resistor for switching the measurement sensitivity of radiation, and a sensitivity changing resistor is connected in parallel to the background measuring resistor to change the combined resistance value. Can be switched,
A radiation measuring apparatus characterized by that.
JP2006332786A 2006-12-11 2006-12-11 Radiation measurement equipment Expired - Fee Related JP4814775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332786A JP4814775B2 (en) 2006-12-11 2006-12-11 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332786A JP4814775B2 (en) 2006-12-11 2006-12-11 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2008145264A true JP2008145264A (en) 2008-06-26
JP4814775B2 JP4814775B2 (en) 2011-11-16

Family

ID=39605605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332786A Expired - Fee Related JP4814775B2 (en) 2006-12-11 2006-12-11 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4814775B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482950A (en) * 2010-08-06 2012-02-22 Thermo Fisher Scientific Inc Low voltage optimized ion chamber
JP2014149292A (en) * 2013-01-31 2014-08-21 General Electric Co <Ge> Wide dynamic range bidirectional integrating electrometer with low leakage current solid-state reset and range change operating over extended temperature range
CN104865434A (en) * 2015-06-01 2015-08-26 中国计量科学研究院 Ionization current measurement device and measurement method
CN104903744A (en) * 2012-10-30 2015-09-09 苏塞克斯大学 Apparatus for sensing ionic current
JP5829745B1 (en) * 2014-11-14 2015-12-09 横山 義隆 Radiation measurement equipment
US9229119B1 (en) 2014-12-15 2016-01-05 Mitsubishi Electric Corporation Radiation measurement apparatus
US9381647B2 (en) 2013-02-19 2016-07-05 Seiko Epson Corporation Force detection device, robot, and moving object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154487A (en) * 1984-08-25 1986-03-18 Fuji Electric Co Ltd Radiation measuring device
JPH02248889A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd X-ray receiver
JPH03127283A (en) * 1989-10-13 1991-05-30 Matsushita Electric Ind Co Ltd Color picture processing system and processing system
JPH09318785A (en) * 1996-05-30 1997-12-12 Toshiba Corp Fixed type in-core measuring device
JP2000312182A (en) * 1999-04-27 2000-11-07 Nec Corp Optical receiver
JP2003156563A (en) * 2001-11-20 2003-05-30 Applied Engineering Inc Dark current compensation type ion chamber current measuring device
JP2005257383A (en) * 2004-03-10 2005-09-22 Aloka Co Ltd Ionization chamber type radiation detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154487A (en) * 1984-08-25 1986-03-18 Fuji Electric Co Ltd Radiation measuring device
JPH02248889A (en) * 1989-03-22 1990-10-04 Matsushita Electric Ind Co Ltd X-ray receiver
JPH03127283A (en) * 1989-10-13 1991-05-30 Matsushita Electric Ind Co Ltd Color picture processing system and processing system
JPH09318785A (en) * 1996-05-30 1997-12-12 Toshiba Corp Fixed type in-core measuring device
JP2000312182A (en) * 1999-04-27 2000-11-07 Nec Corp Optical receiver
JP2003156563A (en) * 2001-11-20 2003-05-30 Applied Engineering Inc Dark current compensation type ion chamber current measuring device
JP2005257383A (en) * 2004-03-10 2005-09-22 Aloka Co Ltd Ionization chamber type radiation detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482950A (en) * 2010-08-06 2012-02-22 Thermo Fisher Scientific Inc Low voltage optimized ion chamber
US8415638B2 (en) 2010-08-06 2013-04-09 Thermo Fisher Scientific Inc. Method for detecting high-energy radiation using low voltage optimized ion chamber
GB2482950B (en) * 2010-08-06 2015-05-20 Thermo Fisher Scientific Inc Method for detecting high-energy radiation using low voltage optimised ion chamber
CN104903744A (en) * 2012-10-30 2015-09-09 苏塞克斯大学 Apparatus for sensing ionic current
JP2014149292A (en) * 2013-01-31 2014-08-21 General Electric Co <Ge> Wide dynamic range bidirectional integrating electrometer with low leakage current solid-state reset and range change operating over extended temperature range
US9381647B2 (en) 2013-02-19 2016-07-05 Seiko Epson Corporation Force detection device, robot, and moving object
US9873201B2 (en) 2013-02-19 2018-01-23 Seiko Epson Corporation Force detection device, robot, and moving object
JP5829745B1 (en) * 2014-11-14 2015-12-09 横山 義隆 Radiation measurement equipment
JP2016095245A (en) * 2014-11-14 2016-05-26 横山 義隆 Radiation measuring device
US9229119B1 (en) 2014-12-15 2016-01-05 Mitsubishi Electric Corporation Radiation measurement apparatus
CN104865434A (en) * 2015-06-01 2015-08-26 中国计量科学研究院 Ionization current measurement device and measurement method

Also Published As

Publication number Publication date
JP4814775B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4814775B2 (en) Radiation measurement equipment
JP3373587B2 (en) Electric signal generator
JP2011137813A (en) Circuit and method for measuring cell voltage in battery pack
CA2583455C (en) Electrochemical sensing circuit having high dynamic range
US9189940B2 (en) Method and apparatus for detecting smoke in an ion chamber
JP6329376B2 (en) Radiation monitor and current measurement method for radiation monitor
KR101512107B1 (en) Apparatus and method for measuring electric conductivity
KR20140111288A (en) Method and apparatus for detecting smoke in an ion chamber
JP2017534845A (en) Current measuring device
US20140015540A1 (en) Method for Ascertaining at least one Malfunction of a Conductive Conductivity Sensor
JP4297965B1 (en) Ion concentration measuring device
KR20140111285A (en) Method and apparatus for detecting smoke in an ion chamber
CN111551864B (en) High-precision bidirectional current detection circuit applied to battery charging and discharging and method thereof
JPH05129093A (en) Triple probe plasma measuring instrument for correcting space electric potential error
US8611065B2 (en) Method and device for automatic positive and negative ion balance control in a bipolar ion generator
JP5829745B1 (en) Radiation measurement equipment
WO2003001195A1 (en) Monitoring of gas sensors
JP4227543B2 (en) Ionization chamber type radiation measuring device
JP2014010028A (en) Battery impedance measuring device and method
JP2017020954A (en) Insulation resistance monitoring device in direct current non-grounded electric circuit and monitoring method
JP6538532B2 (en) Piezoelectric sensor
JP2000503775A (en) Circuit device for resistance and leak measurement
JP2020186934A (en) Capacitive electromagnetic flow meter and measurement control method
JP3982144B2 (en) Module battery voltage detector for assembled battery
TWI397679B (en) Apparatuses and methods for detecting fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110826

R150 Certificate of patent or registration of utility model

Ref document number: 4814775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees