JP2008145117A - Grain flow measurement device - Google Patents

Grain flow measurement device Download PDF

Info

Publication number
JP2008145117A
JP2008145117A JP2006329119A JP2006329119A JP2008145117A JP 2008145117 A JP2008145117 A JP 2008145117A JP 2006329119 A JP2006329119 A JP 2006329119A JP 2006329119 A JP2006329119 A JP 2006329119A JP 2008145117 A JP2008145117 A JP 2008145117A
Authority
JP
Japan
Prior art keywords
image
particles
particle
particle flow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006329119A
Other languages
Japanese (ja)
Other versions
JP4784832B2 (en
Inventor
Satoshi Matsuda
聡 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006329119A priority Critical patent/JP4784832B2/en
Publication of JP2008145117A publication Critical patent/JP2008145117A/en
Application granted granted Critical
Publication of JP4784832B2 publication Critical patent/JP4784832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a grain flow measurement device capable of correctly measuring a flowing state of a wide variety of grains by directly monitoring the flowing state of grain movement in real time. <P>SOLUTION: In measuring a flow speed or the like of grains in a grain flow measurement device 1, an end of an image fiber 3 is inserted into a tube wall 2, and a recording part 7 of a camera 6 as an imaging device is provided at the other end. A recorded image of the camera 6 is processed by a personal computer 8, a movement speed is measured by difference in phases between first and second recorded images to calculate a flow rate or the like. An objective lens, an eyepiece lens and further an optical filter or the like are used at the end of the image fiber in doing so. In addition, a phase difference detecting semiconductor element may be used as the imaging device, and an optical mouse sensor part of an optical mouse may be further used. In order to measure the movement speed from the recorded image of the grain flow by the imaging device, calibration takes place beforehand by recording an object whose movement speed is known, a disk rotating at a predetermined speed, for example. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス化装置、燃焼装置、粒子循環型除湿装置等において、粒子を用いた流動層の粒子の流動状態、更には各種粒子や粉体の流動状態を検出する粒子流動測定装置に関する。   The present invention relates to a particle flow measuring device that detects the flow state of particles in a fluidized bed using particles, and further the flow state of various particles and powders in a gasifier, a combustion device, a particle circulation dehumidifier, and the like.

粒子を流動状態にしてその中に種々の物質を混入させ、その物質の処理を行う流動層利用処理装置が各種の分野で用いられており、特に粒子を高温にしてその中に物質を混入させて高温処理を行うことは石炭燃焼装置、石炭ガス化装置として、或いは廃棄物処理装置として、更には各種物質の乾燥装置として利用されている。   Fluidized bed utilizing treatment equipment is used in various fields in which particles are put into a fluidized state and various substances are mixed therein, and the substances are treated. In particular, the particles are mixed with substances at high temperatures. The high-temperature treatment is used as a coal combustion device, a coal gasification device, as a waste treatment device, or as a drying device for various substances.

また、除湿剤の粒子を環境空気の除湿処理部分とこれを乾燥させる再生部分の間を循環させ粒子循環型空調システムが提案されている。この粒子循環型空調システムにおいて、前記ガス化装置で用いられているような粒子状の流動媒体を下方に配置した空気吹込口からの空気により流動化した中で反応させる技術と同様に、デシカント粒子に空調用空気、或いは再生用気体を吹き込み、流動化した状態で処理を行うことも提案されている。   Further, a particle circulation type air conditioning system has been proposed in which the particles of the dehumidifying agent are circulated between the dehumidifying portion of the ambient air and the regenerating portion for drying it. In this particle circulation type air conditioning system, the desiccant particles are used in the same manner as in the technique of reacting in the fluidized state of the particulate fluid medium used in the gasifier by the air from the air blowing port disposed below. It has also been proposed to perform the treatment in a fluidized state by blowing air for air conditioning or regeneration.

このような種々の分野で用いられている流動層による処理に際して、粒子群がどのように流動しているかを知ることは、所望の処理制御を行うために極めて重要である。そのため種々の流動粒子の流動量測定手法が提案されており、例えば流動する粒子をバタフライバルブ等で一定時間流路を切り替え、堆積する粒子の重量によって測定する手法が用いられている。また、ダウンカマー部下方のループシール室内に存在する流動粒子等の重量を歪ゲージ等によって計測することも提案されている(特許文献1)。   It is extremely important to know how the particle group is flowing in the processing using the fluidized bed used in various fields in order to perform desired processing control. For this reason, various methods for measuring the amount of flowing particles have been proposed. For example, a method is used in which the flowing particles are switched for a certain period of time using a butterfly valve or the like, and measured based on the weight of the deposited particles. It has also been proposed to measure the weight of fluid particles and the like existing in the loop seal chamber below the downcomer section using a strain gauge or the like (Patent Document 1).

しかしながらこの手法では、一定時間を必要とするためリアルタイムでの計測を行うことができない、また、流路を切り替える場合はそのための特別な付加装置を必要とする。更に、特許文献1に記載されている技術では、センサの温度依存性が高く、補正が難しいという問題もある。   However, in this method, since a certain time is required, measurement in real time cannot be performed, and a special additional device is required for switching the flow path. Furthermore, the technique described in Patent Document 1 has a problem that the temperature dependency of the sensor is high and correction is difficult.

また、予め空気速度等の所定の操作条件における粒子循環量を測定しておき、そのときの操作条件を検出することにより粒子循環量を推算する手法も存在する。しかしながらこの手法では、操作条件が同じでも温度条件等の環境条件が変化した場合に、実際にその値であるか否かの確証がないという問題があるほか、リアルタイムな粒子循環量を計測することができない。   There is also a method of estimating the amount of particle circulation by measuring the amount of particle circulation under a predetermined operation condition such as air velocity in advance and detecting the operation condition at that time. However, this method has the problem that when the environmental conditions such as the temperature conditions change even if the operating conditions are the same, there is no problem of confirming whether or not it is the actual value, and the real-time particle circulation rate is measured. I can't.

更に、実際に流動している粒子群を外部からビデオ撮影可能とし、その撮影画像を二次元FFT等を用い、PIV、空間フィルタ法等により位相差を検出し、画像の平面の中での粒子の移動速度を測定することも考えられる。しかしながら、この手法は演算時間がかかり、また計測実績がなく実際に循環流動層の循環モニタリングに適用できるか否かに多くの疑問がある。   Furthermore, it is possible to take a video image of the particle group that is actually flowing from the outside, and use a two-dimensional FFT or the like to detect the phase difference by PIV, spatial filter method, etc., and the particles in the plane of the image It is also conceivable to measure the moving speed. However, this method takes time to calculate, and there are many doubts as to whether it can be applied to circulation monitoring of a circulating fluidized bed because it has no measurement results.

また、例えば堰を通過する粒子群の高さや、板等への衝突圧力のような、粒子循環量によって変化する値を見積もる手法もある。しかしながら、この手法は真の粒子群の移動量を測定するものではなく推測するものであるため、測定する条件によって誤差が大きくなり、またセンサの温度依存性がある等、正確な測定を行うことができない問題がある。   There is also a method for estimating a value that varies depending on the amount of particle circulation, such as the height of a particle group passing through a weir and the collision pressure against a plate or the like. However, this method is not to measure the movement of the true particle group, but to estimate it. Therefore, the error will increase depending on the measurement conditions, and the temperature will depend on the sensor. There is a problem that can not be.

その他、流動粒子の循環路において最も安定的に流動しているダウンカマー部で流下する流動粒子群の速度を、例えば目視計測により、或いは光ファイバを用い、或いは静電センサを用いて計測する手法もある。このうち光ファイバを用いる手法では、例えば光電センサや光電スイッチ、赤外線センサ、レーザセンサなどの光センサを用いて測定するものであり、単位時間内に存在する流動粒子の量を検出することにより行われる。しかしながらこの手法では、燃焼炉では粒子の発光を利用してダウンカマーにおける降下速度が測定できるが、比較的低温で反応処理が行われるガス化炉では発光がそれほど大きくなく、そのままでは利用することができない。また粒子に対する依存性が高く、例えば反応場で粒径等の物性が変わってしまう系に対しては適用が困難である。   In addition, the method of measuring the velocity of the flowing particle group flowing down in the downcomer part that is most stably flowing in the circulating path of the flowing particle, for example, by visual measurement, using an optical fiber, or using an electrostatic sensor There is also. Among them, the method using an optical fiber is a method that uses an optical sensor such as a photoelectric sensor, a photoelectric switch, an infrared sensor, or a laser sensor to measure the amount of flowing particles present in a unit time. Is called. However, in this method, the down-comer descent rate can be measured using the light emission of particles in the combustion furnace, but the light emission is not so large in the gasification furnace where the reaction treatment is performed at a relatively low temperature, and it can be used as it is. Can not. In addition, it is highly dependent on particles, and is difficult to apply to systems in which physical properties such as particle size change in a reaction field.

その対策として本件出願人により、例えば図5に示すような流動粒子の流速を計測し、粒子流動量を計測する手法を提案している(特許文献2)。この手法は同文献に詳細に説明しているが、これを要約すると、ダウンカマー部29等の流動粒子の循環路中に流動粒子冷却用の冷熱源供給管25、流動粒子を加熱するため流動粒子中に酸素を吹き込む酸素供給管26のうち少なくとも片方を配置し、その下流に上流側温度検出用光ファイバー27と下流側温度検出用光ファイバー28を配置する。それにより、流動粒子が循環している上流で粒子を加熱或いは冷却し、各光ファイバーで温度変化を検出した時間差と両光ファイバーの距離によって粒子の循環速度を測定して粒子循環量を得ることができる、というものである。
特開2003−185116号公報 特開2005−233460号公報
As a countermeasure, the applicant of the present application has proposed a method of measuring the flow rate of flowing particles and measuring the amount of flowing particles as shown in FIG. 5, for example (Patent Document 2). This method is described in detail in the same document, but in summary, the cold heat source supply pipe 25 for cooling the fluidized particles in the circulation path of the fluidized particles such as the downcomer section 29, and the fluidized particles are heated to heat the fluidized particles. At least one of the oxygen supply pipes 26 for blowing oxygen into the particles is disposed, and an upstream temperature detection optical fiber 27 and a downstream temperature detection optical fiber 28 are disposed downstream thereof. As a result, the particle circulation rate can be obtained by heating or cooling the particles upstream where the flowing particles circulate and measuring the circulation speed of the particles according to the time difference in which the temperature change is detected by each optical fiber and the distance between both optical fibers. That's it.
JP 2003-185116 A JP 2005-233460 A

