JP2008140556A - MANUFACTURING METHOD OF MgB2 SUPERCONDUCTIVE WIRE ROD - Google Patents

MANUFACTURING METHOD OF MgB2 SUPERCONDUCTIVE WIRE ROD Download PDF

Info

Publication number
JP2008140556A
JP2008140556A JP2006322751A JP2006322751A JP2008140556A JP 2008140556 A JP2008140556 A JP 2008140556A JP 2006322751 A JP2006322751 A JP 2006322751A JP 2006322751 A JP2006322751 A JP 2006322751A JP 2008140556 A JP2008140556 A JP 2008140556A
Authority
JP
Japan
Prior art keywords
mgb
primary particles
superconducting wire
wire
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322751A
Other languages
Japanese (ja)
Other versions
JP4807240B2 (en
Inventor
Kazuhide Tanaka
和英 田中
Masaya Takahashi
雅也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006322751A priority Critical patent/JP4807240B2/en
Publication of JP2008140556A publication Critical patent/JP2008140556A/en
Application granted granted Critical
Publication of JP4807240B2 publication Critical patent/JP4807240B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an MgB<SB>2</SB>superconductive wire material capable of simultaneously achieving lengthy wire material and high Jc necessary for making a practical superconductive wire material. <P>SOLUTION: In the manufacturing method of this MgB<SB>2</SB>superconductive wire material, first Mg primary particles and B primary particles are mixed, the B primary particles are made to be adhered/reacted on a surface of the first Mg primary particles, MgB<SB>4</SB>or MgB<SB>7</SB>is formed on a surface of the first Mg primary particles, the first Mg primary particles in which MgB<SB>4</SB>or MgB<SB>7</SB>is formed on the surface and the second Mg primary particles larger in a particle diameter than the first Mg primary particles in which MgB<SB>4</SB>or MgB<SB>7</SB>is formed on the surface are mixed, the first Mg primary particles in which MgB<SB>4</SB>or MgB<SB>7</SB>is formed on the surface are made to be adhered/reacted on the surface of the second Mg primary particles, and MgB<SB>2</SB>is made to be formd on the surface of the secondary Mg primary particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、MgB2超電導線材の製造方法に関するものである。 The present invention relates to a method for producing a MgB 2 superconducting wire.

21世紀に入って、非特許文献1に記載のように、ニホウ化マグネシウム(MgB2 )が39Kで超電導特性を示すことが発見された。この材料は、主に、以下の特徴が知られている。 In the 21st century, as described in Non-Patent Document 1, it was discovered that magnesium diboride (MgB 2 ) exhibits superconducting properties at 39K. This material is mainly known for the following characteristics.

(1)臨界温度(以下、Tc)が39Kと、従来の金属系超電導体と比べて20K以上 高い。   (1) The critical temperature (hereinafter Tc) is 39K, which is 20K or more higher than that of a conventional metal superconductor.

(2)上部臨界磁界(以下、Hc2 )が20T程度あるいはそれ以上と、従来の金属系 超電導体より大きい。 (2) The upper critical magnetic field (hereinafter referred to as Hc 2 ) is about 20 T or more, which is larger than that of conventional metal superconductors.

(3)輸送臨界電流密度(以下、Jc)は、最大で1000A/mm2 オーダーである。 (3) The transport critical current density (hereinafter, Jc) is on the order of 1000 A / mm 2 at the maximum.

(4)磁気異方性が小さく、結晶のa軸,b軸およびc軸のどの方向にも同様の電流を 流すことができる。   (4) The magnetic anisotropy is small, and the same current can flow in any direction of the a-axis, b-axis, and c-axis of the crystal.

このように、MgB2 超電導体は、Tc及びHc2 が、従来の金属系超電導体より高いため、超電導マグネットに適用される場合、クエンチ事故のない、極めて安定したシステムを構築できるというメリットが生じる。 As described above, since the MgB 2 superconductor has higher Tc and Hc 2 than the conventional metal superconductor, when applied to a superconducting magnet, there is a merit that an extremely stable system without a quench accident can be constructed. .

線材作製に適用される一般的なMgB2 の線材化手法としては、主に工業化に適するパウダー・イン・チューブ(PIT)法が用いられる。このPIT法は、
(i)MgB2 超電導粉末を比較的強度の高いステンレス鋼等の金属管に充填するex− situ法
(ii)MgとBとの混合粉末を鉄等の金属管に充填し熱処理することによって超電導化 するin−situ法
の2方式に大別される。
As a general method for making MgB 2 into a wire, which is applied to wire production, a powder-in-tube (PIT) method suitable for industrialization is mainly used. This PIT method is
(I) Ex-situ method of filling MgB 2 superconducting powder in a relatively strong stainless steel or other metal tube (ii) Superconductivity by filling Mg and B mixed powder in a metal tube of iron or the like and heat-treating It can be roughly divided into two types of in-situ methods.

Nature 410,63−64(2001年)Nature 410, 63-64 (2001)

ex−situ法の場合、MgB2 超電導粉末同士の反応となるため、高温長時間の熱処理が実質的に避けられない。熱処理において、温度の高温化,時間の長時間化は、コスト増大につながるため、応用上好ましくない。 In the case of the ex-situ method, MgB 2 superconducting powders react with each other, and thus heat treatment at a high temperature for a long time is substantially inevitable. In heat treatment, increasing the temperature and lengthening the time lead to an increase in cost, which is undesirable in terms of application.

また、ex−situ法では、充填するMgB2 超電導粉末の特性に左右されるところが大きく、具体的には、MgB2 超電導粉末の表面に酸化膜が形成されると、最終的な熱処理の際に、粉末の界面で異相が生成され、電流パスを遮断する。このため、現段階では、特に高磁場中でのJcに課題がある。 Further, in the ex-situ method, it largely depends on the characteristics of the MgB 2 superconducting powder to be filled. Specifically, when an oxide film is formed on the surface of the MgB 2 superconducting powder, the final heat treatment is performed. A heterogeneous phase is generated at the powder interface, blocking the current path. Therefore, at this stage, there is a problem with Jc particularly in a high magnetic field.

一方、in−situ法の場合、Mg粉末とB粉末との拡散反応で、MgB2 を生成する方法が一般的である。この反応形態(Mg+2B→MgB2 )を考えると、モル体積として
Mg:14×10-33/mol,2B:9×10-33/molの各粉末を熱処理によって、
MgB2:17×10-33/mol とすることになるため、焼結密度は約26%減少することになる。これより、線材中の高密度化が困難となる。
On the other hand, in the case of an in-situ method, a method of generating MgB 2 by a diffusion reaction between Mg powder and B powder is common. Considering this reaction form (Mg + 2B → MgB 2 ), each powder having a molar volume of Mg: 14 × 10 −3 m 3 / mol and 2B: 9 × 10 −3 m 3 / mol is subjected to heat treatment.
Since MgB 2 is 17 × 10 −3 m 3 / mol, the sintered density is reduced by about 26%. This makes it difficult to increase the density in the wire.

また、in−situ法では、金属管として、Feが使用されることが多いが、FeはBと熱的に反応することから、超電導化するための熱処理の際に、FeとBとの化合物が形成される。これにより、Jcが低下するという課題がある。   In the in-situ method, Fe is often used as a metal tube. Since Fe reacts thermally with B, a compound of Fe and B is used during heat treatment for superconductivity. Is formed. Thereby, there exists a subject that Jc falls.

そこで、本発明は、実用的な超電導線材とするために必要な、長尺線材化,高Jc化を、同時に達成することのできるMgB2 超電導線材の製造方法を提供することにある。 Accordingly, the present invention is to provide a method for producing a MgB 2 superconducting wire that can simultaneously achieve the lengthening of the long wire and the increase in Jc necessary for making a practical superconducting wire.

本発明のMgB2 超電導線材の製造方法は、第1のMg一次粒子とB一次粒子とを混合し、第1のMg一次粒子の表面に、B一次粒子を付着させ、第一の熱処理をすることにより、第1のMg一次粒子と、第1のMg一次粒子の表面に付着したB一次粒子とを反応させ、第1のMg一次粒子の表面にMgB4又はMgB7を生成させる工程と、表面にMgB4又はMgB7 が生成した第1のMg一次粒子と、表面にMgB4 又はMgB7 が生成した第1のMg一次粒子より粒子径が大きい第2のMg一次粒子とを混合し、第2のMg一次粒子の表面に、表面にMgB4 又はMgB7 が生成した第1のMg一次粒子を付着させ、表面にMgB4 又はMgB7 が生成した第1のMg一次粒子を表面に付着させた第2の
Mg一次粒子を、チューブ状の金属管(シース)に充填し、伸線加工を施し、第二の熱処理をすることにより、第2のMg一次粒子と、MgB4 又はMgB7 とを反応させ、第2のMg一次粒子の表面にMgB2 を生成させる工程とを有することを特徴とする。
In the method of manufacturing the MgB 2 superconducting wire of the present invention, the first Mg primary particles and the B primary particles are mixed, the B primary particles are adhered to the surface of the first Mg primary particles, and the first heat treatment is performed. A step of causing the first Mg primary particles to react with the B primary particles attached to the surface of the first Mg primary particles to generate MgB 4 or MgB 7 on the surface of the first Mg primary particles; a first Mg primary particles MgB 4 or MgB 7 is formed on the surface, and MgB 4 or the first particle diameter than Mg primary particles is larger second Mg primary particles MgB 7 is formed on the surface were mixed, The first Mg primary particles produced with MgB 4 or MgB 7 are attached to the surface of the second Mg primary particles, and the first Mg primary particles produced with MgB 4 or MgB 7 are attached to the surface. The second Mg primary particles made into a tube-shaped metal tube Filling the sheath), subjected to wire drawing, by a second heat treatment, is reacted with a second Mg primary particles, and MgB 4 or MgB 7, MgB 2 on the surface of the second Mg primary particles And a step of generating.

なお、本発明において、一次粒子は単結晶の粒子である。   In the present invention, the primary particles are single crystal particles.

また、第1のMg一次粒子と、第1のMg一次粒子の表面に付着したB一次粒子とを反応させ、第1のMg一次粒子の表面にMgB4 又はMgB7 を生成させた場合、及び、第2のMg一次粒子と、MgB4又はMgB7とを反応させ、第2のMg一次粒子の表面に
MgB2 を生成させた場合、のいずれの場合においても、第1のMg一次粒子の粒子径及び第2のMg一次粒子の粒子径が、それぞれ反応前より小さくなっている。
Also, when the first Mg primary particles react with the B primary particles attached to the surface of the first Mg primary particles to produce MgB 4 or MgB 7 on the surface of the first Mg primary particles, and When the second Mg primary particles are reacted with MgB 4 or MgB 7 to produce MgB 2 on the surface of the second Mg primary particles, the first Mg primary particles The particle diameter and the particle diameter of the second Mg primary particles are respectively smaller than before the reaction.

なお、生成されたMgB2 は、金属管の内部に連続的に、つまり電気的に連続に生成されている。また、生成されたMgB2 は、金属管の内部に焼結密度がMgB2 の理論密度(2.63g/cm3)に対して85%以上で生成されている。 The generated MgB 2 is continuously generated inside the metal tube, that is, electrically continuously. The produced MgB 2 is produced in the metal tube at a sintering density of 85% or more with respect to the theoretical density (2.63 g / cm 3 ) of MgB 2 .

また、第一の熱処理は、800〜1200℃の温度で施され、第二の熱処理は、600〜750℃の温度で施されることが好ましい。   The first heat treatment is preferably performed at a temperature of 800 to 1200 ° C., and the second heat treatment is preferably performed at a temperature of 600 to 750 ° C.

さらに、第1のMg一次粒子と第1のMg一次粒子の表面に付着したB一次粒子との反応や第2のMg一次粒子とMgB4又はMgB7 との反応は、拡散反応である。 Further, the reaction between the first Mg primary particles and the B primary particles attached to the surface of the first Mg primary particles and the reaction between the second Mg primary particles and MgB 4 or MgB 7 are diffusion reactions.

なお、第1のMg一次粒子の粒子径は10〜30μmであり、B一次粒子の粒子径は第1のMg一次粒子の粒子径に対して1/10〜1/100であり、第2のMg一次粒子の粒子径が40〜60μmであることが好ましい。   In addition, the particle diameter of the 1st Mg primary particle is 10-30 micrometers, the particle diameter of B primary particle is 1/10-1/100 with respect to the particle diameter of 1st Mg primary particle, 2nd It is preferable that the particle diameter of Mg primary particle is 40-60 micrometers.

また、本発明のMgB2 超電導線材は、線材の長手方向に連続的にMgB2 が形成され、MgB2が形成されている線材の任意の位置(断面)において、Mg粒子の周囲にMgB2が形成され、Mg粒子の平均半径が5μm以下であり、MgB2 の平均的な厚みがMg粒子の平均半径に対して、等しいかそれ以上(1倍以上)である。 Moreover, MgB 2 superconducting wire of the present invention, is continuously MgB 2 is formed in the longitudinal direction of the wire, an arbitrary position of the wire that MgB 2 is formed in (cross), MgB 2 is around the Mg particles The average radius of the Mg particles is 5 μm or less, and the average thickness of MgB 2 is equal to or greater than (1 ×) the average radius of the Mg particles.

そして、本発明のMgB2 超電導線材は、線材の長手方向に連続的にMgB2 が形成され、MgB2 が形成されている線材の任意の位置(断面)において、第1のMg一次粒子と、第1のMg一次粒子より粒子径の大きい第2のMg一次粒子を有し、それぞれの粒子の周囲にMgB2 が生成されていることを特徴とする。 Then, MgB 2 superconducting wire of the present invention, is continuously MgB 2 is formed in the longitudinal direction of the wire, an arbitrary position of the wire that MgB 2 is formed in (cross-section), a first Mg primary particles, has a larger second Mg primary particles of particle diameter than the first Mg primary particles, MgB 2 around each particle, characterized in that it is produced.

なお、Mg粒子の表面に、Bあるいは、MgとBとで構成される化合物を成膜する工程を含む製造方法を用いることも有効である。   It is also effective to use a manufacturing method including a step of forming a film of B or a compound composed of Mg and B on the surface of Mg particles.

また、本発明の製造方法により作製した線材は、Mg粉とB粉とをそれぞれ単独で用い、拡散反応させて、MgB2 を生成させる場合に比べて、体積収縮率が小さいため、熱処理後のMgB2 超電導線材のコア中における焼結密度を向上させることができ、高Jc化が可能となる。 Moreover, since the wire rod produced by the production method of the present invention uses Mg powder and B powder independently and causes a diffusion reaction to produce MgB 2 , the volume shrinkage rate is small. The sintered density in the core of the MgB 2 superconducting wire can be improved, and a high Jc can be achieved.

本発明による超電導線材の製造方法は、実用的な超電導線材とするために必要な、長尺線材化,高Jc化を、同時に達成することができる。   The method for producing a superconducting wire according to the present invention can simultaneously achieve a long wire and a high Jc necessary for making a practical superconducting wire.

本発明者らは、超電導線材およびそのマグネットの研究開発を進め、高性能の超電導線材を作製するために必要不可欠な項目として、特に、以下の4項目が重要であることを明らかにした。すなわち、
(1)超電導体と熱的に反応しない金属管の材料の選定
(2)最終形状に加工したときの超電導体の充填密度の向上
(3)結晶粒同士の接合性の向上
(4)量子化された磁束線をトラップして、侵入した磁束線を動かないようにするピン ニングセンターの導入
である。
The present inventors have advanced research and development of superconducting wires and their magnets, and have clarified that the following four items are particularly important as items indispensable for producing high-performance superconducting wires. That is,
(1) Selection of metal tube material that does not thermally react with the superconductor (2) Improvement of packing density of the superconductor when processed into the final shape (3) Improvement of bondability between crystal grains (4) Quantization This is the introduction of a pinning center that traps the magnetic flux lines that are trapped and prevents the magnetic flux lines that have entered from moving.

以上の項目を同時に実現することで、高い特性を有する超電導線材が得られる。   By realizing the above items simultaneously, a superconducting wire having high characteristics can be obtained.

しかし、Jcは、物質固有の値ではなく、線材の構成や線材の製造方法にも大きく依存する。このため、従来の金属系超電導線材および酸化物系超電導線材に適用してきた製造方法では、MgB2超電導線材のJcはあまり向上しないことが分かった。 However, Jc is not a value specific to the substance, but greatly depends on the configuration of the wire and the manufacturing method of the wire. For this reason, it has been found that the Jc of the MgB 2 superconducting wire is not significantly improved by the manufacturing method applied to the conventional metal-based superconducting wire and oxide-based superconducting wire.

したがって、超電導材料によってそれぞれ最適化を行う必要があり、MgB2 超電導体についても独自の検討が必要になった。 Therefore, it is necessary to optimize each superconducting material, and the MgB 2 superconductor has to be independently studied.

そこで、本発明者らは、MgB2 超電導線材の製造方法を鋭意検討した結果、本発明のような手段を見出した。この手段を適用することにより、線材形状がどのような場合であっても、高いJcを持ち、長尺線材化が容易なMgB2 超電導線材を製造することができる。 Thus, as a result of intensive studies on a method for producing an MgB 2 superconducting wire, the present inventors have found means as in the present invention. By applying this means, it is possible to manufacture an MgB 2 superconducting wire that has a high Jc and can be easily formed into a long wire regardless of the shape of the wire.

さらに、本実施形態をより詳細に図面を用いて説明する。但し、本発明は、以下に説明する実施例に限定されるものではない。   Furthermore, this embodiment will be described in more detail with reference to the drawings. However, the present invention is not limited to the examples described below.

図1に、本実施形態における超電導線材の製造方法の作製フロー図を示す。   FIG. 1 shows a production flow diagram of a method for manufacturing a superconducting wire in this embodiment.

粒径が10μmの第1のMg一次粒子と、粒径が0.3μm のB一次粒子とを用いて、MgとBとの原子モル比が1:4となるように秤量した後、両者を遊星ボールミルで混合した。   The first Mg primary particles having a particle size of 10 μm and B primary particles having a particle size of 0.3 μm were weighed so that the atomic molar ratio of Mg to B was 1: 4. Mixed with a planetary ball mill.

混合の際の雰囲気は、Ar中とし、時間は2時間とした。また、ポット及びボールの材質は、アルミナ製とした。   The atmosphere during mixing was in Ar, and the time was 2 hours. The material of the pot and ball was made of alumina.

混合した後の粉末を走査型電子顕微鏡で観察すると、粒径が10μmの第1のMg一次粒子の表面に、粒径が0.3μm のB一次粒子が、ほぼまんべんなく付着していることがわかった。   When the mixed powder is observed with a scanning electron microscope, it can be seen that B primary particles having a particle size of 0.3 μm are almost uniformly adhered to the surface of the first Mg primary particles having a particle size of 10 μm. It was.

次に、得られた粉末を用いて、800℃の温度で第一の熱処理を施した。   Next, first heat treatment was performed at a temperature of 800 ° C. using the obtained powder.

熱処理した後の粉末を走査型電子顕微鏡で観察すると、第1のMg一次粒子の表面に
MgB4 が生成していることがわかった。以下、これを第1のMg一次粒子+MgB4 と略す。
When the heat-treated powder was observed with a scanning electron microscope, it was found that MgB 4 was formed on the surface of the first Mg primary particles. Hereinafter, this is abbreviated as first Mg primary particles + MgB 4 .

第1のMg一次粒子+MgB4 における各値は、線材の位置(断面)によって若干異なるが、第1のMg一次粒子が3μm、MgB4が3.5μmであり、粒子径は概ね10μmであった。 Each value in the first Mg primary particles + MgB 4 is slightly different depending on the position (cross section) of the wire, but the first Mg primary particles are 3 μm, MgB 4 is 3.5 μm, and the particle diameter is approximately 10 μm. .

なお、第1のMg一次粒子と、前記第1のMg一次粒子の表面に付着したB一次粒子との反応は、拡散反応である。   The reaction between the first Mg primary particles and the B primary particles attached to the surface of the first Mg primary particles is a diffusion reaction.

次に、第1のMg一次粒子+MgB4 の粉末と、粒径が45μmの第2のMg一次粒子とを、MgとBとの原子モル比が1:2となるように秤量した後、両者を遊星ボールミルで混合した。 Next, the first Mg primary particles + MgB 4 powder and the second Mg primary particles having a particle size of 45 μm were weighed so that the atomic molar ratio of Mg to B was 1: 2, and then both Were mixed with a planetary ball mill.

混合の際の雰囲気は、Ar中とし、時間は2時間とした。また、ポット及びボールの材質は、アルミナ製とした。   The atmosphere during mixing was in Ar, and the time was 2 hours. The material of the pot and ball was made of alumina.

混合した後の粉末を走査型電子顕微鏡で観察すると、第2のMg一次粒子の表面に、第1のMg一次粒子+MgB4が、ほぼまんべんなく付着していることがわかった。 When the mixed powder was observed with a scanning electron microscope, it was found that the first Mg primary particles + MgB 4 adhered almost uniformly to the surface of the second Mg primary particles.

各粒径は、第2のMg一次粒子が45μm、第1のMg一次粒子+MgB4 が10μmであった。 The respective particle sizes were 45 μm for the second Mg primary particles and 10 μm for the first Mg primary particles + MgB 4 .

得られた粉末を、外周がCuで、内周がNbのCu/Nb複合管に充填した。管の外径は12mm、内径は7mm、長さは300mmとした。   The obtained powder was filled into a Cu / Nb composite tube having an outer periphery of Cu and an inner periphery of Nb. The outer diameter of the tube was 12 mm, the inner diameter was 7 mm, and the length was 300 mm.

その後、伸線加工を施すことにより、線材の直径で1.0mmまで縮径した。   Thereafter, the wire was subjected to wire drawing to reduce the wire diameter to 1.0 mm.

得られた線材を用いて、Ar雰囲気において、640℃,1時間、第二の熱処理を施すことにより、超電導線材とした。   A superconducting wire was obtained by subjecting the obtained wire to a second heat treatment at 640 ° C. for 1 hour in an Ar atmosphere.

線材の横断面を走査型電子顕微鏡で観察した結果、第2のMg一次粒子の表面にMgB2が生成していることが確認できた。なお、未反応のMgが観察され、第1のMg一次粒子及び第2のMg一次粒子のいずれもが未反応Mgとして確認された。 As a result of observing the cross section of the wire with a scanning electron microscope, it was confirmed that MgB 2 was formed on the surface of the second Mg primary particles. Unreacted Mg was observed, and both the first Mg primary particles and the second Mg primary particles were confirmed as unreacted Mg.

各粒子の粒子径は、場所によって若干異なるが、第2のMg一次粒子が33μm、
MgB2 が10μm、第1のMg一次粒子が3μmであった。こうした状態を模式的に示したものが、図3である。
The particle diameter of each particle varies slightly depending on the location, but the second Mg primary particle is 33 μm,
MgB 2 was 10 μm, and the first Mg primary particles were 3 μm. FIG. 3 schematically shows such a state.

なお、第2のMg一次粒子と、MgB4又はMgB7との反応は、拡散反応である。 The reaction between the second Mg primary particles and MgB 4 or MgB 7 is a diffusion reaction.

次に、作製したMgB2超電導線材における断面コア部の焼結密度を評価した。ここで、焼結密度は以下のような方法により算出した。 Next, the sintered density of the cross-section core part in the produced MgB 2 superconducting wire was evaluated. Here, the sintered density was calculated by the following method.

具体例を以下に述べる。   Specific examples are described below.

一定重量(Mt(g))のMgB2超電導線材を切り分ける。次に、切り分けた超電導線材をアルコールに浸し、アルコール中での線材の重量(W(g))を計測し、超電導線材に働く浮力を算出する。 A MgB 2 superconducting wire having a constant weight (M t (g)) is cut. Next, the cut superconducting wire is immersed in alcohol, the weight (W (g)) of the wire in alcohol is measured, and the buoyancy acting on the superconducting wire is calculated.

そして、アルコール密度(ρ=0.789(g/cm3)を用いて超電導線材の体積(Vt(cm3))を算出する。具体的には、浮力をFtとすると、以下の(1)式,(2)式により、Vtが算出される。 Then, the volume (V t (cm 3 )) of the superconducting wire is calculated using the alcohol density (ρ = 0.789 (g / cm 3 ). Specifically, when the buoyancy is F t , the following ( 1), the equation (2), V t is calculated.

t=Mt−W …(1)
t=Ft/ρ …(2)
続いて、超電導線材を硝酸に溶解し、その溶液をICP(Inductive Coupled Plasma)発光分析することにより、CuとNbとで構成される金属管のシース部を定量し、超電導線材の重量に占めるシース部の割合(Y)が算出する。
F t = M t −W (1)
V t = F t / ρ (2)
Subsequently, the superconducting wire is dissolved in nitric acid, and the solution is subjected to ICP (Inductive Coupled Plasma) emission analysis, whereby the sheath portion of the metal tube composed of Cu and Nb is quantified, and the sheath occupies the weight of the superconducting wire. The ratio (Y) of parts is calculated.

そして、超電導線材の重量から、断面コア部の重量(Mf(g))と、シース部の重量(Ms(g))とが以下の(3)式,(4)式により、算出される。 Then, from the weight of the superconducting wire, the weight of the cross-section core part (M f (g)) and the weight of the sheath part (M s (g)) are calculated by the following expressions (3) and (4). The

s=Mt×Y …(3)
f=Mt−Ms …(4)
次に、シース部の体積(Vs(cm3))が、既知の比重(たとえばシース部がCuの場合、8.82(g/cm3)、Nbの場合、8.57(g/cm3))より算出され、シース部の体積から断面コア部の体積(Vf(cm3))が算出される。
M s = M t × Y (3)
M f = M t −M s (4)
Next, the volume of the sheath part (V s (cm 3 )) is known specific gravity (for example, 8.82 (g / cm 3 ) when the sheath part is Cu, and 8.57 (g / cm 3 ) when Nb is used. 3 )), and the volume of the core section (V f (cm 3 )) is calculated from the volume of the sheath part.

そして、断面コア部の体積から断面コア部の密度ρfが算出される。具体的には、以下の(5)式〜(7)式によりρfが算出される。 Then, the density ρ f of the cross-sectional core part is calculated from the volume of the cross-sectional core part. Specifically, ρ f is calculated by the following equations (5) to (7).

s=Ms/シース材質の比重 …(5)
f=Vt−Vs …(6)
ρf=Mf/Vf …(7)
一方、断面コア部がMgB2 よりなっている場合、その理論密度は2.63g/cm3という値が採用されている。この理論密度と断面コア部の密度ρとの比から、断面コア部の焼結密度を算出する。
V s = M s / specific gravity of sheath material (5)
V f = V t −V s (6)
ρ f = M f / V f (7)
On the other hand, when the cross-sectional core portion is made of MgB 2 , the theoretical density is 2.63 g / cm 3 . From the ratio of the theoretical density and the density ρ of the cross-sectional core part, the sintered density of the cross-sectional core part is calculated.

具体的には、(8)式により、算出される。   Specifically, it is calculated by equation (8).

焼結密度(%)=(ρf/2.63)×100 …(8)
本実施例で作製した超電導線材において、第二の熱処理の後における焼結密度を評価した結果、断面コア部の密度は2.32g/cm3であり、88%の焼結密度であることがわかった。
Sintering density (%) = (ρ f /2.63)×100 (8)
As a result of evaluating the sintered density after the second heat treatment in the superconducting wire produced in this example, the density of the cross-sectional core portion is 2.32 g / cm 3 and the sintered density is 88%. all right.

次に、温度4.2K で、Jc測定を行った。ここでは、超電導線材に4〜7Tの磁場を印加した。   Next, Jc measurement was performed at a temperature of 4.2K. Here, a magnetic field of 4 to 7 T was applied to the superconducting wire.

その結果を、図2に示す。温度4.2K,印加磁場4T中で、4100A/mm2、印加磁場6T中で、1050A/mm2のJcが得られた。 The result is shown in FIG. Jc of 1050 A / mm 2 was obtained at a temperature of 4.2 K, an applied magnetic field of 4 T, and 4100 A / mm 2 and an applied magnetic field of 6 T.

〔比較例1〕
比較例として、以下に述べる工程により、実施例1に対する比較例としての超電導線材を作製した。
[Comparative Example 1]
As a comparative example, a superconducting wire as a comparative example with respect to Example 1 was manufactured by the steps described below.

粒径が10μmの第1のMg一次粒子と粒径が0.3μm のB一次粒子を用いて、MgとBとの原子モル比が1:2となるように秤量した後、両者を遊星ボールミルで混合した。混合の際の雰囲気は、Ar中とし、時間は2時間とした。また、ポット及びボールの材質はアルミナ製とした。   The first Mg primary particles having a particle size of 10 μm and the B primary particles having a particle size of 0.3 μm were weighed so that the atomic molar ratio of Mg to B was 1: 2, and then both were connected to a planetary ball mill. Mixed. The atmosphere during mixing was in Ar, and the time was 2 hours. The material of the pot and ball was made of alumina.

混合した後の粉末を、走査型電子顕微鏡で観察すると、第1のMg一次粒子の表面にB一次粒子がまんべんなく付着していることがわかった。   When the mixed powder was observed with a scanning electron microscope, it was found that B primary particles were evenly adhered to the surface of the first Mg primary particles.

得られた粉末を外周がCuで、内周がNbのCu/Nb複合管に充填した。管の外径は12mm、内径は7mm、長さは150mmとした。   The obtained powder was filled into a Cu / Nb composite tube having an outer periphery of Cu and an inner periphery of Nb. The outer diameter of the tube was 12 mm, the inner diameter was 7 mm, and the length was 150 mm.

その後、伸線加工を施すことにより、線材の直径で1.0mmまで縮径した。   Thereafter, the wire was subjected to wire drawing to reduce the wire diameter to 1.0 mm.

得られた線材を、Ar雰囲気において、640℃,1時間で熱処理することにより、超電導線材とした。   The obtained wire was heat-treated at 640 ° C. for 1 hour in an Ar atmosphere to obtain a superconducting wire.

線材の横断面を走査型電子顕微鏡で観察した結果、第1のMg一次粒子の表面に拡散反応によって生成したMgB2が存在していることが確認できた。 As a result of observing the cross section of the wire with a scanning electron microscope, it was confirmed that MgB 2 produced by the diffusion reaction was present on the surface of the first Mg primary particles.

本比較例で作製した超電導線材において、640℃,1時間の熱処理後における焼結密度を評価した結果、断面コア部の密度は、1.88g/cm3であり、71%の焼結密度であることがわかった。 In the superconducting wire produced in this comparative example, the sintered density after heat treatment at 640 ° C. for 1 hour was evaluated. As a result, the density of the cross-sectional core portion was 1.88 g / cm 3 , and the sintered density was 71%. I found out.

次に、温度4.2K で、Jc測定を行った。ここでは、超電導線材に4〜7Tの磁場を印加した。   Next, Jc measurement was performed at a temperature of 4.2K. Here, a magnetic field of 4 to 7 T was applied to the superconducting wire.

その結果を、図2に示す。   The result is shown in FIG.

Jcは、実施例1で作製した超電導線材に比べて、低い値に溜まった。これは、焼結密度の減少分が空隙となり、電流パスを遮断したためと推察される。   Jc accumulated at a low value as compared with the superconducting wire produced in Example 1. This is presumably because the decrease in the sintered density became voids and the current path was interrupted.

実施例1における第一の熱処理温度を600℃〜1300℃に100℃刻みで変化させた以外は、実施例1と同様の製造方法を用いて、MgB2 超電導線材を作製した。 An MgB 2 superconducting wire was produced using the same manufacturing method as in Example 1 except that the first heat treatment temperature in Example 1 was changed from 600 ° C. to 1300 ° C. in increments of 100 ° C.

表1に第一の熱処理温度と第一の熱処理の後に、走査型顕微鏡で観察された結晶相を示す。   Table 1 shows the crystal phase observed with a scanning microscope after the first heat treatment temperature and the first heat treatment.

また、最終熱処理後の超電導線材の断面コア部の焼結密度、及び4.2K ,4T中でのJcも併せて示す。   Moreover, the sintered density of the cross-sectional core part of the superconducting wire after the final heat treatment, and Jc in 4.2K and 4T are also shown.

Figure 2008140556
Figure 2008140556

600℃及び700℃での熱処理では、MgとB以外にMgB2 相が観察されたが、
800℃〜1000℃での熱処理では、MgB4 相が生成していることがわかった。また、1100℃及び1200℃での熱処理では、MgB7 が生成していた。しかし、1300℃まで温度を上げると同定できない相が大部分であり、超電導特性を示さなくなることがわかった。
In the heat treatment at 600 ° C. and 700 ° C., an MgB 2 phase was observed in addition to Mg and B.
It was found that the MgB 4 phase was formed in the heat treatment at 800 ° C. to 1000 ° C. In addition, MgB 7 was generated in the heat treatment at 1100 ° C. and 1200 ° C. However, it was found that when the temperature was raised to 1300 ° C, most of the phases could not be identified, and superconducting properties were not exhibited.

一方、800℃〜1200℃で熱処理することにより、超電導線材の断面コア部の焼結密度は、MgB2 理論密度の85%以上が得られ、これを反映してJcも高くなることが明らかになった。 On the other hand, by performing heat treatment at 800 ° C. to 1200 ° C., the sintered density of the cross-sectional core portion of the superconducting wire can be 85% or more of the MgB 2 theoretical density, and Jc is clearly increased reflecting this. became.

このことから、第一の熱処理温度は800℃〜1200℃の範囲にすることが効果的であることがわかった。   From this, it was found that the first heat treatment temperature is effectively in the range of 800 ° C to 1200 ° C.

実施例1における第二の熱処理温度を500℃〜850℃に50℃刻みで変化させた以外は、実施例1と同様の製造方法を用いて、MgB2 超電導線材を作製した。 An MgB 2 superconducting wire was produced using the same manufacturing method as in Example 1 except that the second heat treatment temperature in Example 1 was changed from 500 ° C. to 850 ° C. in increments of 50 ° C.

表2に第二の熱処理温度と第二の熱処理の後に、走査型顕微鏡で観察された結晶相を示す。   Table 2 shows the crystal phase observed with a scanning microscope after the second heat treatment temperature and the second heat treatment.

また。4.2K,4T中でのJcも併せて示す。   Also. The Jc in 4.2K and 4T is also shown.

Figure 2008140556
Figure 2008140556

500℃では、MgB2 が生成しないため、Jcはゼロであった。550℃まで温度を上げると、MgB2 が生成し始めるが、温度としては不十分なため、MgB2 とMgB4 とが混ざった状態になっていた。 At 500 ° C., MgB 2 was not generated, so Jc was zero. When the temperature is raised to 550 ° C., MgB 2 starts to be produced, but the temperature is insufficient, so that MgB 2 and MgB 4 are mixed.

また、800℃以上の温度では、一旦生成したMgB2 がMgB4 に変化するため、
Jcが低下した。そして、550℃,800℃,850℃での熱処理では、4.2K ,4T中で、Jcは200〜720A/mm2に溜まった。
In addition, at a temperature of 800 ° C. or higher, once generated MgB 2 changes to MgB 4 ,
Jc decreased. In the heat treatment at 550 ° C., 800 ° C., and 850 ° C., Jc accumulated at 200 to 720 A / mm 2 in 4.2 K and 4 T.

熱処理温度を600℃〜750℃にすると、MgB2が生成し、4.2K,4T中で、
3900A/mm2 を超えるJcが得られた。このことから、第二の熱処理は600℃〜
750℃の範囲内にすることが効果的であることがわかった。
When the heat treatment temperature is set to 600 ° C. to 750 ° C., MgB 2 is generated, and in 4.2K and 4T,
Jc exceeding 3900 A / mm 2 was obtained. From this, the second heat treatment is from 600 ° C to
It has been found that it is effective to set the temperature within the range of 750 ° C.

本実施形態においては、パイプ状の金属管に、粉末を充填して塑性加工を施すPIT法を用いて超電導線材を作製したが、粉末を成形した圧粉成形体をパイプ状の金属管に充填し、塑性加工を施すロッド・イン・チューブ法等を採用しても構わない。超電導体と金属管とが熱的に反応し、Jcが低下するおそれがあるので、超電導体と直接接する、金属管としての金属シース材には、超電導体と反応しない材料を選択することが好ましい。   In this embodiment, a superconducting wire was produced using a PIT method in which a pipe-shaped metal tube is filled with powder and subjected to plastic working. However, a compacted body formed by molding the powder is filled into the pipe-shaped metal tube. In addition, a rod-in-tube method or the like that performs plastic working may be employed. Since the superconductor and the metal tube may react thermally and Jc may decrease, it is preferable to select a material that does not react with the superconductor as the metal sheath material as the metal tube that is in direct contact with the superconductor. .

超電導線材を縮径するために行う伸線加工には、ドローベンチ,静水圧押出,スエージャー,カセットローラーダイスあるいは溝ロールを用いることができ、1パス当たりの断面減少率が8%〜12%程度の伸線加工を繰り返し行う。   A drawing bench, hydrostatic extrusion, swager, cassette roller die, or groove roll can be used for wire drawing to reduce the diameter of the superconducting wire, and the cross-section reduction rate per pass is about 8% to 12%. Repeat the wire drawing process.

また、曲げ特性の改善や超電導コア部の高密度化を行うために、必要に応じて多芯化を行う。多芯化に際しては、一般に、丸断面形状あるいは六角断面形状に伸線加工した線材を多芯用の金属パイプの中に組み込み、1パス当たりの断面減少率を5%〜30%程度として所定の線径まで伸線する方法が採られる。   Further, in order to improve the bending characteristics and increase the density of the superconducting core part, the number of cores is increased as necessary. In order to increase the number of cores, in general, a wire rod drawn into a round or hexagonal cross section is incorporated into a multi-core metal pipe, and the cross-sectional reduction rate per pass is set to about 5% to 30%. The method of drawing to a wire diameter is taken.

また、これらの方法以外にも、たとえば、溶射法,ドクターブレード法,ディップコート法,スプレーパイロシス法あるいはジェリーロール法等により作製した超電導線材を用いても、同等の超電導特性を得ることが可能である。   In addition to these methods, equivalent superconducting characteristics can be obtained using superconducting wires produced by, for example, thermal spraying, doctor blade method, dip coating method, spray pyrolysis method or jelly roll method. It is.

作製した超電導線材は、目的に応じて2本以上複合させてスパイラル状に巻くことや、リード線状やケーブル線状に成形して利用することもできる。   Depending on the purpose, two or more superconducting wires produced can be combined and wound in a spiral shape, or formed into a lead wire shape or a cable wire shape.

また、本実施形態は、臨界温度以下の環境において、超電導特性を発現する超電導体を用いることによって、高いJcが得られる。   Further, in the present embodiment, high Jc can be obtained by using a superconductor that exhibits superconducting characteristics in an environment below a critical temperature.

そして、液体ヘリウムによる冷却はもちろんのこと、液体水素,冷凍機伝導冷却等による冷却によっても機器の運転が可能となり、かつ磁場中においても高いJcが得られる。   And not only the cooling by liquid helium but also the cooling by liquid hydrogen, refrigerator conduction cooling, etc., the device can be operated, and a high Jc can be obtained even in a magnetic field.

具体的には、電流リード,送電ケーブル,大型マグネット,核磁気共鳴分析装置,医療用磁気共鳴診断装置,超電導電力貯蔵装置,磁気分離装置,磁場中単結晶引き上げ装置,冷凍機冷却超電導マグネット装置,超電導エネルギー貯蔵,超電導発電機,核融合炉用マグネット等の機器(超電導機器)に適用されるものである。   Specifically, current leads, power transmission cables, large magnets, nuclear magnetic resonance analyzers, medical magnetic resonance diagnostic devices, superconducting power storage devices, magnetic separation devices, single crystal pulling devices in magnetic fields, refrigerator-cooled superconducting magnet devices, It is applied to equipment (superconducting equipment) such as superconducting energy storage, superconducting generator, and fusion reactor magnet.

本発明は、MgB2超電導線材を利用する超電導機器に利用することができる。 The present invention can be used for a superconducting device using an MgB 2 superconducting wire.

本実施形態における超電導線材の製造方法を示すフロー図。The flowchart which shows the manufacturing method of the superconducting wire in this embodiment. 実施例1と比較例1にて製造した超電導線材の印加磁場に関する臨界電流密度を示す図。The figure which shows the critical current density regarding the applied magnetic field of the superconducting wire manufactured in Example 1 and Comparative Example 1. FIG. 本実施形態における超電導線材の断面模式図。The cross-sectional schematic diagram of the superconducting wire in this embodiment.

符号の説明Explanation of symbols

1 Mg(二次)
2 Mg(一次)
3 MgB2
1 Mg (secondary)
2 Mg (primary)
3 MgB 2

Claims (9)

第1のMg一次粒子とB一次粒子とを混合し、前記第1のMg一次粒子の表面に、前記B一次粒子を付着させ、
第一の熱処理をすることにより、前記第1のMg一次粒子と、前記第1のMg一次粒子の表面に付着した前記B一次粒子とを反応させ、前記第1のMg一次粒子の表面にMgB4又はMgB7を生成させ、
表面にMgB4又はMgB7が生成した前記第1のMg一次粒子と、表面にMgB4 又はMgB7 が生成した前記第1のMg一次粒子より粒子径が大きい第2のMg一次粒子とを混合し、前記第2のMg一次粒子の表面に、表面にMgB4又はMgB7が生成した前記第1のMg一次粒子を付着させ、
表面にMgB4又はMgB7が生成した前記第1のMg一次粒子を表面に付着させた前記第2のMg一次粒子を、チューブ状の金属管に充填し、伸線加工を施し、
第二の熱処理をすることにより、前記第2のMg一次粒子と、前記MgB4又はMgB7とを反応させ、前記第2のMg一次粒子の表面にMgB2 を生成させたことを特徴とするMgB2 超電導線材の製造方法。
First Mg primary particles and B primary particles are mixed, and the B primary particles are adhered to the surface of the first Mg primary particles,
By performing the first heat treatment, the first Mg primary particles react with the B primary particles attached to the surface of the first Mg primary particles, and MgB is formed on the surface of the first Mg primary particles. 4 or MgB 7
Mixing and MgB 4 or the first Mg primary particles MgB 7 is generated, and MgB 4 or larger particle size than the MgB 7 has generated the first Mg primary particles a second Mg primary particles on the surface to the surface Then, the first Mg primary particles having MgB 4 or MgB 7 formed on the surface are attached to the surface of the second Mg primary particles,
Filling the tube-shaped metal tube with the second Mg primary particles having the first Mg primary particles produced on the surface with the MgB 4 or MgB 7 adhered to the surface, and drawing the wire,
By performing a second heat treatment, the second Mg primary particles react with the MgB 4 or MgB 7 to generate MgB 2 on the surface of the second Mg primary particles. Manufacturing method of MgB 2 superconducting wire.
請求項1に記載のMgB2 超電導線材の製造方法であって、前記生成されたMgB2 は、前記金属管の内部に連続的に生成されていることを特徴とするMgB2 超電導線材の製造方法。 A method of manufacturing a MgB 2 superconducting wire according to claim 1, MgB 2 the generated method for manufacturing a MgB 2 superconducting wire, characterized in that the interior of the metal tube is continuously produced . 請求項1に記載のMgB2 超電導線材の製造方法であって、前記生成されたMgB2 は、前記金属管の内部に焼結密度がMgB2 の理論密度に対して85%以上で生成されていることを特徴とするMgB2 超電導線材の製造方法。 2. The method of manufacturing a MgB 2 superconducting wire according to claim 1, wherein the generated MgB 2 is generated at a sintering density of 85% or more of the theoretical density of MgB 2 inside the metal tube. A method for producing a MgB 2 superconducting wire, characterized in that: 前記第一の熱処理が、800〜1200℃の温度で施されることを特徴とする請求項1に記載のMgB2 超電導線材の製造方法。 The method for producing an MgB 2 superconducting wire according to claim 1, wherein the first heat treatment is performed at a temperature of 800 to 1200 ° C. 前記第二の熱処理が、600〜750℃の温度で施されることを特徴とする請求項1に記載のMgB2 超電導線材の製造方法。 The method for producing a MgB 2 superconducting wire according to claim 1, wherein the second heat treatment is performed at a temperature of 600 to 750 ° C. 前記第1のMg一次粒子と、前記第1のMg一次粒子の表面に付着した前記B一次粒子との反応が、拡散反応であることを特徴とする請求項1に記載のMgB2 超電導線材の製造方法。 2. The MgB 2 superconducting wire according to claim 1, wherein a reaction between the first Mg primary particles and the B primary particles attached to the surface of the first Mg primary particles is a diffusion reaction. Production method. 前記第2のMg一次粒子と、前記MgB4 又はMgB7 との反応が、拡散反応であることを特徴とする請求項1に記載のMgB2 超電導線材の製造方法。 The method for producing a MgB 2 superconducting wire according to claim 1, wherein a reaction between the second Mg primary particles and the MgB 4 or MgB 7 is a diffusion reaction. MgB2超電導線材であって、
前記線材の長手方向に連続的にMgB2 が形成され、前記MgB2 が形成されている線材の任意の断面において、Mg粒子の周囲にMgB2 が形成され、Mg粒子の平均半径が5μm以下であり、MgB2 の平均的な厚みがMg粒子の平均半径に対して、等しいかそれ以上であることを特徴とするMgB2 超電導線材。
MgB 2 superconducting wire,
Said wire longitudinally continuous MgB 2 is formed of, in any cross section of the wire that the MgB 2 is formed, MgB 2 is formed around the Mg particles, the average radius of the Mg particles with 5μm or less A MgB 2 superconducting wire characterized in that the average thickness of MgB 2 is equal to or greater than the average radius of the Mg particles.
MgB2超電導線材であって、
前記線材の長手方向に連続的にMgB2 が形成され、前記MgB2 が形成されている線材の任意の断面において、第1のMg一次粒子と、前記第1のMg一次粒子より粒子径の大きい第2のMg一次粒子を有し、それぞれの粒子の周囲にMgB2 が生成されていることを特徴とするMgB2 超電導線材。
MgB 2 superconducting wire,
MgB 2 is continuously formed in the longitudinal direction of the wire, and the first Mg primary particles and the particle diameter larger than the first Mg primary particles in an arbitrary cross section of the wire formed with the MgB 2 A MgB 2 superconducting wire, characterized in that it has second Mg primary particles, and MgB 2 is generated around each particle.
JP2006322751A 2006-11-30 2006-11-30 Manufacturing method of MgB2 superconducting wire Expired - Fee Related JP4807240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322751A JP4807240B2 (en) 2006-11-30 2006-11-30 Manufacturing method of MgB2 superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322751A JP4807240B2 (en) 2006-11-30 2006-11-30 Manufacturing method of MgB2 superconducting wire

Publications (2)

Publication Number Publication Date
JP2008140556A true JP2008140556A (en) 2008-06-19
JP4807240B2 JP4807240B2 (en) 2011-11-02

Family

ID=39601820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322751A Expired - Fee Related JP4807240B2 (en) 2006-11-30 2006-11-30 Manufacturing method of MgB2 superconducting wire

Country Status (1)

Country Link
JP (1) JP4807240B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034575A (en) * 2010-11-16 2011-04-27 西南交通大学 Method for manufacturing magnesium boride superconductive belt material
JP2012178226A (en) * 2011-02-25 2012-09-13 Hitachi Ltd MgB2 SUPERCONDUCTING WIRE ROD
EP2587494A3 (en) * 2011-10-25 2013-07-24 Hitachi Ltd. Superconducting magnet and method of producing same
CN105541338A (en) * 2016-01-13 2016-05-04 天津大学 Method for increasing superconducting critical current density of ex-situ magnesium diboride block through self reaction
JP7379214B2 (en) 2020-03-02 2023-11-14 株式会社日立製作所 Precursor of MgB2 superconducting wire and method for producing MgB2 superconducting wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334620A (en) * 2001-05-09 2002-11-22 Furukawa Electric Co Ltd:The MANUFACTURING METHOD OF MgB2 SUPERCONDUCTIVE WIRE
JP2002352648A (en) * 2001-05-23 2002-12-06 Furukawa Electric Co Ltd:The MgB2 SUPERCONDUCTIVE WIRE AND MANUFACTURING METHOD THEREFOR
WO2005104144A1 (en) * 2004-04-22 2005-11-03 Tokyo Wire Works, Ltd. Process for producing mgb2 superconductive wire excelling in critical current performance
JP2005310600A (en) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd Manufacturing method of mgb2 wire rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334620A (en) * 2001-05-09 2002-11-22 Furukawa Electric Co Ltd:The MANUFACTURING METHOD OF MgB2 SUPERCONDUCTIVE WIRE
JP2002352648A (en) * 2001-05-23 2002-12-06 Furukawa Electric Co Ltd:The MgB2 SUPERCONDUCTIVE WIRE AND MANUFACTURING METHOD THEREFOR
WO2005104144A1 (en) * 2004-04-22 2005-11-03 Tokyo Wire Works, Ltd. Process for producing mgb2 superconductive wire excelling in critical current performance
JP2005310600A (en) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd Manufacturing method of mgb2 wire rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034575A (en) * 2010-11-16 2011-04-27 西南交通大学 Method for manufacturing magnesium boride superconductive belt material
JP2012178226A (en) * 2011-02-25 2012-09-13 Hitachi Ltd MgB2 SUPERCONDUCTING WIRE ROD
EP2587494A3 (en) * 2011-10-25 2013-07-24 Hitachi Ltd. Superconducting magnet and method of producing same
CN105541338A (en) * 2016-01-13 2016-05-04 天津大学 Method for increasing superconducting critical current density of ex-situ magnesium diboride block through self reaction
JP7379214B2 (en) 2020-03-02 2023-11-14 株式会社日立製作所 Precursor of MgB2 superconducting wire and method for producing MgB2 superconducting wire

Also Published As

Publication number Publication date
JP4807240B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP5401487B2 (en) MgB2 superconducting wire
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
US20020173428A1 (en) Processing of magnesium-boride superconductors
JP4954511B2 (en) MgB2 superconductor and method for manufacturing the same
JP2008226501A (en) MgB2 SUPERCONDUCTIVE WIRE
JP6105088B2 (en) MgB2 superconducting wire and method for producing the same
JP5045396B2 (en) Manufacturing method of MgB2 superconducting wire
JP4807240B2 (en) Manufacturing method of MgB2 superconducting wire
US9224937B2 (en) Precursor of MgB2 superconducting wire, and method for producing the same
JP2004319107A (en) COMPOSITE SHEATH MgB2 SUPERCONDUCTING WIRE AND ITS MANUFACTURING METHOD
JP4055375B2 (en) Superconducting wire, manufacturing method thereof and superconducting magnet using the same
JP2002222619A (en) Magnesium diboride superconducting wire material
JP5520260B2 (en) Superconducting wire and method for manufacturing the same
WO2013187268A1 (en) MgB2-SUPERCONDUCTING WIRE AND METHOD FOR PRODUCING SAME
CA2463963C (en) A method including a heat treatment of manufacturing superconducting wires based on mgb2
JP2012074330A (en) Manufacturing method of superconducting wire material and the superconducting wire material
JP2006107841A (en) Magnesium diboride compound sheath superconducting wire and manufacturing method of the same
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
JP2005310600A (en) Manufacturing method of mgb2 wire rod
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
JP5356132B2 (en) Superconducting wire
JP2004269268A (en) METHOD OF MANUFACTURING MgB2 SUPERCONDUCTOR
JP2003331660A (en) Metal-sheathed superconductor wire, superconducting coil, and its manufacturing method
EP3503230A1 (en) Magnesium diboride superconducting wire with magnesium coated iron sheath and method of obtaining
KR100392511B1 (en) Fabrication method of MgB2 superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees