JP2008144300A - Electrically conductive multifilament yarn - Google Patents

Electrically conductive multifilament yarn Download PDF

Info

Publication number
JP2008144300A
JP2008144300A JP2006331945A JP2006331945A JP2008144300A JP 2008144300 A JP2008144300 A JP 2008144300A JP 2006331945 A JP2006331945 A JP 2006331945A JP 2006331945 A JP2006331945 A JP 2006331945A JP 2008144300 A JP2008144300 A JP 2008144300A
Authority
JP
Japan
Prior art keywords
multifilament yarn
conductive
resistance value
fine particles
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006331945A
Other languages
Japanese (ja)
Inventor
Yuichi Fujita
友一 藤田
Toshiyuki Nishio
俊幸 西尾
Masaki Nishimura
雅樹 西村
Eiji Tsukamoto
栄治 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2006331945A priority Critical patent/JP2008144300A/en
Publication of JP2008144300A publication Critical patent/JP2008144300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrically conductive multifilament yarn having a low change in electrical resistivity and rigidity to a temperature-humidity change in a heat treatment process in a brush production or long-term use, and excellent electrical resistivity and shape stability in use as a brush for contact electrification and cleaning and carrying out excellent electrification or cleaning for a long period of time. <P>SOLUTION: The electrically conductive multifilament yarn includes a single fiber composed of nylon 12 containing conductive fine particles, has a shrinkage percentage in hot-water of ≤10%, a variation quantity of logarithmic value of electrical resistivity of ≤0.3 in each environment of at 10°C at 30% RH, at 20°C at 65% RH, and at 40°C at 90% RH, and a percentage change of Young's modulus of ≤30%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子写真装置(複写機、ファクシミリ、プリンター等)に用いる接触帯電用ブラシ及び感光ドラムクリーニング用ブラシ等の各種ブラシに好適なポリアミド系導電糸に関するものである。   The present invention relates to a polyamide conductive yarn suitable for various brushes such as a contact charging brush and a photosensitive drum cleaning brush used in an electrophotographic apparatus (copying machine, facsimile, printer, etc.).

従来、電子写真複写機等の電子写真装置において、接触帯電用ブラシ及び感光ドラムクリーニング用ブラシ等に使用される導電糸として、セルロース系繊維が多く用いられている。また、合成繊維として広く使用されているポリエステルやポリアミド繊維においても、導電性微粒子を含有する繊維が多く提案されている。   2. Description of the Related Art Conventionally, in electrophotographic apparatuses such as electrophotographic copying machines, cellulosic fibers are often used as conductive yarns used for contact charging brushes and photosensitive drum cleaning brushes. Also, many polyester and polyamide fibers widely used as synthetic fibers have been proposed that contain conductive fine particles.

特許文献1、2には、融点の異なる2種類の熱可塑性重合体(ポリエステルやポリアミド)からなり、低融点側の重合体に導電性被膜を有する酸化チタンを含有させた複合繊維が提案されている。しかしながら、これらの導電性繊維は、導電性は向上しているものの熱水収縮率が20%程度と高いため、接触帯電ブラシを作成する際の熱処理工程や接触帯電ブラシに使用した際に形態が変化し、さらには形態の変化により電気抵抗値のばらつきが生じ、これらの導電糸を用いた接触帯電ブラシに不適であった。   Patent Documents 1 and 2 propose a composite fiber composed of two types of thermoplastic polymers (polyester and polyamide) having different melting points and containing a titanium oxide having a conductive film in the polymer on the low melting point side. Yes. However, although these conductive fibers have improved conductivity, the hot water shrinkage rate is as high as about 20%. Therefore, the shape of the conductive fiber is not limited when it is used for a heat treatment process or a contact charging brush. In addition, the electrical resistance value varied due to the change of the form, which was unsuitable for the contact charging brush using these conductive yarns.

特許文献3には、セルロース系導電糸に疎水性官能基を導入して湿度変化に対して安定した電気抵抗値が発現できるようにした導電性セルロース系繊維が提案されている。   Patent Document 3 proposes a conductive cellulose fiber in which a hydrophobic functional group is introduced into a cellulose conductive yarn so that a stable electric resistance value can be expressed against changes in humidity.

また、特許文献4には、2種以上の導電性微粒子を繊維に添加して比抵抗値のばらつきを103Ω・cm以内に小さくした導電性セルロース系繊維が提案されている。 Patent Document 4 proposes a conductive cellulosic fiber in which variation in specific resistance value is reduced to within 10 3 Ω · cm by adding two or more kinds of conductive fine particles to the fiber.

上記の2つのセルロース系繊維も、湿度に対する安定性や電気抵抗値のバラツキの改善は十分でなかった。すなわち、接触帯電ブラシ等は、温度や湿度の変化の大きい環境で処理又は使用されるため、環境の温湿度変化によって生じる繊維形態の変化が導電性微粒子の連鎖状態の変化を引き起こし、電気抵抗値の変化として現れる。   The above two cellulosic fibers also have not been sufficiently improved in stability against humidity and variation in electric resistance value. That is, contact charging brushes and the like are processed or used in an environment with large changes in temperature and humidity. Therefore, the change in the fiber form caused by the change in temperature and humidity in the environment causes a change in the chain state of the conductive fine particles, and the electric resistance value. Appears as a change.

したがって、作成当初においては好適な電気抵抗値を有していたとしても、接触帯電ブラシを作成する際の熱処理工程等や長期間の使用時にこれらの値が低下し、作成当初の電気抵抗値との差が大きくなり、画像障害が生じるようになるという欠点を解決することはできなかった。   Therefore, even if it has a suitable electrical resistance value at the beginning of the production, these values decrease during the heat treatment process and the long-term use when creating the contact charging brush, However, it was impossible to solve the drawback that the image difference became large and an image failure occurred.

また、特許文献5では、ブラシ作成時の熱処理工程等や長期間の使用における温湿度変化に対して安定した電気抵抗値を示す導電マルチフィラメント糸を得るために、未延伸糸を特定の条件にて熱延伸処理を施した後、さらに弛緩熱処理を施す方法が提案されている。   Moreover, in patent document 5, in order to obtain the electroconductive multifilament yarn which shows the stable electrical resistance value with respect to the temperature-humidity change in the heat treatment process at the time of brush preparation, etc. or long-term use, undrawn yarn is made into specific conditions There has been proposed a method of performing a relaxation heat treatment after the heat stretching treatment.

しかしながら、マルチフィラメントを形成するポリマーであるポリアミド、ポリエステルが経時により吸湿するために、高湿度条件では吸着水の影響を受け、電気抵抗値が変化することは避けられなかった。   However, since polyamide and polyester, which are polymers that form multifilaments, absorb moisture over time, it is inevitable that the electrical resistance value changes due to the influence of adsorbed water under high humidity conditions.

特開昭57−6762号公報JP 57-6762 A 特開平7−102437号公報JP 7-102437 A 特公平1−29887号公報Japanese Patent Publication No. 1-229887 特開平9−49116号公報JP-A-9-49116 特開2003−105623号公報JP 2003-105623 A

本発明は、上記のような問題点を解決し、ブラシ作成時の熱処理工程や長期間の使用における温湿度変化に対して電気抵抗値及び剛性の変化が小さく、接触帯電用やクリーニング用のブラシとして用いると、電気抵抗値及び形態の安定性に優れ、良好な帯電やクリーニングを長期間行うことができる導電マルチフィラメント糸を提供することを技術的な課題とするものである。   The present invention solves the above-described problems, and the change in electrical resistance and rigidity is small with respect to temperature and humidity changes during the heat treatment process during brush production and long-term use, and the brush for contact charging and cleaning When used as, it is a technical problem to provide a conductive multifilament yarn that is excellent in electrical resistance and form stability and can be charged and cleaned for a long period of time.

本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明に到達した。
すなわち、本発明は、導電性微粒子を含有するナイロン12からなる単繊維で構成された導電マルチフィラメント糸であって、熱水収縮率が10%以下であり、10℃、RH30%、20℃、RH65%、40℃、RH90%の各環境下における電気抵抗値の対数値の変化量が0.3以下であり、かつヤング率の変化率が30%以下であることを特徴とする導電マルチフィラメント糸を要旨とするものである。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
That is, the present invention is a conductive multifilament yarn composed of a single fiber made of nylon 12 containing conductive fine particles, the hot water shrinkage is 10% or less, 10 ° C., RH 30%, 20 ° C., Conductive multifilament, characterized in that the change in logarithmic value of electrical resistance in each environment of RH 65%, 40 ° C., and RH 90% is 0.3 or less and the change rate of Young's modulus is 30% or less The main point is yarn.

本発明の導電マルチフィラメント糸は、温湿度変化を繰り返し受けても長期間安定した電気抵抗値を示し、かつ剛性の変化も小さいので、接触帯電用のブラシとして用いると、良好な画像を長期間安定して得ることが可能である。また、クリーニング用のブラシに用いても、良好なクリーニングを長期間行うことができ、電子写真装置用の各種のブラシに好適に使用することが可能となる。   The conductive multifilament yarn of the present invention exhibits a stable electrical resistance value for a long time even when repeatedly subjected to temperature and humidity changes, and the change in rigidity is small, so that when used as a brush for contact charging, a good image is obtained for a long time. It is possible to obtain stably. Further, even when used for a cleaning brush, good cleaning can be performed for a long time, and it can be suitably used for various brushes for an electrophotographic apparatus.

以下、本発明について詳細に説明する。
まず、本発明でいう電子写真装置用ブラシとは、複写機、ファクシミリ、プリンター(例えばレーザービームプリンター)等の電子写真装置に用いる各種ブラシであり、例えば現像用ブラシ、接触帯電用ブラシ、クリーナー用ブラシ又は除電用ブラシが挙げられる。本発明の導電マルチフィラメント糸は、これらの電子写真装置用ブラシの全てに好適に使用できるものであるが、中でも接触帯電用ブラシに好適に使用し得るものである。
Hereinafter, the present invention will be described in detail.
First, the brush for an electrophotographic apparatus referred to in the present invention is various brushes used in an electrophotographic apparatus such as a copying machine, a facsimile, a printer (for example, a laser beam printer), for example, a developing brush, a contact charging brush, and a cleaner. A brush or a brush for static elimination is mentioned. The conductive multifilament yarn of the present invention can be suitably used for all of these electrophotographic brushes, and among them, can be suitably used for contact charging brushes.

本発明のマルチフィラメント糸は、導電性微粒子を含有するナイロン12からなる単繊維で構成されている。   The multifilament yarn of the present invention is composed of a single fiber made of nylon 12 containing conductive fine particles.

導電性微粒子としては、例えばカーボンブラック、金属粉、金属酸化物等が挙げられ、中でもカーボンブラックが好ましい。含有量は、繊維質量の15〜45質量%が好ましく、より好ましくは20〜35質量%である。導電性微粒子の含有量が15質量%未満では目的とする用途に必要な導電性が得られ難くなる。一方、導電性微粒子の含有量が45質量%を超える場合は、曳糸性が著しく低下し、繊維を得ることが困難となる。   Examples of the conductive fine particles include carbon black, metal powder, metal oxide, and the like. Among these, carbon black is preferable. The content is preferably 15 to 45% by mass of the fiber mass, more preferably 20 to 35% by mass. If the content of the conductive fine particles is less than 15% by mass, it is difficult to obtain the conductivity necessary for the intended use. On the other hand, when the content of the conductive fine particles exceeds 45% by mass, the spinnability is remarkably lowered and it becomes difficult to obtain fibers.

本発明の導電マルチフィラメント糸を構成する単繊維は、上記のような導電性微粒子が略均一に分散されたナイロン12のみからなるものとすることが好ましい。つまり、導電性微粒子を含有するナイロン12と導電性微粒子を含有しないナイロン12とからなる複合繊維とするよりも、前記したような単一成分型のものとするほうが、均一な導電性能が得られやすく好ましい。   The single fiber constituting the conductive multifilament yarn of the present invention is preferably made of only nylon 12 in which the conductive fine particles as described above are dispersed substantially uniformly. That is, it is possible to obtain uniform conductive performance by using a single-component type as described above, rather than a composite fiber made of nylon 12 containing conductive fine particles and nylon 12 containing no conductive fine particles. It is easy and preferable.

一般に、ポリアミドからなる導電糸は、環境湿度により0.4〜5.0%程度の水分を吸着する。したがって、導電糸の電気抵抗値には、導電性微粒子の分散状態と吸着水の電気抵抗値の両者が関係するが、おおむね70%以下の湿度領域では導電性微粒子の分散状態が主たる要因となる。   Generally, the conductive yarn made of polyamide adsorbs about 0.4 to 5.0% of moisture due to environmental humidity. Therefore, although the electric resistance value of the conductive yarn is related to both the dispersion state of the conductive fine particles and the electric resistance value of the adsorbed water, the dispersion state of the conductive fine particles is a main factor in a humidity region of approximately 70% or less. .

また、導電性微粒子の分散状態は、繊維の形態が変化することによっても変化する。すなわち、ブラシ作成時の熱処理工程や使用環境の温湿度変化によって生じる繊維形態の変化が導電性微粒子の分散状態の変化を引き起こし、電気抵抗値の変化を生じさせる。これは、紡糸時又は延伸時に受けた変形に基づく残留ひずみの開放や配向分子が最小エネルギー状態に戻ろうとする形態変化(熱収縮差)が、作成時の熱処理工程や使用環境の温湿度変化によって誘発されると考えられる。   Further, the dispersion state of the conductive fine particles also changes when the fiber form changes. That is, the change in the fiber form caused by the heat treatment process at the time of creating the brush and the change in temperature and humidity in the usage environment causes a change in the dispersion state of the conductive fine particles, causing a change in the electrical resistance value. This is due to the release of residual strain based on deformation received during spinning or stretching, and the change in shape (thermal contraction difference) in which oriented molecules return to the minimum energy state, depending on the heat treatment process at the time of creation and the temperature and humidity changes in the usage environment. It is thought to be triggered.

一般に、帯電ブラシやクリーナーブラシは、導電糸をパイルとして製織した後、円筒面に螺旋状に巻き付けてブラシとするが、パイルを整えるために、熱水処理によるヒートセットを行っている。また、前記のように複写機等に使用すると、使用環境が厳しく、大きな温湿度変化を受ける。   In general, charging brushes and cleaner brushes are made by weaving conductive yarn as a pile and then spirally wound around a cylindrical surface to form a brush. However, in order to prepare the pile, heat setting is performed by hot water treatment. Further, when used in a copying machine or the like as described above, the use environment is severe and a large temperature and humidity change is received.

通常の方法で紡糸、延伸された導電糸の熱水収縮率は、10〜50%程度と高い。したがって、このような繊維を用いると、たとえブラシにする前の繊維の導電性微粒子の分散状態が安定していたとしても、ブラシにしてヒートセットした段階や、使用するうちに収縮して形態が変化することにより、導電性微粒子の分散状態が変化する。この導電性微粒子の分散状態の変化により、電気抵抗値のばらつきが生じることになる。そして、このような現象が画像障害を生じる要因となっている。   The hot water shrinkage of the conductive yarn spun and stretched by a normal method is as high as about 10 to 50%. Therefore, when such a fiber is used, even if the dispersion state of the conductive fine particles in the fiber before making the brush is stable, it is in a stage where it is heat set as a brush or shrinks during use. By changing, the dispersion state of the conductive fine particles changes. Due to the change in the dispersion state of the conductive fine particles, the electric resistance value varies. Such a phenomenon is a cause of image failure.

そこで、本発明の導電マルチフィラメント糸は、湿熱処理を受けることによる電気抵抗値の変化や剛性の変化を少なくし、長期間使用しても、電気抵抗値や形態の安定性に優れ、特に、接触帯電ブラシとして使用した際には良好な画像を長期間得ることができ、クリーニングブラシとして使用した際には良好なクリーニング効果を長期間得ることができるという効果を奏するものである。   Therefore, the conductive multifilament yarn of the present invention reduces changes in electrical resistance value and stiffness due to wet heat treatment, and is excellent in electrical resistance value and stability of form even when used for a long period of time. When used as a contact charging brush, a good image can be obtained for a long period of time, and when used as a cleaning brush, a good cleaning effect can be obtained for a long period of time.

本発明のマルチフィラメント糸の各単繊維を形成するポリマーは、ナイロン12である必要がある。ナイロン12は疎水性であり、環境が変化しても水分含有量が1%程度と低く、形態安定性に優れているため、これらの単繊維からなるマルチフィラメント糸は、温湿度変化に対して安定した電気抵抗値、剛性を示すものとなる。   The polymer forming each single fiber of the multifilament yarn of the present invention needs to be nylon 12. Nylon 12 is hydrophobic and has a low moisture content of about 1% even when the environment changes, and has excellent shape stability. Therefore, the multifilament yarn made of these single fibers is resistant to changes in temperature and humidity. It shows stable electrical resistance and rigidity.

そして、本発明の導電マルチフィラメント糸の熱水収縮率は10%以下であり、中でも6.0%以下であることが好ましい。   And the hot water shrinkage | contraction rate of the electrically conductive multifilament yarn of this invention is 10% or less, and it is preferable that it is 6.0% or less especially.

熱水収縮率が10%を超えると、導電マルチフィラメント糸に熱が与えられたときに単繊維の形態が変化し、導電性微粒子の分散状態が変化することにより、電気抵抗値のばらつきも大きくなるため、好ましくない。   When the hot water shrinkage rate exceeds 10%, the shape of the single fiber changes when heat is applied to the conductive multifilament yarn, and the dispersion state of the conductive fine particles changes, resulting in a large variation in electrical resistance value. Therefore, it is not preferable.

なお、熱水収縮率は、試料長100cmとし、JIS−L−1042の熱水浸漬法に従い、80℃の熱水に30分間浸漬させた後、遠心脱水機で脱水し、次に乾燥(20℃で風乾を15時間)し、そのときの試料長L(cm)を測定して、次式にて計算する。
熱水収縮率(%)=〔(100−L)/100〕×100
Note that the hot water shrinkage rate is 100 cm, and the sample is immersed in hot water at 80 ° C. for 30 minutes according to the hot water immersion method of JIS-L-1042, dehydrated with a centrifugal dehydrator, and then dried (20 Air-dry at 15 ° C. for 15 hours), measure the sample length L (cm) at that time, and calculate by the following formula.
Hot water shrinkage (%) = [(100−L) / 100] × 100

本発明の導電マルチフィラメント糸の電気抵抗値の安定性を示すものとして、10℃、RH30%、20℃、RH65%、40℃、RH90%の各環境下における電気抵抗値の対数値の変化量が0.3以下であり、中でも0.2以下であることが好ましい。マルチフィラメント糸の電気抵抗値の対数値の変化量が0.3を超えると、環境変化による電気抵抗値の変化が大きく、これらのマルチフィラメント糸を帯電ブラシに用いると、均一な画像を長期間得ることができないものとなる。   The amount of change in the logarithmic value of the electrical resistance value in each environment of 10 ° C., RH 30%, 20 ° C., RH 65%, 40 ° C., and RH 90% is shown as the stability of the electrical resistance value of the conductive multifilament yarn of the present invention. Is 0.3 or less, and preferably 0.2 or less. When the amount of change in the logarithmic value of the electrical resistance value of the multifilament yarn exceeds 0.3, the electrical resistance value changes greatly due to environmental changes. When these multifilament yarns are used in a charging brush, a uniform image can be obtained over a long period of time. It will be something that cannot be obtained.

本発明において、電気抵抗値は次のようにして測定するものである。まず、マルチフィラメント糸の長さ方向に沿って100m毎に10cmの試験片を20個採取し、それぞれの環境下において15時間放置する。この試験片の間(両端間)に500Vの電圧をかけて、各環境下において、東亜電波工業社製の抵抗値測定機「SM−10E」を使用して、電気抵抗値(Ω/cm)をそれぞれ測定し、試料片20個の平均値を電気抵抗値とする。   In the present invention, the electrical resistance value is measured as follows. First, 20 test pieces of 10 cm are collected every 100 m along the length direction of the multifilament yarn, and left for 15 hours in each environment. Applying a voltage of 500 V between the test pieces (between both ends) and using a resistance measuring device “SM-10E” manufactured by Toa Denpa Kogyo Co., Ltd. in each environment, the electrical resistance value (Ω / cm) Are measured, and the average value of 20 sample pieces is taken as the electric resistance value.

電気抵抗値の対数値の変化量とは、それぞれの環境下において測定した電気抵抗値を対数換算し、各環境のなかで、最も大きい値と最も小さい値との差を算出したものである。   The amount of change in the logarithmic value of the electric resistance value is obtained by calculating the difference between the largest value and the smallest value in each environment by logarithmically converting the electric resistance value measured in each environment.

次に、本発明の導電マルチフィラメント糸は、10℃、RH30%、20℃、RH65%、40℃、RH90%の各環境下におけるヤング率の変化率が30%以下であり、中でも20%以下であることが好ましい。ヤング率の変化率が30%を超えると、環境変化によって剛性が変化し、形態変化が大きくなると同時に、導電性微粒子の分散状態が変化することにより、電気抵抗値のばらつきも大きくなる。   Next, in the conductive multifilament yarn of the present invention, the change rate of Young's modulus in each environment of 10 ° C., RH 30%, 20 ° C., RH 65%, 40 ° C., and RH 90% is 30% or less, especially 20% or less. It is preferable that When the change rate of Young's modulus exceeds 30%, the stiffness changes due to environmental changes and the shape change increases, and at the same time, the dispersion state of the conductive fine particles also changes, resulting in a large variation in electrical resistance value.

なお、本発明における導電マルチフィラメント糸のヤング率は、それぞれの環境下において15時間放置した後、JIS−L−1013に記載の方法に従い、島津製作所製オートグラフDSS−500を使用し、つかみ間隔25cm、引っ張り速度30cm/分で測定した初期引張抵抗度から算出する。   The Young's modulus of the conductive multifilament yarn in the present invention was determined by using Shimadzu Autograph DSS-500 according to the method described in JIS-L-1013 after being left for 15 hours in each environment. It is calculated from the initial tensile resistance measured at 25 cm and a pulling speed of 30 cm / min.

そして、ヤング率の変化率は次式によって算出する。
ヤング率の変化率(%)=〔(10℃、RH30%のヤング率−40℃、RH90%のヤング率)/20℃、RH65%のヤング率〕×100
The change rate of Young's modulus is calculated by the following equation.
Change rate of Young's modulus (%) = [(Young's modulus at 10 ° C., RH 30% −- 40 ° C., Young's modulus at RH 90%) / 20 ° C., Young's modulus at RH 65%] × 100

つまり、本発明におけるヤング率の変化率は、20℃、RH65%の環境下を標準状態とし、それよりも低温、低湿の状態(10℃、RH30%の環境下)でのヤング率と、高温、高湿の状態(40℃、RH90%の環境下)でのヤング率の差を変化の大きさとし、標準状態のヤング率で除したものである。   That is, the change rate of the Young's modulus in the present invention is a standard state in an environment of 20 ° C. and RH 65%, and a Young's modulus in a low temperature and low humidity state (under an environment of 10 ° C. and RH 30%) and a high temperature. The difference in Young's modulus in a high-humidity state (under an environment of 40 ° C. and RH 90%) is regarded as the magnitude of change and divided by the Young's modulus in the standard state.

さらに、本発明の導電マルチフィラメント糸は、マルチフィラメント糸の糸長方向の電気抵抗値の対数値のばらつき(標準偏差)が0.3以下であることが好ましい。   Furthermore, the conductive multifilament yarn of the present invention preferably has a variation (standard deviation) in logarithmic value of the electrical resistance value in the yarn length direction of the multifilament yarn of 0.3 or less.

マルチフィラメントの糸長方向の電気抵抗値については、前記と同様にして20℃、RH65%の環境下で15時間放置した後、電気抵抗値を測定する。このとき、マルチフィラメントの糸長方向に500ポイントで電気抵抗値を測定し、各測定データを対数変換し、n数を500として標準偏差を算出する。標準偏差が0.3を超えると糸長方向での電気抵抗値のばらつきが大きくなり、ブラシ等の製品にした際に、均一な電気抵抗値を有する製品にすることが困難となり、帯電性能や除電性能に劣るものとなりやすい。   As for the electrical resistance value in the yarn length direction of the multifilament, the electrical resistance value is measured after being left in an environment of 20 ° C. and RH 65% for 15 hours in the same manner as described above. At this time, the electric resistance value is measured at 500 points in the yarn length direction of the multifilament, each measurement data is logarithmically converted, and the standard deviation is calculated by setting the n number to 500. When the standard deviation exceeds 0.3, the variation in the electric resistance value in the yarn length direction becomes large, and when it is made into a product such as a brush, it becomes difficult to make a product having a uniform electric resistance value. It tends to be inferior in static elimination performance.

また、本発明の導電マルチフィラメント糸を構成する各単繊維の横断面形状は特に限定されるものではなく、丸断面形状のもののみならず、四角や三角の多角形のものや中空のものでもよい。   Further, the cross-sectional shape of each single fiber constituting the conductive multifilament yarn of the present invention is not particularly limited, and not only a round cross-sectional shape but also a square or triangular polygonal shape or a hollow shape. Good.

そして、本発明の導電マルチフィラメント糸は、以下のような製造方法で得ることができる。まず、従来公知の方法で、上記のようなカーボンブラック等の導電性微粒子又は導電性微粒子を予め高濃度に含むマスターチップとナイロン12を、エクストルーダー等で混練、溶融し、紡糸口金より押し出し、溶融紡糸を行う。そして、実質的に延伸を施さず、未延伸マルチフィラメント糸を得る。   And the electroconductive multifilament yarn of this invention can be obtained with the following manufacturing methods. First, in a conventionally known method, the above-described conductive fine particles such as carbon black or the master chip containing conductive fine particles at a high concentration and nylon 12 are kneaded and melted with an extruder or the like, extruded from a spinneret, Perform melt spinning. And an unstretched multifilament yarn is obtained, without extending | stretching substantially.

導電性微粒子とナイロン12との混練、溶融方法としては、導電性微粒子を例えば、二軸エクストルーダー等を用いて直接混練することもできるが、予め導電性微粒子を高濃度に含有したマスターチップを作製してから混練するほうが、より均一な混練ができるため好ましい。   As a method of kneading and melting the conductive fine particles and nylon 12, the conductive fine particles can be directly kneaded using, for example, a biaxial extruder, but a master chip containing a high concentration of conductive fine particles in advance is used. It is preferable to knead after preparation because it enables more uniform kneading.

溶融紡糸の方法は特に限定するものではなく、常法によって行うことができる。紡糸温度は用いるナイロン12の融点が180℃であるから、200℃〜260℃の範囲とすることが好ましい。紡糸温度が高ぎるとナイロン12が熱分解を起こし、円滑な紡糸が困難になるとともに得られるフィラメントの物性が劣ったものとなる。また紡糸温度が低すぎると未溶解物等が残るために均一な混練ができなくなるため好ましくない。   The method of melt spinning is not particularly limited, and can be performed by a conventional method. The spinning temperature is preferably in the range of 200 ° C. to 260 ° C. since the melting point of nylon 12 used is 180 ° C. When the spinning temperature is high, the nylon 12 is thermally decomposed, and smooth spinning becomes difficult and the physical properties of the filament obtained are inferior. On the other hand, if the spinning temperature is too low, undissolved materials remain, and uniform kneading cannot be performed.

紡出されたフィラメントを冷却風により冷却固化した後、実質的に延伸することなく、500〜1500m/分で一旦巻き取る。そして、未延伸マルチフィラメント糸に温度50〜160℃で0.02秒以上の加熱条件下において、1.0g/dtex以下の延伸張力で熱延伸を行う。   The spun filament is cooled and solidified by cooling air, and then wound once at 500 to 1500 m / min without substantially stretching. Then, the unstretched multifilament yarn is subjected to heat stretching at a temperature of 50 to 160 ° C. under a heating condition of 0.02 seconds or more and a stretching tension of 1.0 g / dtex or less.

通常、未延伸糸において一旦均一に分布、連鎖していた導電性微粒子が、延伸時において延伸張力がかかることにより、導電性微粒子の連鎖状態が流動的になる。このとき、0.02秒未満であると、熱延伸処理による熱量不足が生じ、均一な延伸が行われず、マルチフィラメントの熱水収縮率が大きくなる。また、延伸張力が1.0g/dtexを超えると、均一な延伸が行われず、導電性微粒子の連鎖状態が不均一となり、導電性能のバラツキが生じる。   Usually, conductive fine particles once uniformly distributed and chained in the undrawn yarn are subjected to stretching tension at the time of drawing, whereby the chain state of the conductive fine particles becomes fluid. At this time, if it is less than 0.02 seconds, the amount of heat due to the heat stretching treatment is insufficient, uniform stretching is not performed, and the hot water shrinkage of the multifilament is increased. On the other hand, when the stretching tension exceeds 1.0 g / dtex, uniform stretching is not performed, and the chain state of the conductive fine particles becomes non-uniform, resulting in variation in conductive performance.

延伸時の熱処理時間を0.02秒以上とすることにより、糸長方向に渡って均一な延伸がされるように十分な熱量を与えることができる。かつ延伸張力を1.0g/dtex以下とすることによってもゆっくりと均一に延伸される。   By setting the heat treatment time during drawing to 0.02 seconds or more, a sufficient amount of heat can be applied so that uniform drawing is performed in the yarn length direction. Further, even when the stretching tension is 1.0 g / dtex or less, the film is slowly and uniformly stretched.

延伸時の熱処理時間は、0.02秒以上、より好ましくは0.05秒以上であり、延伸張力は1.0g/dtex以下、より好ましくは0.8g/dtex以下である。そして、延伸速度は熱処理時間を0.02秒以上とするために、500m/分以下とすることが好ましい。   The heat treatment time during stretching is 0.02 seconds or more, more preferably 0.05 seconds or more, and the stretching tension is 1.0 g / dtex or less, more preferably 0.8 g / dtex or less. The stretching speed is preferably 500 m / min or less in order to make the heat treatment time 0.02 seconds or more.

なお、延伸張力とは、延伸時にかかる張力を最終繊度(例えば実施例1では220dtex)で除した値をいう。   The stretching tension refers to a value obtained by dividing the tension applied during stretching by the final fineness (for example, 220 dtex in Example 1).

また、通常、延伸はローラ間で行われ、加熱ローラ間で延伸を行う場合はローラ温度を70〜160℃とし、ローラ間にヒーターを設けて延伸する場合はヒーターの温度を70〜160℃とすることが好ましい。   In addition, stretching is usually performed between rollers. When stretching between heating rollers, the roller temperature is set to 70 to 160 ° C, and when stretching is performed by providing a heater between the rollers, the temperature of the heater is set to 70 to 160 ° C. It is preferable to do.

なお、上記の延伸時の熱処理時間とは、延伸時に上記の温度範囲の加熱ゾーンを通過する時間の合計をいう。つまり、予備加熱を行う場合は予備加熱ゾーンも含めた通過時間とする。   The heat treatment time during stretching refers to the total time for passing through the heating zone in the above temperature range during stretching. That is, when preheating is performed, the passage time including the preheating zone is set.

延伸時の温度が70℃未満であったり、時間が0.02秒未満であると、十分な熱量で延伸を行うことができず、均一な延伸が困難となる。一方、延伸時の温度が160℃を超えると、未延伸マルチフィラメント糸が溶融し、ローラ巻き付き等が生じる。   If the temperature during stretching is less than 70 ° C. or the time is less than 0.02 seconds, stretching cannot be performed with a sufficient amount of heat, and uniform stretching becomes difficult. On the other hand, when the temperature at the time of drawing exceeds 160 ° C., the undrawn multifilament yarn is melted and roller winding or the like occurs.

熱延伸時において、延伸倍率は特に限定するものではないが、実用的な強度及び伸度を導電マルチフィラメント糸に与えるためには、延伸倍率を最大延伸倍率(未延伸マルチフィラメント糸が延伸により切断する倍率のこと)の40〜80%とすることが好ましい。   At the time of hot drawing, the draw ratio is not particularly limited, but in order to give practical strength and elongation to the conductive multifilament yarn, the draw ratio is set to the maximum draw ratio (undrawn multifilament yarn is cut by drawing). The magnification is preferably 40 to 80%.

次に、熱延伸の後又は延伸後連続して、弛緩熱処理を行うことが好ましい。この弛緩熱処理工程では、先の熱延伸工程において均一に配列されているが、密な連鎖状態が緩和された状態になっている導電性微粒子を、特定の低張力下、特定の温度、時間で弛緩熱処理することにより、繊維を収縮させて、密な連鎖状態にするものである。これにより、均一な導電性が得られるとともに、マルチフィラメント糸の熱水収縮率を小さくすることができる。   Next, it is preferable to perform relaxation heat treatment after heat stretching or continuously after stretching. In this relaxation heat treatment step, the conductive fine particles that are uniformly arranged in the previous heat stretching step but in which the dense chain state has been relaxed are subjected to a specific low tension at a specific temperature and time. By performing a relaxation heat treatment, the fibers are contracted to form a dense chain state. Thereby, while being able to obtain uniform conductivity, the hot water shrinkage rate of the multifilament yarn can be reduced.

通常、延伸後の熱処理はローラ間で緊張状態で行っているため、繊維の熱水収縮率は低下するが、上記したような、導電性微粒子を密な連鎖状態とする効果は非常に乏しい。   Usually, since the heat treatment after stretching is performed in a tension state between the rollers, the hot water shrinkage rate of the fiber is lowered, but the effect of making the conductive fine particles in a dense chain state as described above is very poor.

そこで、本発明においては、0.5g/dtex以下の張力で0.5秒以上弛緩熱処理を行うことが好ましい。熱処理時の張力が0.5g/dtexを超える場合、繊維を緊張熱処理することになり繊維の熱水収縮率は低下するが、導電性微粒子を密な連鎖状態にすることができない。熱処理時の張力は、0.5g/dtex、好ましくは0.2g/dtex以下であり、熱処理時間は、0.5秒以上、中でも1.0秒以上が好ましい。   Therefore, in the present invention, it is preferable to perform a relaxation heat treatment for 0.5 seconds or more with a tension of 0.5 g / dtex or less. When the tension during the heat treatment exceeds 0.5 g / dtex, the fiber is subjected to tension heat treatment and the hot water shrinkage of the fiber is lowered, but the conductive fine particles cannot be brought into a dense chain state. The tension during the heat treatment is 0.5 g / dtex, preferably 0.2 g / dtex or less, and the heat treatment time is preferably 0.5 seconds or more, more preferably 1.0 seconds or more.

弛緩熱処理温度は70〜160℃が好ましく、中でも100〜150℃が好ましい。弛緩熱処理温度が70℃未満であったり、弛緩熱処理時間が0.5秒未満であると、繊維が十分に熱収縮することができないため、導電性微粒子を密な連鎖状態とする効果が乏しくなる。一方、弛緩熱処理温度が160℃を超えると、熱融着を生じる場合があり好ましくない。   The relaxation heat treatment temperature is preferably 70 to 160 ° C, and more preferably 100 to 150 ° C. If the relaxation heat treatment temperature is less than 70 ° C. or the relaxation heat treatment time is less than 0.5 seconds, the fiber cannot be sufficiently thermally contracted, so that the effect of bringing the conductive fine particles into a dense chain state becomes poor. On the other hand, if the relaxation heat treatment temperature exceeds 160 ° C., heat fusion may occur, which is not preferable.

次に、本発明を実施例により具体的に説明する。
実施例中の導電マルチフィラメント糸の熱水収縮率、電気抵抗値、電気抵抗値の対数値の変化量、ヤング率、ヤング率の変化率、糸長方向の電気抵抗値の対数値のばらつきは前記の方法で測定したものである。
Next, the present invention will be specifically described with reference to examples.
The variation of the hot water shrinkage rate, electrical resistance value, logarithmic value of electrical resistance value, Young's modulus, change rate of Young's modulus, logarithmic value of electrical resistance value in the yarn length direction of the conductive multifilament yarn in the examples is It is measured by the above method.

実施例1
相対粘度1.05(96%硫酸を溶媒として、濃度1g/dl、温度25℃で測定)のナイロン12チップに、カーボンブラック濃度が25質量%となるようにマスターチップ(カーボンブラックを35質量%含有するナイロン12チップ(相対粘度1.45))をブレンドした後、エクストルーダー型溶融押出機に供給し、紡糸温度220℃で溶融し、孔径0.20mmの紡糸孔を96個有する紡糸口金より吐出させて、捲取速度800m/分で未延伸糸を巻取った。次いで得られた未延伸糸を延伸、弛緩熱処理機に供給し、表1の熱延伸、弛緩熱処理条件となるように、140℃(延伸温度)のホットプレートを介して、最大延伸倍率の60%で延伸し、次いで140℃(弛緩熱処理温度)のサドルヒーターにて弛緩熱処理を行い、220dtex/96fのマルチフィラメント糸を得た。
Example 1
Master chip (35% by mass of carbon black is contained in a nylon 12 chip having a relative viscosity of 1.05 (96% sulfuric acid as a solvent, measured at a concentration of 1 g / dl, measured at a temperature of 25 ° C.) at a carbon black concentration of 25% by mass. Nylon 12 chips (relative viscosity 1.45)) are blended and then fed into an extruder type melt extruder, melted at a spinning temperature of 220 ° C., and discharged from a spinneret having 96 spinning holes with a diameter of 0.20 mm. The undrawn yarn was wound at a take-up speed of 800 m / min. Next, the obtained undrawn yarn is supplied to a drawing and relaxation heat treatment machine, and is heated to 60% of the maximum drawing ratio through a hot plate at 140 ° C. (drawing temperature) so as to satisfy the heat drawing and relaxation heat treatment conditions shown in Table 1. Then, relaxation heat treatment was performed with a saddle heater at 140 ° C. (relaxation heat treatment temperature) to obtain a 220 dtex / 96 f multifilament yarn.

実施例2〜3、比較例2〜4
カーボンブラックの含有量及び熱延伸、弛緩熱処理条件を表1に示すように変更した以外は、実施例1と同様にして、紡糸、延伸、弛緩熱処理を行い、マルチフィラメント糸を得た。
Examples 2-3 and Comparative Examples 2-4
Spinning, stretching, and relaxation heat treatment were performed in the same manner as in Example 1 except that the carbon black content, heat stretching, and relaxation heat treatment conditions were changed as shown in Table 1, and multifilament yarns were obtained.

実施例4
孔径0.35mmの紡糸孔を48個有する紡糸口金を用い、捲取速度800m/分で未延伸糸を巻取り、得られた未延伸糸を実施例1と同様の延伸、弛緩熱処理機に供給し、表1の熱延伸・熱弛緩処理条件となるように変更した以外は実施例1と同様に行い、330dtex/48fのマルチフィラメント糸を得た。
Example 4
Using a spinneret having 48 spinning holes having a hole diameter of 0.35 mm, the undrawn yarn was wound at a take-up speed of 800 m / min, and the obtained undrawn yarn was supplied to the same drawing and relaxation heat treatment machine as in Example 1. A multifilament yarn of 330 dtex / 48f was obtained in the same manner as in Example 1 except that the conditions were changed so as to satisfy the heat drawing / heat relaxation treatment conditions shown in Table 1.

実施例5〜6
カーボンブラックの含有量及び熱延伸、弛緩熱処理条件を表1に示すように変更した以外は、実施例4と同様にして、紡糸、延伸、熱弛緩処理を行い、マルチフィラメント糸を得た。
Examples 5-6
Spinning, stretching, and thermal relaxation treatment were performed in the same manner as in Example 4 except that the content of carbon black and the thermal stretching and relaxation heat treatment conditions were changed as shown in Table 1 to obtain a multifilament yarn.

比較例1
ナイロン12に代えて、相対粘度2.5のナイロン6を用いた以外は、実施例1と同様にして、紡糸、延伸、弛緩熱処理を行い、マルチフィラメント糸を得た。
Comparative Example 1
A multifilament yarn was obtained in the same manner as in Example 1 except that nylon 6 having a relative viscosity of 2.5 was used instead of nylon 12 to perform spinning, drawing, and relaxation heat treatment.

実施例1〜6、比較例1〜4で得られたマルチフィラメント糸の特性値及び評価結果を表1に示す。   Table 1 shows the characteristic values and evaluation results of the multifilament yarns obtained in Examples 1 to 6 and Comparative Examples 1 to 4.

表1から明らかなように、実施例1〜6で得られた導電マルチフィラメント糸は、熱水収縮率が小さく、10℃、RH30%、20℃、RH65%、40℃、RH90%の各環境下における電気抵抗値の対数値の変化量が0.3以下であり、ヤング率の変化率が30%以下であり、さらには糸長方向の電気抵抗値の対数値の標準偏差も小さく、温湿度変化が大きい条件下で長期間使用しても安定した電気抵抗値と形態安定性を示すものであった。   As is clear from Table 1, the conductive multifilament yarns obtained in Examples 1 to 6 have a small hot water shrinkage rate, and each environment of 10 ° C., RH 30%, 20 ° C., RH 65%, 40 ° C., and RH 90%. The amount of change in the logarithmic value of the electrical resistance value below is 0.3 or less, the rate of change in Young's modulus is 30% or less, and the standard deviation of the logarithmic value of the electrical resistance value in the yarn length direction is also small. Even when used for a long period of time under conditions with a large change in humidity, stable electrical resistance and form stability were exhibited.

