JP2008144687A - Turbine stationary blade structure - Google Patents

Turbine stationary blade structure Download PDF

Info

Publication number
JP2008144687A
JP2008144687A JP2006334056A JP2006334056A JP2008144687A JP 2008144687 A JP2008144687 A JP 2008144687A JP 2006334056 A JP2006334056 A JP 2006334056A JP 2006334056 A JP2006334056 A JP 2006334056A JP 2008144687 A JP2008144687 A JP 2008144687A
Authority
JP
Japan
Prior art keywords
stationary blade
self
restraining means
turbine stationary
blade structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006334056A
Other languages
Japanese (ja)
Inventor
Tomoyuki Onishi
智之 大西
Yukihiro Otani
幸広 大谷
Yuuichiro Waki
勇一朗 脇
Keizo Tanaka
恵三 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006334056A priority Critical patent/JP2008144687A/en
Publication of JP2008144687A publication Critical patent/JP2008144687A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine stationary blade structure enabling effective cost reduction of a turbine. <P>SOLUTION: In the turbine stationary blade structure provided with an outer ring implant outer shroud 3 on one end of each nozzle blade 2 and an inner shroud 4 on which a labyrinth seal 5 installed in a gap with a turbine rotor can be installed on another end thereof, alternate steps 4a, 4b in opposing surfaces of the inner shroud of adjoining nozzle blades are provided and are made in contact on over-all surface as a self restraint means increasing rigidity in a circumference direction of the inner shroud of each nozzle blade. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気タービンやガスタービンに用いて好適なタービン静翼構造に関する。   The present invention relates to a turbine vane structure suitable for use in a steam turbine or a gas turbine.

蒸気タービンやガスタービンでは、ロータから放射状に突出する動翼と、作動流体を所定角度で動翼に衝突させる静翼の組合せが何段にもわたり直列に配置されている。静翼は外輪と内輪の間に取り付けられ、環状のタービン仕切板(ノズルダイヤフラムとも表現する)を構成する。   In a steam turbine or a gas turbine, a combination of moving blades that protrude radially from a rotor and stationary blades that cause a working fluid to collide with the moving blades at a predetermined angle are arranged in series. The stationary blade is attached between the outer ring and the inner ring, and constitutes an annular turbine partition plate (also expressed as a nozzle diaphragm).

従来、タービン仕切板は多数のパーツを溶接して製作されていたが、このようにして製作するのは作業性が悪くコスト高である。また、溶接を行うと歪みが生じるので、後工程で焼鈍して歪みを除去する必要があるが、焼鈍工程を経た静翼は折角研磨していた表面が荒れ、作動流体の流れを乱すことになり、タービン性能が悪化するという問題がある。   Conventionally, a turbine partition plate has been manufactured by welding a large number of parts. However, manufacturing in this manner is inferior in workability and cost. In addition, since distortion occurs when welding is performed, it is necessary to remove the strain by annealing in a later process.However, the stationary blade that has undergone the annealing process has a rough surface that has been polished, and disturbs the flow of the working fluid. Therefore, there is a problem that the turbine performance deteriorates.

そのため、最近では、溶接によらないで最終形態を完成させる組立式のタービン仕切板が多く用いられるようになっている。具体的には、外輪と内輪を所定角度に分割してその外輪と内輪の間に静翼分割片を嵌め込んでいき、最終的には外輪の分割片同士と内輪の分割片同士をボルトで結合して環状のタービン仕切板を完成させるものである。このような組立式タービン仕切板の例を特許文献1や特許文献2に見ることができる。   Therefore, recently, assembling-type turbine partition plates that complete the final form without using welding are often used. Specifically, the outer ring and the inner ring are divided at a predetermined angle, and the stationary blade divided pieces are fitted between the outer ring and the inner ring. Finally, the outer ring divided pieces and the inner ring divided pieces are bolted together. By combining them, an annular turbine partition plate is completed. Examples of such an assembly type turbine partition plate can be seen in Patent Document 1 and Patent Document 2.

特開2003−97218号公報(第8−13頁、図1−23)JP 2003-97218 A (page 8-13, FIG. 1-23) 特開2005−146896号公報(第6−9頁、図1−5)Japanese Patent Laying-Open No. 2005-146896 (page 6-9, FIG. 1-5)

ところで、特許文献1や特許文献2に開示されたタービン静翼構造にあっては、溶接無しの組立式としたことにより、工数削減によるコストダウンと熱処理による翼表面の面粗度悪化の回避に基づく性能向上が図れるが、最近の激しい国際競争の中、タービンの低コスト化及び高性能化への要求が一段と激しくなってきており、タービン静翼構造のさらなる簡素化が希求されている。   By the way, in the turbine stationary blade structure disclosed in Patent Literature 1 and Patent Literature 2, by adopting an assembly type without welding, cost reduction by man-hour reduction and avoidance of deterioration of blade surface roughness due to heat treatment are achieved. Although the performance improvement based on this can be achieved, in recent intense international competition, the demand for lower cost and higher performance of the turbine has become more intense, and further simplification of the turbine vane structure is desired.

本発明は、前述した状況に鑑みてなされたもので、タービンの低コスト化を効果的に図れるタービン静翼構造を提供することを目的とする。   The present invention has been made in view of the above-described situation, and an object of the present invention is to provide a turbine vane structure capable of effectively reducing the cost of a turbine.

斯かる目的を達成するための本発明に係るタービン静翼構造は、各ノズル翼の一端に外輪植込み用のアウターシュラウドを備えると共に、他端にタービンロータとの隙間に介装されるシール材を装着可能なインナーシュラウドを備えたタービン静翼構造において、
前記各ノズル翼におけるインナーシュラウドの周方向の剛性を向上させる自己拘束手段を設けたことを特徴とする。
In order to achieve such an object, a turbine stationary blade structure according to the present invention includes an outer shroud for implanting an outer ring at one end of each nozzle blade, and a seal member interposed in a gap with the turbine rotor at the other end. In a turbine vane structure with an inner shroud that can be mounted,
Self-restraining means for improving the circumferential rigidity of the inner shroud in each nozzle blade is provided.

また、前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面相互に互い違いの段差を設けて全面的に接触させたことを特徴とする。   Further, the self-restraining means is characterized in that staggered steps are provided on the opposing surfaces of the inner shrouds of adjacent nozzle blades so as to be brought into full contact with each other.

また、前記自己拘束手段として、インナーシュラウドの側面に周方向へ貫通する開溝を少なくとも複数枚のノズル翼に亙って連通するように形成し、これらの開溝内へ少なくとも複数枚のノズル翼に跨がる長さの線状ピースを嵌め込んだことを特徴とする。   Further, as the self-restraining means, an open groove that penetrates in the circumferential direction on the side surface of the inner shroud is formed so as to communicate with at least the plurality of nozzle blades, and at least the plurality of nozzle blades are inserted into these open grooves. It is characterized in that a linear piece having a length extending over is fitted.

また、前記自己拘束手段として、周方向に複数分割された外輪の合せ面に位置するノズル翼のインナーシュラウドの端面に、外輪組立の際に締込み可能なかしめ代を設けたことを特徴とする。   Further, as the self-restraining means, a caulking allowance capable of being tightened at the time of assembling the outer ring is provided on the end face of the inner shroud of the nozzle blade located on the mating surface of the outer ring divided in the circumferential direction. .

また、前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面間に、棒状ピースが半径方向及び/又は軸方向に打込み可能な凹部を相対向して形成したことを特徴とする。   Further, the self-restraining means is characterized in that recesses capable of being driven in the radial direction and / or the axial direction are formed opposite to each other between the opposing surfaces of the inner shrouds of adjacent nozzle blades.

また、前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面相互に相対向して形成された嵌合穴に、組立の際に、隣接するインナーシュラウドに跨がるようにして剪断キーを嵌入することを特徴とする。   Further, as the self-restraining means, a shearing key is formed so as to straddle the adjacent inner shroud in the fitting hole formed so as to face each other on the opposing surfaces of the inner shrouds of the adjacent nozzle blades. It is characterized by inserting.

また、前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面間に、溝と突起からなるロッキング構造を設けたことを特徴とする。   Further, as the self-restraining means, a locking structure including a groove and a protrusion is provided between the opposing surfaces of the inner shrouds of adjacent nozzle blades.

また、前記自己拘束手段として、複数枚のノズル翼を一体成形し、綴り翼としたことを特徴とする。   Further, as the self-restraining means, a plurality of nozzle blades are integrally formed to form a spelling blade.

本発明に係るタービン静翼構造によれば、内輪を廃止したことによる簡素化により、さらなるコストダウンが図れる一方、自己拘束手段により各ノズル翼におけるインナーシュラウドの周方向の剛性を向上させてノズル翼の倒れを減少させ、ノズル翼の破損等を未然に回避することができる。   According to the turbine vane structure according to the present invention, the cost can be further reduced by simplification due to the elimination of the inner ring, while the circumferential rigidity of the inner shroud in each nozzle blade is improved by self-restraining means. Can be avoided, and damage to the nozzle blades can be avoided.

以下、本発明に係るタービン静翼構造を実施例により図面を用いて詳細に説明する。   Hereinafter, a turbine stationary blade structure according to the present invention will be described in detail with reference to the drawings by way of examples.

図1は本発明の実施例1を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のA矢視断面図である。   FIG. 1 is a structural explanatory view of a turbine vane structure showing Embodiment 1 of the present invention, where FIG. 1 (a) is a front view of the main part, and FIG. is there.

図示のように、上下に半割りされた外輪1A,1Bの内面には、各ノズル翼2の一端に一体成形されたアウターシュラウド3が植え込まれると共に、各ノズル翼2の他端には図示しないタービンロータとの隙間に介装されるラビリンスシール(シール材)5を装着可能なインナーシュラウド4が一体成形される。   As shown in the figure, an outer shroud 3 formed integrally with one end of each nozzle blade 2 is implanted on the inner surfaces of the outer rings 1A and 1B divided in half, and the other end of each nozzle blade 2 is illustrated. An inner shroud 4 to which a labyrinth seal (seal material) 5 interposed in a gap with the turbine rotor not to be attached is integrally formed.

尚、各ノズル翼2のアウターシュラウド3は、外輪1A,1Bの内面側に形成された嵌合溝6内に周方向から順次スライドさせて嵌合されるようになっている。また、ラビリンスシール5は、各ノズル翼2のインナーシュラウド4の内面側に形成された嵌合溝7内に周方向からスライドさせて嵌合されるようになっている。   The outer shroud 3 of each nozzle blade 2 is fitted in a fitting groove 6 formed on the inner surface side of the outer rings 1A, 1B by sequentially sliding from the circumferential direction. Further, the labyrinth seal 5 is fitted in a fitting groove 7 formed on the inner surface side of the inner shroud 4 of each nozzle blade 2 by sliding from the circumferential direction.

そして、本実施例では、前記各ノズル翼2におけるインナーシュラウド4のタービン段落(ロータ軸)方向の両側面に、周方向へ貫通する開溝8a,8bを少なくとも複数枚のノズル翼2に亙って連通(連続)するようにそれぞれ形成され、これらの開溝8a,8b内に少なくとも複数枚のノズル翼2に跨がる長さの金属製の線状ピース9a,9bが嵌め込まれている。従って、これらの開溝8a,8bとこれらに嵌め込まれる線状ピース9a,9bとで前記各ノズル翼2におけるインナーシュラウド4の周方向の剛性を向上させる自己拘束手段を構成している。   In this embodiment, at least a plurality of nozzle blades 2 are provided with open grooves 8a and 8b penetrating in the circumferential direction on both side surfaces of the inner shroud 4 of each nozzle blade 2 in the turbine stage (rotor shaft) direction. The metal linear pieces 9a and 9b having a length straddling at least a plurality of the nozzle blades 2 are fitted into the open grooves 8a and 8b, respectively. Accordingly, the open grooves 8a and 8b and the linear pieces 9a and 9b fitted therein constitute self-restraining means for improving the circumferential rigidity of the inner shroud 4 in each nozzle blade 2.

このように本実施例では、従来の図10に示すタービン静翼構造における内輪102を廃止したので、構造の簡素化により、さらなるコストダウンが図れる一方、前述した線状ピース9a,9bの剛性により、各ノズル翼2におけるインナーシュラウド4の周方向の剛性が向上され、これによってノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   As described above, in this embodiment, the inner ring 102 in the conventional turbine stationary blade structure shown in FIG. 10 is eliminated, so that the cost can be further reduced by the simplification of the structure, while the rigidity of the linear pieces 9a and 9b described above is achieved. The rigidity in the circumferential direction of the inner shroud 4 in each nozzle blade 2 is improved, thereby reducing the collapse of the nozzle blade 2 and preventing the nozzle blade 2 from being damaged.

因みに、蒸気タービンの静翼は、蒸気差圧によるロータ軸方向の荷重を受けるので、内輪を廃止したことで周方向の剛性が低下し、倒れ易くなる不具合が生じるのであるが、本実施例のように自己拘束手段を設けることで上述した不具合が効果的に解消される。   Incidentally, since the stationary blade of the steam turbine receives a load in the rotor axial direction due to the steam differential pressure, the rigidity of the circumferential direction is reduced by eliminating the inner ring, and there is a problem that it is easy to collapse. By providing the self-restraining means as described above, the above-described problems can be effectively solved.

尚、開溝8a,8b内に金属製の線状ピース9a,9bを嵌め込むにあたって、開溝8a,8bの開口縁をかしめたり、線状ピース9a,9bに線膨張係数の大きい材質や形状記憶合金等を用いて温度が上昇すると開溝8a,8b内に抜け出し不能に嵌め込まれるようにすると好適である。   When fitting the metal linear pieces 9a and 9b into the open grooves 8a and 8b, the opening edges of the open grooves 8a and 8b are caulked, or the linear pieces 9a and 9b are made of a material or shape having a large linear expansion coefficient. When the temperature rises using a memory alloy or the like, it is preferable that the memory alloy is fitted into the open grooves 8a and 8b so as not to come out.

図2は本発明の実施例2を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は要部斜視図である。   FIGS. 2A and 2B are structural explanatory views of a turbine vane structure showing Embodiment 2 of the present invention, in which FIG. 2A is a front view of the main part and FIG. 2B is a perspective view of the main part.

これは、実施例1における自己拘束手段として、隣接する各ノズル翼2のインナーシュラウド4の周方向対向(接触)面相互に互い違いの段差(半径方向接触面)4a,4bを設けて全面的に接触させた例である。即ち、隣接する各ノズル翼2間において一方のインナーシュラウド4の上向きの段差4aに他方のインナーシュラウド4の下向きの段差4bを合わせて組み立てていくのである。その他の構成は実施例1と同様なので、図1と同一部材には同一符号を付して重複する説明は省略する。   As a self-restraining means in the first embodiment, the steps (radial contact surfaces) 4a and 4b that are alternately provided between the circumferentially opposed (contact) surfaces of the inner shrouds 4 of the adjacent nozzle blades 2 are provided on the entire surface. This is an example of contact. That is, between the adjacent nozzle blades 2, the upward step 4a of one inner shroud 4 is aligned with the downward step 4b of the other inner shroud 4. Since the other configuration is the same as that of the first embodiment, the same members as those in FIG.

これによれば、ノズル翼2が倒れると隣接するノズル翼2のインナーシュラウド4との周方向及び半径方向の接触・摩擦によって周方向及びロータ軸方向に対する自己拘束を起こし、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。尚、この実施例において、半径方向の接触のみで、周方向に隙間があいている場合でも効果がある。   According to this, when the nozzle blade 2 falls down, self-restraint with respect to the circumferential direction and the rotor axial direction is caused by the contact and friction in the circumferential direction and the radial direction of the adjacent nozzle blade 2 with the inner shroud 4. Thus, it is possible to reduce the collapse of the nozzle blade 2 and to prevent the nozzle blade 2 from being damaged. In this embodiment, there is an effect even when there is a gap in the circumferential direction only by contact in the radial direction.

図3は本発明の実施例3を示すタービン静翼構造の要部正面図、図4は各変形例の構造説明図である。   FIG. 3 is a front view of an essential part of a turbine stationary blade structure showing Embodiment 3 of the present invention, and FIG. 4 is a structure explanatory view of each modification.

これは、実施例1における自己拘束手段として、上下に半割りされた外輪1A,1Bの合せ面に位置する任意のノズル翼2のインナーシュラウド4の端面に、外輪組立の際に図示しないボルトで締込み可能なかしめ代10a(10b)を別体(一体物でもよい)に設けた例である。その他の構成は実施例1と同様なので、図1と同一部材には同一符号を付して重複する説明は省略する。   As a self-restraining means in the first embodiment, a bolt (not shown) is used on the end surface of the inner shroud 4 of an arbitrary nozzle blade 2 located on the mating surface of the outer rings 1A and 1B divided in half. This is an example in which the caulking allowance 10a (10b) that can be tightened is provided as a separate body (or an integral body). Since the other configuration is the same as that of the first embodiment, the same members as those in FIG.

尚、上記の場合、図4の(a)に示すように、従前どおり組み立てられるノズル翼2のインナーシュラウド4に単にかしめ代10a(10b)を設けても良いし、図4の(b)に示すように、ボルトによる締付により整列するように、ノズル翼2及びインナーシュラウド4の初期形状を予め通常よりも数度傾斜(捻じれ)させて作成しても良い。   In the above case, as shown in FIG. 4 (a), the inner shroud 4 of the nozzle blade 2 assembled as before may be simply provided with a caulking allowance 10a (10b), or FIG. 4 (b). As shown, the initial shapes of the nozzle blades 2 and the inner shroud 4 may be preliminarily inclined (twisted) by a few degrees so as to be aligned by tightening with bolts.

これによれば、組立後から隣接するノズル翼2のインナーシュラウド4との接触・摩擦が発生し、周方向の剛性が高められて、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   According to this, contact / friction with the inner shroud 4 of the adjacent nozzle blade 2 occurs after assembly, and the rigidity in the circumferential direction is increased, and the fall of the nozzle blade 2 is reduced as in the first embodiment. In addition, damage to the nozzle blades 2 can be avoided in advance.

図5は本発明の実施例4を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のB矢視図である。   FIG. 5 is a structural explanatory view of a turbine stationary blade structure showing Embodiment 4 of the present invention, where FIG. 5 (a) is a front view of the main part, and FIG. .

これは、実施例1における自己拘束手段として、隣接するノズル翼2のインナーシュラウド4の対向面間に、二本(一本又は三本以上でも良い)の金属製の棒状ピース11が半径方向に打込み可能な凹部4cを相対向して形成した例である。その他の構成は実施例1と同様なので、図1と同一部材には同一符号を付して重複する説明は省略する。   This is because, as a self-restraining means in the first embodiment, two (or more than one) metal rod-like pieces 11 may be arranged in the radial direction between the opposing surfaces of the inner shrouds 4 of the adjacent nozzle blades 2. This is an example in which recessed portions 4c that can be driven are formed to face each other. Since the other configuration is the same as that of the first embodiment, the same members as those in FIG.

これによれば、棒状ピース11と凹部4cを介してのインナーシュラウド4との接触・摩擦が発生し、周方向の剛性が高められて、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   According to this, contact / friction occurs between the rod-shaped piece 11 and the inner shroud 4 through the recess 4c, and the rigidity in the circumferential direction is increased, and the fall of the nozzle blade 2 is reduced as in the first embodiment. Thus, damage to the nozzle blades 2 can be avoided in advance.

図6は本発明の実施例5を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のC矢視図である。   FIGS. 6A and 6B are structural explanatory views of a turbine vane structure showing Embodiment 5 of the present invention. FIG. 6A is a front view of the main part, and FIG. .

これは、実施例1における自己拘束手段として、隣接するノズル翼2のインナーシュラウド4の対向面間に、一本(複数本でも良い)の金属製の棒状ピース11がロータ軸方向から打込み可能な凹部4cを相対向して形成した例である。その他の構成は実施例1と同様なので、図1と同一部材には同一符号を付して重複する説明は省略する。   As a self-restraining means in the first embodiment, one (or a plurality of) metal bar-like pieces 11 can be driven from the rotor axial direction between the opposing surfaces of the inner shrouds 4 of the adjacent nozzle blades 2. In this example, the recesses 4c are formed to face each other. Since the other configuration is the same as that of the first embodiment, the same members as those in FIG.

これによれば、実施例4と同様に、棒状ピース11と凹部4cを介してのインナーシュラウド4との接触・摩擦が発生し、周方向の剛性が高められて、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   According to this, as in the fourth embodiment, contact / friction between the rod-shaped piece 11 and the inner shroud 4 through the recess 4c is generated, and the rigidity in the circumferential direction is increased. It is possible to reduce the collapse of the nozzle blade 2 and to prevent the nozzle blade 2 from being damaged.

図7は本発明の実施例6を示すタービン静翼構造の構造説明図で、同図(a)はインナーシュラウドの連接状態の斜視図、同図(b)はインナーシュラウド単体の斜視図である。   FIG. 7 is a structural explanatory view of a turbine vane structure showing Embodiment 6 of the present invention. FIG. 7 (a) is a perspective view of the inner shroud connected, and FIG. 7 (b) is a perspective view of the inner shroud alone. .

これは、実施例1における自己拘束手段として、隣接するノズル翼2のインナーシュラウド4の対向面相互に相対向して形成された嵌合穴12に、組立の際に、隣接するインナーシュラウド4に跨がるようにして一本(複数本でも良い)の剪断キー13を嵌入した例である。その他の構成は実施例1と同様なので、図1を参照してここでは詳しい説明は省略する。   This is because, as a self-restraining means in the first embodiment, the fitting holes 12 formed so as to face each other on the opposing surfaces of the inner shroud 4 of the adjacent nozzle blade 2 are formed in the adjacent inner shroud 4 at the time of assembly. This is an example in which one (or a plurality of) shear keys 13 are inserted so as to straddle. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted here with reference to FIG.

これによれば、実施例4と同様に、剪断キー13と嵌合穴12を介してのインナーシュラウド4との接触・摩擦が発生し、周方向の剛性が高められると共に、剪断キー13の剪断作用でノコギリ歯状変形が防止されて、実施例1と同様に、ノズル翼2の倒れを減少させると共に、ノズル翼2の破損等を未然に回避することができる。   According to this, as in the fourth embodiment, contact / friction between the shear key 13 and the inner shroud 4 through the fitting hole 12 is generated, the rigidity in the circumferential direction is increased, and the shear of the shear key 13 is increased. Sawtooth deformation is prevented by the action, and the fall of the nozzle blade 2 can be reduced and the breakage of the nozzle blade 2 can be avoided as in the first embodiment.

図8は本発明の実施例7を示すタービン静翼構造におけるインナーシュラウドを内方からみた図である。   FIG. 8 is a view of the inner shroud as seen from the inside in the turbine vane structure showing Embodiment 7 of the present invention.

これは、実施例1における自己拘束手段として、隣接するノズル翼2のインナーシュラウド4の対向面間に、溝14と突起15からなるロッキング構造を設けた例である。図示例では、半径方向に溝14と突起15を逆にしてロッキング構造を二箇所設けているが、一箇所又は三箇所以上設けても良い。また、図示例では周方向にロッキング構造の深さを変化させているが、一定でも良い。その他の構成は実施例1と同様なので、図1を参照してここでは詳しい説明は省略する。   This is an example in which a locking structure including a groove 14 and a protrusion 15 is provided between the opposing surfaces of the inner shrouds 4 of the adjacent nozzle blades 2 as self-restraining means in the first embodiment. In the illustrated example, the groove 14 and the protrusion 15 are reversed in the radial direction and two locking structures are provided. However, one or three or more locking structures may be provided. In the illustrated example, the depth of the locking structure is changed in the circumferential direction, but may be constant. Since other configurations are the same as those of the first embodiment, detailed description thereof is omitted here with reference to FIG.

これによれば、ロッキング構造により隣接するインナーシュラウド4間相互が影響し合って、周方向の剛性が高められて、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   According to this, the adjacent inner shrouds 4 influence each other due to the locking structure, and the circumferential rigidity is increased. As in the first embodiment, the falling of the nozzle blade 2 is reduced, and the nozzle blade 2 Damage or the like can be avoided in advance.

図9は本発明の実施例8を示すタービン静翼構造の要部正面図である。   FIG. 9 is a front view of a main part of a turbine vane structure showing an eighth embodiment of the present invention.

これは、実施例1における自己拘束手段として、複数枚(図示例では4枚と3枚)のノズル翼2を一体成形し、綴り翼とした例である。その他の構成は実施例1と同様なので、図1と同一部材には同一符号を付して重複する説明は省略する。   This is an example in which a plurality of (four and three in the illustrated example) nozzle blades 2 are integrally formed as self-restraining means in the first embodiment to form a spell blade. Since the other configuration is the same as that of the first embodiment, the same members as those in FIG.

これによれば、ノズル翼2間の相対移動が防止されて周方向の剛性が高められと共に、周方向・ロータ軸方向のノコギリ歯状変形が防止されて、実施例1と同様に、ノズル翼2の倒れを減少させ、ノズル翼2の破損等を未然に回避することができる。   According to this, relative movement between the nozzle blades 2 is prevented and rigidity in the circumferential direction is enhanced, and sawtooth-shaped deformation in the circumferential direction and the rotor shaft direction is prevented. 2 can be reduced, and damage to the nozzle blades 2 can be avoided in advance.

尚、本実施例では、180°分を一体成形することは困難なので、数枚毎に隙間が生じる場合があるが、その隙間には上述した他の実施例を適用すれば好適である。   In this embodiment, since it is difficult to integrally form 180 °, a gap may be formed every several sheets. However, it is preferable to apply the other embodiments described above to the gap.

尚、本発明は上記各実施例に限定されず、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。例えば、各実施例を単独で実施する以外に適宜組み合わせて実施することも可能である。   Needless to say, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. For example, the embodiments can be implemented in combination as appropriate in addition to the embodiments.

本発明の実施例1を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のA矢視断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structural explanatory drawing of the turbine stationary blade structure which shows Example 1 of this invention, The figure (a) is a principal part front view, The figure (b) is A sectional view taken on the A arrow of the figure (a). 本発明の実施例2を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は要部斜視図である。FIG. 4 is a structural explanatory view of a turbine stationary blade structure showing Embodiment 2 of the present invention, in which FIG. (A) is a front view of relevant parts and (b) is a perspective view of relevant parts. 本発明の実施例3を示すタービン静翼構造の要部正面図である。It is a principal part front view of the turbine stationary blade structure which shows Example 3 of this invention. 各変形例の構造説明図である。It is structure explanatory drawing of each modification. 本発明の実施例4を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のB矢視図である。FIG. 4 is a structural explanatory view of a turbine stationary blade structure showing Embodiment 4 of the present invention, in which FIG. (A) is a front view of an essential part, and (b) is a view taken in the direction of arrow B in FIG. 本発明の実施例5を示すタービン静翼構造の構造説明図で、同図(a)は要部正面図、同図(b)は同図(a)のC矢視図である。FIG. 6 is a structural explanatory view of a turbine stationary blade structure showing Embodiment 5 of the present invention, in which FIG. (A) is a front view of the main part, and FIG. 本発明の実施例6を示すタービン静翼構造の構造説明図で、同図(a)はインナーシュラウドの連接状態の斜視図、同図(b)はインナーシュラウド単体の斜視図である。FIG. 6 is a structural explanatory view of a turbine stationary blade structure showing Embodiment 6 of the present invention, in which FIG. (A) is a perspective view of an inner shroud connected, and FIG. (B) is a perspective view of an inner shroud alone. 本発明の実施例7を示すタービン静翼構造におけるインナーシュラウドを内方からみた図である。It is the figure which looked at the inner shroud in the turbine stationary blade structure which shows Example 7 of this invention from the inside. 本発明の実施例8を示すタービン静翼構造の要部正面図である。It is a principal part front view of the turbine stationary blade structure which shows Example 8 of this invention.

符号の説明Explanation of symbols

1A,1B 外輪
2 ノズル翼
3 アウターシュラウド
4 インナーシュラウド
4a,4b 段差
4c 凹部
5 ラビリンスシール
8a,8b 開溝
9a,9b 線状ピース
10a,10b かしめ代
11 棒状ピース
12 嵌合穴
13 剪断キー
14 溝
15 突起
1A, 1B Outer ring 2 Nozzle blade 3 Outer shroud 4 Inner shroud 4a, 4b Step 4c Recessed portion 5 Labyrinth seal 8a, 8b Open groove 9a, 9b Linear piece 10a, 10b Caulking allowance 11 Rod-like piece 12 Fitting hole 13 Shear key 14 Groove 15 protrusions

Claims (8)

各ノズル翼の一端に外輪植込み用のアウターシュラウドを備えると共に、他端にタービンロータとの隙間に介装されるシール材を装着可能なインナーシュラウドを備えたタービン静翼構造において、
前記各ノズル翼におけるインナーシュラウドの周方向の剛性を向上させる自己拘束手段を設けたことを特徴とするタービン静翼構造。
In the turbine stationary blade structure including an outer shroud for implanting an outer ring at one end of each nozzle blade and an inner shroud capable of mounting a seal material interposed in a gap with the turbine rotor at the other end,
A turbine stationary blade structure characterized in that self-restraining means for improving the circumferential rigidity of the inner shroud in each nozzle blade is provided.
前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面相互に互い違いの段差を設けて全面的に接触させたことを特徴とする請求項1に記載のタービン静翼構造。   The turbine stationary blade structure according to claim 1, wherein the self-restraining means is provided in such a manner that a staggered step is provided between opposing surfaces of inner shrouds of adjacent nozzle blades so as to be brought into full contact with each other. 前記自己拘束手段として、インナーシュラウドの側面に周方向へ貫通する開溝を少なくとも複数枚のノズル翼に亙って連通するように形成し、これらの開溝内へ少なくとも複数枚のノズル翼に跨がる長さの線状ピースを嵌め込んだことを特徴とする請求項1に記載のタービン静翼構造。   As the self-restraining means, an open groove penetrating in the circumferential direction is formed on the side surface of the inner shroud so as to communicate with at least the plurality of nozzle blades, and spans at least the plurality of nozzle blades into the open grooves. The turbine stationary blade structure according to claim 1, wherein a linear piece having a long length is fitted. 前記自己拘束手段として、周方向に複数分割された外輪の合せ面に位置するノズル翼のインナーシュラウドの端面に、外輪組立の際に締込み可能なかしめ代を設けたことを特徴とする請求項1に記載のタービン静翼構造。   The self-restraining means is provided with a caulking allowance that can be tightened at the time of assembling the outer ring on the end surface of the inner shroud of the nozzle blade located on the mating surface of the outer ring divided in a plurality in the circumferential direction. The turbine stationary blade structure according to claim 1. 前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面間に、棒状ピースが半径方向及び/又は軸方向に打込み可能な凹部を相対向して形成したことを特徴とする請求項1に記載のタービン静翼構造。   2. The self-restraining means is characterized in that a concave part capable of being driven in a radial direction and / or an axial direction is formed opposite to each other between opposing faces of inner shrouds of adjacent nozzle blades. The turbine stationary blade structure described. 前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面相互に相対向して形成された嵌合穴に、組立の際に、隣接するインナーシュラウドに跨がるようにして剪断キーを嵌入することを特徴とする請求項1に記載のタービン静翼構造。   As a self-restraining means, a shear key is inserted into a fitting hole formed so as to face each other on the opposing surfaces of the inner shrouds of adjacent nozzle blades so as to straddle the adjacent inner shroud during assembly. The turbine stationary blade structure according to claim 1, wherein: 前記自己拘束手段として、隣接するノズル翼のインナーシュラウドの対向面間に、溝と突起からなるロッキング構造を設けたことを特徴とする請求項1に記載のタービン静翼構造。   2. The turbine stationary blade structure according to claim 1, wherein a locking structure including a groove and a protrusion is provided between the opposing surfaces of the inner shrouds of adjacent nozzle blades as the self-restraining means. 前記自己拘束手段として、複数枚のノズル翼を一体成形し、綴り翼としたことを特徴とする請求項1に記載のタービン静翼構造。   The turbine stationary blade structure according to claim 1, wherein a plurality of nozzle blades are integrally formed as the self-restraining means to form a spell blade.
JP2006334056A 2006-12-12 2006-12-12 Turbine stationary blade structure Withdrawn JP2008144687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334056A JP2008144687A (en) 2006-12-12 2006-12-12 Turbine stationary blade structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334056A JP2008144687A (en) 2006-12-12 2006-12-12 Turbine stationary blade structure

Publications (1)

Publication Number Publication Date
JP2008144687A true JP2008144687A (en) 2008-06-26

Family

ID=39605130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334056A Withdrawn JP2008144687A (en) 2006-12-12 2006-12-12 Turbine stationary blade structure

Country Status (1)

Country Link
JP (1) JP2008144687A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515856A (en) * 2007-01-12 2010-05-13 アルストム テクノロジー リミテッド Diaphragm for turbomachine and method of manufacture
JP2011169318A (en) * 2010-02-16 2011-09-01 General Electric Co <Ge> Steam turbine nozzle segment having arcuate interface
JP2011202600A (en) * 2010-03-26 2011-10-13 Hitachi Ltd Rotary machine
US8262359B2 (en) 2007-01-12 2012-09-11 Alstom Technology Ltd. Diaphragm for turbomachines and method of manufacture
KR101190023B1 (en) * 2010-09-29 2012-10-12 한국전력공사 Turbine blade assembly
CN102767399A (en) * 2011-05-05 2012-11-07 阿尔斯通技术有限公司 Diaphragm for turbomachines and manufacturing method
JP2013122221A (en) * 2011-12-12 2013-06-20 Toshiba Corp Stationary blade cascade, assembling method of stationary blade cascade, and steam turbine
JP2013227980A (en) * 2012-04-26 2013-11-07 Alstom Technology Ltd Turbine diaphragm construction
JP2013241933A (en) * 2012-05-21 2013-12-05 Alstom Technology Ltd Turbine diaphragm construction
CN104314620A (en) * 2014-10-28 2015-01-28 东方电气集团东方汽轮机有限公司 Fixed blading structure for turbine
WO2016014057A1 (en) * 2014-07-24 2016-01-28 Siemens Aktiengesellschaft Stator vane system usable within a gas turbine engine
JP2016508570A (en) * 2013-02-14 2016-03-22 シーメンス エナジー インコーポレイテッド Gas turbine engine with ambient air cooling system with pre-turning vanes
US9506362B2 (en) 2013-11-20 2016-11-29 General Electric Company Steam turbine nozzle segment having transitional interface, and nozzle assembly and steam turbine including such nozzle segment
CN109098795A (en) * 2018-09-03 2018-12-28 哈尔滨汽轮机厂有限责任公司 A kind of low-pressure final stage, penult cast iron assembling diaphragm
CN114542213A (en) * 2022-03-09 2022-05-27 中国船舶重工集团公司第七0三研究所 Marine steam turbine partition plate structure
US11459913B2 (en) 2019-07-01 2022-10-04 Doosan Enerbility Co., Ltd. Turbine vane and gas turbine including the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515856A (en) * 2007-01-12 2010-05-13 アルストム テクノロジー リミテッド Diaphragm for turbomachine and method of manufacture
US8262359B2 (en) 2007-01-12 2012-09-11 Alstom Technology Ltd. Diaphragm for turbomachines and method of manufacture
JP2011169318A (en) * 2010-02-16 2011-09-01 General Electric Co <Ge> Steam turbine nozzle segment having arcuate interface
JP2011202600A (en) * 2010-03-26 2011-10-13 Hitachi Ltd Rotary machine
KR101190023B1 (en) * 2010-09-29 2012-10-12 한국전력공사 Turbine blade assembly
JP2012233479A (en) * 2011-05-05 2012-11-29 Alstom Technology Ltd Diaphragm for turbomachine and method of manufacture
US9127559B2 (en) 2011-05-05 2015-09-08 Alstom Technology Ltd. Diaphragm for turbomachines and method of manufacture
CN102767399A (en) * 2011-05-05 2012-11-07 阿尔斯通技术有限公司 Diaphragm for turbomachines and manufacturing method
JP2013122221A (en) * 2011-12-12 2013-06-20 Toshiba Corp Stationary blade cascade, assembling method of stationary blade cascade, and steam turbine
JP2013227980A (en) * 2012-04-26 2013-11-07 Alstom Technology Ltd Turbine diaphragm construction
US9840928B2 (en) 2012-04-26 2017-12-12 General Electric Technology Gmbh Turbine diaphragm construction
US9453425B2 (en) 2012-05-21 2016-09-27 General Electric Technology Gmbh Turbine diaphragm construction
JP2013241933A (en) * 2012-05-21 2013-12-05 Alstom Technology Ltd Turbine diaphragm construction
JP2016508570A (en) * 2013-02-14 2016-03-22 シーメンス エナジー インコーポレイテッド Gas turbine engine with ambient air cooling system with pre-turning vanes
US9506362B2 (en) 2013-11-20 2016-11-29 General Electric Company Steam turbine nozzle segment having transitional interface, and nozzle assembly and steam turbine including such nozzle segment
WO2016014057A1 (en) * 2014-07-24 2016-01-28 Siemens Aktiengesellschaft Stator vane system usable within a gas turbine engine
CN106536866A (en) * 2014-07-24 2017-03-22 西门子公司 Stator vane system usable within a gas turbine engine
US10215192B2 (en) 2014-07-24 2019-02-26 Siemens Aktiengesellschaft Stator vane system usable within a gas turbine engine
CN104314620A (en) * 2014-10-28 2015-01-28 东方电气集团东方汽轮机有限公司 Fixed blading structure for turbine
CN109098795A (en) * 2018-09-03 2018-12-28 哈尔滨汽轮机厂有限责任公司 A kind of low-pressure final stage, penult cast iron assembling diaphragm
US11459913B2 (en) 2019-07-01 2022-10-04 Doosan Enerbility Co., Ltd. Turbine vane and gas turbine including the same
CN114542213A (en) * 2022-03-09 2022-05-27 中国船舶重工集团公司第七0三研究所 Marine steam turbine partition plate structure
CN114542213B (en) * 2022-03-09 2023-12-01 中国船舶重工集团公司第七0三研究所 Marine steam turbine baffle structure

Similar Documents

Publication Publication Date Title
JP2008144687A (en) Turbine stationary blade structure
JP5231830B2 (en) Method and apparatus for promoting improved turbine rotor efficiency
JP5038789B2 (en) Seal assembly and rotary machine with &#34;L&#34; shaped butt gap seal between segments
EP2666969B1 (en) Turbine diaphragm construction
EP1479952B1 (en) Shaft seal mechanism
US7101147B2 (en) Sealing arrangement
US8133013B2 (en) Stage of a turbine or compressor, particularly for a turbomachine
WO2012081491A1 (en) Seal structure for turbocharger housing
EP2028398A1 (en) Sealing Rings
JP2011169246A (en) Gas turbine casing structure
US7713024B2 (en) Bling nozzle/carrier interface design for a steam turbine
US20170314507A1 (en) Bearing cap of internal combustion engine
US8262359B2 (en) Diaphragm for turbomachines and method of manufacture
EP3032149A1 (en) Sealing device, rotating machine, and method for manufacturing sealing device
WO2020025094A1 (en) Pitch bearing
US20210285331A1 (en) Turbine stator blade
US20150003979A1 (en) Steam turbine nozzle vane arrangement and method of manufacturing
US10385874B2 (en) Pin to reduce relative rotational movement of disk and spacer of turbine engine
JP6712859B2 (en) Seal fin, seal structure, and fixing method of seal fin
JPH1150807A (en) Seal fin device for steam turbine
JP6877962B2 (en) Manufacturing method of steam turbine partition plate, steam turbine and steam turbine partition plate
US8465254B2 (en) Steam turbine half shell joint assembly
JP7444988B2 (en) Composite seal structure for machinery and method of manufacturing composite seal structure
JP3944206B2 (en) Shaft seal mechanism
JP3986520B2 (en) Shaft seal mechanism

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302