JP2008139197A - Particle observation method - Google Patents

Particle observation method Download PDF

Info

Publication number
JP2008139197A
JP2008139197A JP2006326988A JP2006326988A JP2008139197A JP 2008139197 A JP2008139197 A JP 2008139197A JP 2006326988 A JP2006326988 A JP 2006326988A JP 2006326988 A JP2006326988 A JP 2006326988A JP 2008139197 A JP2008139197 A JP 2008139197A
Authority
JP
Japan
Prior art keywords
liquid
observation
laser microscope
particles
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326988A
Other languages
Japanese (ja)
Inventor
Toshiya Kitamura
利哉 北村
Takashi Kawachi
岳志 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2006326988A priority Critical patent/JP2008139197A/en
Publication of JP2008139197A publication Critical patent/JP2008139197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for acquiring a more visible image in a large quantity of data without damaging the merit of a laser microscope in the observation of particles which constitute a powder. <P>SOLUTION: The particles being an observation target are turned afloat in a liquid and observed using a laser microscope. As the laser microscope, a scanning cofocal laser microscope is used and the particles are those of a magnetic powder such as iron oxide, silicon oxide, etc. The liquid having a predetermined refractive index is a liquid with a refractive index of 1-2 such as ethanol, toluene, diiodomethane liquid, etc. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザ顕微鏡を用いて粒子の観察を行う観察方法に関する。   The present invention relates to an observation method for observing particles using a laser microscope.

様々な粉体の研究開発に於いて、その粉体を構成する粒子の形状や表面状態を観察することは、重要な物性評価項目となっている。従来から、当該粒子形状や表面状態を観察する方法として、落射型顕微鏡による観察や走査型電子顕微鏡(以下、SEMと記載する場合がある。)による観察が行われて来た。落射型顕微鏡による観察は、その装置が比較的安価でかつ観察方法も非常に簡便であるが、観察映像の被写界深度が浅い。そこで、微小で凹凸の差がある物体や3次元的に奥行きのある物体の観察においては、専ら被写界深度が深いSEMが使用されていた。   In the research and development of various powders, observing the shape and surface state of the particles constituting the powder is an important physical property evaluation item. Conventionally, as a method for observing the particle shape and surface state, observation with an epi-illumination microscope and observation with a scanning electron microscope (hereinafter sometimes referred to as SEM) have been performed. Observation with an episcopic microscope is relatively inexpensive and the observation method is very simple, but the depth of field of the observation image is shallow. Therefore, SEM having a deep depth of field has been used exclusively for observing a minute object with unevenness or a three-dimensionally deep object.

ところが、近年、焦点が合う映像を連続的に取り込みコンピューター上で合成化し3次元的に焦点が合った映像を得るレーザ顕微鏡が一般化された。この結果、当該レーザ顕微鏡を用いることで、SEMでは出来ない大気圧下での観察、さらに表面凹凸の度合をモデル化し数値として表現する観察が可能となってきた(特許文献1、2参照)。   However, in recent years, laser microscopes have been generalized that continuously capture in-focus images and synthesize them on a computer to obtain three-dimensional in-focus images. As a result, by using the laser microscope, observation under atmospheric pressure, which cannot be performed by SEM, and observation of modeling the degree of surface irregularities as numerical values have become possible (see Patent Documents 1 and 2).

特開2005−309415号公報JP 2005-309415 A 特開2002−258160号公報JP 2002-258160 A

上述したように、レーザ顕微鏡による観察は、従来方法では得難い、非常に有益な情報が得られる。しかし本発明者らの検討によると、観察対象が粉体を構成する粒子のように全体的に大きな曲率を有する物体の場合、指向性の強いレーザ光源に起因するコントラストの強さが災いし、球体上部は極端に明部・球体端部は極端な暗部となり、得られる映像としては良好とは言えないことを見出した。   As described above, observation with a laser microscope is very difficult to obtain with conventional methods, and very useful information can be obtained. However, according to the study by the present inventors, when the object to be observed is an object having a large curvature as a whole, such as particles constituting the powder, the contrast strength caused by the laser light source with high directivity is damaged, It was found that the upper part of the sphere is extremely bright and the end of the sphere is extremely dark, so that the obtained image is not good.

例えば、後述する比較例1に係る図7は、本発明者らが従来の方法により撮影した酸化鉄粒子のレーザ顕微鏡像である。当該酸化鉄粒子の様に球状のものを観察する場合、レーザ光は球裏面まで回り込まないので、観察物からの反射光が球体上面部では多く、球体側面部では著しく少なくなる。この結果、レーザ顕微鏡像は図7に示すように球上面では明るく、球側面では暗くなる。このような状態で観察される像は、非常に見難く、且つ、情報量に乏しい像となる。   For example, FIG. 7 according to Comparative Example 1 described later is a laser microscope image of iron oxide particles photographed by the inventors using a conventional method. When observing a spherical object such as the iron oxide particles, the laser light does not travel to the back surface of the sphere, so that the reflected light from the observed object is much on the top surface of the sphere and significantly less on the side surface of the sphere. As a result, the laser microscope image is bright on the top surface of the sphere and dark on the side surface of the sphere as shown in FIG. An image observed in such a state is very difficult to see and has a small amount of information.

本発明は、以上の様な実情を鑑みてなされたもので、その課題は、粉体を構成する粒子の観察において、レーザ顕微鏡の長所を損なうことなく、より見易く、情報量の多い像を得る方法を提供することである。   The present invention has been made in view of the circumstances as described above, and its problem is to obtain an image that is easier to see and has a larger amount of information in observing particles constituting the powder without losing the advantages of the laser microscope. Is to provide a method.

上記課題を解決するために本発明者らが鋭意研究をおこなった結果、レーザ顕微鏡にて観察を行う際、観察対象である粒子を液体の表面に浮遊させた状態とすることで、観察対象粒子の良好な像が得られることを見出し、本発明を完成した。   As a result of intensive studies conducted by the present inventors in order to solve the above-mentioned problems, when observation is performed with a laser microscope, the particles to be observed are suspended on the surface of the liquid, thereby observing the particles to be observed. As a result, the present invention was completed.

即ち、上述の課題を解決するための第1の手段は、
レーザ顕微鏡を用いて粒子を観察する方法であって、
当該粒子を液体に浮遊させた状態で観察することを特徴とする粒子の観察方法である。
That is, the first means for solving the above-described problem is:
A method of observing particles using a laser microscope,
The particle observation method is characterized by observing the particles in a state of being suspended in a liquid.

第2の手段は、
第1の手段に記載の粒子の観察方法であって、
前記液体として、所定の屈折率を有する液体を用意し、
前記粒子を、当該所定の屈折率を有する液体に浮遊させた状態で観察することを特徴とする粒子の観察方法である。
The second means is
The method for observing particles according to the first means,
A liquid having a predetermined refractive index is prepared as the liquid,
The particle observation method is characterized in that the particle is observed in a state of being suspended in a liquid having a predetermined refractive index.

第3の手段は、
前記所定の屈折率を有する液体として、当該屈折率が1以上、2以下の範囲にある液体を用いることを特徴とする第2の手段に記載の粒子の観察方法である。
The third means is
The particle observation method according to the second means, wherein a liquid having a refractive index in the range of 1 or more and 2 or less is used as the liquid having the predetermined refractive index.

第4の手段は、
前記粒子が、磁性粉の粒子であることを特徴とする第1から第3の手段のいずれかに記載の粒子の観察方法である。
The fourth means is
The particle observation method according to any one of the first to third means, wherein the particle is a magnetic powder particle.

本発明によれば、レーザ顕微鏡を用いて粒子を観察する場合、観察物からの反射光が球体上面部では多く、球体側面部では著しく少なくなるという極端なコントラストが軽減され、良好な像が得られた。   According to the present invention, when observing particles using a laser microscope, the extreme contrast that the reflected light from the observation object is large on the upper surface portion of the sphere and significantly reduced on the side surface portion of the sphere is reduced, and a good image is obtained. It was.

以下、発明を実施するための最良の形について、(1)レーザ顕微鏡、(2)観察物を浮遊させる液体、(3)観察物を浮遊させる液体を収納する容器、(4)観察物を液体へ浮遊させる方法、(5)レーザ顕微鏡による観察、(6)本発明に係る粒子の観察方法の適用範囲、の順で説明する。   Hereinafter, the best mode for carrying out the invention will be described as follows: (1) a laser microscope, (2) a liquid for suspending an observation object, (3) a container for storing a liquid for suspending an observation object, and (4) a liquid for the observation object. (5) Observation with a laser microscope, (6) Application range of the particle observation method according to the present invention.

(1)レーザ顕微鏡
本発明に係る粒子の観察方法に適したレーザ顕微鏡について説明する。
本発明に係る粒子の観察方法には、走査型共焦点レーザ顕微鏡(OLYMPUS社製、LEXT OLS3000)が適している。走査型共焦点レーザ顕微鏡は、微小スポットまで絞り込んだレーザビームをXY方向に走査し、その際得られる試料からの反射光を検出器で捉え観察像とするものである。さらに合焦点と光学的に共役な位置(共焦点面)にピンホールを置く共焦点光学系で、合焦点位置以外からの光を排除することにより、合焦点以外は暗黒色となる。そして、得られた像を重ね合わせることで、全体として被写界深度が深い映像が得られる装置であればよい。
(1) Laser Microscope A laser microscope suitable for the particle observation method according to the present invention will be described.
For the particle observation method according to the present invention, a scanning confocal laser microscope (manufactured by OLYMPUS, LEXT OLS3000) is suitable. The scanning confocal laser microscope scans a laser beam narrowed down to a minute spot in the XY directions, and captures reflected light from a sample obtained at that time with a detector to form an observation image. Further, a confocal optical system in which a pinhole is placed at a position (confocal plane) optically conjugate with the in-focus point, and by removing light from other than the in-focus position, the area other than the in-focus position becomes dark black. Any device that can obtain an image with a deep depth of field as a whole by superimposing the obtained images may be used.

(2)観察物を浮遊させる液体
観察物を浮遊させる液体は、その屈折率が1以上、2以下の範囲、さらに好ましくは1.3以上、1.8以下の範囲にある液体を用いることが好ましい。
屈折率が当該範囲内にある液体を用いることで、観察物の照明角度を調整することが出来る。さらに、目的の観察物に対して、1種類以上の適宜な屈折率を有する液体を選択して用いれば、観察物の照明角度を任意に調整することが出来るので、得られた像から多くの情報を得ることが可能になる。
(2) Liquid that floats the observation object The liquid that floats the observation object uses a liquid whose refractive index is in the range of 1 to 2, more preferably in the range of 1.3 to 1.8. preferable.
By using a liquid having a refractive index within the range, the illumination angle of the observation object can be adjusted. Furthermore, if one or more types of liquids having an appropriate refractive index are selected and used for the target observation object, the illumination angle of the observation object can be arbitrarily adjusted. Information can be obtained.

(3)観察物を浮遊させる液体を収納する容器
観察物を浮遊させる部分が、平面化する程度の大きさを有している容器を用いる。当該大きさを有している容器を用いることで、液体の表面張力に起因する液表面の曲率が充分無視できるからである。具体的には、例えば、直径32mm×深さ15mmのガラス製シャーレが便宜である。
尚、上記液体を収納する容器としてスライドガラスを用い、当該スライドガラス上に液
体を滴下して出来た小径の液滴を用いることも出来る。しかし、観察物が液滴曲面に沿って移動し易く、写真映像等の長時間の観察には問題がある。
(3) Container for storing liquid for suspending observation object A container having a size that allows the observation object to float is flattened. This is because the curvature of the liquid surface due to the surface tension of the liquid can be sufficiently ignored by using the container having the size. Specifically, for example, a glass petri dish having a diameter of 32 mm and a depth of 15 mm is convenient.
Note that a slide glass can be used as a container for storing the liquid, and a small-diameter droplet formed by dropping the liquid on the slide glass can also be used. However, the observation object easily moves along the curved surface of the droplet, and there is a problem in long-time observation such as a photographic image.

(4)観察物を液体へ浮遊させる方法
上述した液体を収納した容器の中央部に、観察物を設置する。このとき、観察面が当該液体に濡れないように注意する。そして、当該液体の表面に、観察物の概ね上半分が浮上するように浮遊させる。
一方、観察物を浮遊させる液体は、当該観察物の厚みよりも、深い液膜厚(深さ)があれば良い。液量が十分であれば、測定中に液体が蒸発しても観察の中断という事態を回避することが出来る。
当該観察物が、微粉の場合、液体表面にそっと置けば、たとえ微粉の比重が大きくても液体表面に浮遊する。しかし、比重が大きい微粉の場合は、微粉全体を濡らすと沈んでしまう。そこで、浮遊させる際は微粉表面が濡れないようにそっと設置することとし、良好に浮遊している微粉を選んで観察すれば良い。
(4) Method of suspending observation object in liquid The observation object is installed in the center part of the container which accommodated the liquid mentioned above. At this time, care should be taken so that the observation surface does not get wet with the liquid. Then, the observation object is floated on the surface of the liquid so that the upper half of the observation object floats.
On the other hand, the liquid that floats the observation object may have a liquid film thickness (depth) deeper than the thickness of the observation object. If the amount of liquid is sufficient, even if the liquid evaporates during the measurement, it is possible to avoid a situation where observation is interrupted.
When the observation object is fine powder, if it is gently placed on the liquid surface, it floats on the liquid surface even if the specific gravity of the fine powder is large. However, in the case of fine powder having a large specific gravity, it will sink when the whole fine powder is wet. Therefore, when floating, the surface of the fine powder should be gently set so that it does not get wet, and the fine powder that is floating well can be selected and observed.

(5)レーザ顕微鏡による観察
観察物を液体へ浮遊させた状態で、観察物をレーザ顕微鏡で観測する。すると、例えば球状を有する観察物の場合、当該観察物側面近傍に存在する液膜から適度なレーザ光の反射光が発生する。そして、当該反射光は、観察物側面を照明し、液面より露出した半球状表面の像を、観察物の周縁部に至るまで適当な明るさとコントラストを有した像として得ることが出来た。
さらに、上述したように、観察物を浮遊させる液体の屈折率を、1以上、2以下の範囲、好ましくは1.3以上、1.8以下の範囲にて調製することで、発生する反射光の角度を調整し、観察物の照明角度を任意に調整することが出来た。
(5) Observation with a laser microscope With the observation object suspended in a liquid, the observation object is observed with a laser microscope. Then, for example, in the case of an observation object having a spherical shape, moderate reflected light of laser light is generated from a liquid film existing in the vicinity of the side surface of the observation object. The reflected light illuminates the side of the observation object, and an image of the hemispherical surface exposed from the liquid surface can be obtained as an image having appropriate brightness and contrast up to the peripheral edge of the observation object.
Furthermore, as described above, the reflected light generated by adjusting the refractive index of the liquid that floats the observation object in the range of 1 to 2, preferably 1.3 to 1.8. It was possible to adjust the illumination angle of the observation object arbitrarily.

(6)本発明に係る粒子の観察方法の適用範囲
本発明に係る粒子の観察方法の適用範囲は、酸化鉄、酸化ケイ素、等の球状粉に限られず、液体に浮遊し三次元的な曲面を有する物質であれば、同様な効果が得られる。さらに、上述したように、適宜な屈折率を有する液体を選択して用いれば、観察物の照明角度を任意に調整することが出来るので、当該観察物に関する新たな情報を手に入れることも出来る。
(6) Range of application of particle observation method according to the present invention The range of application of the particle observation method according to the present invention is not limited to spherical powders such as iron oxide and silicon oxide, but floats in a liquid and is a three-dimensional curved surface. The same effect can be obtained if the substance has the following. Furthermore, as described above, if a liquid having an appropriate refractive index is selected and used, the illumination angle of the observation object can be arbitrarily adjusted, so that new information regarding the observation object can be obtained. .

(実施例1)
酸化鉄(屈折率n=2.94)の球状粉を試料として準備した。
直径32mm×深さ15mmのガラス製シャーレの容器に、試料を浮遊させる液体として水(屈折率n=1.33)を約5ml充填した。そして、前記試料粒子の上面半分が液上に露出し、且つ、試料粒子が重ならないようにミクロスパーテル0.5杯分(数mg量)程度を分散させた。
当該試料を分散させた液体を充填した容器を、走査型共焦点レーザ顕微鏡(OLYMPUS社製、LEXT OLS3000)に設置した。
当該レーザ顕微鏡の測定条件は、3Dモード、倍率5000倍とした。
上述の操作により得られた像を図1に示す。
観察物の球形粉中央部は、表面の凹凸が明確に確認される。観察物の球形粉周辺部は、後述する比較例1より明確になった。
(Example 1)
A spherical powder of iron oxide (refractive index n = 2.94) was prepared as a sample.
About 5 ml of water (refractive index n = 1.33) was filled in a glass petri dish having a diameter of 32 mm and a depth of 15 mm as a liquid for suspending the sample. Then, about 0.5 cups of microspatel (a few mg amount) were dispersed so that the upper half of the sample particles were exposed on the liquid and the sample particles did not overlap.
The container filled with the liquid in which the sample was dispersed was placed in a scanning confocal laser microscope (OLYMPUS, LEXT OLS3000).
The measurement conditions of the laser microscope were a 3D mode and a magnification of 5000 times.
An image obtained by the above operation is shown in FIG.
In the central part of the spherical powder of the observation object, the surface irregularities are clearly confirmed. The peripheral part of the spherical powder of the observation object became clearer than Comparative Example 1 described later.

(実施例2)
試料を浮遊させる液体を、水からエタノール(屈折率n=1.36)へ代替した以外は、実施例1と同様の操作を行った。
上述の操作により得られた像を図2に示す。
観察物の球形粉中央部は、表面の凹凸が明確に確認される。観察物の球形粉周辺部は、後述する比較例1より明確になった。
(Example 2)
The same operation as in Example 1 was performed, except that the liquid in which the sample was suspended was replaced from water to ethanol (refractive index n = 1.36).
An image obtained by the above operation is shown in FIG.
In the central part of the spherical powder of the observation object, the surface irregularities are clearly confirmed. The peripheral part of the spherical powder of the observation object became clearer than Comparative Example 1 described later.

(実施例3)
試料を浮遊させる液体を、水からトルエン液(屈折率n=1.50)へ代替した以外は、実施例1と同様の操作を行った。
上述の操作により得られた像を図3に示す。
観察物の球形粉中央部から球形粉周辺部まで明確に確認される。液の蒸発・対流に起因すると考えられる、流れるような干渉縞が映像全体に見られた。
(Example 3)
The same operation as in Example 1 was performed except that the liquid for suspending the sample was replaced with water by toluene (refractive index n = 1.50).
An image obtained by the above operation is shown in FIG.
It is clearly confirmed from the central part of the spherical powder of the observation object to the peripheral part of the spherical powder. Flowing interference fringes, thought to be caused by liquid evaporation and convection, were seen throughout the image.

(実施例4)
試料を浮遊させる液体を、水からジヨードメタン液:トルエン=1:1の混合液(屈折率n=1.62)へ代替した以外は、実施例1と同様の操作を行った。
上述の操作により得られた像を図4に示す。
観察物の球形粉中央部から球形粉周辺部まで明確に確認される。液体表面の部分も充分に明るい映像となり良好な映像が得られた。
Example 4
The same operation as in Example 1 was performed except that the liquid for suspending the sample was replaced with a mixed solution of diiodomethane liquid: toluene = 1: 1 (refractive index n = 1.62) from water.
An image obtained by the above-described operation is shown in FIG.
It is clearly confirmed from the central part of the spherical powder of the observation object to the peripheral part of the spherical powder. The liquid surface part was also sufficiently bright and a good image was obtained.

(実施例5)
試料を浮遊させる液体を、水からジヨードメタン液(屈折率n=1.74)へ代替した以外は、実施例1と同様の操作を行った。
上述の操作により得られた像を図5に示す。
観察物の球形粉中央部から球形粉周辺部まで明確に確認される。液体表面の部分も充分に明るい映像となり良好な映像が得られた。
(Example 5)
The same operation as in Example 1 was performed except that the liquid for suspending the sample was replaced with water from diiodomethane (refractive index n = 1.74).
An image obtained by the above operation is shown in FIG.
It is clearly confirmed from the central part of the spherical powder of the observation object to the peripheral part of the spherical powder. The liquid surface part was also sufficiently bright and a good image was obtained.

(実施例6)
酸化ケイ素(屈折率n=1.45)の球状粉を試料とした以外は、実施例5と同様の操
作を行った。
上述の操作により得られた像を図6に示す。
実施例4、5と同様に、観察物の球形粉中央部から球形粉周辺部まで明確に確認される。液体表面の部分も充分に明るい映像となり良好な映像が得られた。
この結果、当該観察方法は、屈折率の小さな観察物にも適応可能である事が判明した。
(Example 6)
The same operation as in Example 5 was performed except that a spherical powder of silicon oxide (refractive index n = 1.45) was used as a sample.
An image obtained by the above-described operation is shown in FIG.
As in Examples 4 and 5, it is clearly confirmed from the central part of the spherical powder of the observation object to the peripheral part of the spherical powder. The liquid surface part was also sufficiently bright and a good image was obtained.
As a result, it was found that the observation method can be applied to an observation object having a small refractive index.

(比較例1)
試料を液体に浮遊させることをせず、スライドガラス上へ、粒子同士が重ならないようにミクロスパーテル1杯分(約10mg)程度を分散させた。
当該試料を分散させたスライドガラスを、実施例1と同様にレーザ顕微鏡に設置し、以降は実施例1と同様の操作を行った。
上述の操作により得られた像を図7に示す。
図7の像より、走査型共焦点レーザ顕微鏡の特徴である粉体表面の凹凸は明瞭に観察できるが、観察物周辺部は極端に暗い画像となり観察物輪郭が不明瞭で全体の写真映像としては情報が少ないものとなっていることが解る。
(Comparative Example 1)
Without suspending the sample in the liquid, about 1 cup (about 10 mg) of microspartel was dispersed on the slide glass so that the particles did not overlap each other.
The slide glass in which the sample was dispersed was placed on a laser microscope in the same manner as in Example 1, and thereafter, the same operation as in Example 1 was performed.
An image obtained by the above operation is shown in FIG.
From the image in FIG. 7, the unevenness of the powder surface, which is a feature of the scanning confocal laser microscope, can be clearly observed, but the periphery of the observation object becomes an extremely dark image, and the outline of the observation object is unclear and the whole photograph image is obtained. It can be seen that there is little information.

以上、実施例1〜6および比較例1の結果より、観察物を液体に浮遊させてレーザ顕微鏡により観察することで得られる像は、球体外周とその背景の像が著しく改善していることが判明した。また、実施例1〜6に示した様に、試料を浮遊させる液体の屈折率を変えることで観察物の輪郭の見え方が段階的に変化する。従って、観測者の要求に応じて、浮遊させる液体を選ぶことで微細構造が詳細に理解され、且つ、観察者が目的とする顕微鏡像を得られることも確かめられた。
また、実施例6より、本観察方法は、屈折率が違う観察物においても適用可能であることが確認された。
As described above, from the results of Examples 1 to 6 and Comparative Example 1, the image obtained by suspending the observation object in the liquid and observing with a laser microscope indicates that the image of the outer circumference of the sphere and the background image are remarkably improved. found. Further, as shown in Examples 1 to 6, the appearance of the outline of the observation object changes stepwise by changing the refractive index of the liquid that floats the sample. Therefore, it was confirmed that the fine structure can be understood in detail by selecting a liquid to be suspended according to the request of the observer, and that the desired microscopic image can be obtained by the observer.
Further, from Example 6, it was confirmed that this observation method can be applied to an observation object having a different refractive index.

実施例1に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Example 1 実施例2に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Example 2 実施例3に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Example 3 実施例4に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Example 4 実施例5に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Example 5 実施例6に係る試料のレーザ顕微鏡像Laser microscope image of sample according to Example 6 比較例1に係る試料のレーザ顕微鏡像Laser microscope image of the sample according to Comparative Example 1

Claims (4)

レーザ顕微鏡を用いて粒子を観察する方法であって、
当該粒子を液体に浮遊させた状態で観察することを特徴とする粒子の観察方法。
A method of observing particles using a laser microscope,
A method for observing particles, wherein the particles are observed in a state of being suspended in a liquid.
請求項1に記載の粒子の観察方法であって、
前記液体として、所定の屈折率を有する液体を用意し、
前記粒子を、当該所定の屈折率を有する液体に浮遊させた状態で観察することを特徴とする粒子の観察方法。
The method for observing particles according to claim 1,
A liquid having a predetermined refractive index is prepared as the liquid,
A method for observing particles, wherein the particles are observed in a state of being suspended in a liquid having the predetermined refractive index.
前記所定の屈折率を有する液体として、当該屈折率が1以上、2以下の範囲にある液体を用いることを特徴とする請求項2に記載の粒子の観察方法。   The particle observation method according to claim 2, wherein a liquid having a refractive index in the range of 1 to 2 is used as the liquid having the predetermined refractive index. 前記粒子が、磁性粉の粒子であることを特徴とする請求項1から3のいずれかに記載の粒子の観察方法。   The particle observation method according to claim 1, wherein the particles are magnetic powder particles.
JP2006326988A 2006-12-04 2006-12-04 Particle observation method Pending JP2008139197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326988A JP2008139197A (en) 2006-12-04 2006-12-04 Particle observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326988A JP2008139197A (en) 2006-12-04 2006-12-04 Particle observation method

Publications (1)

Publication Number Publication Date
JP2008139197A true JP2008139197A (en) 2008-06-19

Family

ID=39600819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326988A Pending JP2008139197A (en) 2006-12-04 2006-12-04 Particle observation method

Country Status (1)

Country Link
JP (1) JP2008139197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105349A (en) * 2011-11-10 2013-05-15 中国中医科学院中药研究所 Microscopic and optical identification method for traditional Chinese medicine calamine powder
JP2013524194A (en) * 2010-04-02 2013-06-17 スネクマ Method for analyzing multiple ferromagnetic particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524194A (en) * 2010-04-02 2013-06-17 スネクマ Method for analyzing multiple ferromagnetic particles
CN103105349A (en) * 2011-11-10 2013-05-15 中国中医科学院中药研究所 Microscopic and optical identification method for traditional Chinese medicine calamine powder
CN103105349B (en) * 2011-11-10 2016-05-18 中国中医科学院中药研究所 Micro-and the photosensitiveness discrimination method of the sweet stone powder of Chinese medicine furnace

Similar Documents

Publication Publication Date Title
CN107526156B (en) Light sheet microscope and method for operating a light sheet microscope
US9599805B2 (en) Optical imaging system using structured illumination
US20150153558A1 (en) Wide-field microscopy using self-assembled liquid lenses
WO2013019640A1 (en) Lensfree holographic microscopy using wetting films
US10345093B2 (en) Arrangement and method of determining properties of a surface and subsurface structures
Zhang et al. Fabrication of flexible microlens arrays for parallel super-resolution imaging
WO2004038484A2 (en) Method and device for 3 dimensional imaging of suspended micro-objects providing high-resolution microscopy
Pawley Limitations on optical sectioning in live‐cell confocal microscopy
JP2010063429A (en) Structure, method and apparatus for measuring cell
CN108956562B (en) Light section fluorescence microscopic imaging method and device based on repositioning
JP2007140322A (en) Optical apparatus
KR101878214B1 (en) Method and System for Obtaining Images of Augmented 3D Super-resolution of Fluorescence-free Nanoparticles Using Enhanced Dark-field Illumination Based on Least-cubic Algorithm
JP2008139197A (en) Particle observation method
US20230236542A1 (en) Focus Adjustment Method For Holographic Imaging System
JP2915919B2 (en) Laser scanning fluorescence microscope
EP3259631B1 (en) Device and method for creating an optical tomogram of a microscopic sample
US20090116024A1 (en) Method for obtaining a high resolution image
Cao et al. Dependence of focal position on the microscale spherical lens imaging
JP4910131B2 (en) Surface information acquisition apparatus and surface information acquisition method
Boyde et al. Really close up! Surveying surfaces at sub‐micrometre resolution: The measurement of osteoclastic resorption lacunae
CN106247976B (en) Auxiliary device and method for measuring three-dimensional morphology of surface of large-dip-angle micro-nano structure
De Brabander et al. Detection of gold probes with video‐enhanced contrast microscopy: nanovid microscopy
Jia et al. Fabrication of a probe-lens device for scanning super-resolution imaging platform
JP7159260B2 (en) Apparatus and method for characterizing surface and subsurface structures
Luo et al. Tracking sub-micron fluorescent particles in three dimensions with a microscope objective under non-design optical conditions