JP2008144250A - Molybdenum material and its production method - Google Patents

Molybdenum material and its production method Download PDF

Info

Publication number
JP2008144250A
JP2008144250A JP2006335994A JP2006335994A JP2008144250A JP 2008144250 A JP2008144250 A JP 2008144250A JP 2006335994 A JP2006335994 A JP 2006335994A JP 2006335994 A JP2006335994 A JP 2006335994A JP 2008144250 A JP2008144250 A JP 2008144250A
Authority
JP
Japan
Prior art keywords
molybdenum
molybdenum material
heat treatment
wire
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006335994A
Other languages
Japanese (ja)
Other versions
JP5068986B2 (en
Inventor
Kazunaga Sakakibara
一永 榊原
Takaaki Kushimoto
孝陽 櫛本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2006335994A priority Critical patent/JP5068986B2/en
Publication of JP2008144250A publication Critical patent/JP2008144250A/en
Application granted granted Critical
Publication of JP5068986B2 publication Critical patent/JP5068986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molybdenum material of a molybdenum wire rod or provided with the three characteristics of tensile strength, elongation and bending in well-balanced, and to provide its production method. <P>SOLUTION: The molybdenum material is composed of a molybdenum wire rod or bar stock having a molybdenum purity of ≥99.9% (JIS H1404). The aspect ratio (L/W) of the cross-sectional structure parallel to the wire drawing direction in the molybdenum material is ≤8, and also, the number of the above crystal grains lies in the range of 4,200 13,000 pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、引張強さと伸びと折り曲げの3つの特性をバランス良く備えた塑性変形が容易なモリブデン線材及び棒材のいずれか一方からなるモリブデン材料とその製造方法に関する。   The present invention relates to a molybdenum material made of any one of a molybdenum wire and a rod that are easy to plastically deform and have a good balance of three properties of tensile strength, elongation, and bending, and a method for manufacturing the same.

モリブデン線材及び棒材(以下、単に線棒材という)は高融点、高高温強度、低蒸気圧などの特性が利用され、工業炉用部材やランプ用部品などに多用されている。   Molybdenum wires and rods (hereinafter simply referred to as wire rods) have characteristics such as high melting point, high temperature strength, and low vapor pressure, and are often used for industrial furnace members and lamp parts.

例えば、工業炉用部材の代表的用途ではメッシュヒーター、棒ヒーターやヒーター支持フック等のほか、熱反射板用コイルスペーサー、C形スペーサーや取り付けリベットなどがある。   For example, typical applications for industrial furnace members include mesh heaters, bar heaters, heater support hooks, etc., as well as coil spacers for heat reflectors, C-shaped spacers, and mounting rivets.

また、ランプ用部品ではタングステンフィラメントのサポートやアンカー、外部導入線等が挙げられ、さらに冷陰極蛍光ランプ(CCFL)の放電電極やこれに接続される導入線等がある。   Examples of lamp parts include tungsten filament supports, anchors, external lead wires, and the like, and further include discharge electrodes of cold cathode fluorescent lamps (CCFLs) and lead wires connected thereto.

さらに、ランプに直接組み込まれないが、タングステンフィラメントを製作する際のマンドレル材料として重用されている。   Furthermore, although not directly incorporated into the lamp, it is heavily used as a mandrel material in making tungsten filaments.

これらを製作する際には素材となるモリブデン線棒材に切断、曲げ、潰しなどの機械加工が施される。このため、引張強さと伸びと折り曲げの3つの特性をバランス良く備えていることが理想的である。   When manufacturing these, the molybdenum wire rod material used as a raw material is subjected to machining such as cutting, bending and crushing. For this reason, it is ideal that the three properties of tensile strength, elongation, and bending are provided in a well-balanced manner.

しかしながら、モリブデンは延性が小さく脆性材料であり、当該線棒材の切断や曲げ、潰し加工時に割れが生じ易いといった問題がある。   However, molybdenum is a brittle material with small ductility, and there is a problem that cracks are likely to occur during cutting, bending, and crushing of the wire rod.

このため、引張強さについては塑性加工が困難とならない値、つまり、800MPa(N/mm)以上、且つ15%以上の伸びと10回以上の折り曲げ特性とを備えているモリブデン線棒材の提供が切望されている。 For this reason, the tensile strength of the molybdenum wire rod having a value that does not make plastic working difficult, that is, 800 MPa (N / mm 2 ) or more, 15% or more elongation, and 10 or more bending characteristics. Offering is anxious.

ここで、モリブデン線棒材の製造における引張強さと伸びと折り曲げ強度との関係について以下詳述する。   Here, the relationship between the tensile strength, the elongation, and the bending strength in the production of the molybdenum wire rod will be described in detail below.

モリブデン線棒材の製造は、一般的な粉末冶金法により行われる。原料粉末をプレス・成形した後、高温下で焼結することでインゴットを得る。次に、このインゴットに圧延加工、線引加工を施して所望の寸法に仕上げられる。   The production of the molybdenum wire rod is performed by a general powder metallurgy method. After pressing and molding the raw material powder, the ingot is obtained by sintering at high temperature. Next, this ingot is finished by rolling and drawing to a desired size.

上記の圧延加工や線引加工等の塑性加工を施すことによって当該線棒材は長さ方向に組織が発達する。このため、加工が進むにつれて、長さ方向に引っ張った際の強さと伸び、曲げ特性は、長さ方向に対する直角方向へのこれらの特性とでは、差が生じてくる。   The wire rod material develops a structure in the length direction by performing plastic working such as rolling and wire drawing. For this reason, as the processing proceeds, the strength, elongation, and bending characteristics when pulled in the length direction are different from those in the direction perpendicular to the length direction.

特に、伸び特性について云えば、熱処理温度が高くなるにつれて大きくなるが、ある処理温度以上で粗大結晶が現れ始め、その占める割合が大きくなるに従い伸びは小さくなっていく。   In particular, the elongation characteristics increase as the heat treatment temperature increases, but coarse crystals begin to appear above a certain treatment temperature, and the elongation decreases as the proportion of the crystal increases.

一方、折り曲げ特性は、ある程度の高温熱処理温度域までは引張強度と同等の強度変化を維持し、それ以上の温度領域の粗大結晶が現れる前段階での再結晶核発生開始時点で劣り始める。   On the other hand, the bending characteristics maintain a strength change equivalent to the tensile strength up to a certain high temperature heat treatment temperature range, and begin to be inferior at the start of recrystallization nucleation at the stage before coarse crystals appear in a temperature range higher than that.

即ち、伸びが最も大きくなる熱処理温度と、折り曲げ強度を維持できる熱処理温度に差があるために、伸びを大きくしようとした場合には折り曲げ強度が小さく、折り曲げ強度を維持しようとした場合には十分な伸び特性が得られないというトレードオフの関係がある。   That is, because there is a difference between the heat treatment temperature at which the elongation becomes the maximum and the heat treatment temperature at which the bending strength can be maintained, the bending strength is small when attempting to increase the elongation, and sufficient when attempting to maintain the bending strength. There is a trade-off relationship in which a good elongation characteristic cannot be obtained.

従って、伸びと折り曲げの両方の特性を必要とする要求や用途については、どちらの特性を優先するかによって、当該特性を有する線棒材を選択する。なお、両者の中間の熱処理温度で熱処理を行った線棒材を使用すると云う選択肢もあるが、何れも已むを得ない選択であり、要求特性を満たしていないのが実情である(なお、本明細書の後述する表6に、比較例として熱処理温度と伸びと折り曲げの関係を示す)。   Therefore, for the requirements and applications that require both the elongation and bending characteristics, a wire rod material having the characteristics is selected depending on which characteristic has priority. Although there is an option to use a wire rod that has been heat-treated at an intermediate heat treatment temperature between the two, both are unavoidable choices, and the actual situation is that they do not meet the required characteristics ( Table 6 described later in this specification shows the relationship between the heat treatment temperature, elongation, and bending as a comparative example).

なお、再結晶温度を高め、高温強度や曲げ特性を向上させたドープモリブデン線が提供されている。例えばAl、K、Siを微量ドープしたAKSドープ線、Tiなどの遷移金属を微量ドープした線がある(特許文献1、参照)。また、原料である二酸化モリブデン粉末にランタンを硝酸ランタン溶液の形態で添加し、還元してモリブデン粉末を得、これを粉末冶金法によって焼結して、加工したモリブデン材も提案されている(特許文献2、参照)。これらドープ線は添加する元素の種類と量を特別に管理する手法が必要であるため、純モリブデン線棒材に比較して価格が高額となる。また、真空中で使用するとドープ元素が真空中にわずかながら放出されることや、例えば前述ランプ用部品に用いた場合、ランプ中のガス成分との反応が懸念される。このため、これら懸念を払拭できる純モリブデン線棒材の実現期待が高い。   In addition, a doped molybdenum wire having an increased recrystallization temperature and improved high-temperature strength and bending characteristics is provided. For example, there are AKS doped wires in which Al, K, and Si are slightly doped, and wires in which a transition metal such as Ti is slightly doped (see Patent Document 1). In addition, a molybdenum material obtained by adding lanthanum to a raw material molybdenum dioxide powder in the form of a lanthanum nitrate solution and reducing it to obtain a molybdenum powder, which is sintered by powder metallurgy, has been proposed (patent) Reference 2). Since these doped wires require a method for specially managing the type and amount of elements to be added, they are expensive compared to pure molybdenum wire rods. Further, when used in a vacuum, the doping element is slightly released into the vacuum, and for example, when used in the aforementioned lamp component, there is a concern about a reaction with a gas component in the lamp. For this reason, the realization expectation of the pure molybdenum wire rod which can eliminate these concerns is high.

特開平4−214836号公報Japanese Patent Laid-Open No. 4-214836 特開平7−54093号公報Japanese Patent Laid-Open No. 7-54093

従って、本発明の技術的課題は、ドープ材を含まない実質的に純モリブデンであって、上述の引張強さと伸びと折り曲げの3つの特性をバランス良く備えているモリブデン線材及び棒材からなるモリブデン材料とその製造方法とを提供することにある。   Therefore, the technical problem of the present invention is a molybdenum composed of a molybdenum wire and a rod that are substantially pure molybdenum that does not contain a doping material and that has the above-described three characteristics of tensile strength, elongation, and bending in a well-balanced manner. It is to provide a material and a manufacturing method thereof.

前述のとおり、伸び及び折り曲げ特性に差が生じるのは、圧延加工、線引加工によって金属組織が線材の長さ方向に発達していくためである。この差を縮めるためには、一度、再結晶処理を行い、結晶粒を粗大結晶化させるのが効果的であるが、非常に脆くなってしまい、その後の線引き加工が困難となる。このため、従来、線引き加工が進んだ段階で結晶粒を粗大結晶化(再結晶化処理と云う)するような熱処理温度、具体的には1500℃以上の高温で熱処理することは、その後の線引き加工の困難性を考慮して行われなかった。   As described above, the difference in elongation and bending characteristics occurs because the metal structure develops in the length direction of the wire by rolling and drawing. In order to reduce this difference, it is effective to carry out a recrystallization process once to crystallize the crystal grains coarsely, but it becomes very brittle and subsequent drawing processing becomes difficult. For this reason, conventionally, a heat treatment temperature at which the crystal grains are coarsely crystallized (referred to as a recrystallization process) at the stage where the drawing process has progressed, specifically at a high temperature of 1500 ° C. or higher, It was not performed in consideration of the difficulty of processing.

本発明者等の知見によれば、上記のモリブデン線棒材を、更に1500℃以上の再結晶熱処理を施しても後処理を行うことにより極めて有効な結果が得られた。即ち、本発明では、1500℃以上で再結晶熱処理を行った後、800〜1000℃の範囲で加熱しながら断面減少率で58.8%を超え81%未満の範囲で線引き加工を施し、更に非酸化雰囲気中で熱処理し、アスペクト比(L/W)8以内の結晶粒子を4200から13000個/mmを備える組織を得るという手段によって、上記の課題が解決できることが判明し、本発明をなすに至った。ここで本発明において、結晶粒のアスペクト比(L/W)とは、結晶粒における材料の長手方向の大きさ{長径方向の長さ(L)}と材料の径方向の大きさ{短径方向の長さ(W)}の比で定義される。 According to the knowledge of the present inventors, extremely effective results were obtained by performing post-treatment on the above-mentioned molybdenum wire rod even if it was further subjected to recrystallization heat treatment at 1500 ° C. or higher. That is, in the present invention, after performing the recrystallization heat treatment at 1500 ° C. or higher, the wire is drawn in the range of less than 58.8% and less than 81% in the area of reduction in cross section while heating in the range of 800 to 1000 ° C. It was found that the above problem can be solved by means of heat treatment in a non-oxidizing atmosphere and obtaining a structure having crystal grains having an aspect ratio (L / W) within 8 to 4200 to 13000 / mm 2. It came to an eggplant. Here, in the present invention, the aspect ratio (L / W) of the crystal grains is the size of the material in the longitudinal direction {length in the major axis direction (L)} and the size in the radial direction of the material {minor axis Directional length (W)}.

即ち、本発明のモリブデン線棒材からなるモリブデン材料は、前記モリブデン材料の純度が99.99%以上(JIS H1404)であり、前記モリブデン材料の線引き方向に平行な断面組織の結晶粒のアスペクト比(L/W)が8以下で、且つ前記結晶粒の数が4200から13000個/mmの範囲であることを特徴とする。 That is, the molybdenum material comprising the molybdenum wire rod of the present invention has a purity of 99.99% or more (JIS H1404) and the aspect ratio of crystal grains having a cross-sectional structure parallel to the drawing direction of the molybdenum material. (L / W) is 8 or less, and the number of the crystal grains is in the range of 4200 to 13000 / mm 2 .

ここで、本発明において、線棒材とは、線材あるいは棒材等の一定方向に長さをもった材料を呼ぶ。   Here, in the present invention, the wire rod refers to a material having a length in a certain direction, such as a wire rod or a rod.

また、本発明のモリブデン材料は、前記モリブデン材料において、引張強さが800〜1060MPa(N/mm)で、伸び15%以上、且つ折り曲げ試験(JIS Z2248の巻きつけ法を準用)による折り曲げ回数が10回以上を有することを特徴とする。 In addition, the molybdenum material of the present invention is the molybdenum material having a tensile strength of 800 to 1060 MPa (N / mm 2 ), an elongation of 15% or more, and the number of bendings by a bending test (the JIS Z2248 winding method is applied mutatis mutandis). Has 10 or more times.

また、本発明のモリブデン材料の製造方法は、前記モリブデン材料を製造する方法であって、純度が99.99%以上(JIS H1404)であるモリブデン線棒材を用意し、前記モリブデン線棒材にさらに非酸化雰囲気中で1回以上の再結晶化処理を施す第1の熱処理工程と、前記モリブデン材料を大気中で酸化加熱処理し、且つ前記モリブデン材料に断面減少加工を施す線引き加工工程と、前記線引き加工されたモリブデン材料を非酸化雰囲気で熱処理する第2の熱処理工程とを備えることを特徴とする。   Moreover, the manufacturing method of the molybdenum material of the present invention is a method of manufacturing the molybdenum material, and prepares a molybdenum wire rod having a purity of 99.99% or more (JIS H1404). A first heat treatment step of performing recrystallization treatment one or more times in a non-oxidizing atmosphere; a wire drawing step of subjecting the molybdenum material to an oxidation heat treatment in the air and subjecting the molybdenum material to a cross-sectional reduction process; A second heat treatment step of heat-treating the drawn molybdenum material in a non-oxidizing atmosphere.

また、本発明のモリブデン材料の製造方法は、前記モリブデン材料の製造方法において、前記線引き加工工程は、酸化加熱処理しながら、前記モリブデン材料の表面に黒鉛付着焼付けを施すことを特徴とする。   The method for producing a molybdenum material according to the present invention is characterized in that, in the method for producing a molybdenum material, the wire drawing step performs an adhesion baking process on the surface of the molybdenum material while performing an oxidation heat treatment.

また、本発明のモリブデン材料の製造方法は、前記いずれかのモリブデン材料の製造方法において、前記熱処理工程は、前記線引き加工されたモリブデン材料を電解研磨加工、次いで切り棒加工した後、または電解研磨加工あるいは切り棒加工の前に行われることを特徴とする。   The method for producing a molybdenum material according to the present invention is the method for producing any one of the above molybdenum materials, wherein the heat treatment step is performed after electrolytically polishing the drawn molybdenum material and then cutting a rod, or by electrolytic polishing. It is characterized by being carried out before processing or cutting bar processing.

また、本発明のモリブデン材料の製造方法において、前記いずれか1つのモリブデン材料の製造方法において、前記再結晶化処理を施す熱処理温度は1500℃〜1700℃であることを特徴とする。   Moreover, in the manufacturing method of the molybdenum material of this invention, in the manufacturing method of any one said molybdenum material, the heat processing temperature which performs the said recrystallization process is 1500-1700 degreeC, It is characterized by the above-mentioned.

また、本発明のモリブデン材料の製造方法は、前記モリブデン材料の製造方法において、前記黒鉛付着焼付けを施し且つ前記線棒材に断面減少加工を施す熱処理温度は800℃〜1000℃であることを特徴とする。   Further, the molybdenum material manufacturing method of the present invention is characterized in that, in the molybdenum material manufacturing method, the heat treatment temperature for performing the graphite adhesion baking and performing the cross-sectional reduction processing on the wire rod material is 800 ° C to 1000 ° C. And

また、本発明のモリブデン材料の製造方法は、前記モリブデン材料の製造方法において、前記線引き加工における線引き1回当たりの断面減少率は5〜20%で、且つ総断面減少率は58.8%を超え81%未満の範囲で施すことを特徴とする。   The molybdenum material manufacturing method of the present invention is the molybdenum material manufacturing method, wherein the cross-section reduction rate per drawing in the drawing process is 5 to 20%, and the total cross-section reduction rate is 58.8%. It is characterized by being applied in a range of over 81%.

また、本発明のモリブデン材料の製造方法は、前記いずれかのモリブデン材料の製造方法において、前記線引き加工後さらに非酸化雰囲気で900℃〜1200℃の熱処理を施すことを特徴とする。   Further, the molybdenum material manufacturing method of the present invention is characterized in that, in any of the molybdenum material manufacturing methods, a heat treatment is performed at 900 ° C. to 1200 ° C. in a non-oxidizing atmosphere after the drawing process.

本発明によれば、実質的に純モリブデン製の線材又は棒材であり、且つ、引張強さと伸びと折り曲げの3つの特性をバランス良く備えている、詳しくは、引張強さについては塑性加工が困難とならない値、つまり、800MPa(N/mm)以上、且つ15%以上の伸びと10回以上の折り曲げ特性とを備えているモリブデン線材又は棒材からなるモリブデン材料とその製造方法とを提供することができる。 According to the present invention, the wire is substantially pure molybdenum wire or rod, and has a good balance of tensile strength, elongation and bending. Specifically, the tensile strength is plastic working. Provided is a molybdenum material comprising a molybdenum wire or rod having a value that does not become difficult, that is, 800 MPa (N / mm 2 ) or more, an elongation of 15% or more, and a bending characteristic of 10 or more times, and a manufacturing method thereof. can do.

例えば、本発明のモリブデン材料は上記の特性を備えているため、このモリブデン線棒材の先端部に当該線棒材の断面積に比較して大きな面積を有する円板状の頭部を一体で形成することが求められるヘッダー加工部品や、あるいは複数の段付形成が求められるヘッダー加工部品の作製用途に好適に用いることができる。   For example, since the molybdenum material of the present invention has the above characteristics, a disc-shaped head having a larger area than the cross-sectional area of the wire rod material is integrated with the tip of the molybdenum wire rod material. It can be suitably used for header processing parts that are required to be formed or header processing parts that are required to have a plurality of steps.

本発明について、更に具体的に述べる。   The present invention will be described more specifically.

本発明によるモリブデン材料は、粉末冶金法で作製されるモリブデン純度が99.99%以上(JIS H1404)であるモリブデン棒材又は線材等のモリブデン線棒材に、さらに再結晶熱処理を施したモリブデン材料であって、この長さ方向である線引き方向に平行な断面組織の結晶粒のアスペクト比(L/W)が8以下である。また、結晶粒の数が単位面積当たり4200から13000個/mmの範囲にある。 The molybdenum material according to the present invention is a molybdenum material produced by powder metallurgy and having a purity of 99.99% or more (JIS H1404). And the aspect ratio (L / W) of the crystal grain of the cross-sectional structure parallel to the drawing direction which is this length direction is 8 or less. The number of crystal grains is in the range of 4200 to 13000 / mm 2 per unit area.

また、本発明のモリブデン材料において、引張強さが800〜1060MPa(N/mm)で、伸び15%以上、且つ折り曲げ試験(JIS Z2248の巻きつけ法を準用)による折曲げ回数が10回以上を有する。 Further, in the molybdenum material of the present invention, the tensile strength is 800 to 1060 MPa (N / mm 2 ), the elongation is 15% or more, and the number of bendings by the bending test (the JIS Z2248 winding method is applied mutatis mutandis) is 10 times or more. Have

また、本発明のモリブデン材料を製造するには、モリブデン純度が99.99%以上(JIS H1404)であるモリブデン棒材又は線材等のモリブデン線棒材を用意し、これに第1の熱処理工程と線引き加工工程と第2の熱処理工程を順に施す。   In order to produce the molybdenum material of the present invention, a molybdenum wire rod such as a molybdenum rod or wire having a molybdenum purity of 99.99% or higher (JIS H1404) is prepared, and this is followed by a first heat treatment step. A drawing process and a second heat treatment process are sequentially performed.

ここで、本発明において、第1の熱処理工程は、前記モリブデン材料を非酸化雰囲気中で1回以上の再結晶化処理を施す工程である。第1の熱処理工程の再結晶化処理を施す熱処理温度は1500℃〜1700℃である。   Here, in the present invention, the first heat treatment step is a step in which the molybdenum material is recrystallized at least once in a non-oxidizing atmosphere. The heat treatment temperature for performing the recrystallization treatment in the first heat treatment step is 1500 ° C. to 1700 ° C.

また、線引き加工工程は、前記モリブデン材料を大気中で酸化加熱処理し、且つ前記モリブデン材料に断面減少加工を施す工程で、この線引き加工工程を酸化加熱処理しながら、前記モリブデン材料の表面に黒鉛付着焼付けを施こしながら行っても良い。このように、黒鉛付着焼付けを施し且つ前記線棒材に断面減少加工を施す熱処理温度は800℃〜1000℃である。また、前記線引き加工における線引き1回当たりの断面減少率は5〜20%で、且つ総断面減少率は58.8%を超え81%未満の範囲で施される。   The wire drawing process is a process in which the molybdenum material is oxidized and heat-treated in the atmosphere, and the molybdenum material is subjected to a cross-section reduction process. You may perform it, performing adhesion baking. Thus, the heat treatment temperature for performing graphite adhesion baking and performing cross-sectional reduction processing on the wire rod material is 800 ° C to 1000 ° C. Further, the cross-section reduction rate per drawing in the drawing process is 5 to 20%, and the total cross-section reduction rate is more than 58.8% and less than 81%.

さらに、第2の熱処理工程は、前記線引き加工されたモリブデン材料を非酸化雰囲気で熱処理する工程で、前記線引き加工されたモリブデン材料を電解研磨加工、次いで矯正して定められた長さに切断(切り棒加工)した後に行うが、電解研磨加工の前、あるいは切り棒加工の前に行っても良い。この第2の熱処理温度は、900℃〜1200℃である。   Further, the second heat treatment step is a step of heat-treating the drawn molybdenum material in a non-oxidizing atmosphere. The drawn molybdenum material is electropolished and then straightened and cut to a predetermined length ( However, it may be performed before the electropolishing process or before the cutting bar processing. The second heat treatment temperature is 900 ° C to 1200 ° C.

次に、本発明の各条件の限定理由について、述べる。   Next, the reasons for limiting each condition of the present invention will be described.

(イ)モリブデン純度が99.99%以上のモリブデン線を用いる理由について:モリブデン純度が99.99%未満の場合は、含有不純物がドーパントとなり粒成長を助長し、本発明で必要とするアスペクト比を超える結晶粒径になるためである。   (A) Reason for using molybdenum wire having a molybdenum purity of 99.99% or more: When the molybdenum purity is less than 99.99%, the contained impurities serve as a dopant to promote grain growth, and the aspect ratio required in the present invention This is because the crystal grain size exceeds.

(ロ)線棒材の組織(アスペクト比(L/W)が8以下で結晶粒の数が4200から13000個/mm)について:
引張強さが800〜1060MPa(N/mm)で、伸び15%以上、且つ折り曲げ試験(JIS Z2248の巻きつけ法を準用)による折り曲げ回数が10回以上の特性を備える線材とするためには、当該組織の結晶粒のアスペクト比(L/W)が8以下で、且つこの結晶粒の数が4200から13000個/mmの範囲とすることが必要である。
(B) Regarding the structure of the wire rod (the aspect ratio (L / W) is 8 or less and the number of crystal grains is 4200 to 13000 / mm 2 ):
In order to obtain a wire material having a tensile strength of 800 to 1060 MPa (N / mm 2 ), an elongation of 15% or more, and a number of bendings of 10 or more by a bending test (applying the winding method of JIS Z2248). It is necessary that the aspect ratio (L / W) of crystal grains of the structure is 8 or less and the number of crystal grains is in the range of 4200 to 13000 / mm 2 .

この両者の値から外れると熱処理を施しても上記の引張強さ、伸び、折り曲げ回数が得られないためである。   This is because the above tensile strength, elongation, and number of bendings cannot be obtained even if heat treatment is performed if these values are not satisfied.

(ハ)第1の熱処理温度、即ち、モリブデンの再結晶化処理の温度(1500℃〜1700℃)について:
1500℃未満の温度では線棒材の再結晶化が均一に進行せず、組織にむらが生じる。また、1700℃超の温度では再結晶化組織が粗大化しすぎて強度が低下し、次工程での線引き加工が困難になるためである。
(C) Regarding the first heat treatment temperature, that is, the temperature of recrystallization treatment of molybdenum (1500 ° C. to 1700 ° C.):
When the temperature is less than 1500 ° C., recrystallization of the wire rod material does not proceed uniformly, and the structure becomes uneven. Further, when the temperature is higher than 1700 ° C., the recrystallized structure becomes too coarse and the strength is lowered, and the drawing process in the next process becomes difficult.

以上の理由で再結晶化処理の温度を1500℃〜1700℃とするのが望ましい。   For the above reasons, it is desirable to set the temperature of the recrystallization treatment to 1500 ° C. to 1700 ° C.

(ニ)モリブデン酸化加熱処理の温度(800〜1000℃)について:
モリブデン酸化加熱処理温度を大気中で800〜1000℃とする理由は、800℃未満の温度では線棒材表面における酸化膜形成と黒鉛焼付けが不十分であり、1000℃超の温度では線引き応力により線径細りの発生や断線不具合が生じるためである。
(D) Regarding the temperature of molybdenum oxidation heat treatment (800 to 1000 ° C.):
The reason why the molybdenum oxidation heat treatment temperature is set to 800 to 1000 ° C. in the atmosphere is that the oxide film formation and the graphite baking on the surface of the wire rod material are insufficient at a temperature below 800 ° C., and the temperature exceeding 1000 ° C. is caused by the drawing stress. This is because thinning of wire diameter or disconnection failure occurs.

(ホ)線引き加工の断面減少率(5〜20%)について:
断面減少率が5%未満では線材表面の塑性変形ばかり進行し、線棒材内部との品質特性に差が生じてしまう。また、20%を超える断面減少率では塑性変形量が大きく断線してしまうためである。以上の理由で線引き加工の断面減少率5〜20%とするのが望ましい。
(E) About the cross-section reduction rate (5 to 20%) of wire drawing:
If the cross-section reduction rate is less than 5%, only the plastic deformation of the surface of the wire proceeds, and a difference in quality characteristics from the inside of the wire rod material occurs. Moreover, it is because the amount of plastic deformation will be largely disconnected at a cross-section reduction rate exceeding 20%. For the above reasons, it is desirable that the cross-sectional reduction rate of the drawing process is 5 to 20%.

(へ)線引き加工の総断面減少率(58.8%を超え81%未満)について:
58.8%以下の総断面減少率、あるいは81%以上の総断面減少率を当該線棒材に施すと、その後に熱処理を施しても所望の数の結晶粒を得ることが出来ないためである。
(F) About the total cross-section reduction rate (exceeding 58.8% and less than 81%) of the drawing process:
If a total cross-section reduction rate of 58.8% or less or a total cross-section reduction rate of 81% or more is applied to the wire rod material, a desired number of crystal grains cannot be obtained even after heat treatment. is there.

以上の理由で線引き加工の総断面減少率は58.8%を超え81%未満とするのが良い。好ましくは62.8%以上78%以下である。   For the above reasons, the total cross-section reduction rate of the drawing process should be more than 58.8% and less than 81%. Preferably they are 62.8% or more and 78% or less.

(ト)線引き加工後の第2の熱処理温度(非酸化雰囲気下900℃〜1200℃)について:第2の熱処理は、線引き加工後に、非酸化雰囲気下で熱処理することによって、線材の表面の酸化物を除去する。また、900℃〜1200℃の範囲を外れると所望のアスペクト比を備える結晶粒とその数、並びに引張強さ、伸び、折り曲げ回数が得られないためである。   (G) Second heat treatment temperature after wire drawing (900 ° C. to 1200 ° C. under non-oxidizing atmosphere): The second heat treatment is performed by heat treatment in a non-oxidizing atmosphere after wire drawing, thereby oxidizing the surface of the wire. Remove objects. Further, if the temperature is outside the range of 900 ° C. to 1200 ° C., crystal grains having a desired aspect ratio and the number thereof, and the tensile strength, elongation, and number of bendings cannot be obtained.

以上の理由により非酸化雰囲気下で熱処理、且つ熱処理温度は900℃〜1200℃とするのが望ましい。   For the above reasons, it is desirable that the heat treatment is performed in a non-oxidizing atmosphere and the heat treatment temperature is 900 ° C. to 1200 ° C.

次に、本発明の実施例(試料1〜45)と比較例(試料46〜54)に供するモリブデン線棒材の製造方法について述べる。   Next, a method for producing a molybdenum wire rod used in the examples (samples 1 to 45) and comparative examples (samples 46 to 54) of the present invention will be described.

なお、次の(i)〜(iii)項に示す製造方法は、一般的な粉末冶金法(以下、「定法」と云う)である。   The manufacturing method shown in the following items (i) to (iii) is a general powder metallurgy method (hereinafter referred to as “regular method”).

(i)インゴットの作製:
平均粒径4.2μmの純モリブデン粉末を用意し、このモリブデン粉末を196MPa(約2.0ton/cm)の圧力で静水圧プレスを行い、圧粉成形体を得て、次に、水素還元雰囲気で1800℃×10時間の焼結を施し、長さ300mmで直径(φ)40mmのインゴットを作製した。
(I) Production of ingot:
A pure molybdenum powder having an average particle diameter of 4.2 μm is prepared, and this molybdenum powder is hydrostatically pressed at a pressure of 196 MPa (about 2.0 ton / cm 2 ) to obtain a green compact, and then hydrogen reduction Sintering was performed at 1800 ° C. for 10 hours in an atmosphere to produce an ingot having a length of 300 mm and a diameter (φ) of 40 mm.

(ii)棒材の作製:
上記インゴットを1100〜1400℃の範囲で加熱しながら、1回当たりの断面減少率を15〜40%の範囲内に順次設定した孔型圧延加工し、φ5.2mmの棒材を作製した。
(Ii) Production of bar:
While the above ingot was heated in the range of 1100 to 1400 ° C., hole rolling was performed in which the cross-sectional reduction rate per time was set in the range of 15 to 40% in order to produce a φ5.2 mm bar.

(iii)線材の作製:
上記φ5.2mmの棒材を800〜1000℃の範囲で加熱しながら断面減少率が15〜40%範囲内で線引き加工を施し、φ0.61mm、φ0.95、φ1.0mm、φ1.2mm、φ1.3mm、φ1.4mmのモリブデン線をそれぞれ作製した。尚、線引き時の線引き用ダイスとの摩擦減少および線引き温度保持の目的で黒鉛潤滑剤を用いた。
(Iii) Production of wire:
While the above-mentioned φ5.2 mm bar is heated in the range of 800-1000 ° C., the cross-section reduction rate is drawn in the range of 15-40%, φ0.61 mm, φ0.95, φ1.0 mm, φ1.2 mm, Molybdenum wires of φ1.3 mm and φ1.4 mm were prepared. A graphite lubricant was used for the purpose of reducing friction with the drawing die during drawing and maintaining the drawing temperature.

以上の製造方法によって、モリブデン純度が99.99%以上(JIS H1404)であるモリブデン線材を用意した。   By the above manufacturing method, a molybdenum wire having a molybdenum purity of 99.99% or more (JIS H1404) was prepared.

次の本発明のモリブデン線材の具体的な製造工程とその材料について述べる。   Next, the specific manufacturing process and material of the molybdenum wire of the present invention will be described.

(I)再結晶化熱処理工程:
上記の定法で作製したモリブデン線材の内、下記表1に示すφ1.0mmの試料No.1〜9と、下記表2に示すφ1.2mmの試料No.10〜18と、下記表3に示すφ1.3mmの試料No.19〜27、下記表4に示すφ0.95mmの試料No.28〜36、下記表5に示すφ1.4mmの試料No.37〜45のそれぞれのモリブデン線材を、更に水素雰囲気中1500℃以上の温度で再結晶化熱処理を施した。
(I) Recrystallization heat treatment step:
Among the molybdenum wires produced by the above-mentioned regular method, the sample No. 1 to 9 and φ1.2 mm sample Nos. Shown in Table 2 below. 10-18 and a sample No. of φ1.3 mm shown in Table 3 below. 19 to 27, sample No. 28 to 36, φ1.4 mm sample Nos. Shown in Table 5 below. The molybdenum wires 37 to 45 were further subjected to recrystallization heat treatment at a temperature of 1500 ° C. or higher in a hydrogen atmosphere.

一方、比較例として、定法によって作製した下記表6に示すφ0.6mmの試料No.46〜54を用意したが、再結晶化熱処理(I)、線引き加工(II)は行わなかった。   On the other hand, as a comparative example, a φ0.6 mm sample No. 46 to 54 were prepared, but the recrystallization heat treatment (I) and the drawing process (II) were not performed.

(II)線引き加工工程:
次いで、大気中で800℃〜1000℃の酸化加熱処理を行いながら線引き加工の際の潤滑剤となる黒鉛を付着・焼き付けし、その後、断面減少率を5〜20%の範囲内としダイスによる線引き加工を繰り返して施した。
(II) Drawing process:
Next, graphite that becomes a lubricant in the drawing process is attached and baked while performing oxidation heat treatment at 800 ° C. to 1000 ° C. in the atmosphere, and thereafter, the cross-section reduction rate is within a range of 5 to 20% and drawing with a die is performed. Processing was repeated.

具体的に、下記表1に示す試料1〜9のφ1.0mmの線は、総断面減少率62.8%を施した。また、下記表2に示す試料10〜18のφ1.2mmの線は、総断面減少率74.2%を施した。また、下記表3に示すφ1.3mmの線は、総断面減少率78.0%を施した。また、下記表4に示すφ0.95mmの線は、総断面減少率58.8%を施した。また、下記表5に示すφ1.4mmの線は、総断面減少率81.0%を施した。   Specifically, the φ1.0 mm lines of Samples 1 to 9 shown in Table 1 below were subjected to a total cross-section reduction rate of 62.8%. In addition, the φ1.2 mm line of Samples 10 to 18 shown in Table 2 below was subjected to a total cross-section reduction rate of 74.2%. Further, the φ1.3 mm line shown in Table 3 below was subjected to a total cross-section reduction rate of 78.0%. In addition, the φ0.95 mm line shown in Table 4 below was given a total cross-section reduction rate of 58.8%. Further, the φ1.4 mm line shown in Table 5 below was subjected to a total cross-section reduction rate of 81.0%.

上記の線引き加工を行い下記表1〜表5の試料No.1〜45に供するφ0.61mmのモリブデン線材をそれぞれ作製した。   After performing the above-mentioned drawing process, the sample Nos. 1 to 45 were prepared for each of 0.61 mm molybdenum wire rods.

なお、この時の再結晶熱処理を行うための熱処理炉の炉口と、大気中で酸化物を形成させるバーナーと、黒鉛の付着・焼き付けさせるバーナー、及び線引き加工のダイスを直線状に並べることによって、再結晶熱処理により脆化したモリブデン線の折れトラブルを回避した。   In addition, by arranging the furnace port of the heat treatment furnace for performing the recrystallization heat treatment at this time, the burner for forming oxides in the atmosphere, the burner for attaching and baking graphite, and the drawing dies in a straight line The problem of breakage of molybdenum wire embrittled by recrystallization heat treatment was avoided.

上記に加え、線引き時の線材加熱温度だけでなく線引きダイス加熱温度も管理する必要がある。ダイス加熱温度は前述の断面減少率並びに後述の線引き速度と関連付けて調節・管理する。線引き加工が進行し、線径が小さくなるに従い線材加熱温度を低くし、1100℃から650℃で制御する。1100℃を超えると引き細り、断線に至たり易い。一方、650℃未満では変形抵抗が大きく、引ききれず断線に至る。なお、ダイスの材質は超硬合金あるいはダイヤモンドを用いる。   In addition to the above, it is necessary to manage not only the wire heating temperature during drawing but also the drawing die heating temperature. The die heating temperature is adjusted and managed in association with the aforementioned cross-sectional reduction rate and the drawing speed described later. As wire drawing progresses and the wire diameter decreases, the wire heating temperature is lowered and controlled at 1100 ° C. to 650 ° C. When it exceeds 1100 ° C., it is likely to be thinned and disconnected. On the other hand, when the temperature is lower than 650 ° C., the deformation resistance is large, and the wire cannot be pulled and is broken. The die material is cemented carbide or diamond.

ダイス加熱温度の管理は、線材温度を保持するためとダイス材質を保護するために行う。この際、上限は450℃、下限は300℃。上限を超えるとダイス材質が変化してダイスの機能が損なわれ、下限を下回ると線材の断線が生じ易くなるためである。   The die heating temperature is controlled to maintain the wire temperature and to protect the die material. At this time, the upper limit is 450 ° C., and the lower limit is 300 ° C. This is because if the upper limit is exceeded, the die material will change and the function of the die will be impaired, and if the lower limit is exceeded, the wire will likely break.

上記の条件内で、ダイスを用いて一度線引き加工されたモリブデン線については、その後の線引き加工に断線などの支障を来たすことはなく、表1から表5の試料1〜45のφ0.61mmのモリブデン線を得ることが出来た。   Within the above conditions, the molybdenum wire once drawn using a die does not cause any trouble such as disconnection in the subsequent drawing, and the diameter of φ0.61 mm of samples 1 to 45 in Tables 1 to 5 is not affected. Molybdenum wire was obtained.

さらに、線引き加工速度は、線材の線径が細くなるに従い速く制御するのが良い。本実施例では3m/分から10m/分である。これらの範囲を外れると、断線、引き細りなどの不具合が生じたためである。   Furthermore, the drawing speed should be controlled faster as the wire diameter of the wire becomes thinner. In this embodiment, the speed is 3 m / min to 10 m / min. This is because, if out of these ranges, problems such as disconnection and thinning occurred.

(III)電解研磨工程:
次いで、試料No.1〜45に供するφ0.61mmのモリブデン線の表面に付着している黒鉛を除去する為に、30%苛性カリウム(KOH)の電解液用いて電解研磨を施した。電解研磨後のモリブデン線の径は夫々φ0.60mmであった。同様に、比較例として、表6に示す試料46〜54も電解研磨を行った。
(III) Electropolishing process:
Next, sample No. In order to remove the graphite adhering to the surface of the molybdenum wire having a diameter of 0.61 mm provided for 1 to 45, electrolytic polishing was performed using an electrolytic solution of 30% caustic potassium (KOH). The diameter of the molybdenum wire after electrolytic polishing was φ0.60 mm. Similarly, as a comparative example, samples 46 to 54 shown in Table 6 were also subjected to electrolytic polishing.

(IV)切棒材
次いで、下記表1〜表6に示した上記のモリブデン線材に直線加工を施し、任意の長さに切断し、φ0.60mm×長さ300mm(但し任意の長さである)のモリブデン切棒材とした。
(IV) Cutting rod material Next, the molybdenum wire shown in Tables 1 to 6 below is linearly processed and cut to an arbitrary length, φ0.60 mm × length 300 mm (however, it is an arbitrary length) ) Molybdenum cutting rod material.

(V)熱処理
次いで、上記のモリブデン切棒材の内、表1〜5に記載の「第2熱処理温度(なし)」の他は、水素雰囲気中で800〜1500℃の範囲内の800℃、900℃、1000℃、1100℃、1200℃、1300℃、1400℃、1500℃の8通りの温度でそれぞれ熱処理を施した。
(V) Heat treatment Next, in addition to the “second heat treatment temperature (none)” described in Tables 1 to 5 among the above molybdenum rods, 800 ° C. within a range of 800 to 1500 ° C. in a hydrogen atmosphere, Heat treatment was performed at eight temperatures of 900 ° C., 1000 ° C., 1100 ° C., 1200 ° C., 1300 ° C., 1400 ° C., and 1500 ° C., respectively.

上記で得られた本発明例と比較例のそれぞれの試料の引張強さ、伸び、折り曲げ試験、組織の測定を行った。その結果を下記表1〜6に示す。   The tensile strength, elongation, bending test, and structure of each sample of the present invention example and the comparative example obtained above were measured. The results are shown in Tables 1 to 6 below.

引張強さと伸びは、JIS H4460に準じて測定を行った。折り曲げは、JIS Z2248の巻き付け法に準じて測定を行った。また、得られたモリブデン線を、JIS H1404:2001の分析方法によって不純分測定を実施した。その結果、不純分は0.01%以下であり、モリブデン純度は99.99%以上であることを確認した。   The tensile strength and elongation were measured according to JIS H4460. The bending was measured according to the winding method of JIS Z2248. The obtained molybdenum wire was subjected to impurity measurement by the analysis method of JIS H1404: 2001. As a result, it was confirmed that the impurity content was 0.01% or less and the molybdenum purity was 99.99% or more.

なお、各特性と組織形態の関係、並びに結晶数の測定については、まず、対象モリブデン材料から採取した小片を線引き方向(RD方向)に平行な断面の線径の中心部近傍まで鏡面に仕上げた後、エッチング処理を行い金属顕微鏡観察試料を得た。組織形態の判断は、上記の各試料を光学顕微鏡を用い400倍で組織観察を行い、繊維組織中に占める再結晶粒の割合を面積比率で求め、この面積比率が50%以上を占めた場合を再結晶組織と定義し、同様に50%未満の場合は繊維組織と定義し、表1〜6に示した。   Regarding the relationship between each characteristic and the structure morphology and the measurement of the number of crystals, first, a small piece collected from the target molybdenum material was finished to a mirror surface near the center of the wire diameter of the cross section parallel to the drawing direction (RD direction). Then, the etching process was performed and the metal microscope observation sample was obtained. Judgment of the structure is performed by observing the above samples with an optical microscope at a magnification of 400 times, obtaining the ratio of recrystallized grains in the fiber structure as an area ratio, and when the area ratio accounts for 50% or more Is defined as a recrystallized structure. Similarly, when it is less than 50%, it is defined as a fiber structure and is shown in Tables 1-6.

また、再結晶組織を呈していた試料については再結晶粒度Naの測定を行った。すなわち、光学顕微鏡を用い任意の倍率M(計数精度を考慮すると400倍および800倍が望ましい)で組織観察し、得られた写真上にφ70mmの円を描いた。その面積中に完全に含まれる再結晶粒の数Nwと一部が含まれる再結晶粒の数Niとを数え、それらの総数Nt(=Nw+Ni/2)を算出し、次の数1式で再結晶粒度Naを求めた。また、本明細書では、この再結晶粒度Naを再結晶粒の数と定義し、表1〜6には示した。尚、数1式中、πは、円周率である。   Moreover, the recrystallized grain size Na was measured for the sample exhibiting the recrystallized structure. That is, the structure was observed using an optical microscope at an arbitrary magnification M (preferably 400 times and 800 times considering the counting accuracy), and a circle of φ70 mm was drawn on the obtained photograph. The number Nw of recrystallized grains completely included in the area and the number Ni of recrystallized grains partially including the area are counted, and the total number Nt (= Nw + Ni / 2) is calculated. The recrystallized grain size Na was determined. Moreover, in this specification, this recrystallized grain size Na is defined as the number of recrystallized grains, and is shown in Tables 1-6. In the formula 1, π is a circumference ratio.

この方法による結晶数の測定結果を表1〜表6に示す。   The measurement results of the number of crystals by this method are shown in Tables 1 to 6.

なお、実際には組織中にアスペクト比(L/W)が8を超える結晶粒も存在しているが、アスペクト比8以下で、その数を単位面積当たり4200から13000個/mmの範囲と定めることによって、本発明の要求特性、即ち、引張強さと伸びと折り曲げの3つの特性をバランス良く備えているモリブデン線が得られることが判明した。なお、アスペクト比8を超える結晶粒の数の測定は除外した。 Actually, there are crystal grains having an aspect ratio (L / W) exceeding 8 in the structure, but the aspect ratio is 8 or less, and the number thereof is in the range of 4200 to 13000 / mm 2 per unit area. It was found that a molybdenum wire having the required characteristics of the present invention, that is, the three characteristics of tensile strength, elongation, and bending, can be obtained in a balanced manner. Measurement of the number of crystal grains exceeding the aspect ratio 8 was excluded.

図1は本発明のモリブデン線棒材の再結晶組織の一例を示す金属顕微鏡写真(500倍)で、表1の試料No.5の再結晶組織を示している。図2は比較例に係るモリブデン線棒材の繊維組織の一例を示す金属顕微鏡写真(500倍)で、表4の試料No.39の繊維組織を示している。これらの写真は金属顕微鏡により撮影したものであり、倍率は500倍である。   1 is a metal micrograph (500 times) showing an example of the recrystallized structure of the molybdenum wire rod of the present invention. 5 shows a recrystallized structure. 2 is a metal micrograph (500 times) showing an example of the fiber structure of the molybdenum wire rod according to the comparative example. 39 fiber structures are shown. These photographs were taken with a metal microscope, and the magnification was 500 times.

図1の写真において、繊維状組織を残す中に広く点在している大小の塊(一辺が長辺状で尖った形状を呈している)が再結晶粒であり、且つこの組織写真から当該再結晶粒は微細な再結晶組織を呈していることが分かる。   In the photograph of FIG. 1, large and small lumps that are widely scattered while leaving the fibrous structure (having a long side of one side and a pointed shape) are recrystallized grains. It can be seen that the recrystallized grains have a fine recrystallized structure.

一方、図2において、再結晶粒が含まれていない繊維組織状態にあることが分かる。なお、何れの写真も線引き加工に平行な断面の組織状態を示している。   On the other hand, in FIG. 2, it turns out that it exists in the fiber structure state in which the recrystallized grain is not contained. In addition, all the photographs have shown the structure | tissue state of the cross section parallel to a drawing process.

上記表1〜表6の各試料1〜54の評価結果について説明する。   The evaluation result of each sample 1-54 of the said Table 1-Table 6 is demonstrated.

上記表1〜表3に示すように、第1の熱処理として1500℃の再結晶化熱処理を施し、上記した総断面減少率で、800〜1000℃で加熱して線引き加工したモリブデン線材(試料1〜27)に、900〜1200℃の第2の熱処理温度を施すことによって、上記表1の試料3〜6,上記表2の試料12〜15,上記表3の試料21〜24のいずれもが15%以上の伸び特性と10回以上の折り曲げの両特性が得られていることが分かる。なお、上記の特性が得られなかった他の試料である上記表1の試料1、2と7〜9,上記表2の試料10,11と16〜18,上記表3の試料19と20,25〜27,上記表4の試料28〜36,上記表5の試料37〜45は本発明の範囲外とした。なお、比較例として上記表6に再結晶処理を行わない場合の各特性の測定結果を示した。   As shown in Tables 1 to 3, molybdenum wire (sample 1) that was subjected to recrystallization heat treatment at 1500 ° C. as the first heat treatment, and was drawn by heating at 800 to 1000 ° C. at the above-described total cross-section reduction rate. To 27), by applying a second heat treatment temperature of 900 to 1200 ° C., all of Sample 3 to 6 in Table 1 above, Samples 12 to 15 in Table 2 above, and Samples 21 to 24 in Table 3 above can be obtained. It can be seen that both the elongation characteristics of 15% or more and the bending characteristics of 10 times or more are obtained. Note that samples 1, 2 and 7 to 9 in Table 1 above, samples 10, 11 and 16 to 18 in Table 2, samples 19 and 20 in Table 3 above, which are other samples for which the above characteristics were not obtained. 25 to 27, Samples 28 to 36 in Table 4 and Samples 37 to 45 in Table 5 were outside the scope of the present invention. As a comparative example, Table 6 shows the measurement results of each characteristic when the recrystallization treatment is not performed.

上記、伸び特性と折り曲げ特性が得られた表1の試料3〜6,表2の試料12〜15,表3の試料21〜24の引張強さの範囲は、800〜1060MPa(N/mm)の範囲であり、これは熱処理を施された一般的な引張強さとほぼ同じであり、15%以上の伸び、10回以上の折り曲げ特性を得ても引張強さが高い故に形状加工が困難となったり、引張強さが低く強度不足になることがない特性値である。 The tensile strength ranges of Samples 3 to 6 in Table 1 and Samples 12 to 15 in Table 2 and Samples 21 to 24 in Table 3 in which the elongation characteristics and the bending characteristics are obtained are 800 to 1060 MPa (N / mm 2 This is almost the same as the general tensile strength subjected to heat treatment, and it is difficult to shape due to its high tensile strength even if it has 15% elongation or more and 10 or more bending characteristics. The characteristic value is such that the tensile strength is low and the strength is not insufficient.