一方、比較例1のマルチフィラメント糸は、ナイロン6を用いているために、電気抵抗値の対数値の変化量、ヤング率の変化率が大きかった。また、比較例2のマルチフィラメント糸は、延伸及び弛緩熱処理の時間が短かったため、熱水収縮率の大きいものとなり、比較例3のマルチフィラメント糸は、延伸及び弛緩熱処理時の張力が大きすぎたため、均一な延伸が行われず、導電性微粒子の連鎖状態が不均一となり、比較例4のマルチフィラメント糸は、延伸及び弛緩熱処理の時間が短く、張力が大きすぎたため、熱水収縮率が大きく、導電性微粒子の連鎖状態が不均一となり、いずれのマルチフィラメント糸も電気抵抗値の対数値の変化量が大きく、糸長方向の電気抵抗値の対数値の標準偏差も大きいものであった。   On the other hand, since the multifilament yarn of Comparative Example 1 uses nylon 6, the change amount of the logarithmic value of the electrical resistance value and the change rate of the Young's modulus were large. Further, the multifilament yarn of Comparative Example 2 had a large hot water shrinkage because the drawing and relaxation heat treatment time was short, and the multifilament yarn of Comparative Example 3 had too much tension during the drawing and relaxation heat treatment. , The uniform stretching is not performed, the chain state of the conductive fine particles becomes non-uniform, and the multifilament yarn of Comparative Example 4 has a short hot and slack heat treatment time and the tension is too large, so the hot water shrinkage rate is large, The chain state of the conductive fine particles became non-uniform, and each multifilament yarn had a large amount of change in the logarithmic value of the electric resistance value, and the standard deviation of the logarithmic value of the electric resistance value in the yarn length direction was also large.

Claims (2)

導電性微粒子を含有するナイロン12からなる単繊維で構成された導電マルチフィラメント糸であって、熱水収縮率が10%以下であり、10℃、RH30%、20℃、RH65%、40℃、RH90%の各環境下における電気抵抗値の対数値の変化量が0.3以下であり、かつヤング率の変化率が30%以下であることを特徴とする導電マルチフィラメント糸。 A conductive multifilament yarn composed of a single fiber made of nylon 12 containing conductive fine particles, having a hot water shrinkage of 10% or less, 10 ° C, RH30%, 20 ° C, RH65%, 40 ° C, A conductive multifilament yarn characterized in that a change amount of a logarithmic value of an electric resistance value in each environment of RH 90% is 0.3 or less and a change rate of Young's modulus is 30% or less. マルチフィラメント糸の糸長方向の電気抵抗値の対数値のばらつきが標準偏差0.3以下である請求項1記載の導電マルチフィラメント糸。
The conductive multifilament yarn according to claim 1, wherein the variation of the logarithmic value of the electric resistance value in the yarn length direction of the multifilament yarn has a standard deviation of 0.3 or less.
JP2006331945A 2006-12-08 2006-12-08 Electrically conductive multifilament yarn Pending JP2008144300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331945A JP2008144300A (en) 2006-12-08 2006-12-08 Electrically conductive multifilament yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331945A JP2008144300A (en) 2006-12-08 2006-12-08 Electrically conductive multifilament yarn

Publications (1)

Publication Number Publication Date
JP2008144300A true JP2008144300A (en) 2008-06-26

Family

ID=39604777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331945A Pending JP2008144300A (en) 2006-12-08 2006-12-08 Electrically conductive multifilament yarn

Country Status (1)

Country Link
JP (1) JP2008144300A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073923A (en) * 2001-09-03 2003-03-12 Gunze Ltd Semiconductive aliphatic polyamide fiber
JP2003105623A (en) * 2001-09-28 2003-04-09 Unitica Fibers Ltd Electrically conductive multifilament yarn and method for producing the same
JP2004011047A (en) * 2002-06-05 2004-01-15 Unitica Fibers Ltd Electrically conductive multifilament yarn and method for producing the same
JP2006028660A (en) * 2004-07-13 2006-02-02 Unitica Fibers Ltd Conductive multifilament yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073923A (en) * 2001-09-03 2003-03-12 Gunze Ltd Semiconductive aliphatic polyamide fiber
JP2003105623A (en) * 2001-09-28 2003-04-09 Unitica Fibers Ltd Electrically conductive multifilament yarn and method for producing the same
JP2004011047A (en) * 2002-06-05 2004-01-15 Unitica Fibers Ltd Electrically conductive multifilament yarn and method for producing the same
JP2006028660A (en) * 2004-07-13 2006-02-02 Unitica Fibers Ltd Conductive multifilament yarn

Similar Documents

Publication Publication Date Title
JP5609638B2 (en) Conductive flock and conductive brush
JP5051571B2 (en) Conductive fiber and its use
Marischal et al. Influence of melt spinning parameters on electrical conductivity of carbon fillers filled polyamide 12 composites
JP2002146629A6 (en) Polyester or polyamide conductive yarn and brush
JP2002146629A (en) Polyester or polyamide electroconductive yarn and brush
JP4125914B2 (en) Conductive multifilament yarn and manufacturing method thereof
JP2008144300A (en) Electrically conductive multifilament yarn
JP4872688B2 (en) Conductive yarn
JP4447807B2 (en) Conductive multifilament yarn and manufacturing method thereof
JP5668228B2 (en) Conductive synthetic fiber, method for producing the same, and use thereof
JP4418891B2 (en) Polyester or polyamide conductive yarn and brush
JP4436725B2 (en) Conductive multifilament yarn
JP5110890B2 (en) Polyamide-based conductive yarn and brush for electrophotographic apparatus
JP4633300B2 (en) Conductive yarn
JP2003227090A (en) Electroconductive nonwoven fabric and contact electrification member
JP2003105634A (en) Electroconductive yarn
JP5254532B2 (en) Conductive polyester fiber
JP2002363826A (en) Conductive yarn
JP2009174089A (en) Conductive polyester fiber and brush product made therefrom
JP2021055214A (en) Core-sheath type composite fiber
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JP4470534B2 (en) Conductive carbon-containing polyamide multifilament and method for producing the same
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
RU2790823C1 (en) Electrically conductive composite fiber and method for its production and application
JP2007247095A (en) Conductive polyester fiber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20091102

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Effective date: 20110812

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120131

Free format text: JAPANESE INTERMEDIATE CODE: A02