JP2008138583A - Exhaust emission control device of engine - Google Patents

Exhaust emission control device of engine Download PDF

Info

Publication number
JP2008138583A
JP2008138583A JP2006325290A JP2006325290A JP2008138583A JP 2008138583 A JP2008138583 A JP 2008138583A JP 2006325290 A JP2006325290 A JP 2006325290A JP 2006325290 A JP2006325290 A JP 2006325290A JP 2008138583 A JP2008138583 A JP 2008138583A
Authority
JP
Japan
Prior art keywords
reducing agent
freezing
engine
urea water
addition valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006325290A
Other languages
Japanese (ja)
Other versions
JP4706627B2 (en
Inventor
Hiroaki Nagatomo
宏明 永友
Masahiro Okajima
正博 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006325290A priority Critical patent/JP4706627B2/en
Priority to DE102007047906A priority patent/DE102007047906A1/en
Publication of JP2008138583A publication Critical patent/JP2008138583A/en
Application granted granted Critical
Publication of JP4706627B2 publication Critical patent/JP4706627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To execute suitable exhaust emission purification by addition of a reducing agent while protecting a reducing agent addition valve and a reducing agent supply part. <P>SOLUTION: A DPF 12 and an SCR catalyst 13 are arranged on an exhaust pipe 11, and a urea aqueous solution addition valve 15 for adding and supplying a urea aqueous solution in the exhaust pipe 11 is arranged between the DPF 12 and the SCR catalyst 13. As a structure of a urea aqueous solution supply part, a urea aqueous solution having predetermined concentration is stored in a urea aqueous solution tank 21, and a urea aqueous solution pump 22 is arranged in the tank 21. An ECU 30 opens the urea aqueous solution addition valve 15 in response to congelation change of the urea aqueous solution remaining in the urea aqueous solution addition valve 15 and the like after stopping an engine. Thereby, the remaining urea aqueous solution in the urea aqueous solution addition valve 15 and the like is discharged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンの排気浄化装置に係り、特に尿素SCR(Selective Catalytic Reduction)システムに好適に採用される排気浄化装置に関する。   The present invention relates to an engine exhaust gas purification device, and more particularly, to an exhaust gas purification device suitably employed in a urea SCR (Selective Catalytic Reduction) system.

近年、自動車等に適用されるエンジン(特にディーゼルエンジン)において、排気中のNOx(窒素酸化物)を高い浄化率で浄化する排気浄化装置として、尿素SCRシステムの開発が進められており、一部実用化に至っている。尿素SCRシステムとしては次の構成が知られている。   In recent years, the urea SCR system has been developed as an exhaust purification device for purifying NOx (nitrogen oxide) in exhaust gas with a high purification rate in engines (particularly diesel engines) applied to automobiles and the like. It has been put to practical use. The following configuration is known as a urea SCR system.

すなわち、尿素SCRシステムでは、エンジン本体に接続された排気管にSCR触媒が設けられるとともに、その上流側に、還元剤としての尿素水(尿素水溶液)を排気管内に添加する尿素水添加弁が設けられている。尿素水添加弁には、尿素水供給管を介して尿素水タンクが接続されており、例えば尿素水タンク内に配設されたポンプが吐出駆動されることで、尿素水が、尿素水タンクから尿素水供給管を通じて尿素水添加弁に供給されるようになっている。   That is, in the urea SCR system, an SCR catalyst is provided in an exhaust pipe connected to the engine body, and a urea water addition valve for adding urea water (urea aqueous solution) as a reducing agent into the exhaust pipe is provided upstream of the SCR catalyst. It has been. A urea water tank is connected to the urea water addition valve via a urea water supply pipe. For example, when the pump disposed in the urea water tank is driven to discharge, the urea water is removed from the urea water tank. The urea water supply valve is supplied through a urea water supply pipe.

かかるシステムにおいては、尿素水添加弁により排気管内に尿素水が添加されることで、排気と共に尿素水がSCR触媒に供給され、該SCR触媒上でのNOxの還元反応によって排気が浄化される。NOxの還元に際しては、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、SCR触媒にて選択的に吸着された排気中のNOxに対しアンモニアが添加される。そして、同SCR触媒上で、アンモニアに基づく還元反応が行われることによってNOxが還元、浄化されることになる。   In such a system, the urea water is added to the exhaust pipe by the urea water addition valve, whereby the urea water is supplied to the SCR catalyst together with the exhaust gas, and the exhaust gas is purified by the NOx reduction reaction on the SCR catalyst. When NOx is reduced, urea water is hydrolyzed with exhaust heat to generate ammonia (NH3), and ammonia is added to NOx in the exhaust gas selectively adsorbed by the SCR catalyst. Then, NOx is reduced and purified by performing a reduction reaction based on ammonia on the SCR catalyst.

ところで、上述した尿素SCRシステムにおいて、還元剤として使用される尿素水は使用温度範囲内の低温域(例えば−11℃)で凍結し、その凍結に伴い尿素水の使用に支障が生じる。そこで、尿素水の凍結対策として、エンジン冷却水の一部を尿素水タンクに導く冷却水循環配管を設けるとともに、その冷却水循環配管の途中に冷却水遮断弁を設け、エンジン始動時に冷却水遮断弁を開いて冷却水循環配管に冷却水を循環させるようにした技術が提案されている(例えば、特許文献1参照)。
特開2006−125331号公報
By the way, in the urea SCR system described above, urea water used as a reducing agent is frozen in a low temperature range (for example, −11 ° C.) within the use temperature range, and the use of urea water is hindered by the freezing. Therefore, as a countermeasure against freezing of urea water, a cooling water circulation pipe that leads part of the engine cooling water to the urea water tank is provided, and a cooling water shut-off valve is provided in the middle of the cooling water circulation pipe. A technique has been proposed in which the cooling water is circulated through the cooling water circulation pipe (see, for example, Patent Document 1).
JP 2006-125331 A

上記特許文献1等の従来技術の場合、エンジン始動後において尿素水を解凍することで尿素水の使用(尿素水の添加によるNOxの還元、浄化)が可能となるが、これは尿素水の凍結が生じた際においてその凍結後に有効となり得る対策であり、凍結防止については何ら対策が講じられていない。そのため、凍結発生により生じる不都合自体は解消できないと考えられる。すなわち、尿素水が凍結すると体積が約7%増加することに着眼すると、その体積増加が原因で尿素水供給管等にて破損が生じるおそれがあると考えられる。   In the case of the prior art such as Patent Document 1 described above, urea water can be used (NOx reduction or purification by adding urea water) by thawing the urea water after the engine is started. This is a measure that can be effective after freezing, and no measures are taken to prevent freezing. For this reason, it is considered that inconvenience caused by freezing cannot be solved. In other words, if it is noticed that the volume increases by about 7% when the urea water freezes, it is considered that the urea water supply pipe or the like may be damaged due to the volume increase.

本発明は、還元剤添加弁や還元剤供給部の保護を図りつつ、還元剤の添加による好適なる排気浄化を行わせることができるエンジンの排気浄化装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide an engine exhaust purification device that can perform suitable exhaust purification by adding a reducing agent while protecting the reducing agent addition valve and the reducing agent supply unit. is there.

以下、上記課題を解決するための手段、及びその作用効果について説明する。   Hereinafter, means for solving the above-described problems and the effects thereof will be described.

本発明におけるエンジンの排気浄化装置では、エンジン運転時において還元剤供給部から還元剤添加弁に液状の還元剤が供給され、その還元剤が還元剤添加弁の噴出口から排気通路内に添加供給される。これにより、排気浄化用触媒(還元触媒)において還元剤の添加に基づく特定の排気浄化反応が促進される。そして、かかる排気浄化装置において、本発明(請求項1)では特に、エンジンの停止後において、還元剤添加弁や還元剤供給部に残留する還元剤の凍結変化に応じて前記還元剤添加弁を開弁させて前記噴出口から残留還元剤を排気通路内に放出させるようにしている。   In the engine exhaust gas purification apparatus according to the present invention, the liquid reducing agent is supplied from the reducing agent supply unit to the reducing agent addition valve during engine operation, and the reducing agent is added and supplied from the outlet of the reducing agent addition valve into the exhaust passage. Is done. Thereby, a specific exhaust purification reaction based on the addition of the reducing agent is promoted in the exhaust purification catalyst (reduction catalyst). In such an exhaust purification device, particularly in the present invention (Claim 1), after the engine is stopped, the reducing agent addition valve is set according to the freezing change of the reducing agent remaining in the reducing agent addition valve or the reducing agent supply unit. The valve is opened to release the residual reducing agent from the jet port into the exhaust passage.

要するに、エンジン運転時には、還元剤添加弁やその他還元剤供給部(還元剤通路等)が還元剤で満たされた状態にあり、エンジン停止後には、同じくそれらが還元剤で満たされた状態のままとなる。この場合、寒冷地において夜間等に還元剤(残留還元剤)が凍結すると、その体積が増え、それに起因して還元剤添加弁や還元剤供給部で破損等の不都合が生じるおそれがある。この点本発明では、エンジン停止後において、残留還元剤の凍結変化に応じて還元剤添加弁が開弁されて残留還元剤が放出されるため、還元剤の体積増加による還元剤添加弁や還元剤供給部の破損等が抑制できる。その結果、還元剤添加弁や還元剤供給部の保護を図りつつ、還元剤の添加による好適なる排気浄化を行わせることができる。   In short, when the engine is running, the reducing agent addition valve and other reducing agent supply section (reducing agent passage, etc.) are filled with the reducing agent, and after the engine is stopped, they are also filled with the reducing agent. It becomes. In this case, when the reducing agent (residual reducing agent) freezes at night or the like in a cold region, the volume increases, which may cause inconvenience such as breakage in the reducing agent addition valve and the reducing agent supply unit. In this respect, in the present invention, after the engine is stopped, the reducing agent addition valve is opened according to the freezing change of the residual reducing agent and the residual reducing agent is released. Damage to the agent supply unit can be suppressed. As a result, it is possible to perform suitable exhaust purification by adding the reducing agent while protecting the reducing agent addition valve and the reducing agent supply unit.

請求項2に記載の発明では、エンジンの停止後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行過程にあることを判定し、その凍結移行過程にある旨判定した場合に前記還元剤添加弁を開弁させる。つまり、凍結移行過程においては、還元剤が液相状態から固相状態に移行し、その状態移行に際して還元剤の体積が増加する。かかる場合、上記のように凍結移行過程にあることを判定することで、当該凍結移行過程での体積増加に合わせて残留還元剤を放出することができる。したがって、凍結による還元剤の体積増加分を還元剤添加弁等から適切に排出することができる。   In the invention according to claim 2, after the engine is stopped, it is determined that the residual reducing agent such as the reducing agent addition valve is in a freezing transition process in which the reductant transitions to a frozen state, and it is determined that it is in the freezing transition process In this case, the reducing agent addition valve is opened. That is, in the freezing transition process, the reducing agent moves from the liquid phase state to the solid phase state, and the volume of the reducing agent increases during the state transition. In such a case, by determining that the process is in the freezing transition process as described above, the residual reducing agent can be released in accordance with the volume increase in the freezing transition process. Therefore, the volume increase of the reducing agent due to freezing can be appropriately discharged from the reducing agent addition valve or the like.

凍結判定の手法として具体的には、請求項3に記載したように、エンジン停止後における還元剤温度(還元剤添加弁等における残留還元剤の温度)に基づいて前記凍結移行過程にあることを判定すると良い。すなわち、還元剤の温度が凝固点温度まで低下すると、還元剤が徐々に凍結状態に移行しはじめる。この場合、エンジン停止後における還元剤温度を逐次検出することで、還元剤が凍結移行過程にあることが判定できる。   Specifically, as a method for determining freezing, as described in claim 3, the freezing determination process is based on the reducing agent temperature after the engine is stopped (the temperature of the remaining reducing agent in the reducing agent addition valve or the like). It is good to judge. That is, when the temperature of the reducing agent decreases to the freezing point temperature, the reducing agent gradually starts to be frozen. In this case, it is possible to determine that the reducing agent is in the freezing transition process by sequentially detecting the reducing agent temperature after the engine is stopped.

なお、還元剤温度は、還元剤添加弁や還元剤供給部(配管等)に設けたセンサ等により直接計測したり、還元剤添加弁の周囲温度(排気管の温度、外気温、エンジン水温等)に基づいて推定したりすることで検出されると良い。   Note that the reducing agent temperature is directly measured by a sensor or the like provided in a reducing agent addition valve or a reducing agent supply unit (piping, etc.), or the ambient temperature of the reducing agent addition valve (exhaust pipe temperature, outside temperature, engine water temperature, etc. ) To be detected based on estimation.

又は、請求項4に記載したように、エンジン停止後における還元剤圧力(還元剤添加弁等における残留還元剤の圧力)に基づいて前記凍結移行過程にあることを判定すると良い。すなわち、凍結移行過程では、還元剤の体積増加に伴う圧力変化が生じる。この場合、エンジン停止後における還元剤圧力を逐次検出することで、還元剤が凍結移行過程にあることが判定できる。   Alternatively, as described in claim 4, it is preferable to determine that the process is in the freezing transition process based on the reducing agent pressure after stopping the engine (pressure of the remaining reducing agent in the reducing agent addition valve or the like). That is, in the freezing transition process, a pressure change occurs with an increase in the volume of the reducing agent. In this case, it is possible to determine that the reducing agent is in the freezing transition process by sequentially detecting the reducing agent pressure after the engine is stopped.

請求項5に記載の発明では、前記凍結移行過程において前記還元剤添加弁を複数回開弁させる。これにより、凍結移行過程において還元剤の凍結が徐々に進行する場合にも、体積増加分の還元剤を確実に放出できる。   In the invention according to claim 5, the reducing agent addition valve is opened a plurality of times in the freezing transition process. Thereby, even when freezing of the reducing agent gradually proceeds during the freezing transition process, it is possible to reliably release the reducing agent corresponding to the volume increase.

前述のとおり還元剤温度や還元剤圧力によって凍結移行過程の判定が可能となるが、同過程を誤差無く判定することは困難であると考えられる。この点、請求項6に記載したように、前記凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む状態移行期であることを判定し、前記状態移行期において前記還元剤添加弁を開弁させると良い。これにより、凍結移行過程の判定に多少の誤差があったとしても、体積増加分の還元剤を漏れなく排出することができる。   As described above, the freeze transition process can be determined by the reducing agent temperature and the reducing agent pressure, but it is considered difficult to determine the process without error. In this regard, as described in claim 6, it is determined that it is a state transition period including the immediately preceding liquid phase state and the immediately following solid phase state with respect to the time corresponding to the freezing transition process, and the state The reducing agent addition valve may be opened during the transition period. Thereby, even if there is some error in the determination of the freezing transition process, the reducing agent corresponding to the volume increase can be discharged without omission.

上記した還元剤放出処理はエンジン停止後に行われるものであり、例えば自動車への適用を想定すると、凍結判定や還元剤添加弁の駆動を実施する都度、車載制御装置(ECU)を起動させるとともに、センサやアクチュエータ等に電力供給を行う必要がある。凍結判定に関しては、例えば、エンジン停止後において、所定時間が経過する都度、前記凍結移行過程にあるかどうかが繰り返し判定される。かかる場合、エンジン停止中における電力消費が極力低減されることが望ましい。そこで、請求項7に記載したように、還元剤添加弁の開弁による還元剤放出後は、前記凍結判定手段による凍結判定を停止すると良い。これにより、還元剤の放出後も不要に凍結判定等が実施されることが抑制され、ひいては消費電力の低減を図ることができる。   The reducing agent release process described above is performed after the engine is stopped. For example, assuming application to an automobile, each time the freezing determination or the driving of the reducing agent addition valve is performed, the on-vehicle controller (ECU) is started, It is necessary to supply power to sensors and actuators. Regarding freezing determination, for example, it is repeatedly determined whether or not the process is in the freezing transition process every time a predetermined time elapses after the engine stops. In such a case, it is desirable to reduce power consumption as much as possible while the engine is stopped. Therefore, as described in claim 7, after the reducing agent is released by opening the reducing agent addition valve, the freezing determination by the freezing determining means may be stopped. As a result, it is possible to prevent the freezing determination and the like from being performed unnecessarily after the release of the reducing agent, thereby reducing power consumption.

また、請求項8に記載したように、エンジンの停止時における外気温等の温度情報に基づいて、残留還元剤の温度が、同還元剤の凝固点温度を基に設定した基準温度(例えば、凝固点温度+10℃)以下になる時期を予測し、その予測時期において前記凍結移行過程にあるかどうかを判定すると良い。この場合、残留還元剤が凍結状態に移行しそうな時期にのみ凍結判定が行われるため、やはり消費電力の低減を図ることができる。   Further, as described in claim 8, based on temperature information such as the outside air temperature when the engine is stopped, the temperature of the residual reducing agent is a reference temperature (for example, a freezing point) set based on the freezing point temperature of the reducing agent. (Temperature + 10 ° C.) or less is predicted, and it is good to determine whether or not it is in the freezing transition process at the predicted time. In this case, since the freezing determination is performed only when the residual reducing agent is likely to shift to the frozen state, it is possible to reduce the power consumption.

請求項9に記載の発明では、エンジンの停止時又は停止直後に、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行時期を予測する。そして、予測した凍結移行時期にて前記還元剤添加弁を開弁させる。つまり、エンジン停止後における還元剤の温度遷移はある程度予測できると考えられ、それ故、凍結移行時期の予測も可能であると考えられる。かかる場合にも、凍結移行過程での体積増加に合わせて残留還元剤を放出することができ、凍結による還元剤の体積増加分を還元剤添加弁等から適切に排出することができる。   According to the ninth aspect of the present invention, the freeze transition timing when the residual reducing agent such as the reducing agent addition valve shifts to the frozen state is predicted when the engine is stopped or immediately after the engine is stopped. Then, the reducing agent addition valve is opened at the predicted freeze transition time. That is, it is considered that the temperature transition of the reducing agent after the engine is stopped can be predicted to some extent, and therefore it is considered possible to predict the freezing transition time. Even in such a case, the residual reducing agent can be released in accordance with the increase in volume during the freezing transition process, and the volume increase of the reducing agent due to freezing can be appropriately discharged from the reducing agent addition valve or the like.

エンジン停止後における還元剤の温度遷移は、外気温等に応じて変わると考えられる。そこで、請求項10に記載したように、エンジンの停止時又はその停止直後における外気温等の温度情報に基づいて、前記凍結移行時期を予測すると良い。   It is considered that the temperature transition of the reducing agent after the engine stops changes according to the outside air temperature or the like. Therefore, as described in claim 10, the freeze transition time may be predicted based on temperature information such as the outside air temperature when the engine is stopped or immediately after the engine is stopped.

請求項11に記載の発明では、前記凍結移行時期(予測時期)において前記還元剤添加弁を複数回開弁させる。これにより、凍結移行時期において還元剤の凍結が徐々に進行する場合にも、体積増加分の還元剤を確実に放出できる。   In the invention according to claim 11, the reducing agent addition valve is opened a plurality of times at the freeze transition time (predicted time). Thereby, even when freezing of the reducing agent gradually proceeds during the freezing transition time, the reducing agent corresponding to the volume increase can be reliably released.

特に、エンジン停止時又は停止直後に凍結移行時期を予測する場合、実際の凍結移行過程を精度良く推測することは困難であるため、凍結移行時期を比較的長めの期間とする必要がある。かかる場合において、凍結移行時期で還元剤添加弁の開弁(還元剤放出)を複数回実施することにより、実際の凍結移行過程において確実に還元剤の放出が実施できる。   In particular, when predicting the freezing transition time when the engine is stopped or immediately after the stopping, it is difficult to accurately estimate the actual freezing transition process. Therefore, it is necessary to set the freezing transition time to a relatively long period. In such a case, the reducing agent addition valve is opened (reducing agent release) a plurality of times at the time of freezing transition, so that the reducing agent can be reliably released in the actual freezing transition process.

一般に、還元剤供給部には還元剤を圧送する圧送ポンプが設けられ、その圧送ポンプの駆動により還元剤添加弁に対して還元剤が圧送される。かかる構成では、エンジンの停止直後に、還元剤添加弁等の内部に圧力が残り、同内部圧力が大気圧に比して高圧となる。このように還元剤添加弁等の内部に圧力が残ると、凍結変化時の体積増加に際して内部圧力の高圧化が顕著になり、還元剤添加弁等の破損が一層懸念される。そこで、請求項12に記載したように、エンジンの停止直後において、前記残留還元剤の凍結変化に関係なく前記還元剤添加弁を一時的に開弁させると良い。これにより、還元剤添加弁等の内部圧力の低減を図ることができる。   In general, the reducing agent supply unit is provided with a pumping pump for pumping the reducing agent, and the reducing agent is pumped to the reducing agent addition valve by driving the pumping pump. In such a configuration, immediately after the engine is stopped, pressure remains inside the reducing agent addition valve or the like, and the internal pressure becomes higher than the atmospheric pressure. When pressure remains inside the reducing agent addition valve or the like in this way, the internal pressure becomes significantly higher when the volume increases during freezing change, and the reduction of the reducing agent addition valve or the like is further concerned. Therefore, as described in claim 12, immediately after the engine is stopped, the reducing agent addition valve may be temporarily opened regardless of the freezing change of the residual reducing agent. Thereby, reduction of internal pressures, such as a reducing agent addition valve, can be aimed at.

本排気浄化装置において、前記還元剤は尿素水溶液であり、前記排気浄化用触媒は、尿素水溶液から生成されるアンモニアによりNOxを還元するNOx還元反応を前記排気浄化反応とし、そのNOx還元反応を促進するものであると良い(請求項13)。   In the present exhaust purification apparatus, the reducing agent is a urea aqueous solution, and the exhaust purification catalyst uses the NOx reduction reaction for reducing NOx by ammonia generated from the urea aqueous solution as the exhaust purification reaction, and promotes the NOx reduction reaction. It is good if it is.

尿素SCRシステムに代表されるように、尿素水溶液を還元剤として用いるNOx浄化装置は、排気中のNOxを高い浄化率で浄化する排気浄化装置として期待されている。したがって本発明は、尿素SCRシステムに適用して特に有益である。また、例えば自動車の分野でこの排気浄化装置を採用し、ディーゼルエンジン搭載の車両等にこの装置を装着した場合には、燃焼過程でNOxの発生を許容して燃費及びPMを改善することなども可能になり、ひいては自動車の性能向上や排気清浄化に大きく貢献することができるようになる。   As represented by the urea SCR system, a NOx purification device using an aqueous urea solution as a reducing agent is expected as an exhaust purification device that purifies NOx in exhaust gas at a high purification rate. Thus, the present invention is particularly beneficial when applied to a urea SCR system. In addition, for example, when this exhaust purification device is adopted in the field of automobiles and this device is mounted on a vehicle equipped with a diesel engine, the generation of NOx is allowed in the combustion process to improve fuel consumption and PM. As a result, it becomes possible to greatly contribute to improving the performance of automobiles and purifying exhaust gas.

以下、本発明に係る排気浄化装置を具体化した一実施形態について図面を参照しつつ説明する。本実施形態の排気浄化装置は、選択還元型触媒を用いて排気中のNOxを浄化するものであり、尿素SCRシステムとして構築されている。はじめに、図1を参照してこのシステムの構成について詳述する。図1は、本実施形態に係る尿素SCRシステムの概要を示す構成図である。   Hereinafter, an embodiment of an exhaust emission control device according to the present invention will be described with reference to the drawings. The exhaust purification device of this embodiment purifies NOx in exhaust using a selective reduction catalyst, and is constructed as a urea SCR system. First, the configuration of this system will be described in detail with reference to FIG. FIG. 1 is a configuration diagram showing an outline of a urea SCR system according to the present embodiment.

図1に示すように、本システムは、自動車に搭載されたディーゼルエンジン(図示略)により排出される排気を浄化対象として、大きくは、排気を浄化するための各種アクチュエータ及び各種センサ、並びにECU(電子制御ユニット)30等を有して構築されている。   As shown in FIG. 1, the present system uses exhaust discharged from a diesel engine (not shown) mounted on an automobile as a purification target, and generally includes various actuators and various sensors for purifying exhaust, and an ECU ( (Electronic control unit) 30 and the like.

エンジン排気系の構成として具体的には、図示しないエンジン本体に接続された排気管11が設けられており、その排気管11にはDPF(Diesel Particulate Filter)12と選択還元触媒(以下、SCR触媒という)13とが配設されている。また、排気管11においてDPF12とSCR触媒13との間には、還元剤としての尿素水(尿素水溶液)を排気管11内に添加供給するための尿素水添加弁15が設けられている。なお、図示のとおり排気管11は複数の管材が連結されて構成されているが、ここではそれらを総じて排気管11としている。   Specifically, an exhaust pipe 11 connected to an engine body (not shown) is provided as a configuration of the engine exhaust system. The exhaust pipe 11 includes a DPF (Diesel Particulate Filter) 12 and a selective reduction catalyst (hereinafter referred to as an SCR catalyst). 13) is provided. Further, a urea water addition valve 15 for adding and supplying urea water (urea aqueous solution) as a reducing agent into the exhaust pipe 11 is provided between the DPF 12 and the SCR catalyst 13 in the exhaust pipe 11. As shown in the figure, the exhaust pipe 11 is configured by connecting a plurality of pipe materials, but here, these are collectively referred to as the exhaust pipe 11.

排気管11においてSCR触媒13の下流側には、NOx検出部(NOxセンサ)と排気温検出部(排気温センサ)とが共に内蔵された排気センサ16が設けられており、同SCR触媒13の下流側にて、排気中のNOx量(ひいてはSCR触媒13によるNOxの浄化率)、及び排気の温度が検出されるようになっている。排気管11の更に下流には、余剰のアンモニア(NH3)を除去するためのアンモニア除去装置(例えば酸化触媒)や、排気中のアンモニア量を検出するためのアンモニアセンサ等が必要に応じて設けられる。   In the exhaust pipe 11, an exhaust sensor 16 having both a NOx detection unit (NOx sensor) and an exhaust temperature detection unit (exhaust temperature sensor) is provided on the downstream side of the SCR catalyst 13. On the downstream side, the amount of NOx in the exhaust (and thus the NOx purification rate by the SCR catalyst 13) and the temperature of the exhaust are detected. Further downstream of the exhaust pipe 11, an ammonia removal device (for example, an oxidation catalyst) for removing excess ammonia (NH3), an ammonia sensor for detecting the amount of ammonia in the exhaust, and the like are provided as necessary. .

DPF12は、排気中のPM(粒子状物質)を捕集する連続再生式のPM除去用フィルタである。DPF12は白金系の酸化触媒を担持しており、PM成分の1つである可溶性有機成分(SOF)とともに、HCやCOを除去することができるようになっている。ちなみに、DPF12に捕集されたPMは、ディーゼルエンジンにおけるメイン燃料噴射後のポスト噴射等により燃焼除去でき(再生処理に相当)、これによりDPF12の継続使用が可能となっている。   The DPF 12 is a continuous regeneration PM removal filter that collects PM (particulate matter) in exhaust gas. The DPF 12 carries a platinum-based oxidation catalyst and can remove HC and CO together with a soluble organic component (SOF) which is one of the PM components. Incidentally, the PM collected by the DPF 12 can be removed by combustion by post-injection after the main fuel injection in the diesel engine or the like (corresponding to the regeneration process), whereby the DPF 12 can be used continuously.

SCR触媒13はNOxの還元反応(排気浄化反応)を促進するものであり、例えば、
4NO+4NH3+O2→4N2+6H2O …(式1)
6NO2+8NH3→7N2+12H2O …(式2)
NO+NO2+2NH3→2N2+3H2O …(式3)
のような反応を促進して排気中のNOxを還元する。そして、これらの反応においてNOxの還元剤となるアンモニア(NH3)を添加供給するものが、同SCR触媒13の上流側に設けられた尿素水添加弁15である。
The SCR catalyst 13 promotes a NOx reduction reaction (exhaust gas purification reaction).
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 1)
6NO2 + 8NH3 → 7N2 + 12H2O (Formula 2)
NO + NO2 + 2NH3 → 2N2 + 3H2O (Formula 3)
Such a reaction is promoted to reduce NOx in the exhaust gas. The urea water addition valve 15 provided on the upstream side of the SCR catalyst 13 is additionally supplied with ammonia (NH 3) as a NOx reducing agent in these reactions.

尿素水添加弁15は、既存の燃料噴射弁(インジェクタ)とほぼ同様の構成を有するものであり、公知の構成が採用できるため、ここでは構成を簡単に説明する。尿素水添加弁15は、電磁ソレノイド等からなる駆動部と、尿素水を流通させる尿素水通路や、先端噴出口15aを開閉するためのニードルを有する弁体部とを備えた電磁式開閉弁として構成されており、ECU30からの駆動信号に基づき開弁又は閉弁する。すなわち、前記駆動信号に基づき電磁ソレノイドが通電されると、該通電に伴いニードルが開弁方向に移動し、そのニードル移動に伴い先端噴出口15aから尿素水が添加(噴射)される。   The urea water addition valve 15 has substantially the same configuration as an existing fuel injection valve (injector), and since a known configuration can be adopted, the configuration will be briefly described here. The urea water addition valve 15 is an electromagnetic on-off valve provided with a drive unit composed of an electromagnetic solenoid or the like, a urea water passage through which urea water flows, and a valve body unit having a needle for opening and closing the tip jet port 15a. It is comprised and opens or closes based on the drive signal from ECU30. That is, when the electromagnetic solenoid is energized based on the drive signal, the needle moves in the valve opening direction along with the energization, and urea water is added (injected) from the tip outlet 15a as the needle moves.

尿素水添加弁15に対しては、尿素水タンク21から尿素水が逐次供給されるようになっており、次に、尿素水供給系の構成について説明する。   The urea water is sequentially supplied from the urea water tank 21 to the urea water addition valve 15. Next, the configuration of the urea water supply system will be described.

尿素水タンク21は給液キャップ付きの密閉容器にて構成されており、その内部に所定濃度の尿素水が貯蔵されている。なお、タンク内尿素水の凍結対策として、尿素水タンク21にヒータを付設したり、タンク周りに断熱シート等の断熱材を配設したりすることも可能である。   The urea water tank 21 is configured by a sealed container with a liquid supply cap, and urea water having a predetermined concentration is stored therein. As a countermeasure against freezing of urea water in the tank, it is possible to attach a heater to the urea water tank 21 or arrange a heat insulating material such as a heat insulating sheet around the tank.

尿素水タンク21内には、尿素水に浸漬した状態で尿素水ポンプ22が設けられている。尿素水ポンプ22は、ECU30からの駆動信号により回転駆動される電動式ポンプである。尿素水ポンプ22には尿素水供給管23の一端が接続されており、同尿素水供給管23の他端は尿素水添加弁15に接続されている。尿素水供給管23内は尿素水通路となっている。尿素水ポンプ22が回転駆動されることにより、尿素水が汲み上げられ尿素水供給管23を通じて尿素水添加弁15側に吐出(圧送)される。尿素水ポンプ22は、尿素水タンク21内において尿素水に浸漬した状態で設けられる以外に、尿素水供給管23の中途部分に設けられる構成であっても良い。   A urea water pump 22 is provided in the urea water tank 21 while being immersed in the urea water. The urea water pump 22 is an electric pump that is rotationally driven by a drive signal from the ECU 30. One end of a urea water supply pipe 23 is connected to the urea water pump 22, and the other end of the urea water supply pipe 23 is connected to the urea water addition valve 15. The urea water supply pipe 23 is a urea water passage. When the urea water pump 22 is driven to rotate, the urea water is pumped up and discharged (pressure-fed) to the urea water addition valve 15 side through the urea water supply pipe 23. The urea water pump 22 may be configured to be provided in the middle part of the urea water supply pipe 23 in addition to being provided in the urea water tank 21 while being immersed in the urea water.

尿素水供給管23には、尿素水を濾過するためのフィルタ24と、尿素水の圧力を調整するための圧力調整弁25とが設けられている。したがって、尿素水ポンプ22から吐出(圧送)された尿素水はフィルタ24により異物が除去され、その後、圧力調整弁25により所定の供給圧力に調整される。圧力調整の結果、余剰となった尿素水はリターン配管26を通じて尿素水タンク21に戻されるようになっている。また、尿素水供給管23には、尿素水供給管23内の尿素水の圧力を検出するための圧力センサ27と、同尿素水の温度を検出するための温度センサ28とが設けられている。なお、尿素水タンク21、尿素水ポンプ22、尿素水供給管23等が「還元剤供給部」に相当する。   The urea water supply pipe 23 is provided with a filter 24 for filtering the urea water and a pressure adjustment valve 25 for adjusting the pressure of the urea water. Accordingly, the urea water discharged (pressure-fed) from the urea water pump 22 is removed of foreign matters by the filter 24, and then adjusted to a predetermined supply pressure by the pressure adjustment valve 25. As a result of the pressure adjustment, the excess urea water is returned to the urea water tank 21 through the return pipe 26. The urea water supply pipe 23 is provided with a pressure sensor 27 for detecting the pressure of the urea water in the urea water supply pipe 23 and a temperature sensor 28 for detecting the temperature of the urea water. . The urea water tank 21, the urea water pump 22, the urea water supply pipe 23, and the like correspond to the “reducing agent supply unit”.

上記システムの中で電子制御ユニットとして主体的に排気浄化に係る制御を行う部分がECU30である。ECU30は、周知のマイクロコンピュータ(図示略)を備え、各種センサの検出値に基づいて所望とされる態様で尿素水添加弁15をはじめとする各種アクチュエータを操作することにより、排気浄化に係る各種の制御を行うものである。具体的には、例えば尿素水添加弁15の通電時間や尿素水ポンプ22の駆動量等を制御することにより、排気管11内に、適切な時期に適正な量の尿素水を添加供給する。なお、ECU30には、上述した排気センサ16、圧力センサ27、温度センサ28の他に、水温センサ31や外気温センサ32の検出信号が逐次入力されるようになっている。   The ECU 30 is a part of the system that mainly performs control relating to exhaust gas purification as an electronic control unit. The ECU 30 includes a well-known microcomputer (not shown), and operates various actuators including the urea water addition valve 15 in a desired mode based on detection values of various sensors, thereby performing various types of exhaust purification. The control is performed. Specifically, for example, by controlling the energization time of the urea water addition valve 15 and the driving amount of the urea water pump 22, an appropriate amount of urea water is added and supplied into the exhaust pipe 11 at an appropriate time. In addition to the exhaust sensor 16, the pressure sensor 27, and the temperature sensor 28 described above, detection signals from the water temperature sensor 31 and the outside air temperature sensor 32 are sequentially input to the ECU 30.

本実施形態に係る上記システムでは、エンジン運転時において、尿素水ポンプ22の駆動により尿素水タンク21内の尿素水が尿素水供給管23を通じて尿素水添加弁15に圧送され、尿素水添加弁15により排気管11内に尿素水が添加供給される。すると、排気管11内において排気と共に尿素水がSCR触媒13に供給され、SCR触媒13においてNOxの還元反応が行われることによってその排気が浄化される。NOxの還元に際しては、例えば、
(NH2)2CO+H2O→2NH3+CO2 …(式4)
のような反応をもって、尿素水が排気熱で加水分解されることによりアンモニア(NH3)が生成され、SCR触媒13にて選択的に吸着された排気中のNOxに対し、このアンモニアが添加される。そして、同SCR触媒13上で、そのアンモニアに基づく還元反応(上記反応式(式1)〜(式3))が行われることによって、NOxが還元、浄化されることになる。
In the system according to this embodiment, during operation of the engine, the urea water in the urea water tank 21 is pumped to the urea water addition valve 15 through the urea water supply pipe 23 by driving the urea water pump 22, and the urea water addition valve 15. Thus, urea water is added and supplied into the exhaust pipe 11. Then, urea water is supplied to the SCR catalyst 13 together with the exhaust gas in the exhaust pipe 11, and the exhaust gas is purified by the NOx reduction reaction in the SCR catalyst 13. When reducing NOx, for example,
(NH2) 2CO + H2O → 2NH3 + CO2 (Formula 4)
As a result of the above reaction, urea water is hydrolyzed with exhaust heat to produce ammonia (NH3), and this ammonia is added to NOx in the exhaust selectively adsorbed by the SCR catalyst 13. . Then, the reduction reaction based on the ammonia (the above reaction formulas (Formula 1) to (Formula 3)) is performed on the SCR catalyst 13, whereby NOx is reduced and purified.

ところで、還元剤として用いられる尿素水は−11℃で凍結し、その凍結に伴い体積が7%程度増加する。この場合、エンジン停止後において尿素水供給系の各構成部品(尿素水添加弁15や尿素水供給管23)に尿素水が残留しており、その残留尿素水の体積が凍結により増加すると、尿素水添加弁15や尿素水供給管23において破損のおそれが生じる。そこで本実施形態では、尿素水凍結対策として、エンジン停止後において、尿素水の凍結変化を監視するとともに、その凍結変化に伴い体積増加する際に尿素水添加弁15を一時的に開状態(ON)とし、その開弁によって尿素水添加弁15や尿素水供給管23の残留尿素水を排気管11内に放出する。そしてこれにより、尿素水凍結時の体積増加による部品損傷等の不都合を抑制することとしている。   By the way, urea water used as a reducing agent freezes at −11 ° C., and the volume increases by about 7% with the freezing. In this case, when urea water remains in each component (urea water addition valve 15 and urea water supply pipe 23) of the urea water supply system after the engine is stopped, and the volume of the residual urea water increases due to freezing, The water addition valve 15 and the urea water supply pipe 23 may be damaged. Therefore, in this embodiment, as a countermeasure against freezing of urea water, after the engine is stopped, the freezing change of urea water is monitored, and when the volume increases with the freezing change, the urea water addition valve 15 is temporarily opened (ON). The residual urea water from the urea water addition valve 15 and the urea water supply pipe 23 is discharged into the exhaust pipe 11 by opening the valve. As a result, inconveniences such as component damage due to an increase in volume during freezing of urea water are suppressed.

図2は、残留尿素水の放出処理を示すフローチャートであり、本処理はエンジン停止後にECU30により実行される。具体的には、ECU30にはエンジン停止後の経過時間を計測するタイマ(ソークタイマ)が設けられており、エンジン停止後、所定時間(例えば10〜数10分)が経過する都度、ECU30内のマイクロコンピュータが一時的に自動起動されて図2の演算処理が実行されるようになっている。   FIG. 2 is a flowchart showing a process for releasing residual urea water. This process is executed by the ECU 30 after the engine is stopped. Specifically, the ECU 30 is provided with a timer (soak timer) that measures an elapsed time after the engine stops, and each time a predetermined time (for example, 10 to several tens of minutes) elapses after the engine stops, The computer is automatically activated temporarily and the arithmetic processing of FIG. 2 is executed.

図2において、ステップS11では、今現在エンジンが停止状態であるか否かを判定し、続くステップS12では、尿素水放出の実行条件が成立しているか否かを判定する。同実行条件は、エンジン停止後において、尿素水添加弁15や尿素水供給管23内の残留尿素水が凍結する可能性があるか否かを判定するものであり、例えばエンジン停止時の外気温を記憶しておき、同外気温が所定のしきい値温度(例えば0℃)以下である場合に、残留尿素水が凍結する可能性があるとして実行条件が成立したとする。   In FIG. 2, in step S11, it is determined whether or not the engine is currently stopped. In subsequent step S12, it is determined whether or not the urea water release execution condition is satisfied. The execution condition is for determining whether there is a possibility that the residual urea water in the urea water addition valve 15 or the urea water supply pipe 23 is frozen after the engine is stopped. For example, the outside air temperature when the engine is stopped Is stored, and when the outside air temperature is equal to or lower than a predetermined threshold temperature (for example, 0 ° C.), it is assumed that the execution condition is satisfied that the residual urea water may be frozen.

また、ステップS13では、エンジン停止後における残留尿素水の放出が未完了であるか否かを判定する。その判定には、例えば、尿素水放出完了フラグが用いられ、同フラグがセット状態である場合に、尿素水放出が完了していると判定される。ステップS11〜S13のいずれかがNOの場合、そのまま本処理を終了する。   In step S13, it is determined whether or not the release of residual urea water after the engine is stopped is incomplete. For the determination, for example, a urea water discharge completion flag is used, and when the flag is set, it is determined that the urea water discharge is completed. If any of steps S11 to S13 is NO, this process is terminated as it is.

ステップS11〜S13が全てYESの場合、ステップS14に進む。ステップS14では、その時の残留尿素水の温度を推定する。残留尿素水の温度推定手法は任意で良いが、本実施形態では、尿素水供給管23に設置した温度センサ28により尿素水の温度情報を取得し、その温度情報に基づいて残留尿素水の温度を推定する。その他、尿素水添加弁15に設置した温度センサ(図示略)、排気管11に設置した温度センサ(例えば、排気センサ16の排気温検出部)、水温センサ31、外気温センサ32の各検出結果の少なくともいずれかにより残留尿素水の温度を推定することも可能である。   When steps S11 to S13 are all YES, the process proceeds to step S14. In step S14, the temperature of the residual urea water at that time is estimated. The temperature estimation method of the residual urea water may be arbitrary, but in this embodiment, the temperature information of the urea water is acquired by the temperature sensor 28 installed in the urea water supply pipe 23, and the temperature of the residual urea water is based on the temperature information. Is estimated. In addition, the temperature sensor (not shown) installed in the urea water addition valve 15, the temperature sensor installed in the exhaust pipe 11 (for example, the exhaust temperature detection unit of the exhaust sensor 16), the water temperature sensor 31, and the outside air temperature sensor 32 detection results. It is also possible to estimate the temperature of the residual urea water by at least one of the following.

その後、ステップS15では、上記ステップS14における尿素水温度の推定結果に基づいて、今現在、尿素水の凍結移行過程を含む状態移行期(凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む時期)にあって尿素水添加弁15の開弁を要するか否かを判定する。具体的には、尿素水温度が所定の凍結温度域まで低下していなければ、状態移行期になく尿素水添加弁15の開弁が不要であると判定する。また、尿素水温度が所定の凍結温度域まで低下していれば、状態移行期にあり尿素水添加弁15の開弁を要すると判定する。前者の場合、ステップS18に進み、後者の場合、ステップS16に進む。凍結温度域は、尿素水の凍結温度(凝固点温度)を基準に設定されており、例えば凍結温度−5℃〜凍結温度+5℃の温度範囲(−11℃±5℃の温度範囲)である。   Thereafter, in step S15, based on the estimation result of the urea water temperature in step S14, the current phase transition period including the freezing transition process of urea water (the liquid phase immediately before the time corresponding to the freezing transition process) Whether or not it is necessary to open the urea water addition valve 15 at a time including the state and the immediately following solid phase state). Specifically, if the urea water temperature does not fall to a predetermined freezing temperature range, it is determined that the urea water addition valve 15 does not need to be opened in the state transition period. Moreover, if the urea water temperature has fallen to the predetermined freezing temperature range, it is determined that the urea water addition valve 15 needs to be opened in the state transition period. In the former case, the process proceeds to step S18, and in the latter case, the process proceeds to step S16. The freezing temperature range is set based on the freezing temperature (freezing point temperature) of the urea water, and is, for example, a temperature range of freezing temperature −5 ° C. to freezing temperature + 5 ° C. (temperature range of −11 ° C. ± 5 ° C.).

ステップS16では、尿素水添加弁15を一時的に開弁させる。そしてその後、ステップS17で所定時間待機した後、ステップS14に戻り、再び残留尿素水の温度を推定する。また、前記同様、尿素水添加弁15の開弁の要否判定、同尿素水添加弁15の開弁処理等を実行する(ステップS15〜S17)。   In step S16, the urea water addition valve 15 is temporarily opened. Then, after waiting for a predetermined time in step S17, the process returns to step S14, and the temperature of the remaining urea water is estimated again. Further, similarly to the above, it is determined whether or not the urea water addition valve 15 needs to be opened, and the urea water addition valve 15 is opened (steps S15 to S17).

残留尿素水の温度が凍結温度域まで低下していない場合、又は残留尿素水の温度が凍結温度域まで低下した後さらに低温側に変化した場合には、ステップS15がNOとなり、ステップS18に進む。ステップS18では、今回のECU起動で、尿素水添加弁18が開弁駆動されて残留尿素水の放出(ステップS16)が実行されたか否かを判定する。そして、残留尿素水の放出が実行されていれば、ステップS19に進んで尿素水放出完了フラグをセットする。なお、尿素水放出完了フラグは、バックアップRAM等に保存される情報であり、同フラグ情報は継続的に保持され、次回のエンジン始動時(イグニッションオン時)にクリアされる。   If the temperature of the residual urea water has not decreased to the freezing temperature range, or if the temperature of the residual urea water has further decreased to the freezing temperature range and then changed to a lower temperature side, step S15 becomes NO and the process proceeds to step S18. . In step S18, it is determined whether or not the urea water addition valve 18 is driven to open to release the residual urea water (step S16) due to the current ECU activation. And if discharge | release of residual urea water is performed, it will progress to step S19 and will set a urea water discharge completion flag. The urea water discharge completion flag is information stored in a backup RAM or the like, and the flag information is continuously held and cleared at the next engine start (when the ignition is turned on).

尿素水放出完了フラグがセットされた後は、それ以降ECU30が起動されても、ステップS13がNOとなり、残留尿素水の温度推定や尿素水添加弁15の開弁処理などが不要に実施されないようになっている。   After the urea water discharge completion flag is set, even if the ECU 30 is started thereafter, step S13 becomes NO, so that the temperature estimation of the residual urea water and the opening process of the urea water addition valve 15 are not performed unnecessarily. It has become.

次に、エンジン停止後における残留尿素水の温度変化、圧力変化等を図3及び図4により説明する。ここで、図3には、上述した残留尿素水の放出処理を行わない場合について尿素水温度や尿素水圧力の変化を示し、図4には、上述した残留尿素水の放出処理を行った場合(本実施形態)について尿素水温度や尿素水圧力の変化を示している。なお図3,図4では、寒冷地で使用される車両について、エンジン停止後の外気温が極低温(−15℃程度)になる場合を想定しており、いずれも同じ変化率で尿素水温度が低下するものとしている。   Next, the temperature change, pressure change, etc. of the residual urea water after the engine is stopped will be described with reference to FIGS. Here, FIG. 3 shows changes in the urea water temperature and the urea water pressure when the above-described residual urea water discharge process is not performed, and FIG. 4 shows the case where the above-described residual urea water discharge process is performed. The change of urea water temperature and urea water pressure is shown for (this embodiment). 3 and 4, it is assumed that the outside air temperature after the engine is stopped is extremely low (about −15 ° C.) for the vehicle used in the cold region. Is supposed to decline.

図3では、エンジンの停止後、尿素水温度(尿素水添加弁15等の残留尿素水の温度)が周囲温度等に応じて低下する。そして、タイミングt1で尿素水温度が凝固点温度(−11℃)に達すると、その後、タイミングt2になるまで尿素水温度が凝固点温度で保持される。このとき、タイミングt1〜t2の期間では、尿素水が凍結移行過程にあり、体積増加に伴い尿素水圧力が上昇する。タイミングt1以前は、尿素水が液相状態となる期間であり、t1〜t2の期間は、同尿素水が液相→固相に移行する移行期間である。その後、尿素水が全て凍結すると、同尿素水が固相状態となり、その温度がさらに低下する。   In FIG. 3, after the engine is stopped, the urea water temperature (the temperature of the residual urea water such as the urea water addition valve 15) decreases according to the ambient temperature or the like. When the urea water temperature reaches the freezing point temperature (−11 ° C.) at timing t1, the urea water temperature is held at the freezing point temperature until timing t2. At this time, during the period from the timing t1 to the time t2, the urea water is in the freezing transition process, and the urea water pressure increases with the volume increase. Before the timing t1, the urea water is in a liquid phase state, and the period from t1 to t2 is a transition period in which the urea water moves from the liquid phase to the solid phase. Thereafter, when all of the urea water is frozen, the urea water becomes a solid phase and the temperature further decreases.

上記のように尿素水が状態移行する場合、液相→固相移行時の圧力上昇(体積増加)に起因して、尿素水添加弁15や尿素水供給管23において破損のおそれが生じる。   As described above, when the urea water changes state, the urea water addition valve 15 and the urea water supply pipe 23 may be damaged due to the pressure increase (volume increase) during the liquid phase → solid phase transfer.

上記不都合に対し、本実施形態では、図4に示すように、尿素水温度が所定の凍結温度域(−11℃±5℃の温度範囲)となるタイミングt11〜t14の期間(状態移行期)において、尿素水添加弁15が複数回開弁され、その開弁に伴い尿素水圧力が減じられる。すなわち、凍結移行過程において尿素水添加弁15が複数回開弁される。なお、タイミングt12〜t13は、尿素水温度が凝固点温度で保持される期間である(図3のt1〜t2の期間に相当)。図4では、残留尿素水の放出処理を行った場合の圧力変化を実線で、同放出処理を行っていない場合の圧力変化を二点鎖線で示している。   In contrast to the above-described inconvenience, in the present embodiment, as shown in FIG. 4, a period of time t11 to t14 (state transition period) in which the urea water temperature falls within a predetermined freezing temperature range (temperature range of −11 ° C. ± 5 ° C.). , The urea water addition valve 15 is opened a plurality of times, and the urea water pressure is reduced as the valve is opened. That is, the urea water addition valve 15 is opened a plurality of times during the freezing transition process. Timing t12 to t13 is a period during which the urea water temperature is maintained at the freezing point temperature (corresponding to the period from t1 to t2 in FIG. 3). In FIG. 4, the pressure change when the residual urea water release process is performed is indicated by a solid line, and the pressure change when the release process is not performed is indicated by a two-dot chain line.

詳しくは、タイミングt11では、尿素水温度が所定の凍結温度域まで低下したことが判定され、それに伴い尿素水添加弁15が一時的に開弁される。このとき、尿素水添加弁15や尿素水供給管23内の残留尿素水が尿素水添加弁15の先端噴出口15aから排気管11内に放出され、その開弁によって尿素水圧力が大気圧レベルまで減じられる。タイミングt11以降、所定時間TAが経過するごとに尿素水添加弁15が一時的に開弁され、その都度、尿素水圧力が大気圧レベルまで減じられる。   Specifically, at timing t11, it is determined that the urea water temperature has decreased to a predetermined freezing temperature range, and accordingly, the urea water addition valve 15 is temporarily opened. At this time, the residual urea water in the urea water addition valve 15 and the urea water supply pipe 23 is discharged into the exhaust pipe 11 from the front end jet port 15a of the urea water addition valve 15, and the urea water pressure is at the atmospheric pressure level by opening the valve. Reduced to. After the timing t11, the urea water addition valve 15 is temporarily opened every time the predetermined time TA elapses, and each time the urea water pressure is reduced to the atmospheric pressure level.

上記のように尿素水の凍結移行過程において尿素水添加弁15が開弁されることで、凍結に伴う尿素水の体積増加に合わせて残留尿素水が放出される。このとき、凍結による尿素水の体積増加分が尿素水添加弁15から確実に排出される。   As described above, the urea water addition valve 15 is opened in the process of freezing transition of urea water, so that residual urea water is released in accordance with the increase in volume of the urea water accompanying freezing. At this time, the volume increase in urea water due to freezing is reliably discharged from the urea water addition valve 15.

なお、エンジン停止中においては所定時間ごとにECU30が起動され、その起動に合わせて残留尿素水の温度モニタ等が行われる。そのため実際には、図4のように尿素水温度が凍結温度域に到達して直ちに尿素水添加弁15が開弁される訳ではなく、ECU起動時に尿素水温度が所定の温度域にあれば尿素水添加弁15が開弁される。   When the engine is stopped, the ECU 30 is activated every predetermined time, and the temperature of the residual urea water is monitored in accordance with the activation. Therefore, actually, as shown in FIG. 4, the urea water addition valve 15 does not open immediately after the urea water temperature reaches the freezing temperature range, and if the urea water temperature is within a predetermined temperature range when the ECU is started. The urea water addition valve 15 is opened.

以上詳述した本実施形態によれば、以下の優れた効果が得られる。   According to the embodiment described in detail above, the following excellent effects can be obtained.

エンジン停止後において、残留尿素水が凍結移行過程にあることを判定し、その凍結移行過程にある旨判定した場合に尿素水添加弁15を一時的に開弁させるようにしたため、尿素水の体積増加による尿素水添加弁15や尿素水供給管23等の破損が抑制できる。その結果、尿素水添加弁15や尿素水供給管23等の保護を図りつつ、尿素水の添加による好適なる排気浄化を行わせることができる。   After the engine is stopped, it is determined that the residual urea water is in the freezing transition process, and when it is determined that the freezing transition process is in progress, the urea water addition valve 15 is temporarily opened. Damage to the urea water addition valve 15 and the urea water supply pipe 23 due to the increase can be suppressed. As a result, it is possible to perform suitable exhaust purification by adding urea water while protecting the urea water addition valve 15, the urea water supply pipe 23, and the like.

エンジン停止後の凍結移行過程において尿素水添加弁15を所定の時間間隔で複数回開弁させるようにしたため、尿素水添加弁15を開弁した後、更に尿素水の凍結が進行する場合にも、尿素水の放出が可能となる。したがって、凍結による体積増加分の尿素水を確実に放出することができる。   Since the urea water addition valve 15 is opened a plurality of times at predetermined time intervals in the freezing transition process after the engine is stopped, the urea water can be further frozen after the urea water addition valve 15 is opened. The urea water can be released. Therefore, it is possible to reliably release urea water corresponding to the volume increase due to freezing.

凍結温度を含む凍結温度域(−11℃±5℃、状態移行期の温度域に相当)を設定し、尿素水温度が凍結温度域にある場合に尿素水添加弁15を開弁させるようにしたため、凍結移行過程直前の液相状態、同過程直後の固相状態においても尿素水添加弁15を開弁させて残留尿素水を放出することができる。これにより、凍結による体積増加分の尿素水を一層確実に放出することができる。また、尿素水が凍結移行過程にあることを誤差無く判定することは困難であると考えられるが、仮に凍結移行過程の判定に多少の誤差があったとしても、体積増加分の尿素水を漏れなく排出することができる。   A freezing temperature range including a freezing temperature (−11 ° C. ± 5 ° C., corresponding to the temperature range in the state transition period) is set, and the urea water addition valve 15 is opened when the urea water temperature is in the freezing temperature range. Therefore, the urea water addition valve 15 can be opened to release the residual urea water even in the liquid phase state just before the freezing transition process and the solid phase state just after the freezing transition process. Thereby, the urea water for the volume increase by freezing can be discharged | emitted more reliably. In addition, it may be difficult to determine that there is no error in determining whether the urea water is in the freezing transition process, but even if there is some error in the determination in the freezing transition process, leakage of urea water for the volume increase will occur. It can discharge without.

尿素水添加弁15の開弁による尿素水の放出完了後は、残留尿素水の温度推定や尿素水添加弁15の開弁処理などが実施されないため、これらの処理を無駄に実施することに伴う電力消費が防止できる。これにより、エンジン停止中における電力消費を極力低減し、バッテリ上がり等の不都合を抑制することができる。   After completion of the urea water release by opening the urea water addition valve 15, the temperature estimation of the residual urea water and the opening process of the urea water addition valve 15 are not performed. Therefore, these processes are carried out wastefully. Power consumption can be prevented. As a result, power consumption while the engine is stopped can be reduced as much as possible, and problems such as battery exhaustion can be suppressed.

SCR触媒13に対する還元剤として尿素水を使用し、SCR触媒13が、尿素水から生成されるアンモニアによりNOxを還元するNOx還元反応(上記反応式(式1)〜(式3))を促進する構成とし、このシステムを、ディーゼルエンジン搭載の車両に装着した。これにより、燃焼過程でNOxの発生を許容して燃費及びPMを改善することなども可能になり、ひいては自動車の性能向上や排気クリーン化に大きく貢献することができるようになる。   Urea water is used as a reducing agent for the SCR catalyst 13, and the SCR catalyst 13 promotes a NOx reduction reaction (the above reaction formulas (Formula 1) to (Formula 3)) in which NOx is reduced by ammonia generated from the urea water. The system was installed in a vehicle equipped with a diesel engine. As a result, it is possible to improve the fuel consumption and PM by allowing the generation of NOx in the combustion process, and as a result, it can greatly contribute to the improvement of the performance of the automobile and the cleaner exhaust.

本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されても良い。   The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.

上記実施形態では、エンジン停止後における尿素水温度(残留尿素水の温度)に基づいて凍結移行過程にあることを判定したが、これを変更し、エンジン停止後における尿素水圧力(残留尿素水の圧力)に基づいて凍結移行過程にあることを判定しても良い。すなわち、凍結移行過程では、尿素水の体積増加に伴う圧力変化が生じることから、その圧力変化を監視することで凍結移行過程にあることを判定する。具体的には、ECU30は、尿素水供給管23に設置した圧力センサ27の検出信号に基づいて尿素水圧力を検出し、その尿素水圧力の変化に基づいて凍結移行過程にあることを判定する。   In the above embodiment, it is determined that the process is in the freezing transition process based on the urea water temperature (temperature of residual urea water) after the engine is stopped, but this is changed to change the urea water pressure (residual urea water after the engine is stopped). It may be determined that the process is in the freezing transition process based on the pressure). That is, in the freezing transfer process, a pressure change accompanying an increase in the volume of urea water occurs. Therefore, by monitoring the pressure change, it is determined that the freezing transfer process is in progress. Specifically, the ECU 30 detects the urea water pressure based on the detection signal of the pressure sensor 27 installed in the urea water supply pipe 23, and determines that the process is in the freezing transition process based on the change in the urea water pressure. .

エンジンの停止時における外気温等の温度情報に基づいて、残留尿素水の温度が、同尿素水の凝固点温度を基に設定した基準温度(例えば、凝固点温度+10℃)以下になる時期を予測し、その予測時期において凍結移行過程にあるかどうかを判定することも可能である。例えば、エンジン停止時の外気温やエンジン水温(エンジン暖機状態)に基づき、尿素水温度が基準温度(凝固点温度+10℃)以下になるのは、エンジン停止から4時間後である、又はエンジン停止から5時間後であるなどと予測する。そして、その予測時期にECU30を起動して残留尿素水の温度推定や尿素水添加弁15の開弁処理などを実施する。この場合、残留尿素水が凍結状態に移行しそうな時期にのみECU30が起動されて凍結判定等が行われることとなる。そのため、消費電力の低減を図ることができる。   Based on temperature information such as the outside air temperature when the engine is stopped, the time when the temperature of the residual urea water falls below the reference temperature set based on the freezing point temperature of the urea water (for example, the freezing point temperature + 10 ° C.) is predicted. It is also possible to determine whether or not the process is in the process of freezing transition at the predicted time. For example, the urea water temperature falls below the reference temperature (freezing point temperature + 10 ° C.) based on the outside air temperature and engine water temperature (engine warm-up state) when the engine is stopped, or after 4 hours from the engine stop, or the engine is stopped. 5 hours later. Then, the ECU 30 is activated at the predicted time, and the temperature of the residual urea water is estimated and the urea water addition valve 15 is opened. In this case, the ECU 30 is activated only at a time when the residual urea water is likely to shift to the frozen state, and the freezing determination or the like is performed. Therefore, power consumption can be reduced.

上記実施形態では、エンジン停止後において残留尿素水の温度等を随時モニタすることで尿素水が凍結移行過程にあることを判定し、その凍結移行過程にて尿素水添加弁15を開弁したが、これを以下のように変更する。すなわち、エンジンの停止時又は停止直後に、尿素水添加弁15等の残留尿素水が凍結状態に移行する凍結移行時期を予測する。そして、予測した凍結移行時期にて尿素水添加弁15を開弁させる(この場合、エンジン停止後において尿素水温度等のモニタを実施しない)。例えば、エンジン停止時の外気温やエンジン水温(エンジン暖機状態)に基づき、エンジン停止後の凍結移行時期がいつになるのかを予測する。そして、その予測した凍結移行時期にてECU30を起動して尿素水添加弁15の開弁処理を実施する。本構成においても、上記のとおり、凍結移行過程での体積増加に合わせて残留尿素水を放出することができ、凍結による尿素水の体積増加分を尿素水添加弁15等から適切に排出することができる。かかる場合にも、凍結移行時期(予測時期)において尿素水添加弁15を複数回開弁させると良い。これにより、凍結移行時期において尿素水の凍結が徐々に進行する場合にも、体積増加分の尿素水を確実に放出することができる。   In the above embodiment, it is determined that the urea water is in the freezing transition process by monitoring the temperature of the residual urea water as needed after the engine is stopped, and the urea water addition valve 15 is opened in the freezing transition process. This is changed as follows. That is, when the engine is stopped or immediately after the stop, the freezing transition time at which the residual urea water such as the urea water addition valve 15 shifts to the frozen state is predicted. Then, the urea water addition valve 15 is opened at the predicted freeze transition timing (in this case, monitoring of the urea water temperature or the like is not performed after the engine is stopped). For example, based on the outside air temperature when the engine is stopped and the engine water temperature (engine warm-up state), it is predicted when the freezing transition time after the engine stops will be. Then, the ECU 30 is activated at the predicted freezing transition timing, and the urea water addition valve 15 is opened. Also in this configuration, as described above, the residual urea water can be discharged in accordance with the volume increase in the freezing transition process, and the volume increase of urea water due to freezing is appropriately discharged from the urea water addition valve 15 or the like. Can do. Even in such a case, it is preferable to open the urea water addition valve 15 a plurality of times during the freezing transition time (predicted time). Thereby, even when freezing of urea water gradually progresses at the time of freezing transition, urea water corresponding to the volume increase can be reliably released.

エンジン停止直後には、尿素水添加弁15等の内部に圧力が残り、同内部圧力が大気圧に比して高圧となる。このように尿素水添加弁15等の内部に圧力が残ると、凍結変化時の体積増加に際して内部圧力の高圧化が顕著になり、尿素水添加弁15等の破損が一層懸念される。そこで、エンジン停止直後において、残留尿素水の凍結変化に関係なく尿素水添加弁15を一時的に開弁させるようにする。これにより、尿素水添加弁15等の内部圧力の低減を図ることができる。   Immediately after the engine is stopped, pressure remains inside the urea water addition valve 15 and the like, and the internal pressure becomes higher than the atmospheric pressure. If the pressure remains inside the urea water addition valve 15 or the like in this way, the internal pressure becomes higher when the volume is increased at the time of freezing change, and the urea water addition valve 15 or the like is further concerned about damage. Therefore, immediately after the engine is stopped, the urea water addition valve 15 is temporarily opened regardless of the freezing change of the residual urea water. Thereby, the internal pressure of the urea water addition valve 15 etc. can be reduced.

エンジン停止後における尿素水添加弁15の制御態様は、上記のように一定時間ごとに複数回開弁させる以外に、徐々に時間間隔を短くするようにして複数回開弁させても良い。また、エンジン停止後に尿素水添加弁15を1回のみ開弁させるようにすることも可能である。   The control mode of the urea water addition valve 15 after the engine is stopped may be opened a plurality of times by gradually shortening the time interval in addition to opening the valve a plurality of times at regular intervals as described above. It is also possible to open the urea water addition valve 15 only once after the engine is stopped.

エンジン停止時の外気温がしきい値温度(例えば0℃)以上である場合、又は夏期等においては、エンジン停止後におけるECU30の起動(尿素水放出のためのECU起動)を行わないようにすることも可能である。   When the outside air temperature when the engine is stopped is equal to or higher than a threshold temperature (for example, 0 ° C.) or in the summer, the ECU 30 is not started after the engine is stopped (ie, the ECU is started for releasing urea water). It is also possible.

尿素水添加弁として、エアアシスト式の添加弁を用いることも可能である。具体的には、コンプレッサ(車載コンプレッサ)で圧縮された圧縮空気を尿素水供給系に導き、その圧縮空気により尿素水を微粒化する構成とする。ちなみに、大型トラック等においては、ブレーキ圧を調整するためにエア供給源を搭載しているものもあるため、これをエアアシストのためのエア供給源として利用すると良い。   It is also possible to use an air assist type addition valve as the urea water addition valve. Specifically, the compressed air compressed by the compressor (on-vehicle compressor) is guided to the urea water supply system, and the urea water is atomized by the compressed air. Incidentally, some large trucks and the like are equipped with an air supply source for adjusting the brake pressure, and it is preferable to use this as an air supply source for air assist.

現状においては、車載ディーゼルエンジン用の尿素SCRシステムとしての需要を主に実用化が検討されているが、他のエンジン、例えばガソリンエンジン(火花点火式エンジン)用の尿素SCRシステムとしても実用化は可能である。また、尿素水以外の還元剤を用いる排気浄化システムにおいても本発明を同様に適用することが可能である。   At present, the practical application of the urea SCR system for in-vehicle diesel engines is being studied. However, the practical application of the urea SCR system for other engines such as gasoline engines (spark ignition engines) Is possible. Further, the present invention can be similarly applied to an exhaust purification system using a reducing agent other than urea water.

発明の実施の形態における尿素SCRシステムの概略を示す構成図。The block diagram which shows the outline of the urea SCR system in embodiment of invention. 残留尿素水の放出処理を示すフローチャート。The flowchart which shows discharge | release process of residual urea water. エンジン停止後における尿素水温度や尿素水圧力の変化を示すタイムチャート。The time chart which shows the change of urea water temperature and urea water pressure after an engine stop. エンジン停止後における尿素水温度や尿素水圧力の変化を示すタイムチャート。The time chart which shows the change of urea water temperature and urea water pressure after an engine stop.

符号の説明Explanation of symbols

11…排気管(排気通路)、12…DPF、13…SCR触媒(排気浄化用触媒)、15…尿素水添加弁(還元剤添加弁)、15a…先端噴出口、21…尿素水タンク、22…尿素水ポンプ、23…尿素水供給管(還元剤供給部)、30…ECU。   DESCRIPTION OF SYMBOLS 11 ... Exhaust pipe (exhaust passage), 12 ... DPF, 13 ... SCR catalyst (exhaust purification catalyst), 15 ... Urea water addition valve (reducing agent addition valve), 15a ... Front end jet port, 21 ... Urea water tank, 22 ... urea water pump, 23 ... urea water supply pipe (reducing agent supply unit), 30 ... ECU.

Claims (13)

エンジンの排気通路であって排気浄化用触媒よりも上流側に設けられた還元剤添加弁を備え、還元剤供給部から供給される液状の還元剤を前記還元剤添加弁の噴出口から排気通路内に添加供給することで、前記排気浄化用触媒にて還元剤の添加に基づく特定の排気浄化反応を促進させるようにしたエンジンの排気浄化装置であって、
前記エンジンの停止後において、前記還元剤添加弁や前記還元剤供給部に残留する還元剤の凍結変化に応じて前記還元剤添加弁を開弁させて前記噴出口から残留還元剤を前記排気通路内に放出させる還元剤放出制御手段を備えたことを特徴とするエンジンの排気浄化装置。
An exhaust passage of the engine, provided with a reducing agent addition valve provided upstream of the exhaust purification catalyst, and supplying the liquid reducing agent supplied from the reducing agent supply section from the outlet of the reducing agent addition valve to the exhaust passage An exhaust purification device for an engine that promotes a specific exhaust purification reaction based on the addition of a reducing agent in the exhaust purification catalyst by being additionally supplied into the exhaust purification catalyst,
After the engine is stopped, the reducing agent addition valve is opened in accordance with the freezing change of the reducing agent remaining in the reducing agent addition valve or the reducing agent supply unit, and the residual reducing agent is discharged from the outlet through the exhaust passage. An exhaust emission control device for an engine, comprising a reducing agent release control means for releasing the inside.
前記エンジンの停止後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行過程にあることを判定する凍結判定手段を備え、
前記還元剤放出制御手段は、前記凍結判定手段により前記凍結移行過程にある旨判定した場合に、前記還元剤添加弁を開弁させる請求項1に記載のエンジンの排気浄化装置。
Freezing determination means for determining that a residual reducing agent such as the reducing agent addition valve is in a freezing transition process in which it is frozen after the engine is stopped,
2. The engine exhaust gas purification apparatus according to claim 1, wherein the reducing agent release control means opens the reducing agent addition valve when the freezing determination means determines that the freezing transition process is in progress.
前記還元剤添加弁等に残留する還元剤の温度を検出する温度検出手段を備え、
前記凍結判定手段は、エンジン停止後における前記温度検出手段の検出結果に基づいて前記凍結移行過程にあることを判定する請求項2に記載のエンジンの排気浄化装置。
A temperature detecting means for detecting the temperature of the reducing agent remaining in the reducing agent addition valve or the like;
The engine exhaust gas purification apparatus according to claim 2, wherein the freezing determination means determines that the process is in the freezing transition process based on a detection result of the temperature detection means after the engine is stopped.
前記還元剤添加弁等に残留する還元剤の圧力を検出する圧力検出手段を備え、
前記凍結判定手段は、エンジン停止後における前記圧力検出手段の検出結果に基づいて前記凍結移行過程にあることを判定する請求項2に記載のエンジンの排気浄化装置。
Pressure detecting means for detecting the pressure of the reducing agent remaining in the reducing agent addition valve or the like,
The engine exhaust gas purification apparatus according to claim 2, wherein the freezing determination unit determines that the process is in the freezing transition process based on a detection result of the pressure detection unit after the engine is stopped.
前記還元剤放出制御手段は、前記凍結判定手段の判定結果に基づき、前記凍結移行過程において前記還元剤添加弁を複数回開弁させる請求項2乃至4のいずれかに記載のエンジンの排気浄化装置。   The engine exhaust purification device according to any one of claims 2 to 4, wherein the reducing agent release control means opens the reducing agent addition valve a plurality of times during the freezing transition process based on a determination result of the freezing determination means. . 前記凍結判定手段は、前記凍結移行過程に相当する時期に対してその直前の液相状態と直後の固相状態とを含む状態移行期であることを判定し、
前記還元剤放出制御手段は、前記状態移行期において前記還元剤添加弁を開弁させる請求項2乃至5のいずれかに記載のエンジンの排気浄化装置。
The freezing determination means determines that it is in a state transition period including the immediately preceding liquid phase state and the immediately following solid phase state with respect to the time corresponding to the freezing transition process,
The engine exhaust gas purification apparatus according to any one of claims 2 to 5, wherein the reducing agent release control means opens the reducing agent addition valve in the state transition period.
前記凍結判定手段は、エンジン停止後において、所定時間が経過する都度、前記凍結移行過程にあるかどうかを繰り返し判定するものであり、
前記還元剤放出制御手段による還元剤放出後は、前記凍結判定手段による凍結判定を停止する請求項2乃至6のいずれかに記載のエンジンの排気浄化装置。
The freezing determination means repeatedly determines whether or not it is in the freezing transition process every time a predetermined time elapses after the engine is stopped.
The engine exhaust gas purification apparatus according to any one of claims 2 to 6, wherein the freezing determination by the freezing determination means is stopped after the reducing agent is released by the reducing agent release control means.
前記凍結判定手段は、前記エンジンの停止時における外気温等の温度情報に基づいて、残留還元剤の温度が、同還元剤の凝固点温度を基に設定した基準温度以下になる時期を予測し、その予測時期において前記凍結移行過程にあるかどうかを判定する請求項2乃至7のいずれかに記載のエンジンの排気浄化装置。   The freezing determination means predicts a time when the temperature of the residual reducing agent is equal to or lower than a reference temperature set based on the freezing point temperature of the reducing agent, based on temperature information such as an outside air temperature when the engine is stopped. The engine exhaust gas purification apparatus according to any one of claims 2 to 7, wherein it is determined whether or not the freezing transition process is in progress at the predicted time. 前記エンジンの停止時又は停止直後において、前記還元剤添加弁等の残留還元剤が凍結状態に移行する凍結移行時期を予測する凍結予測手段を備え、
前記還元剤放出制御手段は、前記凍結予測手段により予測した凍結移行時期にて前記還元剤添加弁を開弁させる請求項1に記載のエンジンの排気浄化装置。
Freezing prediction means for predicting the freezing transition time when the residual reducing agent such as the reducing agent addition valve or the like shifts to a frozen state immediately after the engine stops or immediately after the stop,
The engine exhaust gas purification apparatus according to claim 1, wherein the reducing agent release control means opens the reducing agent addition valve at a freezing transition time predicted by the freezing prediction means.
前記凍結予測手段は、前記エンジンの停止時又はその停止直後における外気温等の温度情報に基づいて、前記凍結移行時期を予測する請求項9に記載のエンジンの排気浄化装置。   The engine exhaust gas purification apparatus according to claim 9, wherein the freezing prediction means predicts the freezing transition time based on temperature information such as an outside air temperature when the engine is stopped or immediately after the engine is stopped. 前記還元剤放出制御手段は、前記凍結予測手段の予想結果に基づき、前記凍結移行時期において前記還元剤添加弁を複数回開弁させる請求項9又は10に記載のエンジンの排気浄化装置。   The engine exhaust emission control device according to claim 9 or 10, wherein the reducing agent release control means opens the reducing agent addition valve a plurality of times at the freezing transition timing based on a prediction result of the freezing prediction means. 前記エンジンの停止直後において、前記残留還元剤の凍結変化に関係なく前記還元剤添加弁を一時的に開弁させる請求項1乃至11のいずれかに記載のエンジンの排気浄化装置。   The engine exhaust gas purification apparatus according to any one of claims 1 to 11, wherein the reducing agent addition valve is temporarily opened immediately after the engine is stopped regardless of a freezing change of the residual reducing agent. 前記還元剤は尿素水溶液であり、前記排気浄化用触媒は、尿素水溶液から生成されるアンモニアによりNOxを還元するNOx還元反応を前記排気浄化反応とし、そのNOx還元反応を促進するものである請求項1乃至12のいずれかに記載のエンジンの排気浄化装置。   The reducing agent is an aqueous urea solution, and the exhaust purification catalyst promotes the NOx reduction reaction by setting the NOx reduction reaction in which NOx is reduced by ammonia generated from the aqueous urea solution as the exhaust purification reaction. The exhaust emission control device for an engine according to any one of 1 to 12.
JP2006325290A 2006-12-01 2006-12-01 Engine exhaust purification system Expired - Fee Related JP4706627B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006325290A JP4706627B2 (en) 2006-12-01 2006-12-01 Engine exhaust purification system
DE102007047906A DE102007047906A1 (en) 2006-12-01 2007-11-30 Exhaust gas emission control device i.e. selective catalytic reduction system, for e.g. diesel engine, has urea solution injecting valve opening based on freezing condition change to convey agent remaining in supplying circle into pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325290A JP4706627B2 (en) 2006-12-01 2006-12-01 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2008138583A true JP2008138583A (en) 2008-06-19
JP4706627B2 JP4706627B2 (en) 2011-06-22

Family

ID=39339063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325290A Expired - Fee Related JP4706627B2 (en) 2006-12-01 2006-12-01 Engine exhaust purification system

Country Status (2)

Country Link
JP (1) JP4706627B2 (en)
DE (1) DE102007047906A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090801A1 (en) * 2010-12-27 2012-07-05 ボッシュ株式会社 Exhaust purification system and method for controlling exhaust purification system
JP2013096258A (en) * 2011-10-28 2013-05-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013113195A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
KR20150122248A (en) * 2013-03-07 2015-10-30 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
JP2015232295A (en) * 2014-06-10 2015-12-24 株式会社デンソー Internal combustion engine exhaust emission control system
EP3051088A1 (en) 2015-02-02 2016-08-03 Toyota Jidosha Kabushiki Kaisha Additive supply device
JP2017160817A (en) * 2016-03-08 2017-09-14 株式会社Soken Control device of internal combustion engine
US10513960B2 (en) 2014-12-25 2019-12-24 Volvo Truck Corporation Exhaust purification device for engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974599B1 (en) * 2008-08-07 2010-08-06 현대자동차주식회사 System for control urea injection quantity of vehicle and method thereof
CN102400742B (en) * 2010-09-07 2013-12-25 博世汽车柴油系统股份有限公司 Vehicle SCR (Selective Catalytic Reduction) system and reducing agent supply device thereof
DE102018216239A1 (en) * 2018-09-24 2020-03-26 Bayerische Motoren Werke Aktiengesellschaft Method for monitoring the physical state of a liquid at risk of freezing in a motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2002129945A (en) * 2000-10-25 2002-05-09 Toyota Motor Corp Exhaust emission purifying device for internal combustion engine
JP2005504208A (en) * 2001-09-25 2005-02-10 アルギロン ゲゼルシャフト ミット ベシュレンクテル ハフツング Reductant pump for exhaust gas aftertreatment device of internal combustion engine
JP2005248823A (en) * 2004-03-04 2005-09-15 Hino Motors Ltd Reducing agent supply device
JP2006516696A (en) * 2003-11-04 2006-07-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for providing a reducing agent to the exhaust gas of an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2002129945A (en) * 2000-10-25 2002-05-09 Toyota Motor Corp Exhaust emission purifying device for internal combustion engine
JP2005504208A (en) * 2001-09-25 2005-02-10 アルギロン ゲゼルシャフト ミット ベシュレンクテル ハフツング Reductant pump for exhaust gas aftertreatment device of internal combustion engine
JP2006516696A (en) * 2003-11-04 2006-07-06 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for providing a reducing agent to the exhaust gas of an internal combustion engine
JP2005248823A (en) * 2004-03-04 2005-09-15 Hino Motors Ltd Reducing agent supply device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090801A1 (en) * 2010-12-27 2012-07-05 ボッシュ株式会社 Exhaust purification system and method for controlling exhaust purification system
JP5087188B2 (en) * 2010-12-27 2012-11-28 ボッシュ株式会社 Exhaust purification system and control method of exhaust purification system
CN103261601A (en) * 2010-12-27 2013-08-21 博世株式会社 Exhaust purification system and method for controlling exhaust purification system
US9255511B2 (en) 2010-12-27 2016-02-09 Bosch Corporation Exhaust purification system and method for controlling exhaust purification system
JP2013096258A (en) * 2011-10-28 2013-05-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2013113195A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
KR20150122248A (en) * 2013-03-07 2015-10-30 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
KR101721182B1 (en) * 2013-03-07 2017-03-29 스카니아 씨브이 악티에볼라그 Method pertaining to an scr system and an scr system
JP2015232295A (en) * 2014-06-10 2015-12-24 株式会社デンソー Internal combustion engine exhaust emission control system
US10513960B2 (en) 2014-12-25 2019-12-24 Volvo Truck Corporation Exhaust purification device for engine
EP3051088A1 (en) 2015-02-02 2016-08-03 Toyota Jidosha Kabushiki Kaisha Additive supply device
JP2017160817A (en) * 2016-03-08 2017-09-14 株式会社Soken Control device of internal combustion engine

Also Published As

Publication number Publication date
JP4706627B2 (en) 2011-06-22
DE102007047906A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4706627B2 (en) Engine exhaust purification system
JP5326461B2 (en) Engine exhaust purification system
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
JP4656039B2 (en) Engine exhaust purification system
JP4874364B2 (en) Exhaust gas purification device for internal combustion engine
US9255511B2 (en) Exhaust purification system and method for controlling exhaust purification system
US8413427B2 (en) Dosing control systems and methods
JP4978635B2 (en) Control device for exhaust purification system
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2010065581A (en) Exhaust emission control system of internal combustion engine
US10844768B2 (en) Abnormality determination device
JP5136450B2 (en) Abnormality diagnosis device for exhaust purification system
JP5051148B2 (en) Abnormality diagnosis device for exhaust purification system
EP3025036B1 (en) Scr exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
EP2682579B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP2010196522A (en) Abnormality diagnostic device for exhaust emission control system
JP5062780B2 (en) Exhaust purification system and control method of exhaust purification system
US11131228B2 (en) Method for preventing a risk of freezing in a reducing-agent feeding device of a selective catalytic reduction system
US9759111B2 (en) Control techniques of exhaust purification system and exhaust purification system
JP2009228433A (en) Urea water supplying device and exhaust emission control system
WO2018047554A1 (en) Control device
JP5698525B2 (en) Exhaust purification system and control method of exhaust purification system
JP2017129094A (en) Abnormality determination device
JP7464004B2 (en) Urea water supply device
JP2019073976A (en) Diagnosis device and diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees