JP2008144122A - Modified sulfur and its manufacturing method - Google Patents

Modified sulfur and its manufacturing method Download PDF

Info

Publication number
JP2008144122A
JP2008144122A JP2006357111A JP2006357111A JP2008144122A JP 2008144122 A JP2008144122 A JP 2008144122A JP 2006357111 A JP2006357111 A JP 2006357111A JP 2006357111 A JP2006357111 A JP 2006357111A JP 2008144122 A JP2008144122 A JP 2008144122A
Authority
JP
Japan
Prior art keywords
sulfur
modifier
modified
compatibility
modified sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006357111A
Other languages
Japanese (ja)
Inventor
Yukio Arai
幸夫 洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNAGRO CO Ltd
Original Assignee
SUNAGRO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNAGRO CO Ltd filed Critical SUNAGRO CO Ltd
Priority to JP2006357111A priority Critical patent/JP2008144122A/en
Publication of JP2008144122A publication Critical patent/JP2008144122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a modified sulfur material which can be freely controlled with respect to the strength and plasticity, and which is superior in adhesiveness, impact resistance and corrosion resistance, by improving the physical properties of sulfur, and its manufacturing method. <P>SOLUTION: The modified sulfur is obtained by adding a polysulfide polymer to sulfur as a sulfur modifying agent and mutually completely compatibilizing them at a temperature of 120-160°C. Also, the required strength, plasticity and impact resistance of the resultant modified sulfur can be controlled by the kind or a blending ratio of the sulfur modifying agent to be added to the sulfur. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、硫黄元素を改質して、強度、耐腐食性、耐磨耗性を維持したまま、柔軟性、可塑性を持たせ、プラスチック、アスファルト又はセメントの代用品として舗装材料、建築材料、コーティング材料、廃棄物封鎖材料などに使用し得る特性を有する改質硫黄およびその製造方法に関する。  The present invention modifies elemental sulfur to maintain flexibility, plasticity while maintaining strength, corrosion resistance, and abrasion resistance, and as a substitute for plastic, asphalt or cement, paving material, building material, The present invention relates to modified sulfur having properties that can be used for coating materials, waste sealing materials, and the like, and a method for producing the same.

硫黄は、113℃を超えると溶融し、常温では硬い固体状を呈し、水や多くの有機溶媒に不溶で、反応性が乏しく、耐腐食性が高い性質を利用して、土木用、建設用等の資材の一つとしての利用が古くから試みられている。例えば、舗装材料(特許文献1)、建築材料用結合材(特許文献2)あるいは廃棄物封鎖用結合材(特許文献3)として使用が検討されている。このような硫黄の利用方法は、通常、溶融した硫黄を結合材として、充填材、凝集材その他の物質を固め、成型する形とする。例えば、舗装材料又は建築材料として利用する場合には砂や砕石の無機系資材の骨材に結合材としての硫黄の溶融物とを混練してから、所望形状の型枠に注ぎ込み、室温になるまで放置した後に脱型して製造されている。廃棄物封鎖用結合材として利用する場合には、溶融した硫黄液に廃棄物を投入し、型に注ぎ込み、冷却固化した後脱型することにより、廃棄物を硫黄に完全に包囲封鎖させる形とする。  Sulfur melts at temperatures above 113 ° C, forms a hard solid at room temperature, is insoluble in water and many organic solvents, has low reactivity, and has high corrosion resistance. The use as one of such materials has been tried for a long time. For example, use as a pavement material (Patent Document 1), a binding material for building materials (Patent Document 2) or a binding material for blocking waste (Patent Document 3) is being studied. Such a method of using sulfur is usually in a form in which molten sulfur is used as a binder, and fillers, agglomerates and other substances are hardened and molded. For example, when it is used as a pavement material or a building material, an aggregate of inorganic material such as sand or crushed stone is kneaded with a melt of sulfur as a binder, and then poured into a mold having a desired shape to reach room temperature. It is manufactured by demolding after being left to stand. When used as a binder for waste sealing, the waste is poured into a molten sulfur liquid, poured into a mold, cooled and solidified, and then demolded to completely surround and seal the waste with sulfur. To do.

しかし、硫黄を建築材料、舗装材料または結合材として用いるのは物性上の多くの課題があり、特に表面と内部に空洞や亀裂の発生率が高く、外部から圧力を受けた場合に空洞や亀裂に沿って割れやすい。これは硫黄具有の物性に由来した現象である。純粋な硫黄は溶融の液体状態から冷却固化する場合、斜方晶系、単斜晶系、不定形硫黄の3種が混在し、冷却条件によりそれらの比率が変わると共に、経過時間により結晶系が変化し収縮していくため、空洞や亀裂が生じ易い。硫黄は固体状態が常温において最終的に最も安定な斜方晶系硫黄に転移していくが、通常の場合、結晶転移の過程で形成される斜方晶系結晶のサイズが大きく、収縮率が10%を超えるため、収縮時に生じた強い応力により結晶間に沿って亀裂を生じ、機械的強度を低下させたり、極端な場合は割れを生じる。また亀裂の存在が硫黄の遮水性を損ない、特に廃棄物封鎖用結合材として利用する場合には、表面の亀裂から水が染み込み、内部の廃棄物を溶解してしまうため、廃棄物の封鎖性が低下してしまった等の問題が生じる。  However, the use of sulfur as a building material, paving material, or binder has many physical properties issues, especially the high incidence of cavities and cracks on the surface and inside, and the cavities and cracks when subjected to external pressure. It is easy to break along. This is a phenomenon derived from the physical properties of sulfur. When pure sulfur is cooled and solidified from a molten liquid state, there are three types of orthorhombic, monoclinic and amorphous sulfur, and their ratios change depending on the cooling conditions, and the crystal system changes depending on the elapsed time. Since it changes and shrinks, cavities and cracks are likely to occur. Sulfur transitions to orthorhombic sulfur, which is finally the most stable solid state at room temperature, but usually the orthorhombic crystals formed in the process of crystal transition have a large size and shrinkage. Since it exceeds 10%, the strong stress generated at the time of shrinkage causes cracks between the crystals, which lowers the mechanical strength or, in an extreme case, cracks. In addition, the presence of cracks impairs the water impermeability of sulfur, especially when used as a waste sealing binder, water permeates from the cracks on the surface and dissolves the internal waste. The problem of having fallen occurs.

従来、この硫黄の物性上の欠陥を改善する手法として、硫黄を不飽和炭化水素、主にシクロペンタジエンおよびその2量体であるジシクロペンタジエン又はその多量体の1種又は混合物である硫黄変性剤を溶融反応して変性硫黄を形成させることで、硫黄の結晶を抑え、柔軟性、可塑性をもたせる。特にジシクロペンタジエンは、安価で経済性に優れると共に、機械的強度等において良好な作用を有することが知られている。(特許文献4、特許文献5、特許文献6)
また、テトラハイドロインデン、ビニルトルエン、ジペンテン、その他オレフィンオリゴマーを変性剤として添加し硫黄の性状を改良して、舗装材、接着剤、シール材等に用いる例(特許文献7、特許文献8)も知られている。
Conventionally, as a technique for improving the defects in the physical properties of sulfur, sulfur is an unsaturated hydrocarbon, mainly cyclopentadiene and its dimer dicyclopentadiene, or one or a mixture of its multimers. By melt-reacting to form modified sulfur, sulfur crystals are suppressed, and flexibility and plasticity are provided. In particular, dicyclopentadiene is known to be inexpensive and excellent in economic efficiency and have a good effect on mechanical strength and the like. (Patent Document 4, Patent Document 5, Patent Document 6)
In addition, examples in which tetrahydroindene, vinyltoluene, dipentene, and other olefin oligomers are added as modifiers to improve the properties of sulfur and are used for paving materials, adhesives, sealing materials, etc. (Patent Document 7, Patent Document 8) are also available. Are known.

米国特許第4290816号明細書U.S. Pat. No. 4,290,816 特公昭55−49024号公報Japanese Patent Publication No. 55-49024 特公昭62−15274号公報Japanese Examined Patent Publication No. 62-15274 特開昭53−112922号公報Japanese Patent Laid-Open No. 53-112922 特公平2−28529号公報Japanese Patent Publication No. 2-28529 特開2003−277108公報JP 2003-277108 A 特公平2−25929号公報Japanese Patent Publication No. 25-25929 特開2002−60491公報JP 2002-60491 A

しかし、上記のジシクロペンタジエン又はテトラハイドロインデン、ビニルトルエン、ジペンテン等の硫黄変性剤と硫黄との反応は、一種の重合反応といわれている。この重合反応は、最初硫黄変性剤と硫黄とが反応し、その後、硫黄がラジカル連鎖反応により高分子化するような形で行う。従って、硫黄変性剤と硫黄との反応は、大きな発熱を伴って急激な温度上昇が生じ、且つ粘度の急上昇が生じるために反応が制御できず、急激に固化して成形できない状態になるという恐れがある。また、重合反応して得た変性硫黄は加熱重合変性反応時間が長くなるほど重合度が高くなり、それに伴って粘度が上昇する特性を有し、結合材として溶融状態で一定の粘度を維持しながら成型するのは困難である。他方、上記の硫黄変性剤はすべて石油系低分子の可燃性物質で、熱的に結合したり解離したりする性質を有し、揮発しやすく、引火性があり、保管設備、製造設備や製造工程に安全性の確保上の問題もある。  However, the reaction of sulfur modifiers such as dicyclopentadiene or tetrahydroindene, vinyltoluene, and dipentene with sulfur is a kind of polymerization reaction. This polymerization reaction is performed in such a manner that the sulfur modifier and sulfur first react and then the sulfur is polymerized by a radical chain reaction. Therefore, the reaction between the sulfur modifier and sulfur causes a rapid temperature increase with a large exotherm, and the viscosity increases rapidly, so that the reaction cannot be controlled, and may be solidified rapidly and cannot be molded. There is. In addition, the modified sulfur obtained by the polymerization reaction has a property that the degree of polymerization increases as the heat polymerization modification reaction time increases, and the viscosity increases accordingly, while maintaining a constant viscosity in the molten state as a binder. It is difficult to mold. On the other hand, all of the above sulfur modifiers are low molecular weight combustible materials, have the property of thermally bonding and dissociating, are easily volatile, flammable, storage facilities, manufacturing facilities and manufacturing There is also a problem in ensuring safety in the process.

本発明者は、前記の事情に鑑み鋭意研究した結果、硫黄にポリスルファイドポリマーを添加して相溶させることにより、変性硫黄と全く違うタイプの改質硫黄を作り出すことに成功した。本発明に使用される硫黄改質剤は高分子ポリマー物質で、常温安定性があり、揮発性と引火性がなく、製造工程には大きな発熱を伴って急激な温度上昇が生じる現象もなく、加熱反応時間の変動による改質硫黄粘度の変化もない。すなわち、従来の変性硫黄に比べ、この改質硫黄は強度、緻密度、耐衝撃性、柔軟性、可塑性等の物性が一層優れたうえ、変性硫黄に存した製造上の問題点をも解決することができる。  As a result of intensive studies in view of the above circumstances, the present inventor has succeeded in producing a modified sulfur of a type completely different from modified sulfur by adding a polysulfide polymer to sulfur and making them compatible. The sulfur modifier used in the present invention is a high molecular weight polymer material that is stable at room temperature, has no volatility and flammability, and there is no phenomenon in which a rapid temperature rise occurs with a large exotherm in the manufacturing process, There is no change in the modified sulfur viscosity due to fluctuations in the heating reaction time. In other words, compared to conventional modified sulfur, this modified sulfur has more excellent physical properties such as strength, density, impact resistance, flexibility, and plasticity, and also solves manufacturing problems associated with modified sulfur. be able to.

本発明に使用する硫黄改質剤は主鎖にジスルファイド結合を持ち、末端がチオール基であるポリスルファイドポリマーである。  The sulfur modifier used in the present invention is a polysulfide polymer having a disulfide bond in the main chain and a terminal being a thiol group.

本発明の改質硫黄は加熱で溶融した硫黄に上記の硫黄改質剤を添加し、硫黄改質剤を完全に溶解させるまで加熱しながら撹拌し続けることにより製造することができる。また、硫黄改質剤と硫黄とを加熱相溶させる際にその相溶を促進するために二酸化鉛、二酸化マンガン、過酸化カルシウム、過酸化亜鉛、過ホウ酸ナトリウム等の相溶促進剤を添加することにより、加熱相溶時間を短縮することができる。  The modified sulfur of the present invention can be produced by adding the above-described sulfur modifier to sulfur melted by heating and continuing stirring while heating until the sulfur modifier is completely dissolved. Addition of compatibility promoters such as lead dioxide, manganese dioxide, calcium peroxide, zinc peroxide, sodium perborate, etc. in order to promote the compatibility of sulfur modifier with sulfur when heated. By doing so, the heat-compatible time can be shortened.

本発明は、硫黄にポリスルファイドポリマーとなる硫黄改質剤を添加し、加熱相溶させることにより形成された改質硫黄は溶融状態から冷却固化する際に硫黄中に溶解分散しているポリスルファイドポリマーが硫黄結晶の成長を妨害し、一部の硫黄がアモルファス化され、結晶の間に充満していることにより、硫黄の固化収縮率が減少し、緻密な結晶体を形成することができる。また、固化後結晶系が変化して収縮が起きる過程に形成した亀裂はポリスルファイドポリマーの存在によりその伸びが抑えられ、微小のままに止まることにより、改質硫黄はその強度、可塑性の向上がはかられるものである。固化成型した改質硫黄は外部衝撃を受ける際に既存の亀裂の拡大又は新しい亀裂の形成が硫黄中に分散しているポリスルファイドポリマーにより阻まれることにより、大きな亀裂ができにくい。また、ポリスルファイドポリマーの存在により、改質硫黄は内部のせん断力が高くなっただけではなく、接着性も高くなり、充填骨材や廃棄物と結合が強固となり、固化収縮、結晶転移の過程において、又は衝撃を受けて亀裂が発生しても、骨材や内容物から硫黄が剥離される現象がほとんど起きない。従って、本発明の改質硫黄は硬度が高く、一定の可塑性があり、耐衝撃性に優れ、機械的強度、遮水性が良好で、土木.建設資材としての要求性能を十分満たすことができる。また、硫黄改質材としてのポリスルファイドポリマーは高分子物質で、沸点が高く、揮発性と引火性がなく、常温では非常に安定な物質で、製造工程には大きな発熱を伴って急激な温度上昇が生じる現象もないため、改質硫黄の製造設備や製造工程に安全性の確保もしやすい。  In the present invention, a modified sulfur formed by adding a sulfur modifier that becomes a polysulfide polymer to sulfur and dissolving it by heating is dissolved and dispersed in sulfur when cooled and solidified from a molten state. The sulfide polymer interferes with the growth of sulfur crystals, and some sulfur is amorphized and filled between the crystals, so that the solidification shrinkage of sulfur is reduced and a dense crystal can be formed. it can. In addition, cracks formed in the process of shrinkage due to changes in the crystal system after solidification are suppressed in elongation due to the presence of polysulfide polymer, and the modified sulfur has improved strength and plasticity by remaining small. Is something that can be removed. When the solidified and reformed sulfur is subjected to an external impact, it is difficult to form large cracks because the expansion of existing cracks or the formation of new cracks is hindered by the polysulfide polymer dispersed in the sulfur. In addition, due to the presence of polysulfide polymer, the modified sulfur not only has high internal shearing force, but also has high adhesion, strengthens the bond with the filled aggregate and waste, solidification shrinkage, crystal transition Even if a crack occurs in the process or under impact, the phenomenon that sulfur is peeled off from the aggregate and contents hardly occurs. Therefore, the modified sulfur of the present invention has high hardness, certain plasticity, excellent impact resistance, good mechanical strength, and good water barrier properties. The required performance as a construction material can be fully satisfied. Polysulfide polymer as a sulfur modifier is a high-molecular substance, has a high boiling point, is not volatile and flammable, is very stable at room temperature, and has a large exotherm in the manufacturing process. Since there is no phenomenon in which the temperature rises, it is easy to ensure safety in the modified sulfur production facility and production process.

以下、本発明を更に詳細に説明する。
本発明は、硫黄と主鎖にジスルファイド結合を持ち、末端がチオール基(−SH基)であるポリスルファイドポリマーからなる硫黄改質剤とを特定条件で溶融混合し、完全に相溶してから冷却することにより得ることができる。
Hereinafter, the present invention will be described in more detail.
The present invention melts and mixes sulfur and a sulfur modifier made of a polysulfide polymer having a disulfide bond in the main chain and a thiol group (-SH group) at the end under specific conditions. It can obtain by cooling from.

本発明に用いる硫黄は、通常の硫黄単体であり、例えば、天然硫黄、石油又は天然ガスの脱硫によって生成した硫黄が挙げられる。硫黄を120℃以上、好ましくは140〜160℃において加熱溶融した溶融硫黄を使用する。  Sulfur used in the present invention is ordinary sulfur, and examples thereof include natural sulfur, sulfur produced by petroleum or natural gas desulfurization. Molten sulfur obtained by heating and melting sulfur at 120 ° C. or higher, preferably 140 to 160 ° C. is used.

本発明に用いる硫黄改質剤は、下記の構造式に示されている主鎖にジスルファイド結合を持ち、末端がチオール基であるポリスルファイドポリマーである。
HS−(R−S−S)−R−SH
〔RはCからC1224までの直鎖又は分岐鎖アルキル基又は次の構造式
2x−O−C2x
又は
2x−O−C2y−O−C2x
で示すエーテル基、x及びyは1から3、nは1から70である。〕
なお、上記のポリスルファイドポリマーの分子量は大体500〜20000である。
The sulfur modifier used in the present invention is a polysulfide polymer having a disulfide bond in the main chain represented by the following structural formula and having a terminal thiol group.
HS- (RSS) n -R-SH
[R is a linear or branched alkyl group from C 2 H 4 to C 12 H 24, or the following structural formula C x H 2x —O—C x H 2x
Or C x H 2x -O-C y H 2y -O-C x H 2x
An ether group represented by: x and y are 1 to 3, and n is 1 to 70. ]
The molecular weight of the polysulfide polymer is about 500 to 20000.

本発明の硫黄改質剤としてのポリスルファイドポリマーのチオール基は硫黄と結合反応に関与し、硫黄との均一な相溶性を付与し、また、ポリスルファイド構造は硫黄の物性、特に結晶性、強度、可塑性、接着力等を向上させることにより、本発明の改質硫黄の優れた物性の発現に寄与していると考えられる。
なお、上記の硫黄改質剤は、作業の便利性及び安全性の観点から分子量が500から1万まで、融点が100℃以下で、分解温度が250℃以上を有するポリスルファイドポリマーであることが好ましい。
The thiol group of the polysulfide polymer as the sulfur modifier of the present invention participates in a binding reaction with sulfur, imparts uniform compatibility with sulfur, and the polysulfide structure has physical properties of sulfur, particularly crystallinity. It is considered that the improved physical properties of the modified sulfur of the present invention are contributed by improving the strength, plasticity, adhesive strength and the like.
The above sulfur modifier is a polysulfide polymer having a molecular weight of 500 to 10,000, a melting point of 100 ° C. or lower, and a decomposition temperature of 250 ° C. or higher from the viewpoint of convenience and safety of work. Is preferred.

本発明の硫黄改質剤としてのポリスルファイドポリマーは適当なジメルカプト化合物を重合反応により合成することにより得られる。例えば、1,2−ジメルカプトエタンを適当な触媒の存在下で重合させることにより、ポリエチレンスルファイドポリマーを合成することができる。
nHS−C−SH ―→ HS−(C−S−S)n−1−C−SH
〔nは10〜70である。〕
なお、この合成方法は有機化学上の公知手法である。
The polysulfide polymer as the sulfur modifier of the present invention can be obtained by synthesizing a suitable dimercapto compound by a polymerization reaction. For example, a polyethylene sulfide polymer can be synthesized by polymerizing 1,2-dimercaptoethane in the presence of an appropriate catalyst.
nHS-C 2 H 4 -SH - → HS- (C 2 H 4 -S-S) n-1 -C 2 H 4 -SH
[N is 10-70. ]
This synthesis method is a known method in organic chemistry.

また、本発明の硫黄改質剤としてのポリスルファイドポリマーは商業上入手することも可能である。例えば、日本国内では東レファインケミカル株式会社は「チオコールLP」の商品名で下記の構造式を有するポリスルファイドポリマーを販売している。
HS−(C−O−CH−O−C−S−S)−C−O−CH−O−C−SH
〔nは5〜50である。〕
本発明は主に東レファインケミカル株式会社の「チオコールLP」を硫黄改質剤として使用する。
The polysulfide polymer as the sulfur modifier of the present invention can also be obtained commercially. For example, in Japan, Toray Fine Chemical Co., Ltd. sells a polysulfide polymer having the following structural formula under the trade name “Thicol LP”.
HS— (C 2 H 4 —O—CH 2 —O—C 2 H 4 —S—S) n —C 2 H 4 —O—CH 2 —O—C 2 H 4 —SH
[N is 5-50. ]
The present invention mainly uses “Thiocol LP” manufactured by Toray Fine Chemical Co., Ltd. as a sulfur modifier.

改質硫黄が溶融状態から冷却固化する際に起きる結晶系の変化は、主に硫黄と硫黄改質剤の種類および配合割合に関係する。硫黄改質剤の種類が改質硫黄に及ぼす影響としては、概してポリスルファイドポリマーの主鎖にS−Sと結合しているRが直鎖又は分岐鎖アルキル基で構成した場合にできた改質硫黄はその硬度、せん断力が高いが、柔軟性や接着力がやや劣る。Rがエーテル基で構成した場合にできた改質硫黄は、逆に柔軟性や接着力が高く、硬度やせん断力がやや劣る。また、硫黄改質剤の分子量が小さい場合に硫黄と相溶しやすいため、製造時間の短縮ができるが、できた改質硫黄のせん断力が低い。硫黄改質剤の分子量が高い場合にその逆である。  The change in the crystal system that occurs when the modified sulfur is cooled and solidified from the molten state is mainly related to the types and blending ratios of sulfur and the sulfur modifier. The effect of the type of sulfur modifier on the modified sulfur is generally that the modification made when R bonded to SS in the main chain of the polysulfide polymer is composed of a linear or branched alkyl group. Sulfur has high hardness and high shearing force, but is slightly inferior in flexibility and adhesive strength. The modified sulfur produced when R is composed of an ether group, on the contrary, has high flexibility and adhesive strength, and is somewhat inferior in hardness and shearing force. In addition, when the molecular weight of the sulfur modifier is small, it is easy to be compatible with sulfur, so that the production time can be shortened, but the shear force of the produced modified sulfur is low. The reverse is true when the molecular weight of the sulfur modifier is high.

また、硫黄改質剤の配合割合については、通常は硫黄改質剤の配合割合が増えるにつれ、得られた改質硫黄の結晶のサイズが小さくなり、また、アモルファス態硫黄も増える。硫黄100重量部に対して硫黄改質剤が0.5重量部以下では、強度、可塑性等の硫黄物性の改善効果がほとんどみられず、硫黄改質剤が30重量部を超えた場合には、得られた改質硫黄が冷却固化する際に硫黄結晶の形成が完全に抑えられ、すべてアモルファス態となり、ゴムのような柔軟性を呈する。なお、硫黄改質剤の配合割合が増えると、形成した改質硫黄の溶融粘度が高くなり,接着力も強くなるが,固化後の硬度,機械的強度が落ちる。通常の場合、硫黄100部に対する硫黄改質剤の配合割合は、0.5〜30部が好ましく、1〜15部がさらに好ましく、1〜10部が特に好ましい。
従って、硫黄に添加される硫黄改質剤の種類及び配合割合を適切に選択することにより、土木用、建設用等の資材として所要の硬度,機械的強度,可塑性、耐衝撃性、接着力、遮水性を満たす改質硫黄を得ることができる。
In addition, regarding the blending ratio of the sulfur modifier, normally, as the blending ratio of the sulfur modifier increases, the size of the obtained modified sulfur crystals decreases, and amorphous sulfur also increases. When the sulfur modifier is 0.5 parts by weight or less with respect to 100 parts by weight of sulfur, the effect of improving the physical properties of sulfur such as strength and plasticity is hardly seen, and when the sulfur modifier exceeds 30 parts by weight When the obtained modified sulfur is cooled and solidified, the formation of sulfur crystals is completely suppressed, all become amorphous and exhibit rubber-like flexibility. In addition, when the compounding ratio of the sulfur modifier increases, the melt viscosity of the formed modified sulfur increases and the adhesive strength also increases, but the hardness and mechanical strength after solidification decrease. Usually, the blending ratio of the sulfur modifier with respect to 100 parts of sulfur is preferably 0.5 to 30 parts, more preferably 1 to 15 parts, and particularly preferably 1 to 10 parts.
Therefore, by appropriately selecting the type and blending ratio of sulfur modifiers added to sulfur, the required hardness, mechanical strength, plasticity, impact resistance, adhesive strength as materials for civil engineering, construction, etc. It is possible to obtain modified sulfur satisfying the water shielding property.

また、硫黄と硫黄改質剤との相溶は加熱温度と時間に強く依存する。自然界によく存在している斜方晶系硫黄は112.8℃で溶融するが、加熱温度が120℃以下の場合には、硫黄と硫黄改質剤を完全に相溶させるまでに数十時間かかる。加熱温度が160℃を超えた場合には、溶融硫黄の粘度が急速に高くなり、硫黄改質剤との相溶速度が増えないのに撹拌が大変になり、作業効率が落ちる。また、加熱温度が硫黄改質剤の分解温度を超えた場合には、硫黄改質剤が分解され、硫黄の改質効果が得られない。したがって、改質硫黄の製造工程において、硫黄と硫黄改質剤を加熱相溶させる際の温度は、120〜160℃が好ましく、140〜160℃が特に好ましい。  In addition, the compatibility between sulfur and the sulfur modifier strongly depends on the heating temperature and time. Orthorhombic sulfur, which is often present in nature, melts at 112.8 ° C, but when the heating temperature is 120 ° C or lower, it takes several tens of hours to completely dissolve sulfur and the sulfur modifier. Take it. When the heating temperature exceeds 160 ° C., the viscosity of the molten sulfur increases rapidly, and although the compatibility with the sulfur modifier does not increase, stirring becomes difficult and work efficiency decreases. In addition, when the heating temperature exceeds the decomposition temperature of the sulfur modifier, the sulfur modifier is decomposed and the sulfur reforming effect cannot be obtained. Therefore, in the process for producing modified sulfur, the temperature at which sulfur and the sulfur modifier are heated and compatible is preferably 120 to 160 ° C, particularly preferably 140 to 160 ° C.

改質硫黄の製造工程において、分子量の高い硫黄改質剤を使う場合又は硫黄改質剤の配合割合が多い場合には、硫黄と硫黄改質剤両者を完全に相溶させるには時間がかかる。この場合には、硫黄と硫黄改質剤との相溶を促進するために相溶促進剤を添加して加熱相溶時間を短縮することができる。
二酸化鉛、二酸化マンガン、過酸化カルシウム、過酸化亜鉛、過ホウ酸ナトリウム等を相溶促進剤として使うことができる。これらの相溶促進剤は一種の酸化剤で、ポリスルファイドポリマーのチオール基(−SH基)を酸化させ、硫黄分子とSS結合を形成することにより、硫黄と硫黄改質剤両者の相溶化を促進する。また、ポリスルファイドポリマーの一部が相溶促進剤により、SS結合を通じて、より高分子化され、改質硫黄の物性を向上させることも考えられる。なお、相溶促進剤の添加量は硫黄改質剤100部に当たり2〜10部である。
When using a sulfur modifier with a high molecular weight or a high proportion of sulfur modifier in the modified sulfur production process, it takes time to completely dissolve both sulfur and the sulfur modifier. . In this case, in order to promote the compatibility between sulfur and the sulfur modifier, a compatibility accelerator can be added to shorten the heating compatibility time.
Lead dioxide, manganese dioxide, calcium peroxide, zinc peroxide, sodium perborate and the like can be used as a compatibility accelerator. These compatibilizers are a kind of oxidizer, which oxidizes thiol groups (-SH groups) of polysulfide polymers to form sulfur bonds with sulfur molecules, thereby compatibilizing both sulfur and sulfur modifiers. Promote. Moreover, it is also conceivable that a part of the polysulfide polymer is polymerized by the compatibility accelerator through SS bonding to improve the physical properties of the modified sulfur. The addition amount of the compatibility accelerator is 2 to 10 parts per 100 parts of the sulfur modifier.

つぎに本発明を実施例に基づき更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例中、部とあるのは重量部を意味する。  Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, “parts” means parts by weight.

150℃に溶融している硫黄99部に「チオコールLP33」(東レファインケミカル株式会社)1部を添加し、150℃に維持しながら5時間攪拌し、改質硫黄を形成させる。この改質硫黄は150℃での粘度が20ミリパスカル・秒である。なお、「チオコールLP33」の平均分子量は1000である。  1 part of “Thiocol LP33” (Toray Fine Chemical Co., Ltd.) is added to 99 parts of sulfur melted at 150 ° C. and stirred for 5 hours while maintaining at 150 ° C. to form modified sulfur. This modified sulfur has a viscosity at 150 ° C. of 20 millipascal-seconds. The average molecular weight of “Thiocol LP33” is 1000.

150℃に溶融している硫黄95部に「チオコールLP33」(東レファインケミカル株式会社)5部を添加し、150℃に維持しながら8時間攪拌し、改質硫黄を形成させる。この改質硫黄は150℃での粘度が85ミリパスカル・秒である。  To 95 parts of sulfur melted at 150 ° C., 5 parts of “Thiocol LP33” (Toray Fine Chemical Co., Ltd.) is added and stirred for 8 hours while maintaining at 150 ° C. to form modified sulfur. This modified sulfur has a viscosity at 150 ° C. of 85 millipascal-seconds.

150℃に溶融している硫黄90部に「チオコールLP32」(東レファインケミカル株式会社)10部を添加し、150℃に維持しながら10時間攪拌し続け、改質硫黄を形成させる。この改質硫黄は150℃での粘度が540ミリパスカル・秒である。なお、「チオコールLP32」の平均分子量は4000である。  10 parts of “Thiocol LP32” (Toray Fine Chemical Co., Ltd.) is added to 90 parts of sulfur melted at 150 ° C., and stirring is continued for 10 hours while maintaining the temperature at 150 ° C. to form modified sulfur. This modified sulfur has a viscosity at 150 ° C. of 540 mPa · s. The average molecular weight of “Thiocol LP32” is 4000.

150℃に溶融している硫黄90部に「チオコールLP32」(東レファインケミカル株式会社)10部及び二酸化鉛1部を添加し、150℃に維持しながら6時間攪拌し、改質硫黄を形成させる。この改質硫黄は150℃での粘度が560ミリパスカル・秒である。  To 90 parts of sulfur melted at 150 ° C., 10 parts of “Thiocol LP32” (Toray Fine Chemical Co., Ltd.) and 1 part of lead dioxide are added and stirred for 6 hours while maintaining at 150 ° C. to form modified sulfur. This modified sulfur has a viscosity at 150 ° C. of 560 millipascal-seconds.

比較例Comparative example

硫黄を150℃に溶融し、その際の粘度が9ミリパスカル・秒である。  Sulfur is melted at 150 ° C., and the viscosity at that time is 9 millipascal-seconds.

上記実施例1〜4の改質硫黄および比較例の硫黄について、硫黄改質前後の物性変化の指標として圧縮硬度、耐衝撃強度、可撓性を測定した。
圧縮硬度試験とは実施例1〜4の改質硫黄および比較例の硫黄を150℃溶融状態でノズルから水の入った水槽(水温25℃)に滴下させ直径2mm〜3mmの球状硫黄粒子を作製し、固化後硫黄粒子を取り出して25℃室温に7日置き、硫黄の結晶系が完全に安定してから任意で20粒を選び出し、木屋式硬度計を使用して、球状硫黄粒子が割れるまで加えた圧力(kg)を測定したものである。
For the modified sulfur of Examples 1 to 4 and the sulfur of the comparative example, compression hardness, impact strength, and flexibility were measured as indicators of changes in physical properties before and after the sulfur modification.
The compression hardness test means that the modified sulfur of Examples 1 to 4 and the sulfur of the comparative example are dripped into a water tank (water temperature 25 ° C.) from a nozzle in a molten state at 150 ° C. to produce spherical sulfur particles having a diameter of 2 mm to 3 mm. After solidifying, the sulfur particles are taken out and placed at 25 ° C. for 7 days. After the sulfur crystal system is completely stabilized, 20 particles are arbitrarily selected until the spherical sulfur particles are broken using a Kiyama hardness tester. The applied pressure (kg) is measured.

耐衝撃強度試験とは実施例1〜4の改質硫黄および比較例の硫黄を溶融状態で金型に流し込み、直径35mm、厚さ3mmの硫黄円板試料をそれぞれ10枚作製し、固化後25℃室温に7日置き、硫黄の結晶系が完全に安定してから円板試料を水平のステンレス製の台に置き、20g重の鋼球を高さ1m又は2mから垂直に自由落下させ、円板試料が鋼球を当てられた後に割れるか否かを観察するものである。  In the impact strength test, the modified sulfur of Examples 1 to 4 and the sulfur of the comparative example were poured into a mold in a molten state to produce 10 sulfur disk samples each having a diameter of 35 mm and a thickness of 3 mm. Place it at room temperature for 7 days, and after the sulfur crystal system is completely stabilized, place the disk sample on a horizontal stainless steel table and let the 20g heavy steel ball fall freely vertically from 1m or 2m in height. It is observed whether the plate sample is cracked after being hit with a steel ball.

可撓性試験とは実施例1〜4の改質硫黄および比較例の硫黄を溶融状態で金型に流し込み、長さ200mm、幅20mm、厚さ3mmの板状試料をそれぞれ10枚作製し、固化後25℃室温に7日置き、硫黄の結晶系が完全に安定してからその板試料を水平状態で置き、片端を固定させ、もう一方の端にゆっくり重量を加え、板試料が折れるまで水平から端の曲がった距離を変位量として計測するものである。  With the flexibility test, the modified sulfur of Examples 1 to 4 and the sulfur of the comparative example were poured into a mold in a molten state to produce 10 plate samples each having a length of 200 mm, a width of 20 mm, and a thickness of 3 mm. After solidification, place at 25 ° C for 7 days at room temperature, and after the sulfur crystal system is completely stabilized, place the plate sample in a horizontal state, fix one end, slowly add weight to the other end, until the plate sample breaks The distance from the horizontal to the end is measured as the amount of displacement.

上記の圧縮硬度試験、耐衝撃強度試験、可撓性試験の結果を表1に示す。なお、表に示されている圧縮硬度、可撓性の変位量は測定結果の平均値である。

Figure 2008144122
Table 1 shows the results of the compression hardness test, impact strength test, and flexibility test. The compressive hardness and flexible displacement shown in the table are average values of the measurement results.
Figure 2008144122

改質硫黄粒子の圧縮による崩壊に必要な圧力については、比較例が0.5kgに対して、実施例1が2.5kg、実施例2,3,4が3kgを超え、比較例より5〜7倍も高くなる。これは改質硫黄が亀裂の少ない緻密な結晶体を形成したことにより、圧縮硬度が顕著に向上したことを示す。  Regarding the pressure required for the collapse of the modified sulfur particles due to compression, the comparative example is 0.5 kg, the example 1 is 2.5 kg, the examples 2, 3, and 4 are more than 3 kg. 7 times higher. This indicates that the compression hardness is remarkably improved by the formation of a dense crystal body with few cracks by the modified sulfur.

また、耐衝撃強度については、鋼球の落下距離が1mの場合、比較例ではすべての試料が割れたのに対して、実施例1、2,3,4では試料が全く割れなかった。鋼球の落下距離が2mになっても、実施例1ではすべての試料が割れたが、実施例2,3,4では全く割れなかった。これは改質硫黄に溶解分散しているポリスルファイドポリマーが衝撃を受けた際に亀裂の形成と拡大を防いだことにより、その強度が高くなったことを示す。  As for impact strength, when the drop distance of the steel ball was 1 m, all the samples were cracked in the comparative example, whereas in Examples 1, 2, 3 and 4, the samples were not cracked at all. Even when the drop distance of the steel ball was 2 m, all the samples were cracked in Example 1, but were not cracked in Examples 2, 3, and 4 at all. This indicates that the strength of the polysulfide polymer dissolved and dispersed in the modified sulfur was increased by preventing the formation and expansion of cracks upon impact.

可撓性については、比較例では硫黄板試料が折れるまでの変位量がただの2mmしかないのに対して、改質硫黄は実施例1では5mmで、実施例2,3,4では優に10mmを超えた。なお、変位量は添加された硫黄改質剤の量が多いほど大きくなり、表1には示していないが、硫黄70部に硫黄改質剤30部を添加した改質硫黄はゴムのような柔軟性を有し、簡単に折れない。これは改質硫黄に溶解分散しているポリスルファイドポリマーが硫黄に可塑性、柔軟性を大きく付与していることを示唆した。  Regarding the flexibility, in the comparative example, the displacement amount until the sulfur plate sample is broken is only 2 mm, whereas the modified sulfur is 5 mm in Example 1 and is excellent in Examples 2, 3 and 4. It exceeded 10 mm. The amount of displacement increases as the amount of the added sulfur modifier increases. Although not shown in Table 1, modified sulfur obtained by adding 30 parts of sulfur modifier to 70 parts of sulfur is like rubber. It is flexible and cannot be easily folded. This suggested that the polysulfide polymer dissolved and dispersed in the modified sulfur greatly imparted plasticity and flexibility to the sulfur.

本発明の改質硫黄は優れた強度、緻密度、耐衝撃性、柔軟性、可塑性、接着性、耐腐食性等の物性を有し、プラスチック、アスファルト又はセメントの代用品として道路舗装材、建築材料用結合材、接着剤、結合シール材、耐水シール材、コーティング材等広範な用途に使用することができる。  The modified sulfur of the present invention has excellent strength, density, impact resistance, flexibility, plasticity, adhesiveness, corrosion resistance and other physical properties, and is used as a road pavement and construction material as a substitute for plastic, asphalt or cement. It can be used for a wide range of applications such as a bonding material for materials, an adhesive, a bonding seal material, a water-resistant seal material, and a coating material.

Claims (6)

硫黄とポリスルファイドポリマーからなる硫黄改質剤とを完全に相溶させることにより得られた改質硫黄。  Modified sulfur obtained by completely compatibilizing sulfur and a sulfur modifier comprising a polysulfide polymer. 請求項1に記載されている硫黄改質剤は下記の構造式に示されている主鎖にジスルファイド結合を持ち、末端がチオール基であるポリスルファイドポリマーである。
HS−(R−S−S)−R−SH
〔RはCからC1224までの直鎖又は分岐鎖アルキル基又は次の構造式
2x−O−C2x
又は
2x−O−C2y−O−C2x
で示すエーテル基、x及びyは1から3、nは1から50である。〕
The sulfur modifier described in claim 1 is a polysulfide polymer having a disulfide bond in the main chain represented by the following structural formula and having a terminal thiol group.
HS- (RSS) n -R-SH
[R is a linear or branched alkyl group from C 2 H 4 to C 12 H 24, or the following structural formula C x H 2x —O—C x H 2x
Or C x H 2x -O-C y H 2y -O-C x H 2x
And x and y are 1 to 3, and n is 1 to 50. ]
0.5〜30重量部の請求項2に記載されている硫黄改質剤を、99.5〜70重量部の硫黄と加熱相溶させたことにより得られた請求項1に記載されている改質硫黄およびその製造方法。  It is described in Claim 1 obtained by heat-mixing 0.5-30 weight part of sulfur modifiers described in Claim 2 with 99.5-70 weight part of sulfur. Modified sulfur and method for producing the same. 硫黄改質剤と硫黄の加熱相溶温度は120℃〜160℃の範囲である請求項3に記載されている改質硫黄の製造方法。  The method for producing reformed sulfur according to claim 3, wherein the heating compatibility temperature of the sulfur modifier and sulfur is in the range of 120C to 160C. 硫黄改質剤と硫黄とを加熱相溶させる際にその相溶を促進するために相溶促進剤を添加することができる請求項3に記載されている改質硫黄の製造方法。  The method for producing modified sulfur according to claim 3, wherein a compatibility accelerator can be added in order to promote the compatibility of the sulfur modifier and sulfur when heated. 請求項5に記載されている相溶促進剤は二酸化鉛、二酸化マンガン、過酸化カルシウム、過酸化亜鉛、過ホウ酸ナトリウムである。  The compatibility promoter described in claim 5 is lead dioxide, manganese dioxide, calcium peroxide, zinc peroxide, sodium perborate.
JP2006357111A 2006-12-08 2006-12-08 Modified sulfur and its manufacturing method Pending JP2008144122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006357111A JP2008144122A (en) 2006-12-08 2006-12-08 Modified sulfur and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006357111A JP2008144122A (en) 2006-12-08 2006-12-08 Modified sulfur and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008144122A true JP2008144122A (en) 2008-06-26

Family

ID=39604648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006357111A Pending JP2008144122A (en) 2006-12-08 2006-12-08 Modified sulfur and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008144122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395038B1 (en) * 2012-03-07 2014-05-16 주식회사 국일건설엔지니어링 Hydraulic Sulfur Polymer Cement and Concrete
CN108002350A (en) * 2017-11-20 2018-05-08 浙江海洋大学 A kind of composite extractant and the method with extractant separation and recovery sulphur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395038B1 (en) * 2012-03-07 2014-05-16 주식회사 국일건설엔지니어링 Hydraulic Sulfur Polymer Cement and Concrete
CN108002350A (en) * 2017-11-20 2018-05-08 浙江海洋大学 A kind of composite extractant and the method with extractant separation and recovery sulphur
CN108002350B (en) * 2017-11-20 2020-11-06 浙江海洋大学 Composite extractant and method for separating and recovering sulfur by using same

Similar Documents

Publication Publication Date Title
US10994995B2 (en) Modified sulfur, method for preparing same, apparatus for preparing same, and use thereof
KR100911659B1 (en) Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
US4026719A (en) Sulfur composition with mica
KR101289314B1 (en) Modified Sulfur Binder which is possible mixing workability because of maintained a liquid form from normal temperature and the fabrication method thereof, Hydraulic Modified Sulfur Materials Composition and the fabrication method thereof containing the Modified Sulfur Binder
US4311826A (en) Modified sulfur cement
US10150870B2 (en) High-grade mastic asphalt composition and paving construction method using the same
US4391969A (en) Modified sulfur cement
KR102345461B1 (en) Polymer guss asphalt concrete composition having excellent crack-resistance and plastic deformation resistance and pavement method using the same
KR100632609B1 (en) Modified Sulfur Binder and Method for Preparing the Same
KR101100254B1 (en) Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
JPS593954B2 (en) Sulfur concrete and mortar
Mohamed et al. Sulfur based hazardous waste solidification
KR101669448B1 (en) Sprayed low viscosity and non-hardening waterproof agent comprising crosslinking small-sized EPDM and manufacturing method thereof
KR20050026021A (en) Acid-resistant sulfur material and method for application of acid-resistant sulfur material
KR102306933B1 (en) Liquid-type composition for water-proofing of bridge and method using it
RU2519464C2 (en) Method of obtaining stable sulphur-binding composition and composition obtained thereof
JP2008144122A (en) Modified sulfur and its manufacturing method
KR101321491B1 (en) Hydraulic sulfur polymer cement and concrete
KR20120096385A (en) Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
JP4299817B2 (en) Composition and surface protective material using the same
JP2007290925A (en) Civil engineering/construction material or structure
KR20120081957A (en) Modified sulfur binder which is possible mixing workability because of maintained a liquid form from normal temperature and the fabrication method thereof, hydraulic modified sulfur materials composition and the fabrication method thereof containing the modified sulfur binder
KR20110052556A (en) Modified sulfur binder and the fabrication method thereof, hydraulic modified sulfur material composition and the fabrication method thereof or combustible modified sulfur material composition and the fabrication method thereof containing the modified sulfur binder
CN103221456B (en) Composite sulfur polymer
ELsawy et al. Improvement performance of soft asphalt for coating applications