また、上記表4に示すとおり、定法により作製したモリブデン線棒材に、更に1500℃の再結晶化熱処理を施し、その後、60%未満の断面減少率で線引き加工したモリブデン線材は、15%以上の伸び特性が得られる熱処理温度が900〜1100℃であるのに対し、10回以上の折り曲げ特性が得られる熱処理温度は800℃以下である。このため、伸び15%以上、折り曲げ10回以上の両方の特性を得る熱処理条件が無く、上記表4の試料28〜36は本発明の範囲外とした。   Further, as shown in Table 4 above, molybdenum wire rods produced by a conventional method were further subjected to a recrystallization heat treatment at 1500 ° C., and then drawn with a cross-sectional reduction rate of less than 60%, 15% or more The heat treatment temperature at which the elongation characteristic is obtained is 900 to 1100 ° C., whereas the heat treatment temperature at which the bending characteristic is obtained 10 times or more is 800 ° C. or less. For this reason, there is no heat treatment condition for obtaining both the properties of elongation of 15% or more and bending of 10 times or more, and the samples 28 to 36 in Table 4 are outside the scope of the present invention.

また、上記表5に示すとおり、更に1500℃の再結晶化熱処理を施し、その後、80%を超える断面減少率で線引き加工したモリブデン線材は、15%以上の伸び特性が得られる熱処理温度が1200〜1400℃であるのに対し、10回以上の折り曲げ特性が得られる熱処理温度は1100℃以下である。このため、伸び15%以上、折り曲げ10回以上の両方の特性を得る熱処理条件が無く、上記表5の試料37〜45は、本発明の範囲外とした。   Further, as shown in Table 5 above, the molybdenum wire that has been subjected to a recrystallization heat treatment at 1500 ° C. and then drawn at a cross-section reduction rate exceeding 80% has a heat treatment temperature of 1200% at which an elongation characteristic of 15% or more is obtained. While the temperature is ˜1400 ° C., the heat treatment temperature at which the bending characteristic of 10 times or more is obtained is 1100 ° C. or less. For this reason, there is no heat treatment condition for obtaining both properties of elongation of 15% or more and bending of 10 times or more, and the samples 37 to 45 in Table 5 are out of the scope of the present invention.

比較例の上記表6の試料46〜54は、1500℃の再結晶熱処理を施さなかったモリブデン線棒材については、15%以上の伸び特性が得られる熱処理温度が1200〜1400℃であるのに対し、10回以上の折り曲げ特性を得られる熱処理温度は1100℃以下であり、このため、伸び15%以上、折り曲げ10回以上の両方の特性を得られる熱処理条件は無く、どちらを優先し、どちらを犠牲にする選択肢しかないことが分かる。   Samples 46 to 54 in Table 6 of the comparative example have a heat treatment temperature of 1200 to 1400 ° C. at which an elongation characteristic of 15% or more is obtained for the molybdenum wire rod not subjected to the recrystallization heat treatment at 1500 ° C. On the other hand, the heat treatment temperature at which the bending characteristic of 10 times or more can be obtained is 1100 ° C. or less, and therefore there is no heat treatment condition for obtaining both the characteristics of elongation of 15% or more and the bending of 10 times or more. It can be seen that there is only an option to sacrifice.

次に、上記表1〜表6のモリブデン線材の金属組織について説明する。   Next, the metal structure of the molybdenum wire materials in Tables 1 to 6 will be described.

上記表1〜6に示すとおり、15%以上の伸び特性が得られるのは、いずれも再結晶状態の組織のものである。しかし、単位面積当たりの結晶の個数が少なくなってくる。つまり、再結晶化が進み個々の結晶粒が粗大化してしまうと伸び、折り曲げ特性とも劣ってしまうことが分かる。   As shown in the above Tables 1 to 6, the elongation characteristics of 15% or more are all obtained in the recrystallized structure. However, the number of crystals per unit area is reduced. That is, it can be seen that if recrystallization progresses and individual crystal grains become coarse, the elongation and the bending properties are also inferior.

これは、粗大化した結晶の粒界強度が、再結晶が進むにつれて弱くなってしまう為と、粗大化した分、多くの応力を受けるようになってしまう為である。   This is because the grain boundary strength of the coarsened crystal becomes weaker as the recrystallization progresses, and a larger amount of stress is received due to the coarsening.

従って、伸び、折り曲げ両方の特性を得るには、再結晶は開始しているが、粗大結晶化までは至っていなく、なおかつ、その結晶粒ができるだけ細かいものが望ましいと云える。   Therefore, in order to obtain the characteristics of both elongation and bending, recrystallization has started, but coarse crystallization has not yet been achieved, and it is desirable that the crystal grains be as fine as possible.

上記表1の試料3〜6、表2の試料12〜15、表3の試料21〜24において、15%以上の伸びと10回以上の折り曲げ特性が得られたときの結晶粒の数は、いずれも4200個以上/mmとなっている。これは、表1の試料7〜9,表2の試料16〜18,表3の試料25〜27,表4の試料30〜36,表5の試料40〜45,及び比較例である表6の試料49〜54のいずれの熱処理温度でも得られないことが分かる。 In Samples 3 to 6 in Table 1 above, Samples 12 to 15 in Table 2 and Samples 21 to 24 in Table 3, the number of crystal grains when an elongation of 15% or more and a bending characteristic of 10 times or more were obtained, All are 4200 or more / mm 2 . This is Samples 7-9 in Table 1, Samples 16-18 in Table 2, Samples 25-27 in Table 3, Samples 30-36 in Table 4, Samples 40-45 in Table 5, and Table 6 which is a comparative example. It can be seen that none of the samples 49 to 54 can be obtained at any heat treatment temperature.

従って、本発明によって単位面積当たりの結晶粒の数が多くできたことは明らかである。   Therefore, it is clear that the number of crystal grains per unit area can be increased by the present invention.

ここで、本発明の範囲は、前述の工業炉用部材、ランプ用部品、タングステンフィラメントを製作する際のマンドレル等において、実用上要求される引張り強さ800MPa(N/mm)以上、伸び15%以上、折り曲げ回数10回以上の3つの特性を満足する値が得られたものを発明品としている。 Here, the scope of the present invention is that the tensile strength of 800 MPa (N / mm 2 ) or more required for practical use in the above-mentioned industrial furnace members, lamp parts, mandrels for producing tungsten filaments, and the like, and elongation of 15 %, And a value satisfying the three characteristics of bending times of 10 or more is obtained as an invention.

以上の説明の通り、本発明によるモリブデン材料は、工業炉用部材では、メッシュヒーター、棒ヒーターやヒーター支持フック等のほか、熱反射板用コイルスペーサー、C形スペーサーや取り付けリベットに、また、ランプ用部品ではタングステンフィラメントのサポートやアンカー、外部導入線等のほか、CCFL用の放電電極やこれに接続される導入線等にも好適である。   As described above, the molybdenum material according to the present invention is used for industrial furnace members, in addition to mesh heaters, bar heaters, heater support hooks, etc., coil reflectors for heat reflectors, C-shaped spacers and mounting rivets, and lamps. In addition to tungsten filament supports, anchors, external lead wires, etc., the parts for use are suitable for CCFL discharge electrodes and lead wires connected thereto.

更に、本発明のモリブデン材料は、タングステンフィラメントを作製する際のマンドレルの材料としても好適である。   Furthermore, the molybdenum material of the present invention is also suitable as a mandrel material for producing a tungsten filament.

本発明によるモリブデン材料の再結晶組織の一例を示す光学顕微鏡写真である。It is an optical microscope photograph which shows an example of the recrystallized structure of the molybdenum material by this invention. 比較例に係るモリブデン材料の繊維組織の一例を示す光学顕微鏡写真である。It is an optical microscope photograph which shows an example of the fiber structure of the molybdenum material which concerns on a comparative example.

Claims (9)

モリブデン線棒材からなるモリブデン材料において、前記モリブデン材料の純度が99.99%以上(JIS H1404)であり、前記モリブデン材料の線引き方向に平行な断面組織の結晶粒のアスペクト比(L/W)が8以下で、且つ前記結晶粒の数が4200から13000個/mmの範囲であることを特徴とするモリブデン材料。 In a molybdenum material made of a molybdenum wire rod, the purity of the molybdenum material is 99.99% or more (JIS H1404), and the aspect ratio (L / W) of the crystal grains of the cross-sectional structure parallel to the drawing direction of the molybdenum material Is a molybdenum material, wherein the number of crystal grains is in the range of 4200 to 13000 / mm 2 . 請求項1に記載のモリブデン材料において、引張強さが800〜1060MPaで、伸び15%以上、且つ折り曲げ試験(JIS Z2248の巻きつけ法を準用)による折り曲げ回数が10回以上を有することを特徴とするモリブデン材料。   The molybdenum material according to claim 1, wherein the tensile strength is 800 to 1060 MPa, the elongation is 15% or more, and the number of bendings by a bending test (applying the winding method of JIS Z2248) is 10 or more. Molybdenum material to be used. 請求項1又は2に記載のモリブデン材料を製造する方法であって、純度が99.99%以上(JIS H1404)であるモリブデン線棒材を用意し、
前記モリブデン線棒材にさらに非酸化雰囲気中で1回以上の再結晶化処理を施す第1の熱処理工程と、前記モリブデン材料を大気中で酸化加熱処理し、且つ前記モリブデン材料に断面減少加工を施す線引き加工工程と、前記線引き加工されたモリブデン材料を非酸化雰囲気で熱処理する第2の熱処理工程とを備えることを特徴とするモリブデン材料の製造方法。
A method for producing the molybdenum material according to claim 1, wherein a molybdenum wire rod having a purity of 99.99% or more (JIS H1404) is prepared,
A first heat treatment step in which the molybdenum wire rod is further subjected to one or more recrystallization treatments in a non-oxidizing atmosphere; and the molybdenum material is subjected to an oxidation heat treatment in the atmosphere; A method for producing a molybdenum material, comprising: a drawing process to be performed; and a second heat treatment process in which the drawn molybdenum material is heat-treated in a non-oxidizing atmosphere.
請求項3に記載のモリブデン材料の製造方法において、前記線引き加工工程は酸化加熱処理しながら、前記モリブデン材料の表面に黒鉛付着焼付けを施こすことを特徴とするモリブデン材料の製造方法。   4. The method for manufacturing a molybdenum material according to claim 3, wherein the wire drawing process includes oxidizing and baking the surface of the molybdenum material while performing an oxidation heat treatment. 5. 請求項3又は4に記載のモリブデン材料の製造方法において、前記熱処理工程は、前記線引き加工されたモリブデン材料を電解研磨加工、次いで、切り棒加工した後、または電解研磨加工あるいは切り棒加工の前に行われることを特徴とするモリブデン材料の製造方法。   5. The method for manufacturing a molybdenum material according to claim 3, wherein the heat treatment step is performed by electropolishing the cut-drawn molybdenum material, followed by cutting bar processing, or before electrolytic polishing processing or cutting bar processing. A process for producing a molybdenum material, characterized in that: 請求項3乃至5の内のいずれか1つに記載のモリブデン材料の製造方法において、前記再結晶化処理を施す熱処理温度は1500℃〜1700℃であることを特徴とするモリブデン材料の製造方法。   6. The method for producing a molybdenum material according to claim 3, wherein a heat treatment temperature for performing the recrystallization treatment is 1500 ° C. to 1700 ° C. 6. 請求項3に記載のモリブデン材料の製造方法において、前記黒鉛付着焼付けを施し且つ前記線棒材に断面減少加工を施す熱処理温度は800℃〜1000℃であることを特徴とするモリブデン材料の製造方法。   4. The method for manufacturing a molybdenum material according to claim 3, wherein a heat treatment temperature for performing the graphite adhesion baking and performing a cross-sectional reduction process on the wire rod material is 800 ° C. to 1000 ° C. . 請求項3乃至7の内のいずれか1つに記載のモリブデン材料の製造方法において、前記線引き加工における線引き1回当たりの断面減少率は5〜20%で、且つ総断面減少率は58.8%を超え81%未満の範囲で施すことを特徴とするモリブデン材料の製造方法。   The method for manufacturing a molybdenum material according to any one of claims 3 to 7, wherein a cross-section reduction rate per drawing in the drawing process is 5 to 20%, and a total cross-section reduction rate is 58.8. A method for producing a molybdenum material, characterized by being applied in a range of more than% and less than 81%. 請求項3乃至7の内のいずれか1つに記載のモリブデン材料の製造方法において、前記線引き加工後さらに非酸化雰囲気で900℃〜1200℃の熱処理を施すことを特徴とするモリブデン材料の製造方法。   The method for manufacturing a molybdenum material according to any one of claims 3 to 7, wherein a heat treatment at 900 ° C to 1200 ° C is further performed in a non-oxidizing atmosphere after the drawing process. .
JP2006335994A 2006-12-13 2006-12-13 Molybdenum material and manufacturing method thereof Active JP5068986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335994A JP5068986B2 (en) 2006-12-13 2006-12-13 Molybdenum material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335994A JP5068986B2 (en) 2006-12-13 2006-12-13 Molybdenum material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008144250A true JP2008144250A (en) 2008-06-26
JP5068986B2 JP5068986B2 (en) 2012-11-07

Family

ID=39604736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335994A Active JP5068986B2 (en) 2006-12-13 2006-12-13 Molybdenum material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5068986B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166603A (en) * 1983-03-12 1984-09-20 Tokyo Tungsten Co Ltd Mo wire material for baking jig
JPS61110755A (en) * 1984-11-05 1986-05-29 Tokyo Tungsten Co Ltd Molybdenum wire rod and its manufacture
JPS61149466A (en) * 1984-12-25 1986-07-08 Toshiba Corp Drawing method of molybdenum wire
JPS61199061A (en) * 1985-02-28 1986-09-03 Toho Kinzoku Kk Molybdenum plate for baking of ceramic material
JPS62187046A (en) * 1986-02-14 1987-08-15 Tokyo Tungsten Co Ltd Spring material for dot printer
JPS62224655A (en) * 1986-03-27 1987-10-02 Toshiba Corp Molybdenum member
JPS63243249A (en) * 1987-03-31 1988-10-11 Tokyo Tungsten Co Ltd Mo net material for burning
JPH03249156A (en) * 1990-02-28 1991-11-07 Hitachi Ltd Method for treating the surface of metallic wire rod
JPH11204805A (en) * 1998-01-14 1999-07-30 Tokyo Tungsten Co Ltd Molybdenum material for diode electrode and its manufacture
JP2002235141A (en) * 2001-02-06 2002-08-23 Toshiba Corp Molybdenum wire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166603A (en) * 1983-03-12 1984-09-20 Tokyo Tungsten Co Ltd Mo wire material for baking jig
JPS61110755A (en) * 1984-11-05 1986-05-29 Tokyo Tungsten Co Ltd Molybdenum wire rod and its manufacture
JPS61149466A (en) * 1984-12-25 1986-07-08 Toshiba Corp Drawing method of molybdenum wire
JPS61199061A (en) * 1985-02-28 1986-09-03 Toho Kinzoku Kk Molybdenum plate for baking of ceramic material
JPS62187046A (en) * 1986-02-14 1987-08-15 Tokyo Tungsten Co Ltd Spring material for dot printer
JPS62224655A (en) * 1986-03-27 1987-10-02 Toshiba Corp Molybdenum member
JPS63243249A (en) * 1987-03-31 1988-10-11 Tokyo Tungsten Co Ltd Mo net material for burning
JPH03249156A (en) * 1990-02-28 1991-11-07 Hitachi Ltd Method for treating the surface of metallic wire rod
JPH11204805A (en) * 1998-01-14 1999-07-30 Tokyo Tungsten Co Ltd Molybdenum material for diode electrode and its manufacture
JP2002235141A (en) * 2001-02-06 2002-08-23 Toshiba Corp Molybdenum wire

Also Published As

Publication number Publication date
JP5068986B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
CN114231813B (en) Alloy wire rod and preparation method and application thereof
JP7223967B2 (en) tungsten wire and saw wire
JP2022112015A5 (en)
KR101851473B1 (en) Copper alloy wire material and method for producing same
JP5485259B2 (en) Rhenium tungsten wire, manufacturing method thereof and medical needle using the same
JP4426904B2 (en) Tungsten wire and method for manufacturing the same
JPH0913136A (en) Spiral spring and its production
WO2023228833A1 (en) Tungsten wire
JP5611589B2 (en) Method for manufacturing filament cathode member for magnetron and filament cathode member for magnetron
JP5068986B2 (en) Molybdenum material and manufacturing method thereof
JP2008147129A (en) Cold-cathode electrode, cold-cathode fluorescent lamp, and liquid crystal display using it
JP3569182B2 (en) Tungsten material for secondary processing
JP3769008B2 (en) Tungsten material for secondary processing
WO2024204092A1 (en) Tungsten wire
JP3769009B2 (en) Tungsten material for secondary processing
JP3803675B2 (en) Manufacturing method of tungsten material for secondary processing
WO2023286633A1 (en) Metal wire and saw wire
CN117646142B (en) Nickel-doped tungsten alloy wire and preparation method and application thereof
JP4582866B2 (en) Tungsten wire and manufacturing method thereof
JP3769000B2 (en) Manufacturing method of tungsten material for secondary processing
JP2016000848A (en) Titanium alloy forged material
WO2008009154A1 (en) A method for producing filament for halogen lamp
CN117888013A (en) Tungsten alloy wire rod and preparation method and application thereof
JP2005350709A (en) Seamless pipe made of molybdenum, and manufacturing method therefor
JPS63166952A (en) Manufacture of molybdenum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5068986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250