本件出願人により提案している上記の技術により、比較的低温で反応処理が行われるガス化炉に対しても有効に適用でき、正確な粒子循環量を得ることができるものであるが、この手法は冷熱供給或いは酸素の供給を必要とし、更に光ファイバーを2箇所に設ける必要があり、装置が大型化し、比較的高価なものとなる。また、計測する2点間の距離を短くすると局所情報でしかなくなり、2点間をある程度長くすると、それぞれの点の信号の対応する情報を識別するのが難しくなってくるという問題もあり、また、適度なサンプリング周期を考慮する必要もある。   The above technique proposed by the applicant of the present application can be effectively applied to a gasification furnace in which a reaction process is performed at a relatively low temperature, and an accurate particle circulation amount can be obtained. This method requires cold supply or oxygen supply, and further requires two optical fibers to be installed, resulting in a larger apparatus and a relatively expensive apparatus. In addition, if the distance between two points to be measured is shortened, only local information is obtained, and if the distance between two points is increased to some extent, it becomes difficult to identify the corresponding information of the signal at each point. It is also necessary to consider an appropriate sampling period.

したがって本発明は、前記従来の種々の問題点を解決することができる流動粒子の計測手法を提案するものであり、粒子移動の方向を含んだ移動速度をリアルタイムにモニタリングできるようにし、広範囲の種類の粒子や広範囲の粒径の粒子等、多種多様な粒子の移動速度を測定し、それによりそれらの粒子の流動量を正確に測定できる粒子流動測定装置を提供することを主たる目的としている。   Therefore, the present invention proposes a measurement method for fluidized particles that can solve the above-mentioned various problems, and allows the moving speed including the direction of particle movement to be monitored in real time, and a wide variety of methods are available. The main object of the present invention is to provide a particle flow measuring device capable of measuring the moving speed of a wide variety of particles such as particles having a wide range of particle diameters, thereby accurately measuring the flow rate of these particles.

近年、比較的安価に入手可能になったデバイスにコンピュータ用の光学マウスがある。光学マウスの内部には画素数は低いが撮影素子があり、1500Hzから高速なものでは6500Hz程度の画像処理を行い、マウス移動量の信号をパソコンに伝達している。そこで、この光学マウスの底部の検出部に粒子群移動の情報を導けば、オンラインモニタリングすることができると考え、これを実験により確かめ、更にこの手法をより汎用性の高い測定手法に発展させ、本発明に至ったものである。   In recent years, optical mice for computers are one of the devices that have become available relatively inexpensively. The optical mouse has a small number of pixels but a photographing element, and performs image processing of about 6500 Hz for a high-speed one from 1500 Hz, and transmits a mouse movement amount signal to a personal computer. Therefore, we think that online monitoring can be performed by introducing the information of particle swarm movement to the detection part at the bottom of this optical mouse, we confirmed this by experiment, and further developed this method to a more versatile measurement method, The present invention has been achieved.

本発明に係る粒子流動測定装置はより具体的には、粒子群の移動流路内に一端部が挿入されるイメージファイバと、前記イメージファイバの他端部に配置した画像撮影装置と、前記画像撮影装置で撮影した画像を処理し、撮影した画像から粒子群の少なくとも移動速度を演算する画像処理演算装置とを備えたことを特徴とする。   More specifically, the particle flow measuring device according to the present invention more specifically includes an image fiber having one end inserted into the moving flow path of the particle group, an image capturing device disposed at the other end of the image fiber, and the image. An image processing arithmetic device that processes an image photographed by the photographing device and computes at least the moving speed of the particle group from the photographed image is provided.

また、本発明に係る他の粒子流動測定装置は、前記粒子流動測定装置において、前記イメージファイバの端部には対物レンズまたは接眼レンズ、或いは両レンズを設けることを特徴とする。   Another particle flow measuring apparatus according to the present invention is characterized in that, in the particle flow measuring apparatus, an objective lens, an eyepiece lens, or both lenses are provided at an end of the image fiber.

また、本発明に係る他の粒子流動測定装置は、前記粒子流動測定装置において、 前記画像撮影装置は位相差検出半導体素子であることを特徴とする。   Another particle flow measuring apparatus according to the present invention is characterized in that in the particle flow measuring apparatus, the image photographing device is a phase difference detection semiconductor element.

また、本発明に係る他の粒子流動測定装置は、前記粒子流動測定装置において、 前記画像撮影装置はパソコン用マウスであることを特徴とする。   Another particle flow measuring apparatus according to the present invention is the particle flow measuring apparatus, wherein the image photographing device is a mouse for a personal computer.

また、本発明に係る他の粒子流動測定装置は、前記粒子流動測定装置において、 前記画像撮影装置によるデータは、予め移動速度が既知である表面を撮影した画像データと実際の速度を対応させて校正することを特徴とする。   Another particle flow measuring device according to the present invention is the particle flow measuring device, wherein the data obtained by the image photographing device corresponds to image data obtained by photographing a surface whose moving speed is known in advance and an actual velocity. It is characterized by calibration.

本発明は上記のように構成したので、粒子移動の方向を含んだ移動速度を実際の粒子の移動状態で直接リアルタイムにモニタリングすることができ、広範囲の種類の粒子や広範囲の粒径の粒子等、多種多様な粒子の移動速度及び流動量等の粒子の流動状態を正確に測定することができる。   Since the present invention is configured as described above, the moving speed including the direction of particle movement can be directly monitored in real time in the moving state of the actual particles. It is possible to accurately measure the flow state of particles such as the moving speed and flow amount of various particles.

本発明は、粒子の流動状態の測定を直接リアルタイムで行うことができるようにするという課題を、粒子の移動流路内に一端部が挿入されるイメージファイバと、前記イメージファイバの他端部に配置した画像撮影装置と、前記画像撮影装置で撮影した画像を処理し、撮影した画像から粒子の少なくとも移動速度を演算する画像処理演算装置とを備えることにより実現した。   The present invention addresses the problem of enabling direct measurement of the flow state of particles in real time, with an image fiber having one end inserted into the particle movement channel and the other end of the image fiber. This is realized by including an arranged image capturing device and an image processing operation device that processes an image captured by the image capturing device and calculates at least the moving speed of particles from the captured image.

本発明の実施例を図面に沿って説明する。図1(a)は本発明の最も基本的な粒子流動量測定装置を示しており、例えばガス化炉内の流動層、或いは粒子循環型デシカント空調装置の粒子流動管1の管壁2内にイメージファイバ3の一端部4を挿入し、他端部5に近接して画像撮影装置としてのカメラ6の撮影部7を配置し、このカメラ6によって高速で粒子流動管1内の粒子群の移動状態を撮影している。条件によってはイメージファイバの一端より光源Xからの光を導いたり、検出端付近に別途光源を設ける等により撮影しやすくする。カメラ6による粒子移動状態の撮影画像はパソコン8に入力し、画像処理を行うことにより所定時間内の粒子群の移動方向と移動量のデータを得て、それにより粒子群の流動量を測定することができる。なお、パソコン8は画像処理を行い、撮影された画像から撮影された物体の移動速度等を演算するものであり、したがってこの作動を行うパソコン8は画像処理演算装置ということができる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 (a) shows the most basic particle flow rate measuring device of the present invention. For example, in a fluidized bed in a gasification furnace or in a tube wall 2 of a particle flow tube 1 of a particle circulation type desiccant air conditioner. One end portion 4 of the image fiber 3 is inserted, and a photographing portion 7 of a camera 6 as an image photographing device is disposed in the vicinity of the other end portion 5, and the movement of the particles in the particle flow tube 1 is performed at high speed by this camera 6. Shooting state. Depending on the conditions, the light from the light source X is guided from one end of the image fiber, or a separate light source is provided near the detection end to facilitate photographing. The captured image of the particle movement state by the camera 6 is input to the personal computer 8 and image processing is performed to obtain data on the movement direction and movement amount of the particle group within a predetermined time, thereby measuring the flow amount of the particle group. be able to. Note that the personal computer 8 performs image processing and calculates the moving speed and the like of the photographed object from the photographed image. Therefore, the personal computer 8 that performs this operation can be called an image processing arithmetic device.

このような画像処理による速度検出は、従来より広く用いられている移動画面撮影による速度検出手法を採用することができるが、その際には例えば図1(b)〜(e)による手法により粒子流動管1における粒子移動速度V及び粒子流動量Qを求めることができる。即ち同図(b)のような第1撮影画像を撮影した後、同図(c)のような第2撮影画像を得たとき、両画像の位相差が検出され、同図(d)のように両画像のx方向移動量Cとy方向移動量Cを求めることができ、この値は粒子流動管内の粒子移動量に対応させることができる。 For speed detection by such image processing, a speed detection method by moving screen photography, which has been widely used conventionally, can be adopted. In that case, for example, particles by the method shown in FIGS. The particle moving speed V d and the particle flow amount Q d in the flow tube 1 can be obtained. That is, after the first photographed image as shown in FIG. 5B is taken and the second photographed image as shown in FIG. 10C is obtained, the phase difference between the two images is detected, and as shown in FIG. as can be determined in the x-direction movement amount C x and y direction movement amount C y of both images, this value can correspond to the particle movement amount of particles flowing pipe.

このデータにより図1(e)(1)に示すように粒子の実際の移動量Cを求めることができ、それにより同図(2)に示すように単位時間tの粒子の移動速度VをV=C/tで求めることができる。また、この粒子流動管1が流動層のダウンカマー部であるとき、このダウンカマー部の粒子群降下速度Vは同図(3)のようにV=C/tで求めることができる。更にダウンカマー部の粒子流動量Qは同図(4)に示すように、Q=Vρ(1−ε)Aにより求めることができる。なおここでρは粒子密度、εはダウンカマー部の空隙率、Aはダウンカマー部の断面積である。 This data can determine the actual amount of movement C L of the particles as shown in FIG. 1 (e) (1), whereby the moving velocity V L of the unit time t of a particle as shown in FIG. (2) Can be obtained by V L = C L / t. Also, when the particle flow tube 1 is downcomer portion of the fluidized bed, the particles drop velocity V d of the downcomer portion can be determined by V d = C y / t as shown in FIG. (3) . Further, the particle flow amount Q d in the downcomer portion can be obtained by Q d = V d ρ p (1−ε d ) A d as shown in FIG. Note here [rho p is the particle density, epsilon d is the porosity of the downcomer portion, A d is the cross-sectional area of the downcomer portion.

本発明は粒子流動管1内の粒子の状態を検出するに際して、単にイメージファイバ3を用いるのみではなく、例えば図2(a)に示すように、イメージファイバ3の粒子流動管1内の端部に対物レンズ9を設け、カメラ6の撮影部7側に接眼レンズ10を設けても良い。また、カメラ6の撮影部7には、図示するように光学フィルタ11を設けても良い。   In the present invention, when detecting the state of particles in the particle flow tube 1, not only the image fiber 3 is used but also an end portion of the image fiber 3 in the particle flow tube 1 as shown in FIG. The objective lens 9 may be provided, and the eyepiece 10 may be provided on the photographing unit 7 side of the camera 6. In addition, an optical filter 11 may be provided in the photographing unit 7 of the camera 6 as illustrated.

このように対物レンズ9及び接眼レンズ10を用いることにより、細いイメージファイバ3を用いても広範囲の粒子流動状態の画像を取り込み、これを拡大して明瞭にカメラで撮影することができ、また、光学フィルタ11を設けることにより、粒子の温度等による発色状態の変化による撮影画像の変化を調節することができ、より正確な粒子移動速度、粒子流動量の計測を行うことができる。   By using the objective lens 9 and the eyepiece lens 10 in this way, an image of a wide range of particle flow states can be captured even using the thin image fiber 3, and this can be magnified and clearly photographed with a camera. By providing the optical filter 11, it is possible to adjust the change in the photographed image due to the change in the coloring state due to the temperature of the particle, and more accurately measure the particle moving speed and the particle flow amount.

前記実施例においては、イメージファイバ3で導いた粒子流動管1内の粒子の移動状態をカメラ6により撮影したものであるが、例えば図2(b)に示すように、イメージファイバ3の端部の接眼レンズ10に直接画像撮影装置としての位相差検出半導体素子12を設けて画像を取り込み、これをパソコン8に入力して、前記と同様の手法により粒子流動速度、粒子流動量の計測を行うこともできる。   In the above embodiment, the moving state of the particles in the particle flow tube 1 guided by the image fiber 3 is photographed by the camera 6. For example, as shown in FIG. A phase difference detection semiconductor element 12 as an image photographing device is directly provided on the eyepiece 10 of the lens, and an image is captured and input to the personal computer 8 to measure the particle flow velocity and the particle flow amount by the same method as described above. You can also.

本発明は更に、前記実施例3における位相差検出半導体素子12の一態様としての、通常のコンピュータに用いられている光学マウスを用いることもできる。その態様を図3に模式的に示しており、図3に示す例においては実験で行った例を示している。なお、本発明は前記「課題を解決するための手段」に記載したように、この実験により本発明の有用性を確認し、前記各実施例によって本発明を更に広く実施することができることを見出したものである。以下にその実験の概要を簡単に説明する。   The present invention can also use an optical mouse that is used in a normal computer as an aspect of the phase difference detection semiconductor element 12 in the third embodiment. The mode is schematically shown in FIG. 3, and the example shown in FIG. 3 shows an example of experiments. In addition, as described in the above-mentioned “Means for Solving the Problems”, the present invention confirms the usefulness of the present invention by this experiment, and finds that the present invention can be implemented more widely by the respective embodiments. It is a thing. The outline of the experiment is briefly described below.

実験に使用した光学マウスはUSB接続の市販の光学マウス13を用い、従来のガス化炉と略同様の構成からなる粒子流動装置14を作成して、流動層が形成され粒子が落下するダウンカマー部15に前記各実施例と同様のイメージファイバ3の端部を挿入し、イメージファイバ3の他端部に直接光学マウス13の光学マウスセンサ部16に一致させて固定している。なお、粒子流動装置14はダウンカマー部15の下部にエアコンプレッサ17からの高圧空気を流量制御器19を介して供給し、粒子を流動化し下降できるようにしている。また、エアコンプレッサ17からの高圧空気はライザ部21の下端にも流量制御器18を介して導いており、ライザ部下端にはダウンカマー部15からの粒子が供給される。ダウンカマー部15の上方に配置したサイクロン20において接線方向に開口しているライザー部21の下端部において、高圧空気を供給可能としている。   The optical mouse used for the experiment was a commercially available optical mouse 13 with a USB connection, and a particle flow device 14 having substantially the same configuration as that of a conventional gasification furnace was prepared. A downcomer in which a fluidized bed was formed and particles dropped. The same end portion of the image fiber 3 as that in the above embodiments is inserted into the portion 15, and the other end portion of the image fiber 3 is directly fixed to the optical mouse sensor portion 16 of the optical mouse 13. The particle flow device 14 supplies high pressure air from the air compressor 17 to the lower part of the downcomer portion 15 via a flow rate controller 19 so that the particles can be fluidized and lowered. The high-pressure air from the air compressor 17 is also guided to the lower end of the riser unit 21 via the flow rate controller 18, and particles from the downcomer unit 15 are supplied to the lower end of the riser unit. High-pressure air can be supplied to the lower end portion of the riser portion 21 that opens in the tangential direction in the cyclone 20 disposed above the downcomer portion 15.

それにより、エアコンプレッサ17の作動時にはダウンカマー部15の粒子は流動状態となり、またライザー部21の下端から内部に供給される高圧空気によりダウンカマー部15からの粒子が上方に搬送され、サイクロン20内に接線方向に噴出する。サイクロン20内の粒子は螺旋状に落下し、粉体は前記下方から供給されている流動用空気と共に排出し、粒子のみが流動用空気に対向してその重力によりダウンカマー部に堆積する。堆積している粒子群の流動状態をイメージファイバ3で光学マウスセンサ部16に導く。   Thereby, when the air compressor 17 is operated, the particles in the downcomer unit 15 are in a fluid state, and the particles from the downcomer unit 15 are conveyed upward by the high-pressure air supplied from the lower end of the riser unit 21 to the cyclone 20. Erupts in a tangential direction. The particles in the cyclone 20 fall spirally, the powder is discharged together with the flowing air supplied from below, and only the particles are opposed to the flowing air and are deposited on the downcomer portion by the gravity. The flow state of the accumulated particles is guided to the optical mouse sensor unit 16 by the image fiber 3.

光学マウスセンサ部16で得られる画像は周知の光学マウスで得られる画像であり、前記図1(b)(c)に示したものとほぼ同様である。光学マウス13内の信号処理回路ではその画像を前記図1(d)と同様に処理し、その処理信号はパソコン8に入力する。パソコン8では通常のパソコンで利用されているマウス22からの信号処理を行うソフトとは異なるソフトによって、図1(d)の信号に基づき図1(e)の演算等を行うことにより、粒子の移動速度V及び流動量Qを演算することができる。なお、通常のマウスは図1(d)のデータにより、マウスの移動方向、移動速度、移動量等のデータを演算し、その演算データをモニタ画面のポインタ移動等に用いている。また、光学マウスは光源を備えているので別途光源を用いること無く画像を得ることができるが、必要に応じて前記と同様の光源を用いても良い。   An image obtained by the optical mouse sensor unit 16 is an image obtained by a known optical mouse, and is substantially the same as that shown in FIGS. The signal processing circuit in the optical mouse 13 processes the image in the same manner as in FIG. 1 (d), and inputs the processed signal to the personal computer 8. In the personal computer 8, the calculation of FIG. 1 (e) is performed based on the signal of FIG. 1 (d) by software different from the software that performs signal processing from the mouse 22 that is used in a normal personal computer. The moving speed V and the flow amount Q can be calculated. A normal mouse calculates data such as the moving direction, moving speed, and moving amount of the mouse from the data shown in FIG. 1D, and uses the calculated data for pointer movement on the monitor screen. In addition, since the optical mouse includes a light source, an image can be obtained without using a separate light source, but a light source similar to the above may be used as necessary.

上記のような光学マウスを用いてイメージファイバで導いた粒子の移動状態を撮影した画像から粒子の移動速度データを得るに際しては、例えば図4に示すような検定装置を用いて予めマウスの撮影画像と撮影物体の移動速度の相関データを得ておくことにより容易に、且つ正確な計測が可能となる。図4に示す例においては、モータ23により回転円盤24を所定速度で回転し、その回転円盤24の表面25に近接してイメージファイバ3の端部を配置する。   When obtaining particle movement speed data from an image obtained by photographing the movement state of particles guided by an image fiber using the optical mouse as described above, for example, a photographed image of the mouse is used in advance using an assay device as shown in FIG. By obtaining correlation data of the moving speed of the photographic object, it is possible to easily and accurately measure. In the example shown in FIG. 4, the rotating disk 24 is rotated at a predetermined speed by the motor 23, and the end portion of the image fiber 3 is arranged close to the surface 25 of the rotating disk 24.

このイメージファイバ3の他端部に前記図4と同様に光学マウス13の光学マウスセンサ部16を配置し、光学マウスで撮影した画像を前記と同様に処理する。その処理結果の移動速度に関連したデータと、予め得られている回転円盤24の表面25におけるイメージファイバ端部の配置部分の速度と対応することにより、光学マウスで得られる画像の移動速度を正確に校正することができる。なお、この校正手法は前記の各実施例において、カメラや位相差検出半導体素子を用いる場合においても同様に採用することができる。   The optical mouse sensor unit 16 of the optical mouse 13 is disposed at the other end of the image fiber 3 in the same manner as in FIG. 4, and an image photographed with the optical mouse is processed in the same manner as described above. By matching the data related to the moving speed of the processing result and the speed of the arrangement portion of the end portion of the image fiber on the surface 25 of the rotating disk 24 obtained in advance, the moving speed of the image obtained with the optical mouse can be accurately determined. Can be calibrated. This calibration method can be similarly employed in the above-described embodiments even when a camera or a phase difference detection semiconductor element is used.

上記のような装置を用いて実際に作動させたデータと、従来から行われている目視による測定と比較した結果、それぞれの測定法に各々特性はあるものの、光学マウスを用いることにより実際に粒子が流動している状態において、その粒子の移動速度及び流動量をオンラインで正確に測定することができることを確認した。このような装置は安価に得られるため、特に実験等に広く用いることができる。更にガス化炉、粒子循環型デシカント空調装置の粒子処理層における流動粒子の測定に際しては、前記実施例1〜3のような装置を用い、より正確で確実な測定を行うことができるようになる。   As a result of comparison between the data actually operated using the device as described above and the visual measurement that has been performed conventionally, each measurement method has its own characteristics, but by using an optical mouse, the actual particle It was confirmed that the moving speed and flow amount of the particles can be accurately measured on-line in a state where the particles are flowing. Since such an apparatus can be obtained at a low cost, it can be widely used particularly for experiments. Furthermore, when measuring the flowing particles in the particle treatment layer of the gasification furnace and the particle circulation type desiccant air conditioner, it becomes possible to perform more accurate and reliable measurement using the apparatus as in the first to third embodiments. .

産業上の利用分野Industrial application fields

本発明は原理的に粒径等の粒子物性や温度等の環境雰囲気に依存しないため、粉体分野における広範囲な利用が考えられる。即ち、上記のように、ガス化装置、燃焼装置、廃棄物処理装置、粒子循環型除湿装置等に用いることができ、高温の粒子でも実際の流動状態で直接、正確に測定することができるものである。本発明はこのような粒子以外に、より粒子径の小さいことにより粉体状となった微粒子の測定にも用いることができ、したがって粉体輸送装置等、広範囲の分野で利用することができる。   In principle, the present invention does not depend on particle physical properties such as particle size or environmental atmosphere such as temperature, and thus can be widely used in the powder field. In other words, as described above, it can be used for gasifiers, combustion devices, waste treatment devices, particle circulation dehumidifiers, etc., and even hot particles can be measured directly and accurately in the actual flow state. It is. In addition to such particles, the present invention can also be used to measure fine particles that have become powdery due to a smaller particle diameter, and thus can be used in a wide range of fields, such as a powder transportation device.

本発明の実施例1の概要図である。It is a schematic diagram of Example 1 of the present invention. (a)は同実施例2の概要図であり、(b)は同実施例3の概要図である。(A) is a schematic diagram of the second embodiment, and (b) is a schematic diagram of the third embodiment. 同実施例4の概要図である。It is a schematic diagram of Example 4. 同実施例4におけるマウスデータ校正装置の概要図である。It is a schematic diagram of the mouse | mouth data calibration apparatus in the Example 4. 本発明者等が先に提案している粒子流動測定装置を示す図である。It is a figure which shows the particle | grain flow measuring apparatus which the present inventors previously proposed.

符号の説明Explanation of symbols

1 粒子流動装置
2 管壁
3 イメージファイバ
4 一端部
5 他端部
6 カメラ
7 撮影部
8 パソコン
9 対物レンズ
10 接眼レンズ
11 光学フィルタ
12 位相差検出半導体素子
13 光学マウス
14 粒子流動装置
15 ダウンカマー部
16 光学マウスセンサ部
17 エアコンプレッサ
18 ライザ用ガス流量制御器
19 ダウンカマー用ガス流量制御器
20 サイクロン
21 ライザ部
22 マウス
23 モータ
24 回転円盤
25 表面
DESCRIPTION OF SYMBOLS 1 Particle flow apparatus 2 Tube wall 3 Image fiber 4 One end part 5 Other end part 6 Camera 7 Imaging | photography part 8 Personal computer 9 Objective lens 10 Eyepiece 11 Optical filter 12 Phase difference detection semiconductor element 13 Optical mouse 14 Particle flow apparatus 15 Downcomer part
16 Optical mouse sensor unit 17 Air compressor 18 Gas flow controller for riser 19 Gas flow controller for downcomer 20 Cyclone 21 Riser unit 22 Mouse
23 Motor 24 Rotating disk 25 Surface

Claims (5)

粒子の移動流路内に一端部が挿入されるイメージファイバと、
前記イメージファイバの他端部に配置した画像撮影装置と、
前記画像撮影装置で撮影した画像を処理し、撮影した画像から粒子の少なくとも移動速度を演算する画像処理演算装置とを備えたことを特徴とする粒子流動測定装置。
An image fiber having one end inserted into the particle flow path;
An image capturing device disposed at the other end of the image fiber;
A particle flow measuring device, comprising: an image processing arithmetic device that processes an image captured by the image capturing device and calculates at least a moving speed of particles from the captured image.
前記イメージファイバの端部には、対物レンズまたは接眼レンズ、或いは両レンズを設けることを特徴とする請求項1記載の粒子流動測定装置。   2. The particle flow measuring apparatus according to claim 1, wherein an end of the image fiber is provided with an objective lens, an eyepiece lens, or both lenses. 前記画像撮影装置は位相差検出半導体素子であることを特徴とする請求項1記載の粒子流動測定装置。   2. The particle flow measuring device according to claim 1, wherein the image photographing device is a phase difference detecting semiconductor element. 前記画像撮影装置はパソコン用マウスであることを特徴とする請求項1記載の粒子流動測定装置。   2. The particle flow measuring device according to claim 1, wherein the image photographing device is a mouse for a personal computer. 前記画像撮影装置によるデータは、予め移動速度が既知の対象の表面を撮影した画像データと別途求めた撮影部分の実際の速度を対応させて校正することを特徴とする請求項1〜4のいずれかに記載の粒子流動測定装置。   5. The data obtained by the image photographing apparatus is calibrated by associating image data obtained by photographing a surface of a target whose movement speed is known in advance with an actual speed of a photographing part separately obtained. The particle flow measuring device according to claim 1.
JP2006329119A 2006-12-06 2006-12-06 Particle flow measuring device Expired - Fee Related JP4784832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329119A JP4784832B2 (en) 2006-12-06 2006-12-06 Particle flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329119A JP4784832B2 (en) 2006-12-06 2006-12-06 Particle flow measuring device

Publications (2)

Publication Number Publication Date
JP2008145117A true JP2008145117A (en) 2008-06-26
JP4784832B2 JP4784832B2 (en) 2011-10-05

Family

ID=39605483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329119A Expired - Fee Related JP4784832B2 (en) 2006-12-06 2006-12-06 Particle flow measuring device

Country Status (1)

Country Link
JP (1) JP4784832B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852813A (en) * 2010-05-18 2010-10-06 河海大学 Device and method for measuring silt-settling velocity
KR101405227B1 (en) 2013-04-02 2014-06-10 현대자동차 주식회사 Speed measurement device of conveyor line
US9826683B2 (en) 2015-11-04 2017-11-28 Deere & Company Grain mass flow rate determination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971006B2 (en) * 2012-07-26 2016-08-17 東京電力ホールディングス株式会社 Flow visualization device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776696A (en) * 1980-10-30 1982-05-13 Omron Tateisi Electronics Co Method of correcting in traffic stream measuring device
JP2003084005A (en) * 2001-09-14 2003-03-19 Tokyo Electric Power Co Inc:The System and method for measuring fluid flow
JP2006215021A (en) * 2005-01-07 2006-08-17 Michitoku Hidaka Device for measuring movement, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776696A (en) * 1980-10-30 1982-05-13 Omron Tateisi Electronics Co Method of correcting in traffic stream measuring device
JP2003084005A (en) * 2001-09-14 2003-03-19 Tokyo Electric Power Co Inc:The System and method for measuring fluid flow
JP2006215021A (en) * 2005-01-07 2006-08-17 Michitoku Hidaka Device for measuring movement, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852813A (en) * 2010-05-18 2010-10-06 河海大学 Device and method for measuring silt-settling velocity
CN101852813B (en) * 2010-05-18 2013-04-10 河海大学 Device and method for measuring silt-settling velocity
KR101405227B1 (en) 2013-04-02 2014-06-10 현대자동차 주식회사 Speed measurement device of conveyor line
US9826683B2 (en) 2015-11-04 2017-11-28 Deere & Company Grain mass flow rate determination

Also Published As

Publication number Publication date
JP4784832B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4913264B2 (en) Material defect detection method and system
JP4784832B2 (en) Particle flow measuring device
CN101509931B (en) Method and apparatus for on-line measuring two-dimension speed and particle size distribution of granules in pipe
JP4844844B2 (en) Vibration measurement system and computer program
EP3308148B1 (en) Detecting the presence of liquid in a high pressure gas pipeline
HRP20161000T1 (en) Method and device for determining the flow rate of flowing water
JP6497039B2 (en) Particle image flow velocity measuring method and particle image flow velocity measuring apparatus
CN104395483B (en) Method and apparatus for being detected to the slag liquid level in metallurgical tank
CN103424406A (en) Image method measuring device and method for gas-liquid two-phase flow in pipelines
CN109990834A (en) High-temperature flight particle temperature, speed, partial size in-situ measuring method
JP7217256B2 (en) Quality control system, quality control method and quality control program
WO2020071306A1 (en) Particle measuring device, calibration method, and measuring device
Rottier et al. An endoscopic particle image velocimetry system for high-temperature furnaces
JP7012159B2 (en) Blast furnace blast control device and its method
JP2008215999A (en) Fluid measuring system, fluid measuring method, and computer program
Saadevandi et al. The application of computer-based imaging to the measurements of particle velocity and voidage profiles in a fluidized bed
EP3715830B1 (en) System for detection of particles in fluids
Cernuschi et al. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique
JP2014013198A (en) Flow rate inspection apparatus and flow rate inspection method
JP2003130752A (en) Gas leakage detector
CN112433066A (en) Method and apparatus for measuring flow velocity of high temperature particles
US7162374B2 (en) Device for the determination of flow parameters for a fluid and method for operating such a device
EP3637080B1 (en) Leakage detection system and leakage detection method
KR102043085B1 (en) An apparatus for collecting dust and detecting amount of captured dust for exhaust duct and a method for operating the same
JP2020126014A (en) Flow rate measuring system, flow rate measuring device, and flow rate measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Ref document number: 4784832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees