JP2008138292A - Maraging steel - Google Patents

Maraging steel Download PDF

Info

Publication number
JP2008138292A
JP2008138292A JP2007331811A JP2007331811A JP2008138292A JP 2008138292 A JP2008138292 A JP 2008138292A JP 2007331811 A JP2007331811 A JP 2007331811A JP 2007331811 A JP2007331811 A JP 2007331811A JP 2008138292 A JP2008138292 A JP 2008138292A
Authority
JP
Japan
Prior art keywords
less
maraging steel
ppm
inclusions
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007331811A
Other languages
Japanese (ja)
Inventor
Setsuo Mishima
節夫 三嶋
Hidemi Takao
秀実 高尾
Kenichiro Hara
顕一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007331811A priority Critical patent/JP2008138292A/en
Publication of JP2008138292A publication Critical patent/JP2008138292A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide new maraging steel in which the size of nonmetallic inclusions remaining in a maraging steel strip obtained by vacuum remelting is effectively reduced. <P>SOLUTION: In the method for manufacturing the Ti-containing maraging steel, a consumable electrode for vacuum remelting is produced and vacuum remelting is carried out using this consumable electrode and, further, the consumable electrode contains ≥5 ppm Ca. The maraging steel contains, at least, <15 ppm (excluding 0%) Ca, <10 ppm oxygen, <15 ppm nitrogen and ≤2.0% (excluding 0%) Ti. Moreover, based on the total number of oxide nonmetallic inclusions with a size of ≥10 μm in the structure, oxide nonmetallic inclusions with a size of ≥10 μm which contain ≥85 mass% of Al among metallic elements in the above oxide nonmetallic inclusions comprise <70%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マルエージング鋼に関するものである。   The present invention relates to maraging steel.

マルエージング鋼は、2000MPa前後の非常に高い引張強さをもつため、高強度が要求される部材、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車エンジンの無段変速機用部品、金型、等種々の用途に使用されている。
このマルエージング鋼は、通常、強化元素として、Mo、Ti、を適量含んでおり、時効処理を行うことによって、NiMo、NiTi、FeMo等の金属間化合物を析出させて高強度を得ることのできる鋼である。このMoやTiを含んだマルエージング鋼の代表的な組成としては、質量%で18%Ni−8%Co−5%Mo−0.45%Ti−0.1%Al−bal.Feが挙げられる。
Since maraging steel has a very high tensile strength of around 2000 MPa, members that require high strength, such as rocket parts, centrifuge parts, aircraft parts, automobile engine continuously variable transmission parts, It is used for various applications such as molds.
This maraging steel usually contains appropriate amounts of Mo and Ti as strengthening elements, and by performing an aging treatment, intermetallic compounds such as Ni 3 Mo, Ni 3 Ti, and Fe 2 Mo are precipitated. Steel that can obtain strength. A typical composition of this maraging steel containing Mo and Ti is 18% Ni-8% Co-5% Mo-0.45% Ti-0.1% Al-bal. Fe.

しかし、マルエージング鋼は、非常に高い引張強度が得られる一方、疲労強度に関しては必ずしも高くない。この疲労強度を劣化させる最大の要因に、TiNやTiCN等といった窒化物や炭窒化物の非金属介在物があり、この非金属介在物が鋼中で大きく成長してしまうと、非金属介在物を起点として疲労破壊を生じることになる。
そのため、一般的に鋼中に存在する非金属介在物を少なくするために、真空アーク再溶解(以下、VARと記す)法が用いられている。
However, while maraging steel can obtain very high tensile strength, fatigue strength is not necessarily high. Non-metallic inclusions such as nitrides and carbonitrides such as TiN and TiCN are the biggest factors that degrade this fatigue strength. If these non-metallic inclusions grow greatly in steel, non-metallic inclusions From this point, fatigue failure will occur.
Therefore, a vacuum arc remelting (hereinafter referred to as VAR) method is generally used to reduce nonmetallic inclusions present in steel.

このVAR法で製造されるマルエージング鋼は、均質(成分偏析が少ない)でしかも、非金属介在物の量が少なくなると言った利点を有するものである。
しかしながら、VAR法で製造するマルエージング鋼にも、比較的大きなTiNやTiCN等の窒化物や炭窒化物の非金属介在物が残留し、残留した大きな非金属介在物は、VAR後に行う熱間鍛造、熱処理、熱間圧延、冷間圧延を行った後の素材中にもそのまま残留し、残留する大きな非金属介在物を起点とした疲労破壊を生じる原因となっていた。
この問題に対しては種々の提案がなされており、例えば特開2001−214212号(特許文献1参照)に、TiN系非金属介在物を含まない含Ti鋼用原材料を真空誘導炉で溶解し、鋳造して製造した含Ti鋼材を電極として真空アーク溶解法で再溶解するTiN非金属系介在物を微細にする含Ti鋼の製造方法がある。
The maraging steel produced by this VAR method has the advantage that it is homogeneous (small component segregation) and the amount of non-metallic inclusions is reduced.
However, relatively large non-metallic inclusions such as TiN and TiCN nitrides and carbonitrides remain in the maraging steel produced by the VAR method, and the remaining large non-metallic inclusions are heated after VAR. It remains in the raw material after forging, heat treatment, hot rolling, and cold rolling, and causes fatigue failure starting from the remaining large non-metallic inclusions.
Various proposals have been made for this problem. For example, in Japanese Patent Laid-Open No. 2001-214212 (see Patent Document 1), a raw material for Ti-containing steel that does not contain TiN-based nonmetallic inclusions is melted in a vacuum induction furnace. There is a method for producing a Ti-containing steel in which a TiN nonmetallic inclusion is re-melted by a vacuum arc melting method using a Ti-containing steel material produced by casting as an electrode.

特開2001−214212号公報JP 2001-214212 A

本発者等は、マルエージング鋼の清浄度を更に向上させる検討を行った。
上記の特開2001−214212号では、TiNやTiCNと言った窒化物系非金属介在物を含まない含Ti鋼用原材料を用いることでTiN系窒化物を微細にできることを特徴としている。このような原料自体の品質の管理は窒化物系非金属介在物を低減する一つの手段であるが、高品質な原料は必然的に高価な原料でありコストが大きいという問題がある。
また、TiN系非金属介在物が発生するのは溶解条件等に依存するため原料の管理だけでは十分な問題解決とはなっていない。
The present inventors studied to further improve the cleanliness of maraging steel.
The above Japanese Patent Application Laid-Open No. 2001-214212 is characterized in that the TiN-based nitride can be made fine by using a raw material for Ti-containing steel that does not contain nitride-based non-metallic inclusions such as TiN and TiCN. Such quality control of the raw material itself is one means for reducing nitride-based nonmetallic inclusions, but there is a problem that a high-quality raw material is necessarily an expensive raw material and is expensive.
Moreover, since the occurrence of TiN-based non-metallic inclusions depends on the dissolution conditions and the like, the management of raw materials alone does not solve the problem sufficiently.

また実際にはマルエージング鋼中には窒化物系非金属介在物の他にも、酸化物系非金属介在物も確認されている。酸化物系非金属介在物は存在個数は少ないものの、比較的サイズの大きいもの、例えば直径で20μmを超えるものが確認される場合がある。
このような大きな酸化物系非金属介在物の存在は、TiN等の窒化物系非金属介在物と同様に材料の疲労強度等の機械特性に悪影響を及ぼすことが懸念される。
In fact, oxide-based nonmetallic inclusions have been confirmed in the maraging steel in addition to nitride-based nonmetallic inclusions. Although the number of oxide-based nonmetallic inclusions is small, a relatively large size, for example, a diameter exceeding 20 μm may be confirmed.
The presence of such large oxide-based non-metallic inclusions is likely to have an adverse effect on mechanical properties such as fatigue strength of the material as in the case of nitride-based non-metallic inclusions such as TiN.

窒化物や酸化物といったガス成分に起因する非金属介在物を低減する手法としてVAR等の真空再溶解法があるが、上述したように、VARの適用だけでは窒化物系や酸化物系の非金属介在物の大きさの低減には限界があった。そのため、マルエージング鋼の非金属介在物の大きさ及び存在量の低減に対して飛躍的に効果がある新しいブレークスルー技術の開発が切望されている。
本発明の目的は、上記課題に鑑みマルエージング鋼中に残留する、非金属介在物の大きさ及び存在量の飛躍的に低減できる新規のマルエージング鋼を提供することである。
As a technique for reducing non-metallic inclusions caused by gas components such as nitrides and oxides, there is a vacuum remelting method such as VAR. There was a limit to reducing the size of metal inclusions. Therefore, the development of a new breakthrough technology that is drastically effective in reducing the size and abundance of non-metallic inclusions in maraging steel is eagerly desired.
An object of the present invention is to provide a novel maraging steel that can dramatically reduce the size and abundance of non-metallic inclusions remaining in the maraging steel in view of the above problems.

本発明者等は、マルエージング鋼中のガス成分に起因する非金属介在物の溶解工程、精錬工程、再溶解工程での発生挙動と溶解成分中に存在する元素との因果関係を探求し、上記非金属介在物に対する、真空再溶解に使用する消耗電極中に存在させたCaの優れた非金属介在物の低減と微細化の効果を見出し、本発明に到達した。   The present inventors explored the causal relationship between the generation behavior in the melting process, refining process, and remelting process of non-metallic inclusions due to the gas component in maraging steel and the elements present in the dissolved component, The present inventors have found the excellent reduction effect of non-metallic inclusions and refinement of Ca present in the consumable electrode used for vacuum remelting with respect to the non-metallic inclusions, and have reached the present invention.

即ち本発明は、質量%で、少なくともCa:15ppm未満(0は含まず)、酸素:10ppm未満、窒素:15ppm未満、Ti:2.0%以下(0は含まず)を含有したマルエージング鋼であって、組織中の10μm以上の酸化物系非金属介在物の総個数に対して、前記酸化物系非金属介在物中の金属元素のうち、Alを85mass%以上含む10μm以上の酸化物系非金属介在物(以下、アルミナ系介在物と言う)が70%未満であるマルエージング鋼である。   That is, the present invention is a maraging steel containing at least Ca: less than 15 ppm (not including 0), oxygen: less than 10 ppm, nitrogen: less than 15 ppm, and Ti: 2.0% or less (not including 0) in mass%. In addition, with respect to the total number of oxide-based nonmetallic inclusions of 10 μm or more in the structure, among the metal elements in the oxide-based nonmetallic inclusions, an oxide of 10 μm or more containing 85 mass% or more of Al. This is a maraging steel having a non-metallic inclusion (hereinafter referred to as alumina inclusion) of less than 70%.

好ましくは、上述したマルエージング鋼は、酸化物系非金属介在物の最大長さが20μm以下であるマルエージング鋼である。
更に好ましくは、上述のマルエージング鋼は、窒化物系非金属介在物の最大長さが10μm以下であるマルエージング鋼である。
また上述した本発明のマルエージング鋼の好ましい化学組成は、質量%で、Ca:15ppm未満(0は含まず)、酸素:10ppm未満、窒素:15ppm未満の化学組成に加えて、質量%で、Mg:15ppm未満(0は含まず)、C:0.01%以下、Ni:8.0〜22.0%、Co:5.0〜20.0%、Mo:2.0〜9.0%、Ti:2.0%以下(0は含まず)、Al:1.7%以下、残部は実質的にFeからなるマルエージング鋼である。
また上述した本発明のマルエージング鋼は、厚さが0.5mm以下の薄帯であるマルエージング鋼である。
Preferably, the above-described maraging steel is maraging steel in which the maximum length of oxide-based nonmetallic inclusions is 20 μm or less.
More preferably, the above-mentioned maraging steel is maraging steel in which the maximum length of nitride-based nonmetallic inclusions is 10 μm or less.
Further, the preferred chemical composition of the above-described maraging steel of the present invention is, in mass%, Ca: less than 15 ppm (excluding 0), oxygen: less than 10 ppm, nitrogen: less than 15 ppm, in addition to chemical composition in mass%, Mg: less than 15 ppm (excluding 0), C: 0.01% or less, Ni: 8.0-22.0%, Co: 5.0-20.0%, Mo: 2.0-9.0 %, Ti: 2.0% or less (0 is not included), Al: 1.7% or less, and the balance is maraging steel substantially composed of Fe.
The maraging steel of the present invention described above is a maraging steel that is a ribbon having a thickness of 0.5 mm or less.

本発明のマルエージング鋼は酸化物系非金属介在物を小さく、少なくすることができ、更に、TiCやTiCN等の窒化物系非金属介在物の大きさも小さくすることが可能である。そのため、優れた疲労強度を実現できる。
本発明のマルエージング鋼の薄帯は、自動車エンジンの無段変速機用部品として最適である。
The maraging steel of the present invention can reduce and reduce oxide-based nonmetallic inclusions, and can further reduce the size of nitride-based nonmetallic inclusions such as TiC and TiCN. Therefore, excellent fatigue strength can be realized.
The maraging steel ribbon of the present invention is optimal as a component for a continuously variable transmission of an automobile engine.

本発明のマルエージング鋼は、VARや真空ESR等の真空再溶解に用いる消耗電極中に特定量のCaを添加して製造する。これらの消耗電極中にCaを添加することにより非金属介在物の低減あるいは微細化の効果は、以下に基づくものと推定している。
Caを適量添加すると、消耗電極製造過程で溶解中に存在する酸素は、典型的な非金属介在物であるアルミナの起源となるAlよりも親和力の高いCaと結びついてCaOを主体とするCaO系非金属介在物を多く生成する。そして、このCaO系非金属介在物の凝集性はアルミナより弱いため、電極中には極端に大きな酸化物系非金属介在物は少なくなる。なお、実際の酸化物系非金属介在物の形態としては、Al−Ca−O系でCaOとAlの複合型非金属介在物となることも多い。
また、凝集性の弱いCaOが多数形成することに伴い、CaOを核として窒化物や炭窒化物が生成することで消耗電極中における窒化物や炭窒化物が微細化する。
The maraging steel of the present invention is produced by adding a specific amount of Ca to a consumable electrode used for vacuum remelting such as VAR and vacuum ESR. It is presumed that the effect of reducing or miniaturizing non-metallic inclusions by adding Ca to these consumable electrodes is based on the following.
When an appropriate amount of Ca is added, the oxygen present during dissolution in the consumable electrode manufacturing process is combined with Ca, which has a higher affinity than Al, which is the origin of alumina, which is a typical non-metallic inclusion, and a CaO system mainly composed of CaO. Many non-metallic inclusions are produced. And since the aggregation property of this CaO type nonmetallic inclusion is weaker than that of alumina, extremely large oxide type nonmetallic inclusions are reduced in the electrode. In addition, as an actual form of oxide-based non-metallic inclusions, it is often an Al—Ca—O-based composite non-metallic inclusion of CaO and Al 2 O 3 .
Further, along with the formation of a large number of weakly cohesive CaO, nitrides and carbonitrides are generated in the consumable electrode by forming nitrides and carbonitrides using CaO as a nucleus.

このような消耗電極に対して真空再溶解を適用すると、高温領域で揮発性元素であるCaの蒸発が起こり、CaOやCaO−Alの複合非金属介在物が分解され、酸素の気相および液相への拡散が起こる。つまり、CaOの分解により、酸化物の低減は促進されることになる。一部液相に拡散する酸素もあるが、この酸素によって新たに発生する酸化物系非金属介在物は多くなく結果として酸化物系非金属介在物は微細なものとなる。
一方、TiNやTiCNといった窒化物系非金属介在物もCaOを核として消耗電極中に微細に存在するため、再溶解中に窒化物系非金属介在物の熱分解も促進され、結果として窒化物系非金属介在物の微細化も達成される。
When vacuum remelting is applied to such a consumable electrode, Ca, which is a volatile element, evaporates in a high temperature region, and the composite non-metallic inclusions of CaO and CaO—Al 2 O 3 are decomposed. Diffusion into the phase and liquid phase occurs. That is, the reduction of oxide is promoted by the decomposition of CaO. Although some oxygen diffuses into the liquid phase, there are not many oxide-based nonmetallic inclusions newly generated by this oxygen, and as a result, the oxide-based nonmetallic inclusions are fine.
On the other hand, since nitride-based non-metallic inclusions such as TiN and TiCN are finely present in the consumable electrode with CaO as the nucleus, the thermal decomposition of the nitride-based non-metallic inclusions is promoted during remelting, resulting in the nitride. Miniaturization of non-metallic inclusions is also achieved.

以上の推定される作用により、従来技術により得られたマルエージング鋼よりも著しく非金属介在物が低減かつ微細化されたマルエージング鋼を提供することが可能になる。
マルエージング鋼においては、TiやAlといった時効処理により微細な金属間化合物を形成し、析出することによって強化に寄与する元素を必要とする一方で、これらの元素は、非金属介在物を形成するという避けられない問題を抱えていた。
本発明により見出された、Caを利用した製造技術の開発は、窒化物及び酸化物の両方に対する低減効果と微細化効果が両立できるという、極めて有効なブレークスルー技術である。
なお、真空再溶解とは真空排気を行いながら、再溶解を行うものである。
By the above estimated action, it is possible to provide a maraging steel in which nonmetallic inclusions are remarkably reduced and refined compared to the maraging steel obtained by the prior art.
In maraging steel, fine intermetallic compounds such as Ti and Al are formed, and elements contributing to strengthening by precipitation are required, while these elements form non-metallic inclusions. I had an inevitable problem.
The development of a manufacturing technique using Ca discovered by the present invention is a very effective breakthrough technique that can achieve both a reduction effect and a miniaturization effect for both nitride and oxide.
Note that the vacuum remelting means remelting while evacuating.

なお、本発明のマルエージング鋼を製造する製造方法において、消耗電極中にCaを5ppm以上含有させる。これは、Caを5ppm未満では添加による非金属介在物の低減と微細化の効果が顕著に現れないためである。
望ましい消耗電極でのCa濃度の上限は、再溶解後の鋼塊または製品の靭性を考慮すると150ppm以下であり、5〜150ppmであれば上記の効果が得られるので上限は150ppmとすると良い。
但し、揮発性の強いCaの添加は歩留が低く経済的でなく、またCaは真空再溶解で激しく蒸発し、操業を害するだけでなく鋼塊肌を悪くする場合があることからCa濃度の好ましい上限は100ppmとすると良い。より好ましい範囲は10〜50ppmの範囲である。
In addition, in the manufacturing method which manufactures the maraging steel of this invention, 5 ppm or more of Ca is contained in a consumable electrode. This is because if the Ca content is less than 5 ppm, the effects of reduction and refinement of nonmetallic inclusions due to addition do not appear significantly.
The upper limit of the desirable Ca concentration at the consumable electrode is 150 ppm or less in consideration of the toughness of the steel ingot or product after remelting, and the above effect is obtained if it is 5 to 150 ppm, so the upper limit is preferably 150 ppm.
However, the addition of Ca, which is highly volatile, is low in yield and is not economical, and Ca is violently evaporated by re-dissolving in vacuum, which not only harms the operation but also may deteriorate the steel ingot skin. A preferable upper limit is 100 ppm. A more preferred range is from 10 to 50 ppm.

また本発明のマルエージング鋼を製造する製造方法においては、Caと同様の作用効果を有するものとして、Mgを消耗電極中に1ppm以上の範囲でCaと共に添加することができる。
消耗電極中にMgを1ppm以上含有させると規定したのは、Mgを1ppm未満ではMg添加による介在物の更なる低減と微細化の効果が顕著に現れ難いためである。望ましくは5ppm以上が良い。
望ましい消耗電極でのMg濃度の上限は、再溶解後の鋼塊または製品の靭性を考慮すると300ppm以下であり、5〜250ppmであれば上記の効果がより確実に得られるので上限は250ppmとすると良い。
但し、揮発性の強いMgの添加は歩留が低く経済的でなく、またMgは真空再溶解で激しく蒸発し、操業を害するだけでなく鋼塊肌を悪くする場合があることからMg濃度の好ましい上限は200ppmとすると良い。より好ましい範囲は10〜150ppmの範囲である。
Moreover, in the manufacturing method which manufactures the maraging steel of this invention, Mg can be added with Ca in the range of 1 ppm or more in a consumable electrode as what has the effect similar to Ca.
The reason why the consumable electrode contains 1 ppm or more of Mg is that if the Mg content is less than 1 ppm, the effect of further reduction and refinement of inclusions due to the addition of Mg hardly appears. 5 ppm or more is desirable.
The upper limit of the Mg concentration at the desired consumable electrode is 300 ppm or less in consideration of the toughness of the steel ingot or product after remelting, and the upper limit is 250 ppm because the above effect can be obtained more reliably if it is 5 to 250 ppm. good.
However, the addition of Mg, which is highly volatile, is low in yield and is not economical, and Mg evaporates violently by vacuum remelting, which not only harms the operation but also worsens the steel ingot skin. A preferable upper limit is 200 ppm. A more preferred range is from 10 to 150 ppm.

本発明のマルエージング鋼を製造する製造方法において、消耗電極の製造は真空誘導溶解法(以下、VIMと記す)の適用が望ましい。これは、ルツボ内の溶解原料を真空中で溶解するため、大気中の酸素、窒素と溶鋼との反応による鋼中の酸化物、炭窒化物の増加を避けれる点、酸素と活性なCaやMgを安定して溶鋼中に添加するのに有利である点、原料から不可避的に混入する酸素、窒素を除去できる機能を有しているからである。
特に、マルエージング鋼の場合では、活性なTiを含有しているため、溶鋼と大気との接触はできる限り避けた方がよく、大気と遮断された環境中で消耗電極を製造可能なVIMの適用は最適である。
なお、同様の機能すなわち大気による溶鋼の汚染を防止でき、CaやMgを添加できる機能を有している溶解設備であればVIMの代わりとすることもできる。
In the manufacturing method for manufacturing the maraging steel of the present invention, it is desirable to apply a vacuum induction melting method (hereinafter referred to as VIM) for manufacturing the consumable electrode. This is because the melting raw material in the crucible is melted in a vacuum, so that the increase in oxygen in the atmosphere, oxides in the steel due to the reaction between nitrogen and molten steel, carbonitrides can be avoided, oxygen and active Ca and This is because it is advantageous for stably adding Mg to molten steel, and has a function of removing oxygen and nitrogen inevitably mixed from raw materials.
In particular, in the case of maraging steel, since it contains active Ti, it is better to avoid contact between the molten steel and the atmosphere as much as possible, and a VIM that can produce a consumable electrode in an environment cut off from the atmosphere. Application is optimal.
In addition, if it is a melting | dissolving installation which has the function which can prevent the contamination of the molten steel with the same function, ie, air | atmosphere, and can add Ca and Mg, it can also be substituted for VIM.

真空再溶解法には真空アーク再溶解法の他に、電子ビーム再溶解法があるが、電子ビーム再溶解法はランニングコストが高いこと、高真空下で電子ビームが照射される溶鋼表面の温度が高く成分元素の選択的蒸発が起こり成分制御が難しいことがある。また、真空エレクトロスラグ再溶解法は真空アーク再溶解法同様にCaやMg添加の効果は得られる。しかしながらスラグによりCaやMgの蒸発現象が抑制されるため、Ca添加効果が低減されることから、本発明におけるCaやMg添加効果を具現できる真空再溶解法としては真空アーク再溶解法が好ましい。   The vacuum remelting method includes the electron beam remelting method in addition to the vacuum arc remelting method, but the electron beam remelting method has a high running cost and the temperature of the surface of the molten steel irradiated with the electron beam under high vacuum. In some cases, the component elements are selectively evaporated and the component control is difficult. In addition, the vacuum electroslag remelting method can obtain the effect of adding Ca and Mg as in the vacuum arc remelting method. However, since the evaporation phenomenon of Ca and Mg is suppressed by slag, and the Ca addition effect is reduced, the vacuum arc remelting method that can realize the Ca and Mg addition effect in the present invention is preferable.

上述した方法により製造されたマルエージング鋼を、自動車エンジンの無段変速機用部品に適用する場合、熱間圧延や冷間圧延等の塑性加工により、0.5mm以下の薄帯とする。
真空再溶解後の鋼塊に残存する酸化物系の非金属介在物は、塑性加工等によって、破砕されたり、伸展されさらに引き千切られた状態となってさらに微細なものとすることが可能となる。例えば、Ca添加によって生成されたCaOや、真空再溶解時で生成するCaO系酸化物も、熱間や冷間での塑性加工により分断し、微細化していく。
Mgを複合添加した場合には、上述のCaO介在物の他に、MgOや、真空再溶解時で生成するAl−Mg−O系(MgO・Al系)のスピネル系の介在物凝集体も、熱間や冷間での塑性加工により分断し、微細化していくことになる。
この塑性加工を組み合わせることで、高疲労強度を有する無段変速機用部品用マルエージング鋼薄帯として特に好適となる。
When the maraging steel produced by the above-described method is applied to a continuously variable transmission part of an automobile engine, a strip of 0.5 mm or less is formed by plastic working such as hot rolling or cold rolling.
Oxide-based non-metallic inclusions remaining in the steel ingot after vacuum remelting can be made finer by being crushed or stretched and further shredded by plastic working etc. Become. For example, CaO produced by the addition of Ca and CaO-based oxide produced at the time of vacuum remelting are divided and refined by hot or cold plastic working.
When Mg is added in combination, in addition to the CaO inclusions described above, MgO and Al—Mg—O-based (MgO · Al 2 O 3 -based) spinel-based inclusion agglomerates formed during vacuum remelting are used. The aggregate is also divided and refined by hot or cold plastic working.
By combining this plastic working, it is particularly suitable as a maraging steel ribbon for continuously variable transmission parts having high fatigue strength.

なお、より無段変速機用部品用マルエージング鋼薄帯に好適とするためには、真空再溶解後の鋼塊状態または熱間加工後の何れか若しくは両方で、1000〜1300℃で少なくとも5時間以上の保持を行い、成分の偏析を軽減する均質化熱処理を適用すると良い。
均質化熱処理を施すと、成分偏析を更に低減できる。均質化熱処理の温度は、高温で長時間行なうとより成分偏析は少なくなるが、保持温度が1300℃を超えると表面酸化が過度に促進してしまう。逆に1000℃より低いとその効果は低いため、1000℃から1300℃の範囲で行なうと良い。
In order to make it more suitable for a maraging steel ribbon for continuously variable transmission parts, at least 5 at 1000 to 1300 ° C. in either or both of the steel ingot state after vacuum remelting and / or after hot working. It is preferable to apply a homogenization heat treatment that keeps for more than a time and reduces segregation of components.
When the homogenization heat treatment is performed, component segregation can be further reduced. When the homogenization heat treatment is performed at a high temperature for a long time, the segregation of components is reduced. However, when the holding temperature exceeds 1300 ° C., surface oxidation is excessively promoted. On the other hand, if the temperature is lower than 1000 ° C, the effect is low.

また、均質化熱処理の保持時間が5時間より短いと均質化の効果が低いため、保持時間は少なくとも5時間以上が良く、この均質化熱処理を施すと、特に成分偏析を起こし易いTi及びMoの成分偏析を、EPMAにて線分析した時、TiとMoそれぞれの最大値と最小値を測定して、その比(最大値/最小値)を算出して1.3以下の範囲とすることができる。   Further, if the holding time of the homogenization heat treatment is shorter than 5 hours, the effect of homogenization is low. Therefore, the holding time is preferably at least 5 hours or more. When component segregation is linearly analyzed by EPMA, the maximum and minimum values of Ti and Mo are measured, and the ratio (maximum value / minimum value) is calculated to be within a range of 1.3 or less. it can.

上述したように、CaやMgを適量添加することで窒化物系非金属介在物を小さくすることが可能となる。この効果をより確実に得るには以下の方法が有効である。
(1)電極鋼塊製造時の凝固速度を高めること、
(2)電極鋼塊の窒素濃度を下げること、
(3)電極中に存在する窒化物や炭窒化物の非金属介在物の大きさを、最大で10μm以下に調整すること、
以上のような製造方法を単独若しくは幾つかを組合せて適用することが有効である。
As described above, nitride-based non-metallic inclusions can be reduced by adding appropriate amounts of Ca and Mg. The following method is effective for obtaining this effect more reliably.
(1) Increasing the solidification rate at the time of manufacturing the electrode ingot,
(2) reducing the nitrogen concentration of the electrode steel ingot,
(3) adjusting the size of the non-metallic inclusions of nitrides and carbonitrides present in the electrode to a maximum of 10 μm or less,
It is effective to apply the above manufacturing methods singly or in combination.

以上、説明する製造方法を適用して得られるマルエージング鋼では、Caの積極添加により、従来のマルエージング鋼では見られない特徴的な酸化物系非金属介在物の形態となり、窒化物や炭窒化物等の窒化物系非金属介在物も微細化される。
具体的には、非常に僅かではあり例えば電子顕微鏡観察でも容易に発見することはできないが、CaO単独の非金属介在物が存在したり、10μm以上の酸化物系非金属介在物の総個数に対して、10μm以上のアルミナ系の介在物が70%未満である。
As described above, in the maraging steel obtained by applying the manufacturing method to be described, by vigorous addition of Ca, it becomes a characteristic oxide-based nonmetallic inclusion form that is not found in conventional maraging steel, and nitride and charcoal Nitride-based non-metallic inclusions such as nitride are also miniaturized.
Specifically, it is very small, for example, it cannot be easily found even by observation with an electron microscope, but there is a non-metallic inclusion of CaO alone or the total number of oxide-based non-metallic inclusions of 10 μm or more. On the other hand, alumina inclusions of 10 μm or more are less than 70%.

これは、消耗電極製造時にCaを積極添加しないものでは、アルミナ系の介在物が約80%確認できるが、本発明の製造方法を適用すると10μm以上の酸化物系非金属介在物の総量に対して、10μm以上のアルミナ系の介在物が67%未満である点で、非常に特徴的である。より好ましい範囲は10μm以上のアルミナ系の介在物が50%未満の範囲であり、更に好ましくは30%未満の範囲である。
なお、10μm以上の酸化物系非金属介在物としているのは、この範囲が疲労強度に特に影響を及ぼす可能性のある大きさの非金属介在物であることと、余りにも小さな非金属介在物は正確に個数の確認のするのが困難であるためである。
This is because alumina inclusions can be confirmed about 80% in the case where Ca is not actively added at the time of consumable electrode production, but when the production method of the present invention is applied, the total amount of oxide-based nonmetallic inclusions of 10 μm or more is confirmed. This is very characteristic in that alumina inclusions of 10 μm or more are less than 67%. A more preferred range is a range of less than 50% of alumina inclusions of 10 μm or more, and a further preferred range is less than 30%.
Note that the oxide-based non-metallic inclusions of 10 μm or more are the non-metallic inclusions having a size that may particularly affect the fatigue strength, and the non-metallic inclusions that are too small. This is because it is difficult to confirm the number accurately.

なお、本発明で言うアルミナ系の介在物とは、組織中の非金属介在物を例えばEDX(エネルギー分散型エックス線分析装置)で定性/定量分析を行った時、非金属介在物を構成するガス成分のうち、O(酸素)ピークが主体となって検出され、O以外の検出された元素のうち、Alが85mass%以上となる非金属介在物を言う。
また、CaO系介在物や上述のスピネル系の非金属介在物とは、非金属介在物を構成するガス成分のうち、O(酸素)ピークが主体となって検出され、O以外の検出された元素のうち、Alが85mass%未満であり、Caが検出される非金属介在物を言い、なお、Mgを積極添加した場合に検出されるスピネル系の介在物においては、Alが85mass%未満であり、Mgが検出される非金属介在物を言う。
The alumina-based inclusions referred to in the present invention are gases constituting non-metallic inclusions when non-metallic inclusions in the structure are subjected to qualitative / quantitative analysis using, for example, EDX (energy dispersive X-ray analyzer). Among components, O (oxygen) peak is detected mainly, and among the detected elements other than O, non-metallic inclusions in which Al is 85 mass% or more are mentioned.
The CaO inclusions and the above-mentioned spinel-based nonmetallic inclusions are detected mainly from the O (oxygen) peak among the gas components constituting the nonmetallic inclusions, and other than O are detected. Among elements, Al is less than 85 mass%, and refers to non-metallic inclusions in which Ca is detected. In addition, in spinel inclusions detected when Mg is positively added, Al is less than 85 mass%. Yes, it refers to non-metallic inclusions in which Mg is detected.

また、上述の酸化物系非金属介在物の総個数に対するアルミナ系の介在物の割合に加えて、本発明の製造方法を適用したものでは、Ca添加量の調整や電極鋼塊の製造条件の調整に加えて、VIM、VAR等を組合せることで酸化物系非金属介在物の最大長さを20μm以下、窒化物系非金属介在物の最大長さが10μm以下とすることができる。
酸化物系非金属介在物の最大長さが20μm以下とすると、疲労破壊の起点となる危険性も低減でき、高疲労強度を有する無段変速機用部品用マルエージング鋼薄帯として特に好適となる。
In addition to the above-mentioned ratio of alumina inclusions to the total number of oxide-based nonmetallic inclusions, in the case where the production method of the present invention is applied, the adjustment of the Ca addition amount and the production conditions of the electrode steel ingot In addition to adjustment, by combining VIM, VAR, etc., the maximum length of the oxide-based nonmetallic inclusions can be 20 μm or less, and the maximum length of the nitride-based nonmetallic inclusions can be 10 μm or less.
When the maximum length of oxide-based nonmetallic inclusions is 20 μm or less, the risk of starting fatigue failure can be reduced, and it is particularly suitable as a maraging steel ribbon for continuously variable transmission parts having high fatigue strength. Become.

窒化物系非金属介在物の最大長さも10μm以下とすると、更に疲労破壊の起点となる危険性も低減でき、高疲労強度を有する無段変速機用部品用マルエージング鋼薄帯として特に好適となる。なお、適正なCa添加やMgとの複合添加、上述した電極鋼塊製造条件等を調整すれば、窒化物系非金属介在物の最大長さを8μm以下にすることもできる。
なお、本発明で言う最大長さとは、非金属介在物が酸化物系である場合、非金属介在物に外接する円の直径で評価し、この外接する円の直径を非金属介在物の最大の長さと定義する。但し、窒化物系非金属介在物は矩形形状であるため、長辺aと短辺bを測定し、面積a×bに相当する円の直径をその最大長さとする。
If the maximum length of nitride-based nonmetallic inclusions is also 10 μm or less, the risk of starting fatigue failure can be further reduced, and it is particularly suitable as a maraging steel ribbon for continuously variable transmission parts having high fatigue strength. Become. Note that the maximum length of the nitride-based non-metallic inclusions can be reduced to 8 μm or less by adjusting appropriate Ca addition, composite addition with Mg, the above-described electrode ingot manufacturing conditions, and the like.
Note that the maximum length referred to in the present invention is evaluated by the diameter of a circle circumscribing the nonmetallic inclusion when the nonmetallic inclusion is an oxide type, and the diameter of the circumscribed circle is the maximum of the nonmetallic inclusion. Is defined as the length of However, since the nitride-based nonmetallic inclusion has a rectangular shape, the long side a and the short side b are measured, and the diameter of a circle corresponding to the area a × b is set as the maximum length.

次に、本発明のマルエージング鋼の組成範囲の限定理由について述べる。特に指定がない限り、質量%として示す。
先ずは、必須で規定するCa、O(酸素)、N(窒素)及びTiの限定理由から述べる。
Caは、本発明で電極製造時に必須で添加されるもので、真空再溶解後のマルエージング鋼とした時にも必須成分として残留する。しかしながら、Caが15ppm以上残留すると、製品としてのマルエージング鋼や塑性加工を行う素材としてのマルエージング鋼として、Caの過度の残留は靭性の点から好ましくなく、本発明の真空再溶解を適用してCaを15ppm未満まで低減させるのが良い。そのためには、上述のように消耗電極中のCaの上限を150ppm以下に制御するのが良く、真空再溶解後のマルエージング鋼とした時に15ppm未満とすることが必要である。
Next, the reason for limiting the composition range of the maraging steel of the present invention will be described. Unless otherwise specified, it is expressed as mass%.
First, the reasons for limitation of Ca, O (oxygen), N (nitrogen) and Ti, which are defined as essential, will be described.
Ca is essential and added during the production of the electrode in the present invention, and remains as an essential component even when maraging steel is obtained after vacuum remelting. However, if Ca remains at 15 ppm or more, excessive residual Ca is not preferable in terms of toughness as maraging steel as a product or maraging steel as a material for plastic working, and the vacuum remelting of the present invention is applied. Therefore, Ca should be reduced to less than 15 ppm. For this purpose, the upper limit of Ca in the consumable electrode is preferably controlled to 150 ppm or less as described above, and it is necessary to make it less than 15 ppm when the maraging steel is obtained after vacuum remelting.

O(酸素)は、酸化物系非金属介在物を形成するため、10ppm未満に制限する。Oが10ppm以上含有すると疲労強度が著しく低下するため、その含有量を10ppm未満にした。
N(窒素)は、窒化物や炭窒化物系非金属介在物を形成するため、15ppm未満に制限する。Nが15ppm以上含有すると疲労強度が著しく低下するため、その含有量を15ppm未満にした。
Tiは、時効処理により微細な金属間化合物を形成し、析出することによって強化に寄与する必要不可欠な元素であるが、その含有量が2.0%を越えて含有させると延性、靱性が劣化するため、Tiの含有量を2.0%以下とした。
O (oxygen) is limited to less than 10 ppm because it forms oxide-based nonmetallic inclusions. When O is contained in an amount of 10 ppm or more, the fatigue strength is remarkably lowered, so the content was made less than 10 ppm.
N (nitrogen) is limited to less than 15 ppm in order to form nitrides and carbonitride nonmetallic inclusions. When N is contained in an amount of 15 ppm or more, the fatigue strength is remarkably lowered, so the content was made less than 15 ppm.
Ti is an indispensable element that contributes to strengthening by forming and precipitating fine intermetallic compounds by aging treatment, but if its content exceeds 2.0%, ductility and toughness deteriorate. Therefore, the Ti content is set to 2.0% or less.

次に、上記の化学組成に加えて、好ましい範囲として規定した成分限定理由について述べる。
Mgは、本発明で電極製造時にCaと共に複合添加してもよいもので、Mgを添加した場合、真空再溶解後のマルエージング鋼とした時には僅かながら残留する。しかしながら、Mgが15ppm以上残留すると、製品としてのマルエージング鋼や塑性加工を行う素材としてのマルエージング鋼として、Mgの過度の残留は靭性の点から好ましくなく、本発明の真空再溶解を適用してMgを15ppm未満まで低減させるのが良い。そのためには、上述のように消耗電極中のMgの上限を250ppm以下に制御するのが良く、真空再溶解後のマルエージング鋼とした時に15ppm未満とすることが望ましい。
Next, in addition to the above chemical composition, the reasons for limiting the components defined as a preferred range will be described.
Mg may be added together with Ca at the time of electrode production in the present invention. When Mg is added, it remains slightly when it is made into maraging steel after vacuum remelting. However, if Mg remains at 15 ppm or more, excessive residual Mg is not preferable in terms of toughness as maraging steel as a product or maraging steel as a material for plastic working, and the vacuum remelting of the present invention is applied. Therefore, it is preferable to reduce Mg to less than 15 ppm. For this purpose, the upper limit of Mg in the consumable electrode is preferably controlled to 250 ppm or less as described above, and is preferably less than 15 ppm when the maraging steel is obtained after vacuum remelting.

Cは炭化物を形成し、金属間化合物の析出量を減少させて疲労強度を低下させるため本発明ではCの上限を0.01%以下とした。
Niは靱性の高い母相組織を形成させるためには不可欠の元素であるが、8.0%未満では靱性が劣化する。一方、22%を越えるとオーステナイトが安定化し、マルテンサイト組織を形成し難くなることから、Niは8.0〜22.0%とした。
Since C forms carbides and decreases the precipitation amount of intermetallic compounds to reduce fatigue strength, the upper limit of C is set to 0.01% or less in the present invention.
Ni is an indispensable element for forming a matrix structure with high toughness, but if it is less than 8.0%, the toughness deteriorates. On the other hand, if it exceeds 22%, austenite is stabilized and it becomes difficult to form a martensite structure. Therefore, Ni is set to 8.0 to 22.0%.

Coは、マトリックスであるマルテンサイト組織を安定性に大きく影響することなく、Moの固溶度を低下させることによってMoが微細な金属間化合物を形成して析出するのを促進することによって析出強化に寄与するが、その含有量が5.0%未満では必ずしも十分効果が得られず、また20.0%を越えると脆化する傾向がみられることから、Coの含有量は5.0〜20.0%にした。
Moは時効処理により、微細な金属間化合物を形成し、マトリックスに析出することによって強化に寄与する元素であるが、その含有量が2.0%未満の場合その効果が少なく、また9.0%を越えて含有すると延性、靱性を劣化させるFe、Moを主要元素とする粗大析出物を形成しやすくなるため、Moの含有量を2.0〜9.0%とした。
Alは、時効析出した強化に寄与するだけでなく、脱酸作用を持っているが、1.7%を越えて含有させると靱性が劣化することから、その含有量を1.7%以下とした。
Co does not greatly affect the stability of the martensite structure that is the matrix, but strengthens the precipitation by reducing the solid solubility of Mo and promoting the precipitation of Mo by forming fine intermetallic compounds. However, if the content is less than 5.0%, a sufficient effect is not necessarily obtained, and if it exceeds 20.0%, embrittlement tends to occur, so the Co content is 5.0 to 20.0%.
Mo is an element that contributes to strengthening by forming a fine intermetallic compound by aging treatment and precipitating in the matrix. However, when its content is less than 2.0%, its effect is small, and 9.0 If the content exceeds 50%, it becomes easy to form coarse precipitates containing Fe and Mo as main elements which deteriorate ductility and toughness. Therefore, the Mo content is set to 2.0 to 9.0%.
Al not only contributes to strengthening by aging precipitation, but also has a deoxidizing action, but if it exceeds 1.7%, toughness deteriorates, so its content is 1.7% or less. did.

なお、本発明ではこれら規定する元素以外は実質的にFeとしているが、例えばBは、結晶粒を微細化するのに有効な元素でるため、靱性が劣化させない程度の0.01%以下の範囲で含有させても良い。
また、不可避的に含有する不純物元素は含有されるものである。このうち、Si、Mnは脆化をもたらす粗大な金属間化合物の析出を促進して延性、靭性を低下させたり、非金属介在物を形成して疲労強度を低下させるので、Si、Mn共に0.1%以下に、望ましくは0.05%以下とすれば良く、また、P、Sも粒界脆化させたり、非金属介在物を形成して疲労強度を低下させるので、0.01%以下とすると良い。
In the present invention, elements other than these specified elements are substantially Fe. However, for example, B is an element effective for refining crystal grains, so a range of 0.01% or less that does not deteriorate toughness. You may make it contain.
Moreover, the impurity element contained unavoidable is contained. Among these, Si and Mn promote precipitation of coarse intermetallic compounds that cause embrittlement, thereby reducing ductility and toughness, and forming non-metallic inclusions to reduce fatigue strength. .1% or less, preferably 0.05% or less, and P and S also cause grain boundary embrittlement or non-metallic inclusions to reduce fatigue strength. The following should be used.

以下、実施例として更に詳しく本発明を説明する。
マルエージング鋼の代表成分に、Ca含有量を6通りに変化させたVAR溶解用の消耗電極をVIMで製造し、Mgを複合添加した消耗電極もVIMで製造した。また比較材としてVIMでCa無添加の条件で製造した消耗電極も製造した。消耗電極にはそれぞれ鋳型寸法鋳型比は同一のものを使用した。
Ca添加による窒化物や炭窒化物への影響を明確にするため、窒素濃度については5ppmと10ppmに調整した消耗電極を製造し、真空再溶解を行なった。
Hereinafter, the present invention will be described in more detail as examples.
A consumable electrode for VAR melting having six different Ca contents as representative components of maraging steel was manufactured by VIM, and a consumable electrode in which Mg was added in combination was also manufactured by VIM. In addition, a consumable electrode manufactured by VIM under the condition of no Ca addition was also manufactured as a comparative material. Consumable electrodes having the same mold size and mold ratio were used.
In order to clarify the influence of the addition of Ca on nitrides and carbonitrides, consumable electrodes with nitrogen concentrations adjusted to 5 ppm and 10 ppm were manufactured and vacuum remelted.

VIMでは原料を精選し真空精錬を行ない、酸化物系非金属介在物と同様マルエージング鋼の疲労特性に有害な影響を及ぼすTiCN,TiNといったチタンの炭窒化物系非金属介在物の大きさを10μm以下に制御した。
制御の方法は、電極製造時の鋳型比は2.5とし、鋳造後鋳型の衝風冷却によって凝固速度を高めた。なお、原料は窒素含有量が15ppmといった窒素含有量の低い原料を用いた。
In VIM, raw materials are carefully selected and vacuum refining is performed, and the size of titanium carbonitride nonmetallic inclusions such as TiCN and TiN, which have a detrimental effect on the fatigue properties of maraging steel, as well as oxide nonmetallic inclusions. It controlled to 10 micrometers or less.
In the control method, the mold ratio at the time of electrode production was 2.5, and the solidification rate was increased by blast cooling of the mold after casting. As the raw material, a raw material having a low nitrogen content such as a nitrogen content of 15 ppm was used.

これら炭窒化物のための処置に加えNiCa合金によるCaの添加を行ないVAR造塊に供する電極を製造した。
Caの添加については、Ni−Ca,Fe−CaをはじめとするCa合金や金属Caを溶鋼へ直接添加する方法があるが、今回は取り扱いが容易で、Caの成分調整が容易なことからNi−Ca合金による添加を行った。
また、Mgの添加については、Ni−Mg,Fe−MgをはじめとするMg合金や金属Mgを溶鋼へ直接添加する方法があるが、今回は取り扱いが容易で、Mgの成分調整が容易なことからNi−Mg合金による添加を行った。
In addition to the treatment for these carbonitrides, Ca was added by a NiCa alloy to produce an electrode for VAR ingot formation.
As for the addition of Ca, there is a method of directly adding Ca alloys such as Ni-Ca and Fe-Ca and metallic Ca to molten steel, but this time it is easy to handle and the adjustment of the Ca components makes Ni easy. Addition with -Ca alloy was performed.
As for the addition of Mg, there is a method of directly adding Mg alloys such as Ni-Mg and Fe-Mg and metal Mg to molten steel, but this time it is easy to handle and the Mg components can be easily adjusted. From this, addition with a Ni-Mg alloy was performed.

これらVIMで製造した電極を同一条件の下でVARを用いて再溶解し、鋼塊を製造した。VARの鋳型はそれぞれ同一のものを用い、真空度は1.3Pa、投入電流は鋼塊の定常部で6.5KAで溶解した。
VIMで製造した消耗電極及びその電極をVARにて真空再溶解して得られた鋼塊の化学組成を表1に示す。なお、消耗電極は「電極」として、VAR後のものは「鋼塊」として示した。
These VIM-made electrodes were remelted using VAR under the same conditions to produce steel ingots. The same VAR molds were used, the degree of vacuum was 1.3 Pa, and the input current was melted at 6.5 KA in the stationary part of the steel ingot.
Table 1 shows the chemical composition of the consumable electrode manufactured by VIM and the steel ingot obtained by vacuum remelting the electrode with VAR. The consumable electrode is indicated as “electrode”, and the post-VAR electrode is indicated as “steel ingot”.

Figure 2008138292
Figure 2008138292

得られたVAR後の鋼塊を1250℃×20時間のソーキングを行なった後、熱間鍛造を行なって熱間鍛造品とした。
次に、これら材料に熱間圧延、820℃×1時間の溶体化処理、冷間圧延、820℃×1時間の溶体化処理と480℃×5時間の時効処理を行ない、厚み0.5mmのマルエージング鋼帯を製造した。
先ず、No.1〜No.7のマルエージング鋼帯の両端部から横断試料を100g採取し、混酸溶液または臭素メタノール溶液等で溶解後、フィルターでろ過し、フィルター上の酸化物からなる残渣をSEMで観察を行ない、酸化物系非金属介在物の組成及びサイズを測定した。
これらの非金属介在物のサイズ測定にあたっては非金属介在物に外接する円の直径を非金属介在物の最大長さとした。
The obtained steel ingot after VAR was soaked at 1250 ° C. for 20 hours, and then hot forged to obtain a hot forged product.
Next, hot rolling, solution treatment at 820 ° C. × 1 hour, cold rolling, solution treatment at 820 ° C. × 1 hour and aging treatment at 480 ° C. × 5 hours are performed on these materials, and the thickness is 0.5 mm. A maraging steel strip was produced.
First, no. 1-No. 100 g of a cross-section sample was collected from both ends of the maraging steel strip of No. 7, dissolved in a mixed acid solution or bromine-methanol solution, etc., filtered through a filter, and the oxide residue on the filter was observed with SEM. The composition and size of the system non-metallic inclusions were measured.
In measuring the sizes of these nonmetallic inclusions, the diameter of the circle circumscribing the nonmetallic inclusions was taken as the maximum length of the nonmetallic inclusions.

さらに、窒化物や炭窒化物を詳細に評価するため10g採取して、混酸溶液または臭素メタノール溶液等で溶解後、フィルターのろ過面積を小さくして窒化物や炭窒化物の密集度をあげ、SEMで10000個の窒化物や炭窒化物を観察し最大のサイズを測定した。
窒化物等は矩形形状であるため、長辺aと短辺bを測定し、面積a×bに相当する円の直径をその最大長さとした。なお、酸化物系非金属介在物は、上記同様に非金属介在物に外接する円の直径を非金属介在物の最大長さとした。
この結果を表2に示す。
Furthermore, in order to evaluate nitrides and carbonitrides in detail, 10 g was collected, dissolved in a mixed acid solution or bromine-methanol solution, etc., and the filter area of the filter was reduced to increase the density of nitrides and carbonitrides. The maximum size was measured by observing 10,000 nitrides and carbonitrides with SEM.
Since nitride or the like has a rectangular shape, the long side a and the short side b were measured, and the diameter of a circle corresponding to the area a × b was set as the maximum length. Note that the oxide-based non-metallic inclusions had the maximum length of the non-metallic inclusions as the diameter of the circle circumscribing the non-metallic inclusions as described above.
The results are shown in Table 2.

Figure 2008138292
Figure 2008138292

表2から、消耗電極Caの値が5ppmを越えるたものではマルエージング鋼帯中には20μmを越える酸化物系非金属介在物がなくなり、電極Ca含有量が多くなるに従いその大きさが小さくなる傾向が伺える。
また、今回の評価で観察された酸化物系非金属介在物の組成は本発明によるものではCaO系複合酸化物とCaOが主体となっており、表2中の10μm以上のアルミナ系の介在物以外の酸化物系非金属介在物は、殆どが前述のスピネル系の介在物、MgOであった。比較例のものではアルミナ系介在物を主体とするものであった。
From Table 2, when the value of the consumable electrode Ca exceeds 5 ppm, there is no oxide-based nonmetallic inclusion exceeding 20 μm in the maraging steel strip, and the size decreases as the electrode Ca content increases. I can see the trend.
The composition of oxide-based nonmetallic inclusions observed in this evaluation is mainly composed of CaO-based composite oxide and CaO according to the present invention, and alumina-based inclusions of 10 μm or more in Table 2 Most of the oxide-based nonmetallic inclusions other than the above were the above-mentioned spinel-based inclusions, MgO. The comparative examples mainly consisted of alumina inclusions.

さらに、表2より窒化物等の最大サイズについては、電極窒素濃度5ppmのとき、Ca添加により窒化物等のサイズは2〜3μm微細になり、電極窒素濃度10ppmのとき、Ca添加により窒化物等のサイズは3〜4μm微細になっていることがわかる。
また、組成をほぼNo.1に合わせて、Caと共にMgを複合添加したものでは、Mgの複合添加によって、No.1と比較し10μm以上のアルミナ系の介在物比率も減少し、非金属介在物の最大長さが短くなっていることも分かる。
なお、No.1〜6のマルエージング鋼帯の断面をEPMAにてTiとMoそれぞれの最大値と最小値とを線分析し、その比(最大値/最小値)を算出したところ、全ての試料で偏析比が1.3以下となっていたのを確認した。
Further, from Table 2, regarding the maximum size of nitride and the like, when the electrode nitrogen concentration is 5 ppm, the size of the nitride becomes 2 to 3 μm fine by adding Ca, and when the electrode nitrogen concentration is 10 ppm, the nitride and the like by adding Ca It can be seen that the size of is smaller by 3 to 4 μm.
In addition, the composition is almost No. In the case where Mg is added in combination with Ca in accordance with No. 1, No. 1 is added by adding Mg in combination. It can also be seen that the alumina-based inclusion ratio of 10 μm or more is reduced as compared with 1, and the maximum length of the nonmetallic inclusion is shortened.
In addition, No. The cross sections of 1 to 6 maraging steel strips were analyzed with EPMA for the maximum and minimum values of Ti and Mo, and the ratio (maximum value / minimum value) was calculated. Was 1.3 or less.

以上の結果から、本発明のマルエージング鋼は酸化物系非金属介在物を小さく、少なくすることができ、更に、TiCやTiCN等の窒化物系非金属介在物の大きさも小さくすることが可能であることも分かり、優れた疲労強度を有するものとなっていることが分かる。
本発明のマルエージング鋼の薄帯は、自動車エンジンの無段変速機用部品として最適である。
From the above results, the maraging steel of the present invention can reduce and reduce the number of oxide-based nonmetallic inclusions, and can further reduce the size of nitride-based nonmetallic inclusions such as TiC and TiCN. It can also be seen that it has excellent fatigue strength.
The maraging steel ribbon of the present invention is optimal as a component for a continuously variable transmission of an automobile engine.

Claims (5)

質量%で、少なくともCa:15ppm未満(0は含まず)、酸素:10ppm未満、窒素:15ppm未満、Ti:2.0%以下(0は含まず)を含有したマルエージング鋼であって、組織中の10μm以上の酸化物系非金属介在物の総個数に対して、前記酸化物系非金属介在物中の金属元素のうち、Alを85mass%以上含む10μm以上の酸化物系非金属介在物が70%未満であることを特徴とするマルエージング鋼。 A maraging steel containing at least Ca: less than 15 ppm (excluding 0), oxygen: less than 10 ppm, nitrogen: less than 15 ppm, Ti: 2.0% or less (excluding 0) in mass%, 10 μm or more of oxide-based nonmetallic inclusions containing 85 mass% or more of Al among the metal elements in the oxide-based nonmetallic inclusions with respect to the total number of oxide-based nonmetallic inclusions of 10 μm or more Is a maraging steel characterized by being less than 70%. 請求項1に記載のマルエージング鋼は、酸化物系非金属介在物の最大長さが20μm以下であることを特徴とするマルエージング鋼。 The maraging steel according to claim 1, wherein the maximum length of the oxide-based nonmetallic inclusion is 20 μm or less. 請求項1または2に記載のマルエージング鋼は、窒化物系非金属介在物の最大長さが10μm以下であることを特徴とするマルエージング鋼。 The maraging steel according to claim 1 or 2, wherein the maximum length of nitride-based nonmetallic inclusions is 10 µm or less. 請求項1乃至3の何れかに記載のマルエージング鋼は、質量%で、Ca:15ppm未満(0は含まず)、酸素:10ppm未満、窒素:15ppm未満の化学組成に加えて、質量%で、Mg:15ppm未満(0は含まず)、C:0.01%以下、Ni:8.0〜22.0%、Co:5.0〜20.0%、Mo:2.0〜9.0%、Ti:2.0%以下(0は含まず)、Al:1.7%以下、残部は実質的にFeからなることを特徴とするマルエージング鋼。 The maraging steel according to any one of claims 1 to 3 is, in mass%, in addition to a chemical composition of Ca: less than 15 ppm (excluding 0), oxygen: less than 10 ppm, and nitrogen: less than 15 ppm. Mg: less than 15 ppm (excluding 0), C: 0.01% or less, Ni: 8.0-22.0%, Co: 5.0-20.0%, Mo: 2.0-9. Maraging steel characterized in that 0%, Ti: 2.0% or less (excluding 0), Al: 1.7% or less, and the balance being substantially made of Fe. 請求項1乃至4の何れかに記載のマルエージング鋼は、厚さが0.5mm以下の薄帯であることを特徴とするマルエージング鋼。 The maraging steel according to any one of claims 1 to 4, wherein the maraging steel is a ribbon having a thickness of 0.5 mm or less.
JP2007331811A 2007-12-25 2007-12-25 Maraging steel Withdrawn JP2008138292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331811A JP2008138292A (en) 2007-12-25 2007-12-25 Maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331811A JP2008138292A (en) 2007-12-25 2007-12-25 Maraging steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003031452A Division JP4085374B2 (en) 2003-02-07 2003-02-07 Method for producing maraging steel

Publications (1)

Publication Number Publication Date
JP2008138292A true JP2008138292A (en) 2008-06-19

Family

ID=39600059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331811A Withdrawn JP2008138292A (en) 2007-12-25 2007-12-25 Maraging steel

Country Status (1)

Country Link
JP (1) JP2008138292A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690957A (en) * 1979-12-20 1981-07-23 Kobe Steel Ltd Maraging steel with superior stress corrosion crack resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690957A (en) * 1979-12-20 1981-07-23 Kobe Steel Ltd Maraging steel with superior stress corrosion crack resistance

Similar Documents

Publication Publication Date Title
KR101668201B1 (en) Case-hardened steel having excellent fatigue characteristics
JP6245417B1 (en) Steel
EP1422301B1 (en) Maraging steel and method of producing the same
WO2015045528A1 (en) High-speed-tool steel and method for producing same
TWI553128B (en) The Method of Making Spinning Steel and the Method of Refining in Material
JP4692282B2 (en) Steel ingot manufacturing method
JP5967324B2 (en) Method for producing maraging steel and method for producing consumable electrode of maraging steel
JP4374529B2 (en) Maraging steel and ribbon
JP2006200026A (en) Method for producing maraging steel
JP3682881B2 (en) Method for producing maraging steel and maraging steel
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP3821368B2 (en) Manufacturing method of high clean maraging steel
JP2005248187A (en) Method for manufacturing maraging steel, and maraging steel
JP4085374B2 (en) Method for producing maraging steel
JP2004183097A (en) Method for producing maraging steel and maraging steel
JP2008138292A (en) Maraging steel
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
JP2014047356A (en) Bar steel or wire material
JP2004090022A (en) Method for producing maraging steel
EP3524702B1 (en) Nickel material
JP2003293037A (en) METHOD OF PRODUCING Fe-Ni BASED ALLOY HAVING EXCELLENT BLANKING WORKABILITY

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20101126

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110124