JP2008144648A - Intake air passage volume identification device - Google Patents

Intake air passage volume identification device Download PDF

Info

Publication number
JP2008144648A
JP2008144648A JP2006331866A JP2006331866A JP2008144648A JP 2008144648 A JP2008144648 A JP 2008144648A JP 2006331866 A JP2006331866 A JP 2006331866A JP 2006331866 A JP2006331866 A JP 2006331866A JP 2008144648 A JP2008144648 A JP 2008144648A
Authority
JP
Japan
Prior art keywords
intake
lift amount
flow rate
throttle valve
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006331866A
Other languages
Japanese (ja)
Other versions
JP4765920B2 (en
Inventor
Isato Nakada
勇人 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006331866A priority Critical patent/JP4765920B2/en
Publication of JP2008144648A publication Critical patent/JP2008144648A/en
Application granted granted Critical
Publication of JP4765920B2 publication Critical patent/JP4765920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake air passage volume identification device for accurately identifying intake air passage volume in a downstream side of a throttle valve. <P>SOLUTION: Volume of the intake air passage is identified with setting intake air flow rate into a cylinder as zero based on throttle valve passing intake air flow rate measurement value and pressure change measurement value when intake valves 5 of all cylinder are closed with using a relational expression of pressure change of the intake air passage in a downstream side of the throttle valve 2, volume of the intake air passage, throttle valve passing intake air flow rate, and intake air flow rate into the cylinders. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸気通路容積、詳細には、スロットル弁下流側の吸気通路容積を同定するための吸気通路容積同定装置に関する。   The present invention relates to an intake passage volume identifying device for identifying an intake passage volume, specifically, an intake passage volume downstream of a throttle valve.

燃焼空燃比を所望空燃比とするためには、気筒内へ供給された吸気量を正確に把握することが必要である。スロットル弁上流側にエアフローメータを配置し、エアフローメータにより測定した各時刻の吸気流量は、スロットル弁を通過する各時刻の吸気流量(必要に応じてエアフローメータの応答遅れ考慮される)とすることができる。しかしながら、特に機関過渡時においては、スロットル弁下流側の吸気通路内の圧力が変化するために、測定された各時刻のスロットル弁通過吸気流量をそのまま気筒内へ供給される各時刻の吸気流量とすることはできない。   In order to set the combustion air-fuel ratio to the desired air-fuel ratio, it is necessary to accurately grasp the intake air amount supplied into the cylinder. An air flow meter is arranged upstream of the throttle valve, and the intake air flow rate at each time measured by the air flow meter is the intake air flow rate at each time passing through the throttle valve (the response delay of the air flow meter is taken into account if necessary) Can do. However, since the pressure in the intake passage on the downstream side of the throttle valve changes particularly during engine transition, the measured intake air flow rate through the throttle valve at each time is directly supplied to the cylinder as it is. I can't do it.

それにより、スロットル弁下流側の吸気通路内の圧力を検出し、スロットル弁通過吸気流量とこの吸気通路圧力とに基づき気筒内への吸気流量が推定される。この吸気流量の推定には、もちろん、スロットル弁下流側の吸気通路容積、すなわち、サージタンク、インテークマニホルド、及び、吸気ポート等の合計容積(以下、吸気通路容積)も必要とされる(例えば、特許文献1参照)。   Thus, the pressure in the intake passage on the downstream side of the throttle valve is detected, and the intake flow rate into the cylinder is estimated based on the intake valve passage intake flow rate and the intake passage pressure. Of course, this intake flow rate estimation also requires the intake passage volume downstream of the throttle valve, that is, the total volume (hereinafter referred to as intake passage volume) of the surge tank, intake manifold, intake port, etc. Patent Document 1).

特開2005−90437JP-A-2005-90437 特開2005−248943JP 2005-248943 A 特開2006−22676JP 2006-22676

前述の吸気流量の推定において、吸気通路容積は、設計値として固定されるが、実際には、吸気通路の熱膨張及び吸気ポート燃料噴射の場合の吸気通路内へのデポジット堆積等によって、設計値と異なっていることがあり、この時には、気筒内への吸気流量の推定が不正確となる。   In the above-described estimation of the intake flow rate, the intake passage volume is fixed as a design value, but in actuality, the design value depends on the thermal expansion of the intake passage and the accumulation of deposits in the intake passage in the case of intake port fuel injection. At this time, the estimation of the intake flow rate into the cylinder becomes inaccurate.

従って、本発明の目的は、スロットル弁下流側の吸気通路容積を正確に同定するための吸気通路容積同定装置を提供することである。   Accordingly, an object of the present invention is to provide an intake passage volume identification device for accurately identifying the intake passage volume downstream of the throttle valve.

本発明による請求項1に記載の吸気通路容積同定装置は、スロットル弁下流側の吸気通路の圧力変化と、前記吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、全気筒の吸気弁が閉弁した時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づき、気筒内への吸気流量を零として前記吸気通路の容積を同定することを特徴とする。   According to a first aspect of the present invention, there is provided an intake passage volume identifying device comprising: a pressure change in an intake passage downstream of a throttle valve; a volume of the intake passage; an intake flow rate through a throttle valve; and an intake flow rate into a cylinder. Using the relational expression, the volume of the intake passage is identified based on the pressure change measurement value and the throttle valve passage intake flow measurement value corresponding to when the intake valves of all the cylinders are closed, with the intake flow rate into the cylinder being zero. It is characterized by that.

本発明による請求項2に記載の吸気通路容積同定装置は、スロットル弁下流側の吸気通路の圧力変化と、前記吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、吸気弁開弁中の全気筒内への全吸気流量は、吸気弁開弁中の全気筒の吸気弁のリフト量合計値に比例するとして、前記リフト量合計値が第一リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第一全吸気流量と、前記リフト量合計値が第二リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第二全吸気流量との比は、前記第一リフト量合計値と前記第二リフト量合計値との比に等しいとし、前記吸気通路の容積を同定することを特徴とする。   According to a second aspect of the present invention, there is provided an intake passage volume identification device comprising: a pressure change in an intake passage on a downstream side of a throttle valve; a volume of the intake passage; an intake flow rate through a throttle valve; and an intake flow rate into a cylinder. Using the relational expression, it is assumed that the total intake flow rate into all cylinders when the intake valves are open is proportional to the total lift value of the intake valves of all cylinders when the intake valves are open. Corresponding to the first total intake flow rate based on the pressure change measurement value and the throttle valve passage intake flow measurement value corresponding to the one lift amount total value, and the lift amount total value corresponding to the second lift amount total value The ratio of the second total intake flow rate based on the pressure change measurement value and the throttle valve passage intake flow measurement value is equal to the ratio of the first lift amount total value and the second lift amount total value. It is characterized by identifying the volume.

本発明による請求項3に記載の吸気通路容積同定装置は、請求項2に記載の吸気通路容積同定装置において、前記第一リフト量合計値は、特定気筒の吸気弁が最大リフト量となって他気筒の吸気弁が閉弁している時の最大リフト量合計値とされ、前記第二リフト量合計値は、吸気開弁中の前記特定気筒の吸気弁のリフト量と吸気弁開弁中のもう一つの気筒の吸気弁のリフト量とが同じとなった時の最小リフト量合計値とされることを特徴とする。   An intake passage volume identification device according to a third aspect of the present invention is the intake passage volume identification device according to the second aspect, wherein the first lift amount total value is a maximum lift amount of an intake valve of a specific cylinder. The maximum total lift amount when the intake valves of other cylinders are closed, and the second lift amount total value is the lift amount of the intake valve of the specific cylinder being opened and the intake valve is being opened. The lift amount of the intake valve of the other cylinder is equal to the minimum lift amount when the lift amount is the same.

本発明による請求項4に記載の吸気通路容積同定装置は、請求項3に記載の吸気通路容積同定装置において、少なくとも、前記リフト量合計値が前記最大リフト量合計値となった時及び前記最小リフト量合計値となった時からそれぞれ暫くの間は、前記圧力変化及び前記スロットル弁通過吸気流量が連続的に測定され、前記最大リフト量合計値となった時に対応する圧力変化は、測定された圧力変化の最小値とし、前記最小リフト量合計値となった時に対応する圧力変化は、測定された圧力変化の最大値とし、前記最大リフト量合計値となった時及び前記最小リフト量合計値となった時に対応するスロットル弁通過吸気流量は、測定されたスロットル弁通過吸気流量の平均値とすることを特徴とする。   An intake passage volume identification device according to a fourth aspect of the present invention is the intake passage volume identification device according to the third aspect, wherein at least the lift amount total value becomes the maximum lift amount total value and the minimum The pressure change and the throttle valve passage intake flow rate are continuously measured for a while after the total lift amount is reached, and the corresponding pressure change is measured when the maximum lift amount is reached. The pressure change corresponding to the minimum value of the maximum lift amount is the maximum value of the measured pressure change, and the minimum lift amount and the total minimum lift amount. The throttle valve passage intake air flow corresponding to the value becomes an average value of the measured throttle valve passage intake air flow.

本発明による請求項1に記載の吸気通路容積同定装置によれば、スロットル弁下流側の吸気通路の圧力変化と、吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、全気筒の吸気弁が閉弁した時には気筒内への吸気流量は零となるために、この時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づき、吸気通路の容積を正確に同定することができる。   According to the intake passage volume identification device of the first aspect of the present invention, the pressure change in the intake passage on the downstream side of the throttle valve, the volume of the intake passage, the intake valve passage intake flow rate, the intake flow rate into the cylinder, When the intake valves of all the cylinders are closed, the intake flow rate into the cylinders becomes zero. Therefore, based on the corresponding pressure change measurement value and throttle valve passage intake flow rate measurement value, The volume of the passage can be accurately identified.

本発明による請求項2に記載の吸気通路容積同定装置によれば、スロットル弁下流側の吸気通路の圧力変化と、吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、吸気弁開弁中の気筒への全吸気流量は、吸気弁開弁中の全気筒の吸気弁のリフト量合計値に比例するとして、リフト量合計値が第一リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第一全吸気流量と、リフト量合計値が第二リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第二全吸気流量との比は、第一リフト量合計値と第二リフト量合計値との比に等しいとすることにより、全気筒の吸気弁が閉弁する時がなくても、吸気通路の容積を正確に同定することができる。   According to the intake passage volume identification device of the second aspect of the present invention, the pressure change in the intake passage on the downstream side of the throttle valve, the volume of the intake passage, the intake flow rate through the throttle valve, the intake flow rate into the cylinder, The total lift amount is proportional to the total lift amount of the intake valves of all cylinders when the intake valves are open, and the total lift amount is the first lift. Pressure change measurement corresponding to the first total intake flow rate based on the pressure change measurement value and the throttle valve passage intake flow measurement value corresponding to the total amount of the throttle valve, and the lift amount total value corresponding to the second lift amount total value And the ratio of the second total intake flow rate based on the measured value of the intake valve flow through the throttle valve is equal to the ratio of the first lift amount total value and the second lift amount total value. Even when there is no time to close the valve, the volume of the intake passage It can be accurately identified.

本発明による請求項3に記載の吸気通路容積同定装置によれば、請求項2に記載の吸気通路容積同定装置において、第一リフト量合計値は、特定気筒の吸気弁が最大リフト量となって他気筒の吸気弁が閉弁している時の最大リフト量合計値とされ、第二リフト量合計値は、吸気開弁中の特定気筒の吸気弁のリフト量と吸気弁開弁中のもう一つの気筒の吸気弁のリフト量とが同じとなった時の最小リフト量合計値とされ、それぞれの全吸気流量の差を顕著なものとして、吸気通路の容積を正確に同定することができる。   According to the intake passage volume identification device according to claim 3 of the present invention, in the intake passage volume identification device according to claim 2, the first lift amount total value is the maximum lift amount for the intake valve of the specific cylinder. The maximum lift amount when the intake valves of other cylinders are closed is the second lift amount total value, and the second lift amount total value is the lift amount of the intake valve of the specific cylinder being opened and the intake valve being opened. The sum of the minimum lift amount when the lift amount of the intake valve of the other cylinder is the same, and the difference between the total intake flow rates of each of them is prominent, so that the volume of the intake passage can be accurately identified. it can.

本発明による請求項4に記載の吸気通路容積同定装置によれば、請求項3に記載の吸気通路容積同定装置において、少なくとも、リフト量合計値が最大リフト量合計値となった時及び最小リフト量合計値となった時からそれぞれ暫くの間は、圧力変化及びスロットル弁通過吸気流量が連続的に測定される。圧力変化の測定には応答遅れがあるために、最大リフト量合計値となった時及び最小リフト量合計値となった時に測定された圧力変化がそれぞれに対応する圧力変化であるとは限らず、それにより、最大リフト量合計値となった時に対応する圧力変化は、最小となるはずであるために、測定された圧力変化の最小値とされ、最小リフト量合計値となった時に対応する圧力変化は、最大となるはずであるために、測定された圧力変化の最大値とされる。また、測定されるスロットル弁通過吸気流量は変動するために、最大リフト量合計値となった時及び最小リフト量合計値となった時に測定された圧力変化がそれぞれに対応するスロットル弁通過吸気流量であるとは限らず、最大リフト量合計値となった時及び最小リフト量合計値となった時に対応するスロットル弁通過吸気流量は、測定されたスロットル弁通過吸気流量の平均値とされる。こうして、吸気通路の容積を正確に同定することができる。   According to the intake passage volume identification device of the fourth aspect of the present invention, in the intake passage volume identification device of the third aspect, at least when the lift amount total value becomes the maximum lift amount total value and the minimum lift The pressure change and the throttle valve passage intake flow rate are continuously measured for a while after the total amount is reached. Since there is a response delay in the measurement of pressure change, the pressure change measured when the maximum lift amount is reached and when the minimum lift amount is reached is not necessarily the corresponding pressure change. Therefore, since the pressure change corresponding to the maximum lift amount total value should be the minimum, it is set to the minimum value of the measured pressure change, and corresponds to the minimum lift amount total value. Since the pressure change should be maximum, it is taken as the maximum value of the measured pressure change. Since the measured throttle valve passage intake air flow fluctuates, the pressure change measured when the maximum lift amount total value and the minimum lift amount total value correspond to the corresponding throttle valve passage intake flow rate. The throttle valve passage intake air flow corresponding to the maximum lift amount total value and the minimum lift amount total value is an average value of the measured throttle valve passage intake flow rates. Thus, the volume of the intake passage can be accurately identified.

図1は機関吸気系を示す概略図である。同図において、1はエアクリーナであり、2はスロットル弁であり、3はサージタンクであり、4はサージタンク下流側のインテークマニホルド及び吸気ポートであり、5は吸気弁である。燃焼空燃比を正確に制御するためには、吸気弁5下流側の気筒内へ流入した吸気量を正確に把握することが必要である。   FIG. 1 is a schematic view showing an engine intake system. In the figure, 1 is an air cleaner, 2 is a throttle valve, 3 is a surge tank, 4 is an intake manifold and intake port downstream of the surge tank, and 5 is an intake valve. In order to accurately control the combustion air-fuel ratio, it is necessary to accurately grasp the amount of intake air flowing into the cylinder on the downstream side of the intake valve 5.

そのためには、次式(1)によって各時刻における気筒内へ流入する吸気流量mciが推定される。以下を含めて、各値の添え字iは吸気流量を推定する時刻を示している。
mci=mti−(ΔPi・V)/(R・Ti) ・・・(1)
ここで、mtiはスロットル弁通過吸気流量であり、ΔPiはスロットル弁2の下流側の吸気通路内の圧力変化であり、Vはスロットル弁2の下流側の吸気通路容積であり、Rは気体定数を空気の平均分子量で除算した値であり、Tiはスロットル弁2の下流側の吸気通路内の温度である。
For that purpose, the intake air flow rate mc i flowing into the cylinder at each time by the following equation (1) is estimated. The subscript i of each value including the following indicates the time when the intake flow rate is estimated.
mc i = mt i − (ΔP i · V) / (R · T i ) (1)
Here, mt i is the throttle valve passage intake flow rate, ΔP i is the pressure change in the intake passage on the downstream side of the throttle valve 2, V is the intake passage volume on the downstream side of the throttle valve 2, and R is The gas constant is a value obtained by dividing the gas constant by the average molecular weight of air, and T i is the temperature in the intake passage on the downstream side of the throttle valve 2.

エアクリーナ1とスロットル弁2との間にはエアフローメータ6が配置され、エアフローメータ6により測定される吸気流量がスロットル弁通過する吸気流量mtiとされる。また、サージタンク3の直下流側には圧力センサ7が配置され、圧力センサ7により測定される圧力変化がスロットル弁2の下流側の吸気通路内の圧力変化ΔPiとされる。Rは一定値であり、また、吸気温度Tiは、スロットル弁2の下流側の吸気通路内に温度センサを配置して測定しても良いし、また、大気温度センサにより測定される大気温度としても良い。 An air flow meter 6 is disposed between the air cleaner 1 and the throttle valve 2, and an intake flow rate measured by the air flow meter 6 is an intake flow rate mt i passing through the throttle valve. A pressure sensor 7 is disposed immediately downstream of the surge tank 3, and a pressure change measured by the pressure sensor 7 is a pressure change ΔP i in the intake passage on the downstream side of the throttle valve 2. R is a constant value, and the intake air temperature Ti may be measured by arranging a temperature sensor in the intake passage on the downstream side of the throttle valve 2, or the atmospheric temperature measured by the atmospheric temperature sensor. It is also good.

こうして、スロットル弁2の下流側の吸気通路容積Vが定まっていれば、各時刻の気筒内へ流入する吸気流量mciを推定することができる。ここで、推定される吸気流量mciは、吸気弁開弁中の気筒が一つである場合には、この気筒への吸気流量となるが、複数の気筒の吸気弁が開弁中である時には、これら全気筒へ流入する全吸気流量となる。 Thus, if the definite intake passage volume V on the downstream side of the throttle valve 2, it is possible to estimate the intake air flow rate mc i flowing into the cylinder at each time. Here, the intake flow rate mc i to be estimated, when the cylinders in the intake valve opening is one, but the air flow rate to the cylinders, the intake valves of the plurality of cylinders is in open Sometimes the total intake air flow into all of these cylinders.

スロットル弁2の下流側の吸気通路容積(以下、単に吸気通路容積と称する)は、図1において、AからBまでの容積、すなわち、スロットル弁2からサージタンク3までの吸気管容積、サージタンク3の容積、サージタンク3の下流側のインテークマニホルド4の容積、及び、インテークマニホルドの各枝管の下流側の各吸気ポート4の容積の合計となる。この吸気通路容積は、一般的には設計値として固定される。しかしながら、気筒内への吸気流量mciの推定に際して、製品のばらつき、各部分での熱膨張、及び、吸気ポート燃料噴射の場合における吸気ポート内へのデポジットの堆積等によって、現在の吸気通路容積Vが設計値と異なっていることがあり、これでは、正確に吸気流量を推定することはできない。 In FIG. 1, the intake passage volume on the downstream side of the throttle valve 2 (hereinafter simply referred to as intake passage volume) is the volume from A to B, that is, the intake pipe volume from the throttle valve 2 to the surge tank 3, the surge tank. 3, the volume of the intake manifold 4 on the downstream side of the surge tank 3, and the volume of each intake port 4 on the downstream side of each branch pipe of the intake manifold. This intake passage volume is generally fixed as a design value. However, when estimating the intake air flow rate mc i into the cylinder, the current intake passage volume depends on product variations, thermal expansion in each part, deposit accumulation in the intake port in the case of intake port fuel injection, and the like. V may be different from the designed value, and this makes it impossible to accurately estimate the intake flow rate.

それにより、本吸気通路容積同定装置は、以下のようにして吸気通路容積を同定する。例えば、一つのインテークマニホルドに接続される気筒数が四気筒以下である内燃機関において、全ての気筒の吸気弁が閉弁する時があれば、この時の気筒内への吸気流量は零であるために、この時に対応するスロットル弁通過吸気流量mti及びスロットル弁2の下流側の圧力変化ΔPi(エアフローメータ6及び圧力センサ7の応答遅れを考慮することが好ましい)に基づき、式(1)から現在の正確な吸気通路容積Vを逆算することができる。 Thus, the intake passage volume identification device identifies the intake passage volume as follows. For example, in an internal combustion engine in which the number of cylinders connected to one intake manifold is four or less, if the intake valves of all the cylinders are sometimes closed, the intake flow rate into the cylinders at this time is zero Therefore, based on the throttle valve passage intake flow rate mt i corresponding to this time and the pressure change ΔP i on the downstream side of the throttle valve 2 (preferably taking into account the response delay of the air flow meter 6 and the pressure sensor 7), ) To calculate the current accurate intake passage volume V.

しかしながら、一つのインテークマニホルドに接続される気筒数が四気筒以上である内燃機関の場合には、全ての気筒の吸気弁が同時には閉弁せず、少なくとも一つの吸気弁が必ず開弁している。図2のタイムチャートに点線で示すように、四気筒内燃機関の場合において、点火順序(例えば、#1気筒、#4気筒、#3気筒、#2気筒の順)が連続する二つの気筒の吸気弁が同時に開弁する期間が存在する。   However, in the case of an internal combustion engine with four or more cylinders connected to one intake manifold, the intake valves of all the cylinders do not close at the same time, and at least one intake valve must be opened. Yes. As shown by the dotted line in the time chart of FIG. 2, in the case of a four-cylinder internal combustion engine, two cylinders in which the ignition order (for example, the order of # 1, # 4, # 3, and # 2) continues. There is a period during which the intake valves open simultaneously.

このような場合には、前述したようにしては吸気通路容積を同定することができないために、開弁中の全気筒の吸気弁のリフト量合計値が、開弁中の気筒への全吸気流量に比例するとして吸気通路容積Vを同定する。ここで、開弁中の気筒の吸気弁のリフト量合計値とは、図2のタイムチャートに実線で示すように変化し、例えば、開弁中の二つの気筒の吸気弁のリフト量が同じとなる時刻t1、t3、t5、t7においては、各吸気弁のリフト量L3の二倍L2となる。もちろん、一つの気筒の吸気弁しか開弁していない間は、その吸気弁のリフト量自身となる。図2のタイムチャートに示す例では、同時に吸気弁が開弁する気筒数は二つであるが、さらに多気筒の内燃機関では、同時に吸気弁が開弁する気筒数が三つ以上となることもあり、この時のリフト量合計値は、開弁中の三つ以上の吸気弁のリフト量の合計となる。   In such a case, since the intake passage volume cannot be identified as described above, the total lift amount of the intake valves of all the cylinders that are being opened is the total intake air to the cylinders that are being opened. The intake passage volume V is identified as being proportional to the flow rate. Here, the total lift amount of the intake valves of the cylinders that are open varies as shown by the solid line in the time chart of FIG. 2. For example, the lift amounts of the intake valves of the two open cylinders are the same. At times t1, t3, t5, and t7, the lift amount L3 of each intake valve is twice L2. Of course, while only the intake valve of one cylinder is opened, the lift amount of the intake valve itself is used. In the example shown in the time chart of FIG. 2, the number of cylinders whose intake valves are simultaneously opened is two, but in a multi-cylinder internal combustion engine, the number of cylinders whose intake valves are simultaneously opened is three or more. Also, the total lift amount at this time is the sum of the lift amounts of three or more intake valves being opened.

こうして、リフト量合計値が第一リフト量合計値H1となった時に対応する圧力変化ΔPi1及びスロットル弁通過吸気流量mti1に基づく第一全吸気流量mci1と、リフト量合計値が第二リフト量合計値H2となった時に対応する圧力変化ΔPi2及びスロットル弁通過吸気流量mti2に基づく第二全吸気流量mci2との比は、第一リフト量合計値H1と第二リフト量合計値H2との比に等しいとされる。すなわち、次式(2)が成り立つとされる。
{mti1−(ΔPi1・V)/(R・T)}:{mti2−(ΔPi2・V)/(R・T)}=H1:H2 ・・・(2)
ここで、第一全吸気流量mci1の時刻と第二全吸気流量mci2の時刻とは近いために、スロットル弁2の下流側の吸気温度Tは変化しないとしている。
Thus, the first total intake flow rate mc i1 based on the pressure change ΔP i1 and the throttle valve passage intake flow rate mt i1 corresponding to the lift amount total value becoming the first lift amount total value H1, and the lift amount total value is the second. The ratio between the pressure change ΔP i2 corresponding to the lift amount total value H2 and the second total intake flow rate mc i2 based on the throttle valve passing intake flow rate mt i2 is the first lift amount total value H1 and the second lift amount total. It is assumed that the ratio is equal to the value H2. That is, the following equation (2) is established.
{Mt i1 − (ΔP i1 · V) / (R · T)}: {mt i2 − (ΔP i2 · V) / (R · T)} = H1: H2 (2)
Here, since the time of the first total intake flow rate mc i1 and the time of the second total intake flow rate mc i2 are close, the intake air temperature T on the downstream side of the throttle valve 2 is not changed.

式(2)から次式(3)のように吸気通路容積Vを逆算することができる。
V=R・T(H2・mti1−H1・mti2)/(H2・ΔPi1−H1・ΔPi2) ・・・(3)
このようにして、吸気通路容積Vを同定することができる。
From the equation (2), the intake passage volume V can be calculated backward as in the following equation (3).
V = R · T (H2 · mt i1 −H1 · mt i2 ) / (H2 · ΔP i1 −H1 · ΔP i2 ) (3)
In this way, the intake passage volume V can be identified.

例えば、第一リフト量合計値H1は、特定気筒の吸気弁が最大リフト量となって他気筒の吸気弁が閉弁している時(例えば、特定気筒を#1気筒とした時の時刻t2)のリフト量合計の最大値L1とされ、第二リフト量合計値H2は、吸気開弁中の特定気筒の吸気弁のリフト量と吸気弁開弁中のもう一つの気筒の吸気弁のリフト量とが同じとなった時(例えば、特定気筒を#1気筒とし、もう一つの気筒を#4気筒とした時の時刻t3)のリフト量合計値の最小値L2とされ、それぞれの全吸気流量の差を顕著なものとして、吸気通路の容積を正確に同定することが好ましい。   For example, the first lift amount total value H1 is the time t2 when the intake valve of the specific cylinder becomes the maximum lift amount and the intake valve of the other cylinder is closed (for example, when the specific cylinder is the # 1 cylinder) ) Is the maximum value L1 of the total lift amount, and the second lift amount total value H2 is the lift amount of the intake valve of the specific cylinder during the intake valve opening and the lift amount of the intake valve of the other cylinder during the intake valve opening. When the amount becomes the same (for example, the time t3 when the specific cylinder is the # 1 cylinder and the other cylinder is the # 4 cylinder), the total amount of lift is set to the minimum value L2. It is preferable to accurately identify the volume of the intake passage with the difference in flow rate being significant.

こうして、式(3)において、H1を最大リフト量合計値L1とし、H2を最小リフト量合計値L2とし、時刻t2の時のスロットル弁通過吸気流量mti1及び圧力変化ΔPi1と、時刻t3の時のスロットル弁通過吸気流量mti2及び圧力変化ΔPi2とを代入すれば、時刻t2及びt3近傍における吸気通路容積Vを正確に同定することができる。 Thus, in equation (3), H1 is the maximum lift amount total value L1, H2 is the minimum lift amount total value L2, the throttle valve passage intake flow rate mt i1 and the pressure change ΔP i1 at time t2, and the time t3 By substituting the throttle valve passage intake flow rate mt i2 and the pressure change ΔP i2 at the time, the intake passage volume V in the vicinity of the times t2 and t3 can be accurately identified.

ここで、圧力センサ7に応答遅れがあると、時刻t2及びt3において測定された圧力変化ΔPが、これらの時刻の正確な圧力変化に対応しないことがある。それにより、時刻t2及びt3においてだけ圧力変化を測定するのではなく、少なくとも、リフト量合計値が最大リフト量合計値となった時t2及び最小リフト量合計値となった時t3からそれぞれ暫くの間、すなわち、少なくとも応答遅れ時間は、圧力変化を連続的に測定し、こうして測定された圧力変化から時刻t2及びt3に対応する圧力変化ΔPを選択することが好ましい。吸気通路容積の同定が機関定常時に行われる場合には、この定常時の間において圧力変化を連続的に測定するようにしても良い。   Here, if there is a response delay in the pressure sensor 7, the pressure change ΔP measured at the times t2 and t3 may not correspond to the accurate pressure changes at these times. Accordingly, the pressure change is not measured only at the times t2 and t3, but at least for a while from the time t2 when the total lift amount becomes the maximum total lift amount and the time t3 when the total lift amount reaches the minimum lift amount. During the interval, that is, at least the response delay time, it is preferable to continuously measure the pressure change and select the pressure change ΔP corresponding to the times t2 and t3 from the pressure change thus measured. When the intake passage volume is identified during engine steady state, the pressure change may be continuously measured during the steady state.

すなわち、最大リフト量合計値L1となった時に対応する圧力変化ΔPは、最も小さくなるはずであるために、測定された圧力変化の最小値を選択し、最小リフト量合計値L2となった時に対応する圧力変化は、最も大きくなるはずであるために、測定された圧力変化の最大値を選択する。   That is, since the pressure change ΔP corresponding to the maximum lift amount total value L1 should be the smallest, the minimum value of the measured pressure change is selected and the minimum lift amount total value L2 is selected. Since the corresponding pressure change should be the largest, the maximum value of the measured pressure change is selected.

また、エアフローメータ6により測定されるスロットル弁通過吸気流量mtは変動するために、最大リフト量合計値L1となった時t2及び最小リフト量合計値L2となった時t3に測定されたスロットル弁通過吸気流量mtが真値でないことも考えられる。吸気通路容積Vの同定は、機関定常時において実施されることが好ましく、機関定常時であれば、スロットル弁通過吸気流量mtは一定であるとすることができるために、時刻t2及びt3のスロットル弁通過吸気流量mtを、いずれも、測定されたスロットル弁通過吸気流量の平均値としても良い。   Further, since the throttle valve passage intake flow rate mt measured by the air flow meter 6 fluctuates, the throttle valve measured at t2 when the maximum lift amount total value L1 is reached and at t3 when the minimum lift amount total value L2 is reached. It is also conceivable that the passing intake air flow rate mt is not a true value. The identification of the intake passage volume V is preferably performed when the engine is stationary. Since the intake valve flow rate mt passing through the throttle valve can be constant when the engine is stationary, the throttle at time t2 and t3 is determined. The valve passage intake air flow rate mt may be the average value of the measured throttle valve passage intake air flow rate.

機関吸気系の概略図である。It is the schematic of an engine intake system. 吸気弁のリフト量合計値(実線)及び吸気弁のリフト量(点線)を示すタイムチャートである。It is a time chart which shows the lift amount total value (solid line) of an intake valve, and the lift amount (dotted line) of an intake valve.

符号の説明Explanation of symbols

1 エアクリーナ
2 スロットル弁
3 サージタンク
4 インテークマニホルド及び吸気ポート
5 吸気弁
6 エアフローメータ
7 圧力センサ
DESCRIPTION OF SYMBOLS 1 Air cleaner 2 Throttle valve 3 Surge tank 4 Intake manifold and intake port 5 Intake valve 6 Air flow meter 7 Pressure sensor

Claims (4)

スロットル弁下流側の吸気通路の圧力変化と、前記吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、全気筒の吸気弁が閉弁した時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づき、気筒内への吸気流量を零として前記吸気通路の容積を同定することを特徴とする吸気通路容積同定装置。   When the relation between the pressure change in the intake passage downstream of the throttle valve, the volume of the intake passage, the throttle valve passage intake flow rate, and the intake flow rate into the cylinder is used, and the intake valves of all the cylinders are closed An intake passage volume identification device that identifies the volume of the intake passage based on a corresponding pressure change measurement value and a throttle valve passage intake flow rate measurement value with zero intake flow rate into the cylinder. スロットル弁下流側の吸気通路の圧力変化と、前記吸気通路の容積と、スロットル弁通過吸気流量と、気筒内への吸気流量との関係式を使用し、吸気弁開弁中の全気筒内への全吸気流量は、吸気弁開弁中の全気筒の吸気弁のリフト量合計値に比例するとして、前記リフト量合計値が第一リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第一全吸気流量と、前記リフト量合計値が第二リフト量合計値となった時に対応する圧力変化測定値及びスロットル弁通過吸気流量測定値に基づく第二全吸気流量との比は、前記第一リフト量合計値と前記第二リフト量合計値との比に等しいとし、前記吸気通路の容積を同定することを特徴とする吸気通路容積同定装置。   Using the relational expression of the pressure change in the intake passage on the downstream side of the throttle valve, the volume of the intake passage, the intake flow rate through the throttle valve, and the intake flow rate into the cylinder, into all the cylinders in which the intake valve is open The total intake flow rate is proportional to the total lift value of the intake valves of all cylinders during the intake valve opening, and the pressure change measurement value corresponding to the total lift amount becomes the first total lift amount and A first total intake flow rate based on the measured value of the intake air flow through the throttle valve, a second change value based on the measured pressure change and the measured value of the intake air flow through the throttle valve corresponding when the total lift amount becomes the second total lift amount. The intake passage volume identification device is characterized in that the ratio of the total intake flow rate is equal to the ratio of the first lift amount total value and the second lift amount total value, and the volume of the intake passage is identified. 前記第一リフト量合計値は、特定気筒の吸気弁が最大リフト量となって他気筒の吸気弁が閉弁している時の最大リフト量合計値とされ、前記第二リフト量合計値は、吸気開弁中の前記特定気筒の吸気弁のリフト量と吸気弁開弁中のもう一つの気筒の吸気弁のリフト量とが同じとなった時の最小リフト量合計値とされることを特徴とする請求項2に記載の吸気通路容積同定装置。   The first lift amount total value is the maximum lift amount total value when the intake valve of the specific cylinder becomes the maximum lift amount and the intake valves of the other cylinders are closed, and the second lift amount total value is The lift amount of the intake valve of the specific cylinder when the intake valve is opened and the lift amount of the intake valve of the other cylinder when the intake valve is opened are the same as the minimum lift amount total value. The intake passage volume identification device according to claim 2, wherein the intake passage volume is identified. 少なくとも、前記リフト量合計値が前記最大リフト量合計値となった時及び前記最小リフト量合計値となった時からそれぞれ暫くの間は、前記圧力変化及び前記スロットル弁通過吸気流量が連続的に測定され、前記最大リフト量合計値となった時に対応する圧力変化は、測定された圧力変化の最小値とし、前記最小リフト量合計値となった時に対応する圧力変化は、測定された圧力変化の最大値とし、前記最大リフト量合計値となった時及び前記最小リフト量合計値となった時に対応するスロットル弁通過吸気流量は、測定されたスロットル弁通過吸気流量の平均値とすることを特徴とする請求項3に記載の吸気通路容積同定装置。   At least for a while after the total lift amount reaches the maximum lift total value and the minimum lift total value, the pressure change and the throttle valve passage intake flow rate continuously. The pressure change measured when the maximum lift amount is reached is the minimum value of the measured pressure change, and the pressure change corresponding to the minimum lift amount is the measured pressure change. The throttle valve passage intake air flow corresponding to the maximum lift amount total value and the minimum lift amount total value is the average value of the measured throttle valve passage intake flow rates. The intake passage volume identification device according to claim 3, wherein the intake passage volume is identified.
JP2006331866A 2006-12-08 2006-12-08 Intake passage volume identification device Expired - Fee Related JP4765920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331866A JP4765920B2 (en) 2006-12-08 2006-12-08 Intake passage volume identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331866A JP4765920B2 (en) 2006-12-08 2006-12-08 Intake passage volume identification device

Publications (2)

Publication Number Publication Date
JP2008144648A true JP2008144648A (en) 2008-06-26
JP4765920B2 JP4765920B2 (en) 2011-09-07

Family

ID=39605094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331866A Expired - Fee Related JP4765920B2 (en) 2006-12-08 2006-12-08 Intake passage volume identification device

Country Status (1)

Country Link
JP (1) JP4765920B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012632A (en) * 2009-07-03 2011-01-20 Toyota Motor Corp Control device of internal combustion engine
JP2011012634A (en) * 2009-07-03 2011-01-20 Toyota Motor Corp Control device of internal combustion engine
WO2011086707A1 (en) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 Gas state estimation device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248943A (en) * 2004-02-03 2005-09-15 Toyota Motor Corp Control device for multi-cylinder internal combustion engine
JP2006112321A (en) * 2004-10-14 2006-04-27 Toyota Motor Corp Control device of internal combustion engine
WO2006075788A1 (en) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
JP2006194142A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248943A (en) * 2004-02-03 2005-09-15 Toyota Motor Corp Control device for multi-cylinder internal combustion engine
JP2006112321A (en) * 2004-10-14 2006-04-27 Toyota Motor Corp Control device of internal combustion engine
WO2006075788A1 (en) * 2005-01-13 2006-07-20 Toyota Jidosha Kabushiki Kaisha Controller of internal combustion engine
JP2006194142A (en) * 2005-01-13 2006-07-27 Toyota Motor Corp Control device of internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012632A (en) * 2009-07-03 2011-01-20 Toyota Motor Corp Control device of internal combustion engine
JP2011012634A (en) * 2009-07-03 2011-01-20 Toyota Motor Corp Control device of internal combustion engine
WO2011086707A1 (en) * 2010-01-18 2011-07-21 トヨタ自動車株式会社 Gas state estimation device for internal combustion engine
CN102713223A (en) * 2010-01-18 2012-10-03 丰田自动车株式会社 Gas state estimation device for internal combustion engine
JP5177463B2 (en) * 2010-01-18 2013-04-03 トヨタ自動車株式会社 Gas state estimating apparatus for internal combustion engine
US8549900B2 (en) 2010-01-18 2013-10-08 Toyota Jidosha Kabushiki Kaisha Gas state estimation device for internal combustion engine
CN102713223B (en) * 2010-01-18 2015-05-06 丰田自动车株式会社 Gas state estimation device for internal combustion engine

Also Published As

Publication number Publication date
JP4765920B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4964503B2 (en) Estimation method of air-fuel ratio in cylinder of internal combustion engine by adaptive nonlinear filter
US9482570B2 (en) Device and method for recalibrating an exhaust gas mass flow sensor
JP4703488B2 (en) Method for estimating air-fuel ratio in cylinder of internal combustion engine using extended Kalman filter
JP2004143994A (en) Intake air flow prediction device of internal combustion engine
CN104675538B (en) Method and measuring device for determining a fresh air mass flow
US6971358B2 (en) Intake system for internal combustion engine and method of controlling internal combustion engine
JP4765920B2 (en) Intake passage volume identification device
KR20080048088A (en) Exhaust emission control device of internal combustion engine
CN101344025B (en) Method of estimation of the pressure drop
JP4368053B2 (en) Measuring method of intake air amount in internal combustion engine
WO2015093373A1 (en) Control device for internal combustion engine
KR20170007460A (en) Method and device for operating an internal combustion engine
JP4242331B2 (en) Control device for internal combustion engine
JP2008002833A (en) Device for correcting intake flow rate
JP6436291B2 (en) Control device for internal combustion engine
JP2006112321A (en) Control device of internal combustion engine
CN108999709B (en) Method for calculating the charge of an internal combustion engine
JP5488520B2 (en) Control device for internal combustion engine
JP7206625B2 (en) Control device for internal combustion engine
JP5169854B2 (en) Intake air amount estimation device for internal combustion engine
JP4380401B2 (en) Engine blowout gas amount calculation device and internal EGR amount estimation device
JP4867719B2 (en) Modeling environment
KR101745106B1 (en) Apparatus and Method for preventing starting-off
JP4244850B2 (en) Blowing gas passage opening area estimation device
JP2018173067A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R151 Written notification of patent or utility model registration

Ref document number: 4765920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees