JP2008143316A - Power output device, control method and vehicle - Google Patents

Power output device, control method and vehicle Download PDF

Info

Publication number
JP2008143316A
JP2008143316A JP2006331929A JP2006331929A JP2008143316A JP 2008143316 A JP2008143316 A JP 2008143316A JP 2006331929 A JP2006331929 A JP 2006331929A JP 2006331929 A JP2006331929 A JP 2006331929A JP 2008143316 A JP2008143316 A JP 2008143316A
Authority
JP
Japan
Prior art keywords
rotational speed
generator
drive
torque
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006331929A
Other languages
Japanese (ja)
Inventor
Noritake Mitsuya
典丈 光谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006331929A priority Critical patent/JP2008143316A/en
Priority to PCT/JP2007/065594 priority patent/WO2008068930A1/en
Publication of JP2008143316A publication Critical patent/JP2008143316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To suppress excessive rotation of an internal combustion engine even in the event of an abnormality of driving system equipment such as demagnetization of a generator or insufficient boosting of a boosting converter. <P>SOLUTION: When rotating speed difference ΔMn1 as an absolute value of difference between target rotating speed Nm1* and rotating speed Nm1 of a motor MG1, and rotating speed difference ΔNe as an absolute value of difference between target rotating speed Ne* and rotating speed Ne of an engine, are thresholds Nref1 and Nref2 or more, respectively, in a steady drive control state, the allowable maximum torque Telim is reduced by a predetermined torque T (S210-S24), and used for setting the target rotating speed Ne* and target torque Te* of the engine (S110-S150). Excessive rotation of the engine is thereby suppressed when slight abnormality is caused in the driving system equipment or the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、動力出力装置およびその制御方法並びに車両に関し、詳しくは、駆動軸に動力を出力する動力出力装置およびその制御方法並びにこうした動力出力装置を搭載する車両に関する。   The present invention relates to a power output device, a control method thereof, and a vehicle, and more particularly to a power output device that outputs power to a drive shaft, a control method thereof, and a vehicle equipped with such a power output device.

従来、この種の車両としては共線図上で第1モータジェネレータ、エンジン、出力ギヤ、第2モータジェネレータの回転速度順になるように連結されたラビニョウ型複合遊星歯車列と、共線図上において剛体レバーのバランス式が成立するように、各駆動源の回転数とトルクを制御するハイブリッドシステムにおいて、第1モータジェネレータのトルクT1と第2モータジェネレータのトルクT2と推定されるエンジンのトルクTeとを用いたタイヤ出力回りのレバー回転方向のトルクバランス式{(α+1)T1+Te=β・T2}が許容誤差範囲内で成立しないと判断されたときにモータジェネレータの減磁による異常など駆動源がフェイルであると検知するものが提案されている(例えば、特許文献1参照)。この車両では、これにより、駆動源であるエンジンと第1モータジェネレータと第2モータジェネレータのうち、少なくとも1つ以上の駆動源が出力異常であるときに確実に駆動源異常を検知することができる、としている。
特開2004−159393号公報
Conventionally, this type of vehicle includes a Ravigneaux-type compound planetary gear train connected in order of the rotational speeds of the first motor generator, the engine, the output gear, and the second motor generator on the alignment chart. In a hybrid system that controls the rotational speed and torque of each drive source so that the balance formula of the rigid lever is established, the torque T1 of the first motor generator, the torque T2 of the second motor generator, and the estimated engine torque Te When it is determined that the torque balance equation {(α + 1) T1 + Te = β · T2} in the lever rotation direction around the tire output using the motor does not hold within the allowable error range, the drive source fails such as an abnormality due to demagnetization of the motor generator What detects that it is is proposed (for example, refer patent document 1). In this vehicle, this makes it possible to reliably detect a drive source abnormality when at least one of the drive source, the first motor generator, and the second motor generator has an output abnormality. , And.
JP 2004-159393 A

しかしながら、上述の車両では、許容誤差によってはエンジンが過回転する場合が生じる。上述のトルクバランス式は、第1モータジェネレータのトルクT1と第2モータジェネレータのトルクT2と推定されるエンジンのトルクTeによって表わされ、その回転数は考慮されないため、ラビニョウ型複合遊星歯車列の各回転要素の回転数によってはエンジンの上限回転数付近になる場合があり、そのときに許容誤差範囲内となってもエンジンが上限回転数を超えて回転してしまう場合が生じる。また、モータジェネレータへの電力供給を昇圧コンバータを用いて行なっている場合には、昇圧コンバータの昇圧不足によってもエンジンが上限回転数を超えて回転してしまう場合がある。   However, in the above-described vehicle, the engine may overspeed depending on the allowable error. The torque balance equation described above is expressed by the estimated engine torque Te and the torque T1 of the first motor generator and the torque T2 of the second motor generator, and the rotational speed thereof is not taken into consideration, so that the Ravigneaux type compound planetary gear train Depending on the rotational speed of each rotating element, the engine speed may be near the upper limit speed of the engine, and at that time, the engine may rotate beyond the upper limit speed even within the allowable error range. In addition, when power is supplied to the motor generator using the boost converter, the engine may exceed the upper limit rotational speed even if the boost converter is not boosted sufficiently.

本発明の動力出力装置およびその制御方法並びに車両は、発電機の減磁や昇圧コンバータの昇圧不足などの駆動系機器に異常が生じても内燃機関が過回転するのを抑制することを目的の一つとする。また、本発明の動力出力装置およびその制御方法並びに車両は、発電機の減磁や昇圧コンバータの昇圧不足などの駆動系機器の異常をより適正に判定することを目的の一つとする。   The power output device, the control method thereof, and the vehicle according to the present invention are intended to suppress over-rotation of the internal combustion engine even if an abnormality occurs in a drive system device such as demagnetization of a generator or insufficient boosting of a boost converter. One. Another object of the power output device, the control method thereof, and the vehicle of the present invention is to more appropriately determine an abnormality in the drive system such as demagnetization of the generator and insufficient boosting of the boost converter.

本発明の動力出力装置およびその制御方法並びに車両は、上述の目的の少なくとも一部を達成するために以下の手段を採った。   The power output device, the control method thereof, and the vehicle of the present invention employ the following means in order to achieve at least a part of the above-described object.

本発明の動力出力装置は、
駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
動力を入出力可能な発電機と、
前記内燃機関の出力軸と前記駆動軸と前記発電機の回転軸との3軸に接続され、該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、
所定の駆動要求に基づいて許容最大トルクの範囲内で前記内燃機関を運転すべき運転指令を設定する運転指令設定手段と、
前記設定された運転指令で前記内燃機関が運転されるよう前記発電機を駆動すべき駆動指令を設定する駆動指令設定手段と、
前記発電機の駆動状態を検出する駆動状態検出手段と、
前記検出された発電機の駆動状態と前記設定された駆動指令とに基づいて前記許容最大トルクを更新する許容最大トルク更新手段と、
前記設定された駆動指令を用いて前記発電機を駆動制御すると共に前記設定された運転指令を用いて前記内燃機関を運転制御する制御手段と、
を備えることを要旨とする。
The power output apparatus of the present invention is
A power output device that outputs power to a drive shaft,
An internal combustion engine;
A generator capable of inputting and outputting power;
It is connected to three shafts of the output shaft of the internal combustion engine, the drive shaft, and the rotating shaft of the generator, and power is supplied to the remaining shaft based on power input / output to / from any two of the three shafts. 3-axis power input / output means for input / output;
An operation command setting means for setting an operation command for operating the internal combustion engine within a range of allowable maximum torque based on a predetermined drive request;
Drive command setting means for setting a drive command to drive the generator so that the internal combustion engine is operated with the set operation command;
Driving state detecting means for detecting the driving state of the generator;
An allowable maximum torque updating means for updating the allowable maximum torque based on the detected drive state of the generator and the set drive command;
Control means for driving and controlling the generator using the set driving command and for controlling the operation of the internal combustion engine using the set driving command;
It is a summary to provide.

この本発明の動力出力装置では、所定の駆動要求に基づいて許容最大トルクの範囲内で内燃機関を運転すべき運転指令を設定すると共に内燃機関の運転指令で内燃機関が運転されるよう発電機を駆動すべき駆動指令を設定し、設定した駆動指令を用いて発電機を駆動制御すると共に設定した運転指令を用いて内燃機関を運転制御する。そして、発電機の駆動状態と発電機の駆動指令とに基づいて許容最大トルクを更新する。即ち、発電機の駆動状態と発電機の駆動指令とに基づいて更新された許容最大トルクの範囲内で内燃機関の運転指令を設定すると共に発電機の駆動指令を設定し、これらを用いて発電機を駆動制御すると共に内燃機関を運転制御するのである。このように、発電機の駆動状態に応じて許容最大トルクを更新することにより、発電機の駆動状態に応じて内燃機関と発電機とを制御することができる。この結果、発電機の減磁などの駆動系機器に異常が生じても内燃機関が過回転するのを抑制することができる。なお、発電機に対して昇圧コンバータを用いている場合には昇圧コンバータの昇圧不足に起因する異常にも同様に対処することができる。   In the power output apparatus of the present invention, a generator is set so that an operation command for operating the internal combustion engine within the allowable maximum torque range is set based on a predetermined drive request and the internal combustion engine is operated by the operation command of the internal combustion engine. A drive command to drive the engine is set, the generator is driven using the set drive command, and the internal combustion engine is controlled using the set operation command. Then, the allowable maximum torque is updated based on the generator drive state and the generator drive command. That is, the operation command for the internal combustion engine is set within the range of the maximum allowable torque updated based on the drive state of the generator and the drive command for the generator, and the drive command for the generator is set, and these are used to generate power. The engine is driven and controlled, and the internal combustion engine is controlled. Thus, by updating the allowable maximum torque according to the driving state of the generator, the internal combustion engine and the generator can be controlled according to the driving state of the generator. As a result, it is possible to prevent the internal combustion engine from over-rotating even if an abnormality occurs in the drive system equipment such as demagnetization of the generator. When a boost converter is used for the generator, an abnormality caused by insufficient boost of the boost converter can be dealt with similarly.

こうした本発明の動力出力装置において、前記運転指令は目標回転数と目標トルクとからなる目標運転ポイントであり、前記駆動指令は前記内燃機関を前記目標運転ポイントで運転するための前記発電機の目標回転数を含む指令であり、前記駆動状態検出手段は前記発電機の回転数を検出する手段であり、前記許容最大トルク更新手段は前記発電機の回転数と前記駆動指令における前記発電機の目標回転数との回転数差に基づいて前記許容最大トルクを更新する手段である、ものとすることもできる。この場合、前記許容最大トルク更新手段は、前記回転数差が所定回転数差以上のときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する手段であるものとすることもできる。こうすれば、内燃機関の回転数が過大となるのをより確実に抑止することができる。   In such a power output apparatus of the present invention, the operation command is a target operation point composed of a target rotational speed and a target torque, and the drive command is a target of the generator for operating the internal combustion engine at the target operation point. The drive state detecting means is means for detecting the rotational speed of the generator, and the allowable maximum torque update means is the rotational speed of the generator and a target of the generator in the drive command. It can also be a means for updating the allowable maximum torque based on the rotational speed difference from the rotational speed. In this case, the allowable maximum torque updating means may be means for updating the allowable maximum torque so that the allowable maximum torque becomes small when the rotational speed difference is equal to or larger than a predetermined rotational speed difference. In this way, it is possible to more reliably prevent the engine speed of the internal combustion engine from becoming excessive.

また、本発明の動力出力装置において、前記内燃機関の運転状態を検出する運転状態検出手段を備え、前記許容最大トルク更新手段は、前記検出された内燃機関の運転状態と前記設定された運転指令とに基づいて前記許容最大トルクを更新する手段である、ものとすることもできる。こうすれば、内燃機関の運転状態に応じて許容最大トルクを更新するから、より確実に内燃機関が過回転するのを抑制することができる。   The power output apparatus of the present invention further includes an operating state detecting unit that detects an operating state of the internal combustion engine, wherein the allowable maximum torque update unit includes the detected operating state of the internal combustion engine and the set operation command. The maximum allowable torque may be updated based on the above. In this way, since the allowable maximum torque is updated according to the operating state of the internal combustion engine, it is possible to more reliably prevent the internal combustion engine from over-rotating.

発電機の回転数と発電機の目標回転数との回転数差に基づいて許容最大トルクを更新する態様の本発明の動力出力装置において、前記内燃機関の回転数を検出する回転数検出手段を備え、前記許容最大トルク更新手段は、前記検出された内燃機関の回転数と前記運転指令における前記内燃機関の目標回転数との回転数差に基づいて前記許容最大トルクを更新する手段である、ものとすることもできる。この場合、前記許容最大トルク更新手段は、前記発電機の回転数と前記発電機の目標回転数との回転数差が第1の回転数差以上であると共に前記内燃機関の回転数と前記内燃機関の目標回転数との回転数差が前記第1の回転数差とは異なる第2の回転数差以上であるときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する手段であるものとすることもできる。こうすれば、内燃機関の回転数が過大となるのをより確実に抑止することができる。   In the power output apparatus of the present invention in which the allowable maximum torque is updated based on the difference in rotation speed between the generator rotation speed and the generator target rotation speed, the rotation speed detection means for detecting the rotation speed of the internal combustion engine is provided. And the allowable maximum torque updating means is means for updating the allowable maximum torque based on a difference in rotational speed between the detected rotational speed of the internal combustion engine and a target rotational speed of the internal combustion engine in the operation command. It can also be. In this case, the allowable maximum torque update means is configured such that a difference in rotational speed between the rotational speed of the generator and the target rotational speed of the generator is equal to or greater than a first rotational speed difference, and the rotational speed of the internal combustion engine and the internal combustion engine. Means for updating the maximum allowable torque so that the maximum allowable torque is reduced when a difference in rotational speed from a target engine speed is equal to or greater than a second rotational speed difference different from the first rotational speed difference; It can also be. In this way, it is possible to more reliably prevent the engine speed of the internal combustion engine from becoming excessive.

許容最大トルクが小さくなるよう許容最大トルクを更新する態様の本発明の動力出力装置において、前記許容最大トルク更新手段は、前記許容最大トルクを更新するときには該許容最大トルクが所定トルクだけ小さくなるよう該許容最大トルクを更新する手段であるものとすることもできる。こうすれば、許容最大トルクを所定トルクずつ小さくすることができる。   In the power output apparatus of the present invention in which the allowable maximum torque is updated so as to reduce the allowable maximum torque, the allowable maximum torque updating means reduces the allowable maximum torque by a predetermined torque when updating the allowable maximum torque. It may be a means for updating the allowable maximum torque. In this way, the allowable maximum torque can be reduced by a predetermined torque.

本発明の動力出力装置において、前記許容最大トルクが所定判定トルク未満に至ったときに異常と判定する異常判定手段を備えるものとすることもできる。こうすれば、発電機の減磁などの駆動系機器の異常をより適正に判定することができる。   The power output apparatus of the present invention may further include an abnormality determination unit that determines that an abnormality occurs when the allowable maximum torque is less than a predetermined determination torque. By doing so, it is possible to more appropriately determine abnormality of the drive system device such as demagnetization of the generator.

本発明の動力出力装置において、前記所定の駆動要求は、駆動軸に出力すべき要求駆動力に基づく要求であるものとすることもできる。こうすれば、要求駆動力に基づく要求に応じて内燃機関の運転指令を設定することができるから、内燃機関をより適正に運転制御することができる。   In the power output apparatus of the present invention, the predetermined drive request may be a request based on a required drive force to be output to the drive shaft. By doing so, it is possible to set the operation command for the internal combustion engine in response to a request based on the required driving force, and thus it is possible to more appropriately control the operation of the internal combustion engine.

本発明の動力出力装置において、前記駆動軸に動力を出力可能な電動機と、前記発電機および前記電動機と電力のやりとりが可能な蓄電手段と、前記駆動軸に出力すべき要求駆動力を設定する要求駆動力設定手段と、を備え、前記運転指令設定手段は前記駆動要求として前記設定された要求駆動力に基づいて前記運転指令を設定する手段であり、前記制御手段は、前記設定された駆動指令を用いて前記発電機を駆動制御すると共に前記設定された運転指令を用いて前記内燃機関を運転制御し、且つ、前記設定された要求駆動力に基づく駆動力が前記駆動軸に出力されるよう前記電動機を制御する手段である、ものとすることもできる。   In the power output apparatus of the present invention, an electric motor capable of outputting power to the drive shaft, an electric storage means capable of exchanging electric power with the generator and the electric motor, and a required driving force to be output to the drive shaft are set. Required driving force setting means, wherein the operation command setting means is means for setting the driving command based on the set required driving force as the driving request, and the control means is the set driving The generator is driven and controlled using a command, the internal combustion engine is controlled using the set operation command, and a driving force based on the set required driving force is output to the drive shaft. It can also be a means for controlling the electric motor.

本発明の車両は、上述のいずれかの態様の本発明の動力出力装置、即ち、基本的には、駆動軸に動力を出力する動力出力装置であって、内燃機関と、動力を入出力可能な発電機と、前記内燃機関の出力軸と前記駆動軸と前記発電機の回転軸との3軸に接続され、該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、所定の駆動要求に基づいて許容最大トルクの範囲内で前記内燃機関を運転すべき運転指令を設定する運転指令設定手段と、前記設定された運転指令で前記内燃機関が運転されるよう前記発電機を駆動すべき駆動指令を設定する駆動指令設定手段と、前記発電機の駆動状態を検出する駆動状態検出手段と、前記検出された発電機の駆動状態と前記設定された駆動指令とに基づいて前記許容最大トルクを更新する許容最大トルク更新手段と、前記設定された駆動指令を用いて前記発電機を駆動制御すると共に前記設定された運転指令を用いて前記内燃機関を運転制御する制御手段と、を備える動力出力装置を搭載し、車軸が前記駆動軸に連結されてなることを要旨とする。   The vehicle of the present invention is the power output device of the present invention according to any one of the above-described embodiments, that is, basically a power output device that outputs power to the drive shaft, and can input / output power to / from the internal combustion engine. A generator, an output shaft of the internal combustion engine, the drive shaft, and a rotating shaft of the generator, and the remaining power based on the power input to and output from any two of the three shafts. Three-axis power input / output means for inputting / outputting power to the shaft, an operation command setting means for setting an operation command for operating the internal combustion engine within a range of allowable maximum torque based on a predetermined drive request, Drive command setting means for setting a drive command to drive the generator so that the internal combustion engine is operated with the set operation command, drive state detection means for detecting the drive state of the generator, and the detected The drive state of the generator and the set drive command A maximum allowable torque updating means for updating the maximum allowable torque based on the control, and a drive control of the generator using the set drive command and a control of the internal combustion engine using the set operation command. And a power output device comprising: means and an axle connected to the drive shaft.

この本発明の車両では、上述のいずれかの態様の本発明の動力出力装置を搭載するから、本発明の動力出力装置が奏する効果、例えば、発電機の駆動状態に応じて内燃機関と発電機とを制御することができる効果やこの効果の結果として発電機に減磁などの異常が生じても内燃機関が過回転するのを抑制することができる効果などと同様な効果を奏することができる。   Since the vehicle according to the present invention is equipped with the power output device of the present invention according to any one of the aspects described above, the internal combustion engine and the power generator according to the effects exerted by the power output device of the present invention, for example, the driving state of the power generator The effect similar to the effect which can control over-rotation of an internal combustion engine, etc. can be produced even if abnormality, such as a demagnetization etc. arises in a generator as a result of this effect .

本発明の動力出力装置の制御方法は、
内燃機関と、動力を入出力可能な発電機と、前記内燃機関の出力軸と駆動軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える動力出力装置の制御方法であって、
所定の駆動要求に基づいて許容最大トルクの範囲内で前記内燃機関を運転すべき運転指令を設定すると共に該設定した運転指令で前記内燃機関が運転されるよう前記発電機を駆動すべき駆動指令を設定し、前記設定した駆動指令を用いて前記発電機を駆動制御すると共に前記設定した運転指令を用いて前記内燃機関を運転制御し、前記発電機の駆動状態と前記設定した駆動指令とに基づいて前記許容最大トルクを更新する、
ことを特徴とする。
The method for controlling the power output apparatus of the present invention includes:
An internal combustion engine, a generator capable of inputting / outputting power, an output shaft of the internal combustion engine, a drive shaft, and a rotation shaft of the generator, connected to three axes, and input / output to any two of the three axes A three-axis power input / output means for inputting / outputting power to / from the remaining shaft based on the power to be driven,
A drive command for setting the operation command for operating the internal combustion engine within a range of the maximum allowable torque based on a predetermined drive request and for driving the generator so that the internal combustion engine is operated with the set operation command. And the drive control of the generator using the set drive command and the operation control of the internal combustion engine using the set drive command, to the drive state of the generator and the set drive command Updating the maximum allowable torque based on:
It is characterized by that.

この本発明の動力出力装置の制御方法では、所定の駆動要求に基づいて許容最大トルクの範囲内で内燃機関を運転すべき運転指令を設定すると共に内燃機関の運転指令で内燃機関が運転されるよう発電機を駆動すべき駆動指令を設定し、設定した駆動指令を用いて発電機を駆動制御すると共に設定した運転指令を用いて内燃機関を運転制御する。そして、発電機の駆動状態と発電機の駆動指令とに基づいて許容最大トルクを更新する。即ち、発電機の駆動状態と発電機の駆動指令とに基づいて更新された許容最大トルクの範囲内で内燃機関の運転指令を設定すると共に発電機の駆動指令を設定し、これらを用いて発電機を駆動制御すると共に内燃機関を運転制御するのである。このように、発電機の駆動状態に応じて許容最大トルクを更新することにより、発電機の駆動状態に応じて内燃機関と発電機とを制御することができる。この結果、発電機の減磁などの駆動系機器に異常が生じても内燃機関が過回転するのを抑制することができる。なお、発電機に対して昇圧コンバータを用いている場合には昇圧コンバータの昇圧不足に起因する異常にも同様に対処することができる。   In the control method for the power output apparatus of the present invention, an operation command for operating the internal combustion engine within the allowable maximum torque range is set based on a predetermined drive request, and the internal combustion engine is operated with the operation command for the internal combustion engine. A drive command for driving the generator is set, the generator is driven using the set drive command, and the internal combustion engine is controlled using the set operation command. Then, the allowable maximum torque is updated based on the generator drive state and the generator drive command. That is, the operation command for the internal combustion engine is set within the range of the maximum allowable torque updated based on the drive state of the generator and the drive command for the generator, and the drive command for the generator is set, and these are used to generate power. The engine is driven and controlled, and the internal combustion engine is controlled. Thus, by updating the allowable maximum torque according to the driving state of the generator, the internal combustion engine and the generator can be controlled according to the driving state of the generator. As a result, it is possible to prevent the internal combustion engine from over-rotating even if an abnormality occurs in the drive system equipment such as demagnetization of the generator. When a boost converter is used for the generator, an abnormality caused by insufficient boost of the boost converter can be dealt with similarly.

こうした本発明の動力出力装置の制御方法において、前記運転指令は目標回転数と目標トルクとからなる目標運転ポイントであり、前記駆動指令は前記内燃機関を前記目標運転ポイントで運転するための前記発電機の目標回転数を含む指令であり、前記駆動状態は前記発電機の回転数であり、前記発電機の回転数と前記発電機の目標回転数との回転数差が所定回転数差以上のときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する、ことを特徴とするものとすることもできる。   In such a control method for a power output apparatus of the present invention, the operation command is a target operation point consisting of a target rotational speed and a target torque, and the drive command is the power generation for operating the internal combustion engine at the target operation point. A command including a target rotational speed of the machine, the drive state is the rotational speed of the generator, and a rotational speed difference between the rotational speed of the generator and the target rotational speed of the generator is greater than or equal to a predetermined rotational speed difference The allowable maximum torque may be updated so that the allowable maximum torque is sometimes reduced.

また、本発明の動力出力装置の制御方法において、前記更新した許容最大トルクが所定判定トルク未満に至ったときに異常と判定して該異常を出力することを特徴とするものとすることもできる。こうすれば、発電機の減磁などの駆動系機器の異常をより適正に判定することができる。   In the method for controlling a power output apparatus of the present invention, when the updated allowable maximum torque is less than a predetermined determination torque, it is determined that an abnormality is detected and the abnormality is output. . By doing so, it is possible to more appropriately determine abnormality of the drive system device such as demagnetization of the generator.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例である動力出力装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、動力出力装置全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire power output apparatus.

エンジン22は、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関であり、クランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランクポジションなどエンジン22の運転状態を検出する各種センサから信号を入力するエンジン用電子制御ユニット(以下、エンジンECUという)24により燃料噴射制御や点火制御,吸入空気量調節制御などの運転制御を受けている。エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、エンジンECU24は、クランクポジションセンサ23からのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is an internal combustion engine that outputs power using a hydrocarbon-based fuel such as gasoline or light oil, and detects an operating state of the engine 22 such as a crank position from a crank position sensor 23 that detects a rotational position of the crankshaft 26. An engine electronic control unit (hereinafter referred to as an engine ECU) 24 that receives signals from various sensors receives operation control such as fuel injection control, ignition control, and intake air amount adjustment control. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and, if necessary, transmits data related to the operating state of the engine 22 to the hybrid electronic control. Output to unit 70. The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22 based on the crank position from the crank position sensor 23.

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 disposed concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42と昇圧コンバータ53とを介してバッテリ50と電力のやりとりを行なう。インバータ41,42と昇圧コンバータ53とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からモータMG1,MG2の回転子の回転位置に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   Both the motor MG1 and the motor MG2 are configured as well-known synchronous generator motors that can be driven as generators and can be driven as electric motors, and are connected to the battery 50 and electric power via inverters 41 and 42 and a boost converter 53. Communicate. The power line 54 connecting the inverters 41, 42 and the boost converter 53 is configured as a positive bus and a negative bus shared by the inverters 41, 42, and other power generated by one of the motors MG1, MG2 is used. It can be consumed with the motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 detects signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 to be applied is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1, Nm2 of the motors MG1, MG2 from the rotational position detection sensors 43, 44 based on the rotational positions of the rotors of the motors MG1, MG2.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されており、昇圧コンバータ53はバッテリECU52による駆動制御を受けている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからのバッテリ電圧,バッテリ50の出力端子に取り付けられた図示しない電流センサからの充放電電流,バッテリ50に取り付けられた温度センサ51からの電池温度Tbなどや、昇圧コンバータ53を駆動制御するのに必要な信号、例えば、インバータ41,42側に取り付けられた図示しない電圧センサからの高圧電圧などが入力されており、バッテリECU52からはモータMG1やモータMG2のトルク指令Tm1*,Tm2*に基づいて設定される目標電圧にインバータ41,42側の電圧がなるように昇圧コンバータ53のスイッチング素子をスイッチング制御するための駆動信号が出力されている。バッテリECU52は、必要に応じてバッテリ50の状態や昇圧コンバータ53の駆動状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。なお、バッテリECU52では、バッテリ50を管理するために電流センサにより検出された充放電電流の積算値に基づいて残容量(SOC)や、温度センサ51により検出されたバッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいてバッテリ50を充放電してもよい最大電力としての入出力制限Win,Woutも演算している。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52, and the boost converter 53 is subjected to drive control by the battery ECU 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, a battery voltage from a voltage sensor (not shown) installed between terminals of the battery 50, and a current sensor (not shown) attached to the output terminal of the battery 50. Charge / discharge current, battery temperature Tb from the temperature sensor 51 attached to the battery 50, signals necessary for driving and controlling the boost converter 53, for example, a voltage sensor (not shown) attached to the inverters 41 and 42 side Is input from the battery ECU 52 so that the voltage on the inverters 41 and 42 side becomes the target voltage set based on the torque commands Tm1 * and Tm2 * of the motor MG1 and the motor MG2. Drive signal for switching control of 53 switching elements is output. To have. The battery ECU 52 outputs data relating to the state of the battery 50 and the drive state of the boost converter 53 to the hybrid electronic control unit 70 by communication as necessary. In the battery ECU 52, the remaining capacity (SOC) based on the integrated value of the charge / discharge current detected by the current sensor for managing the battery 50, the battery temperature Tb of the battery 50 detected by the temperature sensor 51, and the battery Based on the remaining capacity (SOC) of 50, the input / output limits Win and Wout as the maximum power that may charge / discharge the battery 50 are also calculated.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. The accelerator pedal opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the like are input via the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution and integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特に昇圧コンバータ53による昇圧が十分にできないときやモータMG1が減磁により十分なトルクを出力することができないときの動作について説明する。図2は、ハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the hybrid vehicle 20 of the embodiment thus configured, particularly the operation when the boosting by the boost converter 53 cannot be sufficiently performed or when the motor MG1 cannot output sufficient torque due to demagnetization will be described. FIG. 2 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70. This routine is repeatedly executed every predetermined time (for example, every several msec).

駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,モータMG1,MG2の回転数Nm1,Nm2,エンジン22の回転数Ne,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、エンジン22の回転数Neはクランクポジションセンサ23からの信号に基づいて計算されたものをエンジンECU24から通信により入力するものとした。また、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて計算されたものをモータECU40から通信により入力するものとした。さらに、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。   When the drive control routine is executed, first, the CPU 72 of the hybrid electronic control unit 70 first determines the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the rotational speed Nm1, of the motors MG1, MG2. A process of inputting data necessary for control, such as Nm2, the rotational speed Ne of the engine 22 and the input / output limits Win and Wout of the battery 50, is executed (step S100). Here, the rotation speed Ne of the engine 22 is calculated based on a signal from the crank position sensor 23 and is input from the engine ECU 24 by communication. Further, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 by communication from those calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. It was supposed to be. Further, the input / output limits Win and Wout of the battery 50 are set based on the battery temperature Tb of the battery 50 and the remaining capacity (SOC) of the battery 50 and input from the battery ECU 52 by communication.

こうしてデータを入力すると、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*とエンジン22に要求される要求パワーPe*とを設定する(ステップS110)。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図3に要求トルク設定用マップの一例を示す。要求パワーPe*は、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものとバッテリ50が要求する充放電要求パワーPb*とロスLossとの和として計算することができる。なお、リングギヤ軸32aの回転数Nrは、車速Vに換算係数kを乗じることによって求めたり、モータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで割ることによって求めることができる。   When the data is thus input, the required torque Tr * to be output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b as the torque required for the vehicle based on the input accelerator opening Acc and the vehicle speed V. And the required power Pe * required for the engine 22 is set (step S110). In the embodiment, the required torque Tr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Tr * in the ROM 74 as a required torque setting map, and the accelerator opening Acc, the vehicle speed V, , The corresponding required torque Tr * is derived and set from the stored map. FIG. 3 shows an example of the required torque setting map. The required power Pe * can be calculated as the sum of the set required torque Tr * multiplied by the rotational speed Nr of the ring gear shaft 32a and the charge / discharge required power Pb * required by the battery 50 and the loss Loss. The rotation speed Nr of the ring gear shaft 32a can be obtained by multiplying the vehicle speed V by the conversion factor k, or can be obtained by dividing the rotation speed Nm2 of the motor MG2 by the gear ratio Gr of the reduction gear 35.

続いて、設定した要求パワーPe*に基づいてエンジン22の仮回転数Netmpと仮トルクTetmpとを設定する(ステップS120)。この設定は、エンジン22を効率よく動作させる動作ラインと要求パワーPe*とに基づいて行なわれる。エンジン22の動作ラインの一例と仮回転数Netmpと仮トルクTetmpとを設定する様子を図4に示す。図示するように、仮回転数Netmpと仮トルクTetmpは、動作ラインと要求パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。   Subsequently, the temporary rotational speed Nettmp and the temporary torque Tempmp of the engine 22 are set based on the set required power Pe * (step S120). This setting is performed based on an operation line for efficiently operating the engine 22 and the required power Pe *. FIG. 4 shows an example of the operation line of the engine 22 and how the temporary rotation speed Nettmp and the temporary torque Tentmp are set. As shown in the figure, the temporary rotational speed Netmp and the temporary torque Tentmp can be obtained from the intersection of the operation line and a curve having a constant required power Pe * (Ne * × Te *).

次に、設定した仮トルクTetmpとエンジン22の許容最大トルクTelimとを比較し(ステップS130)、仮トルクTetmpが許容最大トルクTelim以下のときには、設定した仮回転数Netmpおよび仮トルクTetmpをエンジン22の目標回転数Ne*および目標トルクTe*として設定し(ステップS140)、仮トルクTetmpが許容最大トルクTelimより大きいときには、許容最大トルクTelimをエンジン22の目標トルクTe*として設定すると共にエンジン22を効率よく動作させる動作ラインに対して許容最大トルクTelimに対応する回転数をエンジン22の目標回転数Ne*として設定する(ステップS150)。ここで、許容最大トルクTelimは、エンジン22の過回転を抑制するためにエンジン22から出力してもよい最大のトルクであり、この駆動制御ルーチンの後述する処理によって設定される。許容最大トルクTelimの設定処理については後述する。   Next, the set temporary torque Tentmp is compared with the allowable maximum torque Telim of the engine 22 (step S130). When the temporary torque Tentmp is equal to or less than the allowable maximum torque Telim, the set temporary rotation speed Nettmp and the temporary torque Temptmp are determined. Are set as the target rotational speed Ne * and the target torque Te * (step S140), and when the temporary torque Tetmp is larger than the allowable maximum torque Telim, the allowable maximum torque Telim is set as the target torque Te * of the engine 22 and the engine 22 is set. A rotation speed corresponding to the allowable maximum torque Telim is set as the target rotation speed Ne * of the engine 22 for the operation line to be operated efficiently (step S150). Here, the allowable maximum torque Telim is the maximum torque that may be output from the engine 22 in order to suppress over-rotation of the engine 22, and is set by a process that will be described later in this drive control routine. The setting process of the allowable maximum torque Telim will be described later.

こうしてエンジン22の目標回転数Ne*と目標トルクTe*とを設定すると、設定した目標回転数Ne*とリングギヤ軸32aの回転数Nr(Nm2/Gr)と動力分配統合機構30のギヤ比ρとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と現在の回転数Nm1とに基づいて式(2)によりモータMG1のトルク指令Tm1*を計算する(ステップS160)。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図5に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ軸32aに作用するトルクと、モータMG2から出力されるトルクTm2が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。また、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。   When the target rotational speed Ne * and the target torque Te * of the engine 22 are thus set, the set target rotational speed Ne *, the rotational speed Nr (Nm2 / Gr) of the ring gear shaft 32a, the gear ratio ρ of the power distribution and integration mechanism 30, and Is used to calculate the target rotational speed Nm1 * of the motor MG1 by the following formula (1), and based on the calculated target rotational speed Nm1 * and the current rotational speed Nm1, the torque command Tm1 * of the motor MG1 is calculated by the formula (2). Is calculated (step S160). Here, Expression (1) is a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30. FIG. 5 is a collinear diagram showing a dynamic relationship between the number of rotations and torque in the rotating elements of the power distribution and integration mechanism 30. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. Expression (1) can be easily derived by using this alignment chart. The two thick arrows on the R axis indicate that the torque Tm1 output from the motor MG1 acts on the ring gear shaft 32a and the torque Tm2 output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. Torque. Expression (2) is a relational expression in feedback control for rotating the motor MG1 at the target rotational speed Nm1 *. In Expression (2), “k1” in the second term on the right side is a gain of a proportional term. “K2” in the third term on the right side is the gain of the integral term.

Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) (1)
Tm1*=前回Tm1*+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
Nm1 * = Ne * ・ (1 + ρ) / ρ-Nm2 / (Gr ・ ρ) (1)
Tm1 * = previous Tm1 * + k1 (Nm1 * -Nm1) + k2∫ (Nm1 * -Nm1) dt (2)

こうしてモータMG1の目標回転数Nm1*とトルク指令Tm1*とを計算すると、バッテリ50の入出力制限Win,Woutと計算したモータMG1のトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tmin,Tmaxを次式(3)および式(4)により計算すると共に(ステップS170)、要求トルクTr*とトルク指令Tm1*と動力分配統合機構30のギヤ比ρを用いてモータMG2から出力すべきトルクとしての仮モータトルクTm2tmpを式(5)により計算し(ステップS180)、計算したトルク制限Tmin,Tmaxで仮モータトルクTm2tmpを制限した値としてモータMG2のトルク指令Tm2*を設定する(ステップS190)。このようにモータMG2のトルク指令Tm2*を設定することにより、駆動軸としてのリングギヤ軸32aに出力する要求トルクTr*を、バッテリ50の入出力制限Win,Woutの範囲内で制限したトルクとして設定することができる。なお、式(5)は、前述した図5の共線図から容易に導き出すことができる。   When the target rotational speed Nm1 * and the torque command Tm1 * of the motor MG1 are thus calculated, the input / output limits Win and Wout of the battery 50 and the calculated torque command Tm1 * of the motor MG1 are multiplied by the current rotational speed Nm1 of the motor MG1. Torque limits Tmin and Tmax as upper and lower limits of the torque that may be output from the motor MG2 by dividing the deviation from the obtained power consumption (generated power) of the motor MG1 by the rotational speed Nm2 of the motor MG2 is expressed by the following equation (3). Further, the temporary motor torque Tm2tmp as the torque to be output from the motor MG2 is calculated using the required torque Tr *, the torque command Tm1 *, and the gear ratio ρ of the power distribution and integration mechanism 30 (step S170). Calculated by equation (5) (step S180), and with the calculated torque limits Tmin and Tmax Setting the torque command Tm2 * of the motor MG2 as a value obtained by limiting the motor torque Tm2tmp (step S190). By setting the torque command Tm2 * of the motor MG2 in this way, the required torque Tr * output to the ring gear shaft 32a as the drive shaft is set as a torque limited within the range of the input / output limits Win and Wout of the battery 50. can do. Equation (5) can be easily derived from the collinear diagram of FIG. 5 described above.

Tmin=(Win-Tm1*・Nm1)/Nm2 (3)
Tmax=(Wout-Tm1*・Nm1)/Nm2 (4)
Tm2tmp=(Tr*+Tm1*/ρ)/Gr (5)
Tmin = (Win-Tm1 * ・ Nm1) / Nm2 (3)
Tmax = (Wout-Tm1 * ・ Nm1) / Nm2 (4)
Tm2tmp = (Tr * + Tm1 * / ρ) / Gr (5)

エンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信する(ステップS200)。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における燃料噴射制御や点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。   When the target rotational speed Ne *, target torque Te * of the engine 22 and torque commands Tm1 *, Tm2 * of the motors MG1, MG2 are set, the target rotational speed Ne * and target torque Te * of the engine 22 are transferred to the engine ECU 24. Torque commands Tm1 * and Tm2 * for MG1 and MG2 are transmitted to motor ECU 40 (step S200). The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te * performs fuel injection control in the engine 22 such that the engine 22 is operated at an operating point indicated by the target rotational speed Ne * and the target torque Te *. Controls such as ignition control. The motor ECU 40 that has received the torque commands Tm1 * and Tm2 * controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. To do.

次に、駆動制御の状態が定常状態にあるか否かを判定する(ステップS210)。この判定は、例えば、設定したエンジン22の目標回転数Ne*や目標トルクTe*が所定時間に亘って変化していないか(小さな閾値以内の変化であるか)の判定や、エンジン22の回転数Neが所定時間に亘って変化していないか(小さな閾値以内の変化であるか)の判定、モータMG1のトルク指令Tm1*やモータMG2のトルク指令Tm2*が所定時間に亘って変化していないか(小さな閾値以内の変化であるか)の判定、モータMG1の回転数Nm1やモータMG2の回転数Nm2が所定時間に亘って変化していないか(小さな閾値以内の変化であるか)の判定、などにより行なうことができる。駆動制御の状態が定常状態にないときには、本ルーチンを終了する。   Next, it is determined whether or not the drive control is in a steady state (step S210). This determination is made by, for example, determining whether the set target rotational speed Ne * or target torque Te * of the engine 22 has not changed over a predetermined time (change within a small threshold), or rotation of the engine 22. The determination of whether the number Ne has not changed over a predetermined time (whether the change is within a small threshold), the torque command Tm1 * of the motor MG1 or the torque command Tm2 * of the motor MG2 has changed over a predetermined time Whether or not the rotation speed Nm1 of the motor MG1 or the rotation speed Nm2 of the motor MG2 has not changed over a predetermined time (whether the change is within a small threshold). The determination can be made. When the drive control is not in a steady state, this routine is terminated.

駆動制御が定常状態にあるときには、モータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1とエンジン22の目標回転数Ne*と回転数Neとの差の絶対値としての回転数差ΔNeとを計算し(ステップS220)、回転数差ΔNm1を閾値Nref1と比較すると共に回転数差ΔNeを閾値Nref2と比較する(ステップS230)。ここで、閾値Nref1や閾値Nref2は、エンジン22やモータMG1,モータMG2,昇圧コンバータ53などの駆動系の機器等が諸元どおりに機能しており、且つ、駆動制御が定常状態にあるときには回転数差ΔNm1や回転数差ΔNeがなり得ない値の下限値近傍の値として設定されるものである。いま、駆動制御が定常状態にあるから、エンジン22やモータMG1,モータMG2,昇圧コンバータ53などの駆動系の機器等が諸元どおりに機能していれば、回転数差ΔNm1と回転数差ΔNeは値0近傍となり、回転数差ΔNm1も回転数差ΔNeも各々閾値Nref1や閾値Nref2未満となる。一方、モータMG1に減磁が生じているときや昇圧コンバータ53の昇圧が十分に行なわれていないときなどのように駆動系の機器等に若干の異常が生じているときには、回転数差ΔNm1と回転数差ΔNeは値0近傍とならず、場合によっては回転数差ΔNm1も回転数差ΔNeも各々閾値Nref1や閾値Nref2以上となる。この場合の共線図の一例を図6に示す。図中、実線は駆動系の機器等に若干の異常が生じているときを示しており、破線は駆動系の機器等が諸元どおりに機能しているときを示している。図示するように、駆動系の機器等に若干の異常が生じているときには、モータMG1の回転数Nm1やエンジン22の回転数Neは、駆動系の機器等が諸元どおりに機能しているときに比して大きな回転数となっている。   When the drive control is in a steady state, the difference between the rotational speed difference ΔNm1 as an absolute value of the difference between the target rotational speed Nm1 * of the motor MG1 and the rotational speed Nm1 and the target rotational speed Ne * of the engine 22 and the rotational speed Ne The rotational speed difference ΔNe as an absolute value is calculated (step S220), the rotational speed difference ΔNm1 is compared with the threshold value Nref1, and the rotational speed difference ΔNe is compared with the threshold value Nref2 (step S230). Here, the threshold value Nref1 and the threshold value Nref2 are rotated when the drive system devices such as the engine 22, the motor MG1, the motor MG2, and the boost converter 53 function according to various specifications and the drive control is in a steady state. It is set as a value in the vicinity of the lower limit of values that cannot be the number difference ΔNm1 or the rotation speed difference ΔNe. Now, since the drive control is in a steady state, if the drive system devices such as the engine 22, the motor MG1, the motor MG2, and the boost converter 53 are functioning according to the specifications, the rotational speed difference ΔNm1 and the rotational speed difference ΔNe. Is near the value 0, and both the rotational speed difference ΔNm1 and the rotational speed difference ΔNe are less than the threshold value Nref1 and the threshold value Nref2. On the other hand, when the motor MG1 is demagnetized or when the boosting converter 53 is not sufficiently boosted, such as when there is a slight abnormality in the drive system or the like, the rotational speed difference ΔNm1 The rotational speed difference ΔNe is not near the value 0, and in some cases, the rotational speed difference ΔNm1 and the rotational speed difference ΔNe are equal to or greater than the threshold value Nref1 and the threshold value Nref2, respectively. An example of the alignment chart in this case is shown in FIG. In the figure, a solid line indicates a time when a slight abnormality occurs in a drive system device or the like, and a broken line indicates a time when the drive system device or the like functions according to specifications. As shown in the figure, when there is a slight abnormality in the drive system device, the rotational speed Nm1 of the motor MG1 and the rotational speed Ne of the engine 22 are determined when the drive system device functions as specified. The number of rotations is larger than that.

このように、回転数差ΔNm1が閾値Nref1以上となると共に回転数差ΔNeが閾値Nref2以上となったときには、許容最大トルクTelimから所定トルクΔTだけ減じたものを新たな許容最大トルクTelimとして設定することにより許容最大トルクTelimを更新する(ステップS240)。ここで、所定トルクΔTは比較的小さな値が用いられる。こうして更新した許容最大トルクTelimは、ステップS120〜S150のエンジン22の目標回転数Ne*と目標トルクTe*とを設定する処理に用いられ、駆動系の機器等に若干の異常が生じても許容最大トルクTelimを減じる更新を行なうことにより、エンジン22が過回転するのを抑制することができる。本ルーチンは、所定時間毎に繰り返し実行されるから、駆動系の機器等に若干の異常が生じているときには、回転数差ΔNm1が閾値Nref1以上となると共に回転数差ΔNeが閾値Nref2以上となるから、その都度、許容最大トルクTelimの更新が行なわれる。   As described above, when the rotational speed difference ΔNm1 is equal to or greater than the threshold value Nref1 and the rotational speed difference ΔNe is equal to or greater than the threshold value Nref2, a value obtained by subtracting the predetermined maximum torque ΔT from the allowable maximum torque Telim is set as a new allowable maximum torque Telim. As a result, the allowable maximum torque Telim is updated (step S240). Here, a relatively small value is used for the predetermined torque ΔT. The updated allowable maximum torque Telim is used for the process of setting the target rotational speed Ne * and the target torque Te * of the engine 22 in steps S120 to S150, and is allowed even if a slight abnormality occurs in the drive system equipment or the like. By performing the update to reduce the maximum torque Telim, it is possible to suppress the engine 22 from over-rotating. Since this routine is repeatedly executed every predetermined time, when a slight abnormality has occurred in the drive system device or the like, the rotational speed difference ΔNm1 is not less than the threshold value Nref1 and the rotational speed difference ΔNe is not less than the threshold value Nref2. Therefore, the allowable maximum torque Telim is updated each time.

許容最大トルクTelimを更新すると、更新した許容最大トルクTelimが判定トルクTref未満であるか否かを判定し(ステップS250)、許容最大トルクTelimが判定トルクTref未満のときにはダイアグ検出として異常を出力して(ステップS260)、本ルーチンを終了し、許容最大トルクTelimが判定トルクTref以上のときにはまだ異常と判定するには至らないとして本ルーチンを終了する。なお、ステップS230で回転数差ΔNm1が閾値Nref1未満であるか回転数差ΔNeが閾値Nref2未満であると判定されたときには、許容最大トルクTelimの更新は行なわず、本ルーチンを終了する。   When the allowable maximum torque Telim is updated, it is determined whether or not the updated allowable maximum torque Telim is less than the determination torque Tref (step S250). When the allowable maximum torque Telim is less than the determination torque Tref, an abnormality is output as a diagnosis detection. (Step S260), the present routine is terminated, and when the allowable maximum torque Telim is equal to or greater than the determination torque Tref, it is determined that an abnormality has not yet occurred, and the present routine is terminated. If it is determined in step S230 that the rotational speed difference ΔNm1 is less than the threshold value Nref1 or the rotational speed difference ΔNe is less than the threshold value Nref2, the allowable maximum torque Telim is not updated, and this routine ends.

以上説明した実施例のハイブリッド自動車20によれば、駆動制御が定常状態にあるときにモータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1とエンジン22の目標回転数Ne*と回転数Neとの差の絶対値としての回転数差ΔNeが各々閾値Nref1や閾値Nref2以上のときには、モータMG1に減磁が生じているときや昇圧コンバータ53の昇圧が十分に行なわれていないときなどのように駆動系の機器等に若干の異常が生じていると判断し、許容最大トルクTelimを所定トルクΔTだけ小さくしてエンジン22の目標回転数Ne*と目標トルクTe*とを設定する処理に用いるから、駆動系の機器等に若干の異常が生じているときにエンジン22が過回転するのを抑制することができる。しかも、許容最大トルクTelimが判定トルクTref未満に至ると、異常と判断して異常を出力するから、モータMG1の減磁や昇圧コンバータ53の昇圧不足などの駆動系の機器等の異常をより適正に判定して出力することができる。   According to the hybrid vehicle 20 of the embodiment described above, the rotational speed difference ΔNm1 as the absolute value of the difference between the target rotational speed Nm1 * of the motor MG1 and the rotational speed Nm1 when the drive control is in a steady state and the engine 22 When the rotational speed difference ΔNe as the absolute value of the difference between the target rotational speed Ne * and the rotational speed Ne is greater than or equal to the threshold value Nref1 or the threshold value Nref2, the motor MG1 is demagnetized or the boost converter 53 is sufficiently boosted. Therefore, it is determined that a slight abnormality has occurred in the drive system device, such as when not being performed, and the allowable maximum torque Telim is reduced by a predetermined torque ΔT to reduce the target rotational speed Ne * of the engine 22 and the target torque. Since it is used for the process of setting Te *, it is possible to prevent the engine 22 from over-rotating when there is a slight abnormality in the drive system equipment or the like. . In addition, when the allowable maximum torque Telim is less than the determination torque Tref, it is determined as abnormal and an abnormality is output. Therefore, the abnormality of the drive system such as demagnetization of the motor MG1 and insufficient boosting of the boost converter 53 is more appropriate. Can be determined and output.

実施例のハイブリッド自動車20では、モータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1とエンジン22の目標回転数Ne*と回転数Neとの差の絶対値としての回転数差ΔNeが各々閾値Nref1や閾値Nref2以上のときに許容最大トルクTelimが小さくなるよう更新するものとしたが、モータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1だけが閾値Nref1以上になったときに許容最大トルクTelimが小さくなるよう更新するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the absolute difference between the rotational speed difference ΔNm1 as the absolute value of the difference between the target rotational speed Nm1 * of the motor MG1 and the rotational speed Nm1 and the target rotational speed Ne * of the engine 22 and the rotational speed Ne. The value is updated so that the allowable maximum torque Telim decreases when the difference in rotational speed ΔNe is greater than or equal to the threshold value Nref1 or the threshold value Nref2, respectively, but the absolute difference between the target rotational speed Nm1 * of the motor MG1 and the rotational speed Nm1 The value may be updated so that the allowable maximum torque Telim decreases when only the rotation speed difference ΔNm1 as a value becomes equal to or greater than the threshold value Nref1.

実施例のハイブリッド自動車20では、モータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1とエンジン22の目標回転数Ne*と回転数Neとの差の絶対値としての回転数差ΔNeが各々閾値Nref1や閾値Nref2以上のときに許容最大トルクTelimが小さくなるよう更新するものとしたが、モータMG1からの出力トルクを検出すると共にエンジン22の出力トルクを検出し、モータMG1のトルク指令Tm1*と検出したモータMG1からの出力トルクとの差の絶対値としてのトルク差やエンジン22の目標トルクTe*と検出したエンジン22の出力トルクとの差の絶対値としてのトルク差が各々の閾値以上のときに許容最大トルクTelimが小さくなるよう更新するものとしてもよい。この場合、エンジン22の出力トルクを考慮せず、モータMG1のトルク指令Tm1*と検出したモータMG1からの出力トルクとの差の絶対値としてのトルク差が閾値以上のときに許容最大トルクTelimが小さくなるよう更新するものとしてもよい。また、モータMG1に対しては目標回転数やトルク指令に代えてモータMG1を駆動するための他の駆動指令(例えば、電圧指令や電流指令など)を用いて許容最大トルクTelimが小さくなるよう更新するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the absolute difference between the rotational speed difference ΔNm1 as the absolute value of the difference between the target rotational speed Nm1 * of the motor MG1 and the rotational speed Nm1 and the target rotational speed Ne * of the engine 22 and the rotational speed Ne. The value is updated so that the allowable maximum torque Telim is reduced when the difference in rotational speed ΔNe is equal to or greater than the threshold value Nref1 or the threshold value Nref2, respectively, but the output torque from the motor MG1 and the output torque of the engine 22 are detected. The absolute value of the difference between the torque command Tm1 * of the motor MG1 and the difference between the detected output torque from the motor MG1 and the difference between the target torque Te * of the engine 22 and the detected output torque of the engine 22 The maximum allowable torque Telim may be updated to be smaller when the torque difference is equal to or greater than each threshold value. Good. In this case, when the torque difference as an absolute value of the difference between the torque command Tm1 * of the motor MG1 and the detected output torque from the motor MG1 is not less than the threshold without considering the output torque of the engine 22, the allowable maximum torque Telim is It is good also as what updates it so that it may become small. In addition, the motor MG1 is updated so that the allowable maximum torque Telim is reduced by using another drive command (for example, a voltage command or a current command) for driving the motor MG1 instead of the target rotational speed or the torque command. It is good also as what to do.

実施例のハイブリッド自動車20では、回転数差ΔNm1と回転数差ΔNeとが各々の閾値Nref1,Nref2以上のときに許容最大トルクTelimから所定トルクΔTだけ減じたものを新たな許容最大トルクTelimとして設定することにより許容最大トルクTelimを更新するものとしたが、許容最大トルクTelimの更新は所定トルクΔTずつ減じることによる更新に限られず、所定トルクΔTを変化させて許容最大トルクTelimを更新するものとしても構わない。   In the hybrid vehicle 20 of the embodiment, when the rotational speed difference ΔNm1 and the rotational speed difference ΔNe are equal to or greater than the respective threshold values Nref1 and Nref2, a value obtained by subtracting the predetermined torque ΔT from the allowable maximum torque Telim is set as a new allowable maximum torque Telim. The allowable maximum torque Telim is updated by this, but the update of the allowable maximum torque Telim is not limited to updating by decreasing the predetermined torque ΔT, but the allowable maximum torque Telim is updated by changing the predetermined torque ΔT. It doesn't matter.

実施例のハイブリッド自動車20では、許容最大トルクTelimが判定トルクTref未満に至ったときに異常を出力するものとしたが、こうした異常判定は行なわないものとしても差し支えない。   In the hybrid vehicle 20 of the embodiment, an abnormality is output when the allowable maximum torque Telim becomes less than the determination torque Tref. However, such an abnormality determination may not be performed.

実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図7の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図7における車輪64a,64bに接続された車軸)に接続するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the motor MG2 is shifted by the reduction gear 35 and output to the ring gear shaft 32a. However, as illustrated in the hybrid vehicle 120 of the modified example of FIG. May be connected to an axle (an axle connected to the wheels 64a and 64b in FIG. 7) different from an axle to which the ring gear shaft 32a is connected (an axle to which the drive wheels 63a and 63b are connected).

また、こうしたハイブリッド自動車に適用するものに限定されるものではなく、自動車以外の車両や船舶,航空機などの移動体に搭載される動力出力装置の形態や建設設備などの移動しない設備に組み込まれた動力出力装置の形態としても構わない。さらに、こうした動力出力装置の制御方法の形態としてもよい。   In addition, it is not limited to those applied to such hybrid vehicles, but is incorporated into non-moving equipment such as forms of power output devices mounted on moving bodies such as vehicles other than automobiles, ships, and aircraft, and construction equipment. A power output device may be used. Furthermore, it is good also as a form of the control method of such a power output device.

ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、モータMG1が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当し、駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*に基づいて設定される要求パワーPe*に基づいて仮回転数Netmpと仮トルクTetmpとを設定すると共に仮トルクTetmpを許容最大トルクTelimの範囲内としてエンジン22の目標回転数Ne*と目標トルクTe*とを設定する図2の駆動制御ルーチンにおけるステップS110〜S150の処理を実行するハイブリッド用電子制御ユニット70が「運転指令設定手段」に相当し、エンジン22の目標回転数Ne*とリングギヤ軸32aの回転数Nrと動力分配統合機構30のギヤ比ρとを用いてモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と現在の回転数Nm1とに基づいてエンジン22が目標回転数Ne*で運転されるようモータMG1のトルク指令Tm1*を計算する図2の駆動制御ルーチンにおけるステップS160の処理を実行するハイブリッド用電子制御ユニット70が「駆動指令設定手段」に相当し、モータMG1の回転子の回転位置を検出する回転位置検出センサ43とこの回転位置検出センサ43からの検出値に基づいてモータMG1の回転数Nm1を演算するモータECU40とが「駆動状態検出手段」に相当し、駆動制御が定常状態にあるときにモータMG1の目標回転数Nm1*と回転数Nm1との差の絶対値としての回転数差ΔNm1とエンジン22の目標回転数Ne*と回転数Neとの差の絶対値としての回転数差ΔNeが各々閾値Nref1や閾値Nref2以上のときに許容最大トルクTelimから所定トルクΔTだけ減じたものを新たな許容最大トルクTelimとして設定することにより許容最大トルクTelimを更新する図2の駆動制御ルーチンにおけるステップS210〜S240の処理を実行するハイブリッド用電子制御ユニット70が「許容最大トルク更新手段」に相当し、エンジン22の目標回転数Ne*と目標トルクTe*とをエンジンECU24に送信すると共にモータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する図2の駆動制御ルーチンにおけるステップS200の処理を実行するハイブリッド用電子制御ユニット70と受信した目標回転数Ne*と目標トルクTe*とに基づいてエンジン22を運転制御するエンジンECU24と受信したモータMG1,MG2のトルク指令Tm1*,Tm2*に基づいてモータMG1,MG2を駆動制御するモータECU40とが「制御手段」に相当する。また、クランクシャフト26の回転位置を検出するクランクポジションセンサ23とこのクランクポジションセンサからのクランクポジションに基づいてエンジン22の回転数Neを演算するエンジンECU24とが「運転状態検出手段」や「回転数検出手段」に相当する。さらに、更新した許容最大トルクTelimが判定トルクTref未満であるときにダイアグ検出として異常を出力する図2の駆動制御ルーチンにおけるステップS250,S260の処理を実行するハイブリッド用電子制御ユニット70が「異常判定手段」に相当する。また、モータMG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、アクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*を設定する図2の駆動制御ルーチンにおけるステップS110の処理を実行するハイブリッド用電子制御ユニット70が「要求駆動力設定手段」に相当する。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to an “internal combustion engine”, the motor MG1 corresponds to a “generator”, the power distribution and integration mechanism 30 corresponds to a “3-axis power input / output unit”, and a ring gear as a drive shaft. Based on the required power Pe * set based on the required torque Tr * to be output to the shaft 32a, the temporary rotational speed Netmp and the temporary torque Tempmp are set, and the temporary torque Tetmp is set within the range of the allowable maximum torque Telim. The hybrid electronic control unit 70 that executes the processing of steps S110 to S150 in the drive control routine of FIG. 2 for setting the target rotational speed Ne * and the target torque Te * corresponds to the “operation command setting means”, and the engine 22 Using the target rotational speed Ne * of the motor, the rotational speed Nr of the ring gear shaft 32a, and the gear ratio ρ of the power distribution and integration mechanism 30. The target rotational speed Nm1 * of G1 is calculated, and the torque command Tm1 * of the motor MG1 is calculated based on the calculated target rotational speed Nm1 * and the current rotational speed Nm1 so that the engine 22 is operated at the target rotational speed Ne *. The hybrid electronic control unit 70 that executes the process of step S160 in the drive control routine of FIG. 2 corresponds to the “drive command setting means”, and a rotational position detection sensor 43 that detects the rotational position of the rotor of the motor MG1 and this The motor ECU 40 that calculates the rotational speed Nm1 of the motor MG1 based on the detection value from the rotational position detection sensor 43 corresponds to “driving state detecting means”, and the target rotational speed of the motor MG1 when the driving control is in a steady state. The rotational speed difference ΔNm1 as an absolute value of the difference between Nm1 * and the rotational speed Nm1, the target rotational speed Ne * and the rotational speed of the engine 22 When the rotational speed difference ΔNe as an absolute value of the difference from e is greater than or equal to the threshold value Nref1 or the threshold value Nref2, the value obtained by subtracting the predetermined maximum torque ΔT from the allowable maximum torque Telim is set as the new allowable maximum torque Telim. The hybrid electronic control unit 70 that executes the processing of steps S210 to S240 in the drive control routine of FIG. 2 for updating the torque Telim corresponds to “allowable maximum torque updating means”, and the target rotational speed Ne * of the engine 22 and the target torque 2 is transmitted to the engine ECU 24 and torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 are transmitted to the motor ECU 40. The hybrid electronic control unit 70 executes the process of step S200 in the drive control routine of FIG. Target speed Ne * and eye The engine ECU 24 that controls the operation of the engine 22 based on the torque Te * and the motor ECU 40 that controls the driving of the motors MG1, MG2 based on the received torque commands Tm1 *, Tm2 * of the motors MG1, MG2 serve as “control means”. Equivalent to. A crank position sensor 23 for detecting the rotational position of the crankshaft 26 and an engine ECU 24 for calculating the rotational speed Ne of the engine 22 based on the crank position from the crank position sensor are referred to as “operating state detecting means” or “rotational speed”. It corresponds to “detection means”. Further, the hybrid electronic control unit 70 that executes the processing of steps S250 and S260 in the drive control routine of FIG. 2 that outputs an abnormality as a diagnosis detection when the updated allowable maximum torque Telim is less than the determination torque Tref is “abnormal determination. It corresponds to “means”. Motor MG2 corresponds to “electric motor”, battery 50 corresponds to “power storage means”, and is connected to drive wheels 63a and 63b as torque required for the vehicle based on accelerator opening Acc and vehicle speed V. The hybrid electronic control unit 70 that executes the processing of step S110 in the drive control routine of FIG. 2 for setting the required torque Tr * to be output to the ring gear shaft 32a as the drive shaft corresponds to “required drive force setting means”. The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problem. That is, the interpretation of the invention described in the column of means for solving the problems should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problems. It is only a specific example.

以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present invention. Of course you get.

本発明は、動力出力装置や車両の製造産業などに利用可能である。   The present invention can be used in the power output apparatus and the vehicle manufacturing industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. 実施例のハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine performed by the electronic control unit for hybrids 70 of an Example. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. エンジン22の動作ラインの一例と目標回転数Ne*および目標トルクTe*を設定する様子を示す説明図である。It is explanatory drawing which shows a mode that an example of the operating line of the engine 22, and target rotational speed Ne * and target torque Te * are set. 動力分配統合機構30の回転要素を力学的に説明するための共線図の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a collinear diagram for dynamically explaining rotational elements of a power distribution and integration mechanism 30. 駆動系の機器等に若干の異常が生じているときと駆動系の機器等が諸元どおりに機能しているときの動力分配統合機構30の回転要素を力学的に説明するための共線図の一例を示す説明図である。A collinear diagram for mechanically explaining the rotational elements of the power distribution and integration mechanism 30 when a slight abnormality occurs in the drive system devices and when the drive system devices function according to the specifications. It is explanatory drawing which shows an example. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification.

符号の説明Explanation of symbols

20,120 ハイブリッド自動車、22 エンジン、23 クランクポジションセンサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、53 昇圧コンバータ、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、MG1,MG2 モータ。   20, 120 Hybrid vehicle, 22 engine, 23 crank position sensor, 24 engine electronic control unit (engine ECU), 26 crankshaft, 28 damper, 30 power distribution integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear , 34 carrier, 35 reduction gear, 40 motor electronic control unit (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 50 battery, 51 temperature sensor, 52 battery electronic control unit (battery ECU), 53 Boost Converter, 54 Power Line, 60 Gear Mechanism, 62 Differential Gear, 63a, 63b Drive Wheel, 64a, 64b Wheel, 70 Hybrid Electronic Control Unit, 72 CPU, 74 R M, 76 RAM, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 an accelerator pedal position sensor, 85 brake pedal, 86 a brake pedal position sensor, 88 vehicle speed sensor, MG1, MG2 motor.

Claims (14)

駆動軸に動力を出力する動力出力装置であって、
内燃機関と、
動力を入出力可能な発電機と、
前記内燃機関の出力軸と前記駆動軸と前記発電機の回転軸との3軸に接続され、該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、
所定の駆動要求に基づいて許容最大トルクの範囲内で前記内燃機関を運転すべき運転指令を設定する運転指令設定手段と、
前記設定された運転指令で前記内燃機関が運転されるよう前記発電機を駆動すべき駆動指令を設定する駆動指令設定手段と、
前記発電機の駆動状態を検出する駆動状態検出手段と、
前記検出された発電機の駆動状態と前記設定された駆動指令とに基づいて前記許容最大トルクを更新する許容最大トルク更新手段と、
前記設定された駆動指令を用いて前記発電機を駆動制御すると共に前記設定された運転指令を用いて前記内燃機関を運転制御する制御手段と、
を備える動力出力装置。
A power output device that outputs power to a drive shaft,
An internal combustion engine;
A generator capable of inputting and outputting power;
It is connected to three shafts of the output shaft of the internal combustion engine, the drive shaft, and the rotating shaft of the generator, and power is supplied to the remaining shaft based on power input / output to / from any two of the three shafts. 3-axis power input / output means for input / output;
An operation command setting means for setting an operation command for operating the internal combustion engine within a range of allowable maximum torque based on a predetermined drive request;
Drive command setting means for setting a drive command to drive the generator so that the internal combustion engine is operated with the set operation command;
Driving state detecting means for detecting the driving state of the generator;
An allowable maximum torque updating means for updating the allowable maximum torque based on the detected drive state of the generator and the set drive command;
Control means for driving and controlling the generator using the set driving command and for controlling the operation of the internal combustion engine using the set driving command;
A power output device comprising:
請求項1記載の動力出力装置であって、
前記運転指令は、目標回転数と目標トルクとからなる目標運転ポイントであり、
前記駆動指令は、前記内燃機関を前記目標運転ポイントで運転するための前記発電機の目標回転数を含む指令であり、
前記駆動状態検出手段は、前記発電機の回転数を検出する手段であり、
前記許容最大トルク更新手段は、前記発電機の回転数と前記駆動指令における前記発電機の目標回転数との回転数差に基づいて前記許容最大トルクを更新する手段である、
動力出力装置。
The power output device according to claim 1,
The operation command is a target operation point consisting of a target rotational speed and a target torque,
The drive command is a command including a target rotational speed of the generator for operating the internal combustion engine at the target operating point,
The drive state detection means is means for detecting the rotational speed of the generator,
The allowable maximum torque updating means is means for updating the allowable maximum torque based on a rotational speed difference between the rotational speed of the generator and a target rotational speed of the generator in the drive command.
Power output device.
前記許容最大トルク更新手段は、前記回転数差が所定回転数差以上のときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する手段である請求項2記載の動力出力装置。   3. The power output apparatus according to claim 2, wherein the allowable maximum torque updating means is means for updating the allowable maximum torque so that the allowable maximum torque becomes small when the rotational speed difference is greater than or equal to a predetermined rotational speed difference. 請求項1ないし3いずれか記載の動力出力装置であって、
前記内燃機関の運転状態を検出する運転状態検出手段を備え、
前記許容最大トルク更新手段は、前記検出された内燃機関の運転状態と前記設定された運転指令とに基づいて前記許容最大トルクを更新する手段である、
動力出力装置。
The power output device according to any one of claims 1 to 3,
Comprising an operating state detecting means for detecting an operating state of the internal combustion engine;
The allowable maximum torque update means is means for updating the allowable maximum torque based on the detected operating state of the internal combustion engine and the set operation command.
Power output device.
請求項2記載の動力出力装置であって、
前記内燃機関の回転数を検出する回転数検出手段を備え、
前記許容最大トルク更新手段は、
前記検出された内燃機関の回転数と前記運転指令における前記内燃機関の目標回転数との回転数差に基づいて前記許容最大トルクを更新する手段である、
動力出力装置。
The power output device according to claim 2,
A rotational speed detection means for detecting the rotational speed of the internal combustion engine;
The allowable maximum torque update means includes:
Means for updating the allowable maximum torque based on a difference in rotation speed between the detected rotation speed of the internal combustion engine and a target rotation speed of the internal combustion engine in the operation command;
Power output device.
前記許容最大トルク更新手段は、前記発電機の回転数と前記発電機の目標回転数との回転数差が第1の回転数差以上であると共に前記内燃機関の回転数と前記内燃機関の目標回転数との回転数差が前記第1の回転数差とは異なる第2の回転数差以上であるときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する手段である請求項5記載の動力出力装置。   The allowable maximum torque updating means is configured such that a rotational speed difference between the rotational speed of the generator and the target rotational speed of the generator is not less than a first rotational speed difference, and the rotational speed of the internal combustion engine and the target of the internal combustion engine. 6. The means for updating the allowable maximum torque so that the allowable maximum torque is reduced when a difference in rotational speed from the rotational speed is equal to or greater than a second rotational speed difference different from the first rotational speed difference. The power output apparatus described. 前記許容最大トルク更新手段は、前記許容最大トルクを更新するときには該許容最大トルクが所定トルクだけ小さくなるよう該許容最大トルクを更新する手段である請求項3または6記載の動力出力装置。   The power output apparatus according to claim 3 or 6, wherein the allowable maximum torque updating means is means for updating the allowable maximum torque so that the allowable maximum torque is reduced by a predetermined torque when the allowable maximum torque is updated. 前記許容最大トルクが所定判定トルク未満に至ったときに異常と判定する異常判定手段を備える請求項1ないし7いずれか記載の動力出力装置。   The power output apparatus according to any one of claims 1 to 7, further comprising an abnormality determination unit that determines an abnormality when the allowable maximum torque is less than a predetermined determination torque. 前記所定の駆動要求は、駆動軸に出力すべき要求駆動力に基づく要求である請求項1ないし8いずれか記載の動力出力装置。   The power output apparatus according to any one of claims 1 to 8, wherein the predetermined drive request is a request based on a required drive force to be output to the drive shaft. 請求項1ないし8いずれか記載の動力出力装置であって、
前記駆動軸に動力を出力可能な電動機と、
前記発電機および前記電動機と電力のやりとりが可能な蓄電手段と、
前記駆動軸に出力すべき要求駆動力を設定する要求駆動力設定手段と、
を備え、
前記運転指令設定手段は、前記駆動要求として前記設定された要求駆動力に基づいて前記運転指令を設定する手段であり、
前記制御手段は、前記設定された駆動指令を用いて前記発電機を駆動制御すると共に前記設定された運転指令を用いて前記内燃機関を運転制御し、且つ、前記設定された要求駆動力に基づく駆動力が前記駆動軸に出力されるよう前記電動機を制御する手段である、
動力出力装置。
The power output device according to any one of claims 1 to 8,
An electric motor capable of outputting power to the drive shaft;
Power storage means capable of exchanging electric power with the generator and the motor;
Required driving force setting means for setting required driving force to be output to the driving shaft;
With
The operation command setting means is means for setting the operation command based on the set required driving force as the drive request,
The control means controls the generator using the set drive command, controls the internal combustion engine using the set operation command, and based on the set required drive force Means for controlling the electric motor such that a driving force is output to the driving shaft;
Power output device.
請求項1ないし10いずれか記載の動力出力装置を搭載し、車軸が前記駆動軸に連結されてなる車両。   A vehicle comprising the power output device according to claim 1 and an axle connected to the drive shaft. 内燃機関と、動力を入出力可能な発電機と、前記内燃機関の出力軸と駆動軸と前記発電機の回転軸との3軸に接続され該3軸のうちのいずれか2軸に入出力される動力に基づいて残余の軸に動力を入出力する3軸式動力入出力手段と、を備える動力出力装置の制御方法であって、
所定の駆動要求に基づいて許容最大トルクの範囲内で前記内燃機関を運転すべき運転指令を設定すると共に該設定した運転指令で前記内燃機関が運転されるよう前記発電機を駆動すべき駆動指令を設定し、前記設定した駆動指令を用いて前記発電機を駆動制御すると共に前記設定した運転指令を用いて前記内燃機関を運転制御し、前記発電機の駆動状態と前記設定した駆動指令とに基づいて前記許容最大トルクを更新する、
ことを特徴とする動力出力装置の制御方法。
An internal combustion engine, a generator capable of inputting / outputting power, an output shaft of the internal combustion engine, a drive shaft, and a rotation shaft of the generator, connected to three axes, and input / output to any two of the three axes A three-axis power input / output means for inputting / outputting power to / from the remaining shaft based on the power to be driven,
A drive command for setting the operation command for operating the internal combustion engine within a range of the maximum allowable torque based on a predetermined drive request and for driving the generator so that the internal combustion engine is operated with the set operation command. And the drive control of the generator using the set drive command and the operation control of the internal combustion engine using the set drive command, to the drive state of the generator and the set drive command Updating the maximum allowable torque based on:
A control method for a power output apparatus.
請求項12記載の動力出力装置の制御方法であって、
前記運転指令は、目標回転数と目標トルクとからなる目標運転ポイントであり、
前記駆動指令は、前記内燃機関を前記目標運転ポイントで運転するための前記発電機の目標回転数を含む指令であり、
前記駆動状態は、前記発電機の回転数であり、
前記発電機の回転数と前記発電機の目標回転数との回転数差が所定回転数差以上のときに前記許容最大トルクが小さくなるよう該許容最大トルクを更新する、
ことを特徴とする動力出力装置の制御方法。
A control method for a power output apparatus according to claim 12,
The operation command is a target operation point consisting of a target rotational speed and a target torque,
The drive command is a command including a target rotational speed of the generator for operating the internal combustion engine at the target operating point,
The driving state is the rotational speed of the generator,
Updating the allowable maximum torque so that the allowable maximum torque is reduced when a rotational speed difference between the rotational speed of the generator and the target rotational speed of the generator is not less than a predetermined rotational speed difference;
A control method for a power output apparatus.
前記更新した許容最大トルクが所定判定トルク未満に至ったときに異常と判定して該異常を出力することを特徴とする請求項12または13記載の動力出力装置の制御方法。   The method for controlling a power output apparatus according to claim 12 or 13, wherein when the updated allowable maximum torque reaches less than a predetermined determination torque, the abnormality is determined and the abnormality is output.
JP2006331929A 2006-12-08 2006-12-08 Power output device, control method and vehicle Pending JP2008143316A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006331929A JP2008143316A (en) 2006-12-08 2006-12-08 Power output device, control method and vehicle
PCT/JP2007/065594 WO2008068930A1 (en) 2006-12-08 2007-08-09 Power output device and its control method and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331929A JP2008143316A (en) 2006-12-08 2006-12-08 Power output device, control method and vehicle

Publications (1)

Publication Number Publication Date
JP2008143316A true JP2008143316A (en) 2008-06-26

Family

ID=39491842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331929A Pending JP2008143316A (en) 2006-12-08 2006-12-08 Power output device, control method and vehicle

Country Status (2)

Country Link
JP (1) JP2008143316A (en)
WO (1) WO2008068930A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119383A (en) * 2011-12-08 2013-06-17 Hyundai Motor Co Ltd Method of controlling torque of hybrid vehicle and system for the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042307A1 (en) * 2008-09-24 2010-04-01 Robert Bosch Gmbh Method for diagnosing an operating status of a drive device and diagnostic device and drive system
RU2749383C1 (en) * 2017-12-15 2021-06-09 Ниссан Мотор Ко., Лтд. Control device and a method of controlling a hybrid vehicle engine
US11167745B2 (en) * 2018-04-19 2021-11-09 Toyota Jidosha Kabushiki Kaisha Control system of hybrid vehicle
CN109130865A (en) * 2018-10-18 2019-01-04 奇瑞新能源汽车技术有限公司 A kind of detection system and method for electric car liquid cooling system working condition
JP7196805B2 (en) * 2019-09-20 2022-12-27 トヨタ自動車株式会社 Hybrid vehicle control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112901A (en) * 1996-08-09 1998-04-28 Toyota Motor Corp Power output device and anomaly detector for motor
JP4259488B2 (en) * 2005-05-20 2009-04-30 トヨタ自動車株式会社 POWER OUTPUT DEVICE, VEHICLE HAVING THE SAME AND CONTROL METHOD THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119383A (en) * 2011-12-08 2013-06-17 Hyundai Motor Co Ltd Method of controlling torque of hybrid vehicle and system for the same

Also Published As

Publication number Publication date
WO2008068930A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4192991B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND CONTROL METHOD THEREOF
JP2009227073A (en) Hybrid vehicle, and control method for the same
JP4501812B2 (en) Maximum output setting device, drive device including the same, power output device including the same, automobile equipped with the same, maximum output setting method
JP2005344605A (en) Power output device, hybrid vehicle equipped with the device, and method for controlling these
JP2007137230A (en) Power output device, vehicle with the same, and method for controlling the device
JP2006262585A (en) Hybrid vehicle and control method therefor
JP4311400B2 (en) Hybrid vehicle and control method thereof
JP2008265652A (en) Hybrid automobile and method for controlling the same
JP2006094626A (en) Hybrid vehicle and its control method
JP2008143316A (en) Power output device, control method and vehicle
JP4365354B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4063285B2 (en) POWER OUTPUT DEVICE, AUTOMOBILE MOUNTING THE SAME, STATE DETECTION DEVICE, AND CONTROL METHOD FOR POWER OUTPUT DEVICE
JP2010132141A (en) Power output device, vehicle, drive device and control method for the power output device
JP2008213531A (en) Vehicle and its control method
JP2007118835A (en) Power output device, automobile loading the same and control method for power output device
JP2007261399A (en) Hybrid car and its control method
JP4345765B2 (en) Vehicle and control method thereof
JP2006304389A (en) Vehicle and its control method
JP2005210841A (en) Vehicle and method for controlling the same
JP4215030B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4176102B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, VEHICLE, AND DRIVE DEVICE
JP2007210409A (en) Vehicle, and control method for vehicle
JP2009137369A (en) Vehicle, driving device, and control method for vehicle
JP2010023588A (en) Power output device, vehicle mounted thereon, and control method of motive power output device
JP2008162346A (en) Power output unit, control method therefor, and vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106