JP2008138226A - Cast iron-based sintered sliding member, and its manufacturing method - Google Patents

Cast iron-based sintered sliding member, and its manufacturing method Download PDF

Info

Publication number
JP2008138226A
JP2008138226A JP2006322801A JP2006322801A JP2008138226A JP 2008138226 A JP2008138226 A JP 2008138226A JP 2006322801 A JP2006322801 A JP 2006322801A JP 2006322801 A JP2006322801 A JP 2006322801A JP 2008138226 A JP2008138226 A JP 2008138226A
Authority
JP
Japan
Prior art keywords
cast iron
chips
sliding member
powder
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322801A
Other languages
Japanese (ja)
Other versions
JP4917869B2 (en
Inventor
Akiyoshi Sugafuji
昭良 菅藤
Jiro Nagamachi
二郎 長町
Susumu Abe
進 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LUBY IND CO Ltd
LUBY INDUSTRIAL CO Ltd
Original Assignee
LUBY IND CO Ltd
LUBY INDUSTRIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LUBY IND CO Ltd, LUBY INDUSTRIAL CO Ltd filed Critical LUBY IND CO Ltd
Priority to JP2006322801A priority Critical patent/JP4917869B2/en
Publication of JP2008138226A publication Critical patent/JP2008138226A/en
Application granted granted Critical
Publication of JP4917869B2 publication Critical patent/JP4917869B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cast iron-based sintered sliding member having excellent sliding characteristics. <P>SOLUTION: The cast iron-based sintered sliding member can be manufactured by subjecting a large amount of wet chips generated at machining of a grown grey cast iron casting using cutting oil to vacuum heating at a degree of vacuum of 0.1 Torr at 600°C for 60 min and to pulverization using a pulverizer into chips which pass a sieve of 36 meshes but do not pass a sieve of 55 meshes, filling the chips into a die to carry out pressing at a compacting pressure of 5 tons per square centimeter and then subjecting the resulting green compact to sintering in a hydrogen gas atmosphere at 1,130°C for 60 min. Moreover, when filling the chips into the die, iron powder can be filled, for the purpose of improving bearing performance, into the die by being mixed with the chips in an amount of 5% based on the weight of the chips. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、素地がオールフェライト組織を呈する成長ねずみ鋳鉄鋳物を切削して得られた切粉を使用した摺動特性に優れた鋳鉄系焼結摺動部材とその製造方法に関する。   The present invention relates to a cast iron-based sintered sliding member excellent in sliding characteristics using a chip obtained by cutting a growth gray cast iron casting in which a base exhibits an all-ferrite structure, and a manufacturing method thereof.

従来、炭素が片状黒鉛の形で存在しているねずみ鋳鉄が知られている。このねずみ鋳鉄から作製された鋳物(ねずみ鋳鉄鋳物)は大きな振動吸収能と高い熱伝導性を有するので内燃機関用材料として広く用いられている。また、ねずみ鋳鉄は鋳造性に優れていることから流体機械やバルブなど形状が複雑な産業機械器具用材料としても広範に採用されている。更に、ねずみ鋳鉄鋳物を長時間加熱したり、加熱冷却を繰返したりすることによって当該鋳物を成長させた成長ねずみ鋳鉄が知られている。この成長ねずみ鋳鉄は、上記成長によって生じた多孔質部(ポーラス部)に潤滑油を含浸させる(含油処理を施す)ことにより、摺動性に優れた含油摺動部材として利用できることも知られている。更に、この含油摺動部材は、軸受や滑り板などとして使用されている。   Conventionally, gray cast iron in which carbon is present in the form of flake graphite is known. Castings made from gray cast iron (grey cast iron castings) are widely used as materials for internal combustion engines because of their large vibration absorption capacity and high thermal conductivity. Gray cast iron is also widely used as a material for industrial machinery and equipment having complicated shapes such as fluid machinery and valves because of its excellent castability. Furthermore, there is known a grown gray cast iron obtained by growing the cast iron by heating the gray cast iron casting for a long time or repeating heating and cooling. It is also known that this grown gray cast iron can be used as an oil-impregnated sliding member having excellent sliding properties by impregnating (performing oil impregnation) a lubricating oil into the porous portion (porous portion) generated by the above growth. Yes. Furthermore, this oil-impregnated sliding member is used as a bearing or a sliding plate.

一方、上記成長ねずみ鋳鉄を用いた摺動部材としては、本発明者らが開示の特許第3795391号「鋳鉄系焼結摺動部材及びその製造方法」が知られている。当該発明において、本発明者らは、先ず、成長ねずみ鋳鉄を切削して得られた切粉を観察した。この観察により、この切粉の素地中には、肥大化した片状黒鉛が多く含まれて露出していること及び片状黒鉛の周囲が多孔質化されていることを見出し、その後の研究と各種実験の結果、成長ねずみ鋳鉄の切粉を成型して得た圧粉体を焼結することにより得られた焼結成型体は、成型加工性に優れるばかりでなく、黒鉛等の固体潤滑剤を別途加えなくとも優れた摺動特性を発揮するとの知見を得、上記発明を構想するに至った。また、上記発明は切削液を使用しないで切削した切粉(ドライ切粉)を用いたことと、切削条件により様々な粒度の切粉が発生するため、異なる三種類の粒度の範囲を有する切粉を一定割合で混合して使用することに特徴があった。例えば、20メッシュの篩は通過するが、36メッシュの篩を通過しない切粉を重量で30%、36メッシュの篩は通過するが、55メッシュの篩を通過しない切粉を重量で60%、55メッシュの篩を通過する切粉を重量で10%をそれぞれ混合して使用するものである。そして、これらの切粉は切削液が使われていないため金型での成型後、焼結の際の還元雰囲気に悪い影響を及ぼすこともなく、また異なる三種類の粒度範囲を有する切粉を混合して使用するため切削によって発生するドライ切粉の90%以上を有効利用できる利点があり、コストの低減化に有効な技術であった。
特許第3795391号公報
On the other hand, as a sliding member using the above-mentioned grown gray cast iron, Japanese Patent No. 3795391 “Cast Iron Sintered Sliding Member and Manufacturing Method Thereof” disclosed by the present inventors is known. In this invention, the present inventors first observed chips obtained by cutting grown gray cast iron. From this observation, it was found that a large amount of the enlarged flake graphite was exposed in the substrate of the chip, and that the periphery of the flake graphite was made porous. As a result of various experiments, sintered compacts obtained by sintering green compacts obtained by molding chips of grown gray cast iron are not only excellent in moldability but also solid lubricants such as graphite The inventors have obtained the knowledge that excellent sliding characteristics can be exhibited without adding a separate amount, and have conceived the above invention. In addition, the above invention uses chips that are cut without using a cutting fluid (dry chips), and chips with various particle sizes are generated depending on the cutting conditions. It was characterized by using the powder mixed at a certain ratio. For example, 30% by weight of chips that pass through a 20 mesh screen but not through a 36 mesh screen, 60% by weight of chips that pass through a 36 mesh screen but do not pass through a 55 mesh screen, 10% by weight of chips passing through a 55 mesh sieve are mixed and used. And since these chips do not use cutting fluid, they do not adversely affect the reducing atmosphere during sintering after molding in the mold, and also have chips having three different particle size ranges. Since it is used by mixing, there is an advantage that 90% or more of dry chips generated by cutting can be effectively used, and this is an effective technique for cost reduction.
Japanese Patent No. 3795391


更に続いて、本発明者らは上記発明の継続的研究を進める中で、上記特許第3795391号に係る技術的改良点の検証を行った。その結果、当該発明においては、切削液を使用しないドライ切粉を用いたことから粉塵を発生するという課題があり、今日的な工場内の環境衛生の観点から切削液を使用した加工が強く求められていること。更に、異なる3種類の粒度範囲を有する切粉を一定の割合で使用するため、それぞれの仕分け作業が煩雑であることと、それぞれの粒度範囲を有する切粉は切削の条件により切粉に残る残留歪もまた異なり、それ故、金型での切粉の圧粉時に密度のばらつきを生じ易く成型体強度に影響を及ぼすという課題が発見された。

Furthermore, the present inventors conducted verification of technical improvements according to the above-mentioned Japanese Patent No. 3795391 while continuing the research on the above-mentioned invention. As a result, in the present invention, there is a problem that dust is generated because dry chips that do not use cutting fluid are used, and processing using cutting fluid is strongly sought from the viewpoint of environmental hygiene in today's factories. What is being done. Furthermore, since chips having three different particle size ranges are used at a certain ratio, each sorting operation is complicated, and chips having each particle size range remain in the chips depending on cutting conditions. Distortions are also different, and therefore, a problem has been discovered that density fluctuations are likely to occur when compacting chips in a mold and affect the strength of the molded body.

上記課題を解決するためには、従来その大部分が廃棄処分とされている切削液による湿式切粉を切粉原料として使用すれば上記の課題の解決が図られるものであるが、上記湿式切粉の使用には下記の課題があった。即ち、その課題とは、切粉に付着した切削液は焼結時に分解昇華して炉内の還元雰囲気のバランスを崩し、焼結体の密度を低下させて強度に悪影響を及ぼすという欠点。また、湿式切粉には遊離黒鉛粉や環境中の塵芥等の付着があり、これも焼結体の密度と強度を低下せしめる原因となるとの欠点が挙げられる。一方、その他の課題としては、ドライ切粉と同様に加工時の残留応力によって圧粉の際に一定の成形性が得がたく、成形密度にばらつきが生じ易いということが挙げられる。   In order to solve the above-mentioned problems, the above-mentioned problems can be solved by using, as a raw material for cutting chips, wet cutting chips that have been mostly disposed of in the past. The use of powder has the following problems. That is, the problem is that the cutting fluid adhering to the chip is decomposed and sublimated during sintering to break the balance of the reducing atmosphere in the furnace, lowering the density of the sintered body and adversely affecting the strength. In addition, there is a drawback in that wet chips have adhesion of free graphite powder and dust in the environment, which also causes a decrease in the density and strength of the sintered body. On the other hand, as other problems, it is difficult to obtain a certain formability at the time of compaction due to residual stress during processing as in the case of dry chips, and the molding density is likely to vary.

しかして、本発明は、上記記載の従来技術における課題等に鑑みる一方、本発明者らの成した特許第3795391号に係る発明後の継続的研究の成果から得られた知見に基き成されたものであり、その目的は従来殆どが廃棄処分とされていた成長ねずみ鋳鉄の湿式切粉の再利用を図ると共に十分な強度と適切な潤滑性を具備した鋳鉄系焼結摺動部材及びその製造方法を提供することにある。   Thus, the present invention was made on the basis of the knowledge obtained from the results of continuous research after the invention relating to the patent No. 3795391 made by the present inventors while considering the above-mentioned problems in the prior art. The purpose is to recycle the wet gray cast iron chips, which have been mostly disposed of in the past, and to produce a cast iron-based sintered sliding member with sufficient strength and appropriate lubricity, and its manufacture. It is to provide a method.

上記の目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、素地がオールフェライト組織を呈する成長ねずみ鋳鉄鋳物を切削し、当該切削によって得られた切粉を真空炉中にて加熱する加熱工程と、上記切粉を粉砕して所定の粒度範囲の切粉のみを原料粉末として選別する選別工程と、当該原料粉末単体若しくは当該原料粉末に鉄粉又はステンレス合金粉を加えて混合した混合粉末を金型内に充填する充填工程と、当該金型を4トン/平方cm以上5トン/平方cm以下の範囲内の成形圧力で圧縮成型して圧粉体を形成する圧縮成形工程と、次に中性雰囲気又は還元性雰囲気において1100°C以上1150°C以下の範囲内の温度で30分間以上90分間以下の範囲内の時間だけ上記圧粉体を焼結する焼結工程から成ることを第一の要旨とする。   In order to achieve the above object, a method for producing a cast iron-based sintered sliding member according to the present invention cuts a growth gray cast iron casting in which the base exhibits an all-ferrite structure, and the chips obtained by the cutting are removed from the vacuum furnace. A heating step of heating inside, a selection step of pulverizing the above-mentioned chips and selecting only chips in a predetermined particle size range as raw material powder, and the raw material powder alone or the raw material powder with iron powder or stainless alloy powder In addition, a filling step of filling the mixed powder into the mold and forming the green compact by compression molding the mold at a molding pressure in the range of 4 tons / square cm to 5 tons / square cm. A sintering process in which the green compact is sintered in a neutral or reducing atmosphere at a temperature in the range of 1100 ° C to 1150 ° C for a time in the range of 30 minutes to 90 minutes. This consists of a ligation process And the first gist.

次に、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、上記第一の要旨の加熱工程における加熱が、真空炉にて1Torr(100Pa)以上0.001Torr(0.1Pa)以下の範囲内の真空度で300°C以上600°C以下の範囲内の温度で60分間以上420分間以下の範囲内の時間だけ真空加熱するものであっても良い。   Next, in order to achieve the above object, in the method for producing a cast iron sintered sliding member according to the present invention, the heating in the heating process of the first aspect is performed in a vacuum furnace at 1 Torr (100 Pa) or more and 0.001 Torr. A vacuum degree within a range of (0.1 Pa) or less and vacuum heating at a temperature within a range of 300 ° C. to 600 ° C. for a time within a range of 60 minutes to 420 minutes may be used.

更に、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、上記第一の要旨の選別工程における原料粉末が、切粉を機械的に粉砕し、36メッシュの篩を通過するが、55メッシュの篩を通過しない粒度範囲の粉末とすることができる。   Furthermore, in order to achieve the above object, the method for producing a cast iron-based sintered sliding member according to the present invention comprises a 36-mesh powder obtained by mechanically pulverizing chips in the selection process of the first aspect. It can be a powder in a particle size range that passes through a sieve but does not pass through a 55 mesh sieve.

更にまた、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、上記第一の要旨の選別工程における原料粉末が、切粉を機械的に粉砕し、55メッシュの篩を通過する粒度範囲の粉末とすることができる。   Furthermore, in order to achieve the above object, the method for producing a cast iron-based sintered sliding member according to the present invention is characterized in that the raw material powder in the sorting step of the first gist is obtained by mechanically pulverizing chips, and 55 mesh It can be set as the powder of the particle size range which passes a sieve.

続いて、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、上記第一の要旨の充填工程における原料粉末に対する混合粉末として、鉄粉又はステンレス合金粉を上記原料粉末重量に対して5%以上30%以下の範囲で加えたものとすることができる。   Subsequently, in order to achieve the above object, the method for producing a cast iron-based sintered sliding member according to the present invention uses iron powder or stainless alloy powder as the mixed powder for the raw material powder in the filling step of the first aspect. It can be added in the range of 5% to 30% with respect to the weight of the raw material powder.

続いてまた、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材の製造方法は、焼結工程後に得られた圧粉体に、当該圧粉体の総体積の内10体積%以上20体積%以下の範囲で含油処理を施したものでも良い。   Subsequently, in order to achieve the above object, the method for producing a cast iron-based sintered sliding member according to the present invention is applied to a green compact obtained after the sintering step, and 10 volume of the total volume of the green compact. % To 20% by volume or less may be used.

更に続いて、上記目的を達成するため、本発明に係る鋳鉄系焼結摺動部材は、上記記載の本発明に係る鋳鉄系焼結摺動部材の製造方法によって得られる鋳鉄系焼結摺動部材とすることができる。   Further, in order to achieve the above object, the cast iron-based sintered sliding member according to the present invention is a cast iron-based sintered sliding member obtained by the above-described method for producing a cast iron-based sintered sliding member according to the present invention. It can be a member.

本発明に係る鋳鉄系焼結摺動部材の製造方法では、素地がオールフェライト組織を呈する成長ねずみ鋳鉄の切粉加工において、切削液を使用して得られた切粉(湿式切粉)を加熱工程において、1Torr(100Pa)以上0.001Torr(0.1Pa)以下の範囲内の真空度で、300°C以上600°C以下の範囲内の温度で、60分間以上420分間以下の範囲内の時間だけ真空加熱することにより、付着した切削液の分解と切粉の加工歪を取り除くことができるので、この切粉から圧粉体を成型する際の成形性は極めて良好となるという効果がある。   In the method for producing a cast iron-based sintered sliding member according to the present invention, chips (wet chips) obtained by using a cutting fluid are heated in the chip processing of grown gray cast iron whose base exhibits an all-ferrite structure. In the process, the degree of vacuum is in the range of 1 Torr (100 Pa) to 0.001 Torr (0.1 Pa), and the temperature is in the range of 300 ° C. to 600 ° C., and in the range of 60 minutes to 420 minutes. By vacuum heating only for a period of time, the attached cutting fluid can be decomposed and the processing distortion of the chip can be removed, so that the moldability when forming a green compact from this chip is extremely good. .

また、本発明に係る鋳鉄系焼結摺動部材の製造方法では、その焼結工程において1100°C以上1150°C以下の範囲内の温度で30分間以上90分間以下の範囲内の時間だけ上記圧粉体を焼結することによりフェライトとパーライトの混在した素地組織に変化し、焼結の硬さが高められると共に強度が向上するので、摺動特性に優れた焼結摺動部材が製造できる。また、中性雰囲気または還元性雰囲気で焼結するので焼結体の酸化を防止できるという効果もある。ここで、上記成長ねずみ鋳鉄鋳物を得るに当たり、ねずみ鋳鉄鋳物のA1変態点よりも高い温度と低い温度との間で加熱冷却を繰り返す反復加熱冷却処理をねずみ鋳鉄鋳物に施すことにより、素地がオールフェライト組織を呈する成長ねずみ鋳鉄が容易に得られる。   In the method for producing a cast iron-based sintered sliding member according to the present invention, in the sintering step, the temperature is in the range of 1100 ° C. to 1150 ° C., and the time is in the range of 30 minutes to 90 minutes. By sintering the green compact, it changes to a base structure with a mixture of ferrite and pearlite, which increases the hardness of the sintering and improves the strength, so that a sintered sliding member with excellent sliding characteristics can be manufactured. . Further, since sintering is performed in a neutral atmosphere or a reducing atmosphere, there is an effect that oxidation of the sintered body can be prevented. Here, in obtaining the above-mentioned grown gray cast iron casting, the green cast iron cast is subjected to repeated heating and cooling treatment that repeatedly heats and cools between a temperature higher and lower than the A1 transformation point of the gray cast iron cast, whereby the green cast iron cast is all made. Grown gray cast iron exhibiting a ferrite structure can be easily obtained.

更に、本発明に係る鋳鉄系焼結摺動部材の製造方法では、選別した切粉を所定の金型内に装填するに当たり、36メッシュの篩を通過するが55メッシュの篩を通過しない切粉、若しくは55メッシュの篩を通過する切粉を得て装填することにより、高い潤滑作用を発揮する鋳鉄系焼結摺動部材が製造されるという効果もある。   Furthermore, in the method for producing a cast iron-based sintered sliding member according to the present invention, when the selected chips are loaded into a predetermined mold, the chips pass through a 36 mesh screen but do not pass through a 55 mesh screen. Alternatively, by obtaining and loading chips that pass through a 55 mesh sieve, there is also an effect that a cast iron-based sintered sliding member that exhibits a high lubricating action is manufactured.

更にまた、本発明に係る鋳鉄系焼結摺動部材の製造方法では、焼結工程後に圧粉体に含油処理を施す場合は、黒鉛の潤滑作用ばかりでなく潤滑油による潤滑作用も加わるので摺動特性が一層向上するという効果もある。この際、上記圧粉体に含油処理を施すに当たり、含油率が、当該圧粉体の総体積のうち10体積%以上20体積%以下の範囲内になるように上記圧粉体に含油処理を施す場合は、十分な強度と適切な潤滑性を有する鋳鉄系焼結摺動部材が製造される。   Furthermore, in the method for producing a cast iron-based sintered sliding member according to the present invention, when the green compact is subjected to an oil impregnation treatment after the sintering step, not only the lubricating action of graphite but also the lubricating action by the lubricating oil is added. There is also an effect that the dynamic characteristics are further improved. In this case, when the green compact is subjected to an oil impregnation treatment, the green compact is subjected to an oil impregnation treatment so that the oil content is within the range of 10% by volume or more and 20% by volume or less of the total volume of the green compact. When applied, a cast iron-based sintered sliding member having sufficient strength and appropriate lubricity is produced.

続いて、本発明に係る鋳鉄系焼結摺動部材の製造方法では、選別切粉を所定の金型内に装填するに当たり、36メッシュの篩を通過するが55メッシュの篩を通過しない切粉、若しくは55メッシュの篩を通過する切粉に対して、鉄粉又はステンレス合金粉を原料粉末重量に対して5%以上30%以下を加えた圧粉体を焼結することにより、焼結体を適度な硬さと強度を持つ材質に変え、とくに相手軸へのなじみ性が改善され、摺動特性を向上させることができるという効果もある。   Subsequently, in the method for producing a cast iron-based sintered sliding member according to the present invention, when the selected chips are loaded into a predetermined mold, the chips that pass through the 36 mesh screen but do not pass through the 55 mesh screen. Alternatively, a sintered compact is obtained by sintering a green compact in which iron powder or stainless alloy powder is added in an amount of 5% to 30% with respect to the weight of the raw material powder with respect to the chips passing through a 55 mesh sieve. Is changed to a material having an appropriate hardness and strength, in particular, the compatibility with the mating shaft is improved, and the sliding characteristics can be improved.

そしてまた、前述した本発明に係る鋳鉄系焼結摺動部材の製造方法で製造された鋳鉄系焼結摺動部材は、十分な強度と十分な潤滑性を有するので、摺動部材として種々の分野で広く使用できる。   Further, since the cast iron-based sintered sliding member manufactured by the above-described method for manufacturing a cast iron-based sintered sliding member according to the present invention has sufficient strength and sufficient lubricity, various types of sliding members can be used. Can be widely used in the field.

以下、本発明を実施するための最良の形態について説明する。先ず、湿式切粉を切粉原料として使用する場合の課題として、切粉に付着した切削液が焼結時に分解昇華して炉内の還元雰囲気のバランスを崩し、焼結体の密度を低下させて強度に悪影響を及ぼすこと、並びに、湿式切粉に遊離黒鉛粉や環境中の塵芥等が付着することにより、焼結体の密度と強度を低下せしめることが挙げられた。これらの課題を解決するために、本発明者らは種々の実験と研究を進める中で、真空炉中にて1Torr(100Pa)以上0.001Torr(0.1Pa)以下の範囲内の真空度で、300°C以上600°C以下の範囲内の温度で、60分間以上420分間以下の範囲内の時間だけ真空加熱することにより、湿式切粉に付着した切削液を分解昇華させて除去し、同時に付着した遊離黒鉛や環境中の塵芥の除去が可能となることを見出した。   Hereinafter, the best mode for carrying out the present invention will be described. First, as a problem when using wet swarf as raw material, the cutting fluid adhering to the swarf decomposes and sublimates during sintering, destroys the balance of the reducing atmosphere in the furnace, and lowers the density of the sintered body. It has been mentioned that the strength and the strength of the sintered body are reduced by adversely affecting the strength and adhering the wet graphite to free graphite powder or dust in the environment. In order to solve these problems, the present inventors proceeded with various experiments and researches, and in a vacuum furnace with a degree of vacuum within a range of 1 Torr (100 Pa) to 0.001 Torr (0.1 Pa). , By vacuum heating at a temperature in the range of 300 ° C. to 600 ° C. for a time in the range of 60 minutes to 420 minutes, the cutting fluid adhering to the wet chips is decomposed and sublimated to be removed, At the same time, it has been found that it is possible to remove adhering free graphite and dust in the environment.

更に、もう一つの課題であった切粉の残留応力(残留歪)も上記真空加熱を行うことにより低減乃至取り除くことができることも併せて見出した。ここで、切削液の分解には高温度が望ましいが、その分解温度は焼結時の還元雰囲気のバランスを崩さない程度の加熱で十分であることを知見した。実験の結果では、300°Cでは420分間、600°Cでは60分間の真空加熱を行えばその条件を満足することがわかった。真空度については昇華した成分を除去できれば十分であるため1Torrから0.001Torrの範囲であれば良いとの結果を得た。   Furthermore, the present inventors have also found that the residual stress (residual strain) of chips, which was another problem, can be reduced or removed by performing the vacuum heating. Here, a high temperature is desirable for the decomposition of the cutting fluid, but it has been found that the decomposition temperature is sufficient for heating so as not to disturb the balance of the reducing atmosphere during sintering. As a result of the experiment, it was found that the conditions were satisfied if vacuum heating was performed at 300 ° C. for 420 minutes and at 600 ° C. for 60 minutes. Regarding the degree of vacuum, it was sufficient if the sublimated component could be removed, and the result was obtained that the range was from 1 Torr to 0.001 Torr.

一方、成長ねずみ鋳鉄鋳物は肥大化した多量の片状黒鉛を含むため被削性が良く、一般に大きな粒径の切粉が得られやすい。場合によって3〜5mmサイズとなり、このままでは金型での成型が困難であるため粉砕処理が必須であった。ここで、前述した特許第3795391号に係る発明の場合には、異なる三種類の粒度の範囲を有する切粉を一定の割合で使用するため、得られた切粉からそれぞれ各粒度への篩い分けの後、再度配合し混合するという方法を採用していたが、当該作業は煩雑であり価格的にも割高になるという欠点があった。そこで、本発明においては切粉粉砕の後、一定粒度の粉砕粉のみを使用する方法を採用するものとした。なお、粉砕粉の粒径は金型での成型性に影響し、成型体の密度差になって現れる。また、成型体の密度差は、すなわち後工程で得られる焼結強度の差となって現れ、軸受の耐荷重性に大きく影響するものである。そこで、実験的に粒度と成型体密度との関係を調べたところ36メッシュの篩を通過するが55メッシュの篩を通過しない切粉、又は55メッシュの篩いを通過する切粉を使用することにより、良好な成型性と適度な焼結硬さとが得られるという知見を得た。即ち、36メッシュの篩を通過するが55メッシュの篩を通過しない切粉の場合、良好な成形性と共に焼結体の硬さと強度を大幅に向上できることがわかった。また一方、55メッシュの篩いを通過する切粉の場合、同様に良好な成形性と共に焼結体に適度な硬さと強度を付与できることを知り得た。このような焼結体の硬さと強度の差異は軸受特性として利便性を向上させることができる。つまり、一般の使用条件を考慮した際、一方は高荷重で使用できうるし、もう一方は軽荷重で使用できることとなる。   On the other hand, the grown gray cast iron casting contains a large amount of enlarged flake graphite, and therefore has good machinability, and it is generally easy to obtain chips having a large particle size. Depending on the case, the size was 3 to 5 mm, and it was difficult to mold with a mold as it was, so pulverization was essential. Here, in the case of the invention according to the above-mentioned Patent No. 3795391, since chips having different three kinds of particle size ranges are used at a certain ratio, sieving from the obtained chips to each particle size is performed. After that, the method of blending and mixing again was employed, but this operation was complicated and expensive. Therefore, in the present invention, a method of using only pulverized powder having a constant particle size after chip pulverization is adopted. The particle size of the pulverized powder affects the moldability of the mold and appears as a density difference of the molded body. Further, the density difference of the molded body appears as a difference in sintering strength obtained in a subsequent process, and greatly affects the load resistance of the bearing. Therefore, when the relationship between the particle size and the density of the molded body was experimentally examined, by using a chip that passes through a 36 mesh screen but does not pass through a 55 mesh screen, or a chip that passes through a 55 mesh screen. The present inventors have found that good moldability and appropriate sintering hardness can be obtained. That is, it was found that the hardness and strength of the sintered body can be greatly improved with good moldability in the case of a chip that passes through a 36 mesh screen but does not pass through a 55 mesh screen. On the other hand, in the case of chips passing through a 55 mesh sieve, it was found that the sintered body can be imparted with appropriate hardness and strength as well as good moldability. Such a difference in hardness and strength of the sintered body can improve convenience as a bearing characteristic. That is, when considering general use conditions, one can be used with a high load, and the other can be used with a light load.

続いて、成長ねずみ鋳鉄鋳物の切削によって得られた切粉の素地中には、成長によって肥大化した片状黒鉛が多く含まれて露出している。これは一般のねずみ鋳鉄鋳物(FC150)の切削によって得られた切粉に比べ、成長ねずみ鋳鉄鋳物を切削して得られた切粉中には潤滑作用を発揮する片状黒鉛が多く存在することを示している。従って、軸受としての機能を十分に果たすことができることとなる。しかしながら、摩擦係数の低減あるいは軸材への損耗を防止したい場合、粉砕した切粉中に鉄粉又はステンレス合金粉を加えることにより、素材的改善を図ることができる。特に、上記の金属粉末を加えることにより、鋳鉄系焼結摺動部材の素地を硬いパーライト組織から柔らかいフェライト組織又は強度に優れたオーステナイト組織が混合したパーライト組織へ変化させることで素地全体の硬さを組織的に制御することができ、軸材への損傷の発生を防止できる。ここで、鉄粉は鋳鉄中の黒鉛の一部を取り込み鉄―炭素の固溶体を形成し、素地(マトリックス)の強度と硬さを増す。しかし、大部分は純鉄(フェライト)としてパーライト組織中に存在し、素地の硬さを調整する効果を果たすものである。各種実験の結果、上記原料切粉重量に対する鉄粉又はステンレス合金粉の混合割合は、5重量%以下では硬さの調整に効果がなく、30重量%以上では逆に素地の硬さと強度を著しく低下させるものであった。更に、ステンレス合金粉は、パーライト組織中にオーステナイト組織を形成し、素地の強度を増す効果があるが、その混合割合については5重量%以下では強度向上に効果がなく、30重量%以上ではかえって硬さを低減し強度向上に寄与しないという結果を得た。   Subsequently, the flake graphite obtained by cutting the gray cast iron casting contains a large amount of flake graphite that is enlarged by the growth and is exposed. This is because there is more flake graphite that exerts a lubricating action in the chips obtained by cutting the grown gray cast iron casting compared to the chips obtained by cutting a general gray cast iron casting (FC150). Is shown. Therefore, the function as a bearing can be sufficiently achieved. However, when it is desired to reduce the friction coefficient or prevent the shaft material from being worn, it is possible to improve the material by adding iron powder or stainless alloy powder to the crushed chips. In particular, by adding the above metal powder, the base of the cast iron-based sintered sliding member can be changed from a hard pearlite structure to a pearlite structure mixed with a soft ferrite structure or a strong austenite structure. Can be systematically controlled, and the occurrence of damage to the shaft can be prevented. Here, iron powder takes in a part of graphite in cast iron and forms a solid solution of iron-carbon, increasing the strength and hardness of the substrate (matrix). However, most of them exist in the pearlite structure as pure iron (ferrite), and fulfill the effect of adjusting the hardness of the substrate. As a result of various experiments, the mixing ratio of the iron powder or the stainless alloy powder with respect to the weight of the raw material chips is not effective in adjusting the hardness when it is 5% by weight or less. It was something to lower. Furthermore, the stainless alloy powder has an effect of increasing the strength of the substrate by forming an austenite structure in the pearlite structure, but the mixing ratio is not effective in improving the strength at 5% by weight or less, but it is not effective at 30% by weight or more. The result that hardness was reduced and it did not contribute to strength improvement was obtained.

以上のような各種の知見などから、本発明に係る鋳鉄系焼結摺動部材の製造方法は、素地がオールフェライト組織を呈する成長ねずみ鋳鉄鋳物を切削し、当該切削によって得られた切粉を真空炉中にて1Torr(100Pa)以上0.001Torr(0.1Pa)以下の範囲内の真空度で300°C以上600°C以下の範囲内の温度で60分間以上420分間以下の範囲内の時間だけ真空加熱する加熱工程と、上記切粉を機械的に粉砕し、36メッシュの篩を通過するが、55メッシュの篩を通過しない粒度範囲の粉末、又は55メッシュの篩を通過する粒度範囲の粉末のみを原料粉末として選別する選別工程と、当該原料粉末単体若しくは当該原料粉末に鉄粉又はステンレス合金粉を上記原料切粉に対して5%以上30%以下の範囲で加えて混合した混合粉末を金型内に充填する充填工程と、当該金型を4トン/平方cm以上5トン/平方cm以下の範囲内の成形圧力で圧縮成型して圧粉体を形成する圧縮成形工程と、次に中性雰囲気又は還元性雰囲気において1100°C以上1150°C以下の範囲内の温度で30分間以上90分間以下の範囲内の時間だけ上記圧粉体を焼結する焼結工程から、実施のための最良の形態を構成することができる。更に、本発明に係る鋳鉄系焼結摺動部材は上記実施のための最良の形態に基く製造方法によって得られた摺動部材とすることができると共に、続いて当該摺動部材の総体積の内10体積%以上20体積%以下の範囲で含油処理を施したものとすることもできる。   From the various findings as described above, the method for producing a cast iron-based sintered sliding member according to the present invention cuts a gray cast iron casting in which the base exhibits an all-ferrite structure, and uses the chips obtained by the cutting. In a vacuum furnace, the degree of vacuum in the range of 1 Torr (100 Pa) to 0.001 Torr (0.1 Pa) is within the range of 60 minutes to 420 minutes at a temperature in the range of 300 ° C. to 600 ° C. Heating process for vacuum heating for a period of time, and the above-mentioned chips are pulverized mechanically and pass through a 36 mesh screen but do not pass through a 55 mesh screen, or a particle size range through a 55 mesh screen A selection process for selecting only the powder as raw material powder, and the raw material powder alone or the raw material powder with iron powder or stainless alloy powder in the range of 5% to 30% with respect to the raw material chips In addition, a filling step of filling the mixed powder into the mold and forming the green compact by compression molding the mold at a molding pressure in the range of 4 tons / square cm to 5 tons / square cm. A sintering process in which the green compact is sintered in a neutral or reducing atmosphere at a temperature in the range of 1100 ° C to 1150 ° C for a time in the range of 30 minutes to 90 minutes. From the linking step, the best mode for implementation can be constructed. Furthermore, the cast iron-based sintered sliding member according to the present invention can be a sliding member obtained by the manufacturing method based on the best mode for carrying out the above, and subsequently the total volume of the sliding member. The oil impregnation treatment may be performed in the range of 10% by volume to 20% by volume.

以下、表並びに図面を参照しながら本発明に係る好適な実施の形態を通して引き続き本発明を詳説するものとする。なお、本発明は下記の実施例のみに限定されるものではないことについては、言及するまでもない。   Hereinafter, the present invention will be described in detail through preferred embodiments according to the present invention with reference to the tables and drawings. In addition, it cannot be mentioned that this invention is not limited only to the following Example.

湿式切粉への真空加熱処理に関し、先ず成長ねずみ鋳鉄鋳物を切削して得られた湿式切粉を1Torrの真空度にて、300°Cの温度で120分間の時間だけ加熱した場合、300°Cの温度で420分間の時間だけ加熱した場合、600°Cの温度で60分間の時間だけ加熱した場合、の各々の切粉を準備した。これらの切粉を機械的に粉砕した後、篩いを使用して36メッシュの篩を通過するが55メッシュの篩を通過しない切粉又は55メッシュの篩を通過する切粉に分級し、それぞれ所定の金型に充填して3トン/平方cm、4トン/平方cm、5トン/平方cmの各成形圧力で圧縮成型して圧粉体を形成し、それぞれ圧粉体の成型体密度を調べた。成型体の密度は焼結強度と相関性があるため、この成型体の密度を調べることにより軸受の耐荷重性への影響をおおよそ判定することができる。この結果を表1に示すが、目標とする密度6.0以上が得られる条件は、いずれも4トン/平方cm以上の成形圧力で300°C以上600°C以下の範囲内の温度で、60分間以上420分間以下の範囲内の時間だけ真空加熱すれば良いとの結果を得た。   Regarding the vacuum heat treatment of wet chips, first, the wet chips obtained by cutting the gray cast iron casting were heated at a temperature of 300 ° C for 120 minutes at a vacuum of 1 Torr, 300 ° Each chip was prepared when heated at a temperature of C for 420 minutes and when heated at a temperature of 600 ° C. for a time of 60 minutes. After mechanically pulverizing these chips, they are classified into chips that pass through a 36-mesh sieve but do not pass through a 55-mesh sieve or chips that pass through a 55-mesh sieve using a sieve. The mold is filled and compression molded at molding pressures of 3 tons / square cm, 4 tons / square cm, and 5 tons / square cm to form green compacts, and the density of the green compacts is examined. It was. Since the density of the molded body has a correlation with the sintering strength, the influence on the load resistance of the bearing can be roughly determined by examining the density of the molded body. The results are shown in Table 1, and the conditions under which the target density of 6.0 or more is obtained are as follows. The molding pressure is 4 tons / square cm or more, and the temperature is in the range of 300 ° C. to 600 ° C. The result was obtained that the vacuum heating should be performed for a time within the range of 60 minutes to 420 minutes.

Figure 2008138226
Figure 2008138226

次に、3.65重量%のC、2.22重量%のSi、0.45重量%のMn、0.045重量%のP、0.084重量%のS、残部Feからなり、内径33mm、外径54mm、長さ203mmの円筒状ねずみ鋳鉄鋳物(FC150)を作製した。このねずみ鋳鉄鋳物のA1変態点よりも高い温度と低い温度との間で加熱冷却を繰り返す(A1変態点をはさんで上下する)反復加熱冷却処理をこのねずみ鋳鉄鋳物に施した。この反復加熱冷却処理によって、ねずみ鋳鉄素地中の一例として、オイレス工業(株)製の「オイレス#300(商品名)」が挙げられる。上記の成長ねずみ鋳鉄鋳物の成分組成は、3.72重量%のC、2.26重量%のSi、0.45重量%のMn、0.047重量%のP、0.086重量%のS、残部Feであった。   Next, 3.65 wt% C, 2.22 wt% Si, 0.45 wt% Mn, 0.045 wt% P, 0.084 wt% S and the balance Fe, inner diameter 33 mm A cylindrical gray cast iron casting (FC150) having an outer diameter of 54 mm and a length of 203 mm was produced. This gray cast iron casting was subjected to repeated heating and cooling treatment (heating up and down between A1 transformation points) between a temperature higher and lower than the A1 transformation point of this gray cast iron casting. By this repeated heating and cooling treatment, “Oiles # 300 (trade name)” manufactured by Oiles Industries Co., Ltd. can be cited as an example of a gray cast iron substrate. The component composition of the above-mentioned grown gray iron casting is 3.72% C, 2.26% Si, 0.45% Mn, 0.047% P, 0.086% S. The balance was Fe.

続いて、上記の成長ねずみ鋳鉄鋳物の表面に生成した酸化スケールを除去し、その後、この成長ねずみ鋳鉄鋳物に水溶性切削液を滴下しながら荒引き、中引き及び仕上げの切削加工を施し、内径40mm、外径50mm、長さ40mmの軸受ブッシュを作製した。このようにして成長ねずみ鋳鉄鋳物を切削加工して軸受ブッシュを作製する際には多量の湿式切粉が生じた。これら多量の湿式切粉を、0.1Torrの真空度で、600°Cで60分間の時間だけ真空加熱する。次いで、これらの切粉を機械的に粉砕して、36メッシュの篩を通過するが55メッシュの篩を通過しない粉末に選別した。次に、この粉末を金型内に充填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1130°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。   Subsequently, the oxidized scale formed on the surface of the above-mentioned grown gray cast iron is removed, and then roughing, thinning and finishing are performed while dripping a water-soluble cutting fluid onto this growing gray cast iron, A bearing bush having a diameter of 40 mm, an outer diameter of 50 mm, and a length of 40 mm was produced. In this way, a large amount of wet swarf was generated when the bearing gray was produced by cutting the gray cast iron casting. These large amounts of wet chips are vacuum heated at 600 ° C. for 60 minutes at a vacuum degree of 0.1 Torr. These chips were then mechanically crushed and screened into a powder that passed through a 36 mesh screen but did not pass through a 55 mesh screen. Next, this powder was filled in a mold and compression molded at a molding pressure of 5 tons / square cm to produce a green compact. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1130 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

上記した実施例1と同様にして、成長ねずみ鋳鉄鋳物を切削加工して軸受ブッシュを作製する際に生じた切粉を機械的に粉砕して、55メッシュの篩を通過する切粉に選別し、この粉末を円筒状の金型内に装填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1130°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。   In the same manner as in Example 1 described above, the chips produced when machining the gray cast iron castings to produce bearing bushes are mechanically pulverized and sorted into chips that pass through a 55 mesh screen. The powder was loaded into a cylindrical mold and compression molded at a molding pressure of 5 tons / square cm to produce a green compact. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1130 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

上記した実施例1と同様にして、成長ねずみ鋳鉄鋳物を切削加工して軸受ブッシュを作製する際に生じた切粉を機械的に粉砕して、36メッシュの篩を通過するが55メッシュの篩を通過しない粉末に選別した。この粉末に重量にて5%の噴霧鉄分を加えて混合し、この混合粉末を円筒状の金型内に装填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1130°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。   In the same manner as in Example 1 described above, chips generated when a gray cast iron casting was cut to produce a bearing bush were mechanically pulverized and passed through a 36 mesh screen, but a 55 mesh screen. The powder was selected so as not to pass through. This powder was mixed with 5% spray iron by weight, and the mixed powder was loaded into a cylindrical mold and compression molded at a molding pressure of 5 tons / square cm to produce a green compact. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1130 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

上記した実施例2と同様にして、成長ねずみ鋳鉄鋳物を切削加工して軸受ブッシュを作製する際に生じた切粉を機械的に粉砕して、55メッシュの篩を通過する切粉に選別し、この粉末に重量にて5%の噴霧鉄粉を加えて混合し、この混合粉末を円筒状の金型内に装填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1130°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。   In the same manner as in Example 2 described above, the chips generated when the bearing gray was produced by cutting the gray cast iron casting was mechanically crushed and selected into chips passing through a 55 mesh sieve. Add 5% by weight of sprayed iron powder to this powder and mix it. Load this mixed powder into a cylindrical mold and compress it at a molding pressure of 5 tons / square cm to make a green compact. did. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1130 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

上記した実施例2と同様にして、成長ねずみ鋳鉄鋳物を切削加工して軸受ブッシュを作製する際に生じた切粉を機械的に粉砕して、55メッシュの篩を通過する切粉に選別し、この粉末に重量にて30%の306ステンレス粉を加えて混合し、この混合粉末を円筒状の金型内に装填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1110°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。   In the same manner as in Example 2 described above, the chips generated when the bearing gray was produced by cutting the gray cast iron casting was mechanically crushed and selected into chips passing through a 55 mesh sieve. , 30% by weight of 306 stainless steel powder is added to this powder and mixed, and this mixed powder is loaded into a cylindrical mold and compression molded at a molding pressure of 5 tons / square cm to produce a green compact. did. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1110 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

比較例Comparative example

一方、3.65重量%のC、2.22重量%のSi、0.45重量%のMn、0.045重量%のP、0.084重量%のS、残部Feからなり、内径33mm、外径54mm、長さ203mmの円筒状ねずみ鋳鉄鋳物(FC150)を作製した。このねずみ鋳鉄鋳物のA1変態点よりも高い温度と低い温度との間で加熱冷却を繰り返す(A1変態点をはさんで上下する)反復加熱冷却処理をこのねずみ鋳鉄鋳物に施した。この反復加熱冷却処理によって、ねずみ鋳鉄素地中の一例として、オイレス工業(株)製の「オイレス#300(商品名)」が挙げられる。上記の成長ねずみ鋳鉄鋳物の成分組成は、3.72重量%のC、2.26重量%のSi、0.45重量%のMn、0.047重量%のP、0.086重量%のS、残部Feであった。   On the other hand, it consists of 3.65% by weight of C, 2.22% by weight of Si, 0.45% by weight of Mn, 0.045% by weight of P, 0.084% by weight of S, and the balance of Fe. A cylindrical gray cast iron casting (FC150) having an outer diameter of 54 mm and a length of 203 mm was produced. This gray cast iron casting was subjected to repeated heating and cooling treatment (heating up and down between A1 transformation points) between a temperature higher and lower than the A1 transformation point of this gray cast iron casting. By this repeated heating and cooling treatment, “Oiles # 300 (trade name)” manufactured by Oiles Industries Co., Ltd. can be cited as an example of a gray cast iron substrate. The component composition of the above-mentioned grown gray iron casting is 3.72% C, 2.26% Si, 0.45% Mn, 0.047% P, 0.086% S. The balance was Fe.

次に、上記の成長ねずみ鋳鉄鋳物の表面に生成した酸化スケールを除去し、その後、この成長ねずみ鋳鉄鋳物に対して切削液を使用しないドライ切削による荒引き、中引き及び仕上げの切削加工を施し、内径40mm、外径50mm、長さ40mmの軸受ブッシュを作製した。この軸受ブッシュを作製する際に生じた切粉を機械的に粉砕して、20メッシュの篩を通過するが36メッシュの篩を通過しない切粉を重量にて30%、また36メッシュの篩を通過するが55メッシュの篩を通過しない切粉を重量にて60%、さらに55メッシュの篩を通過する切粉を重量にて10%を採取し、これらの粉末を混合した後、この混合粉末を円筒状の金型内に装填し、成形圧力5トン/平方cmで圧縮成型して圧粉体を作製した。その後、焼結炉において、この圧粉体を水素ガス雰囲気中にて1130°Cの温度で60分間焼結して焼結体を得た。この焼結体を切削加工して、内径20mm、外径28mm、長さ15mmの円筒状の摺動部材を作製した。 Next, the oxidized scale formed on the surface of the above-mentioned gray cast iron casting is removed, and then the rough gray cast, thinning, and finish cutting are performed on the grown gray cast iron casting by dry cutting without using a cutting fluid. A bearing bush having an inner diameter of 40 mm, an outer diameter of 50 mm, and a length of 40 mm was produced. Chips generated during the production of the bearing bush are mechanically pulverized, and 30% by weight of the chips that pass through the 20 mesh screen but do not pass through the 36 mesh screen, and the 36 mesh screen. 60% by weight of the chips that pass through but does not pass through the 55 mesh sieve, and 10% by weight of the chips that pass through the 55 mesh sieve are collected, and after mixing these powders, this mixed powder Was loaded into a cylindrical mold and compression molded at a molding pressure of 5 tons / square cm to produce a green compact. Thereafter, this green compact was sintered in a hydrogen gas atmosphere at a temperature of 1130 ° C. for 60 minutes in a sintering furnace to obtain a sintered body. The sintered body was cut to produce a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm.

続いて、上述した実施例1、実施例2、実施例3、実施例4、実施例5及び比較例における各切粉の組成を表2に、また各圧粉体及び焼結体の物性値を表3に示す。表3における含油率は、各実施例及び比較例で製造された焼結体にそれぞれ含油処理を施し、その含油率を測定した値である。   Subsequently, the composition of each chip in Example 1, Example 2, Example 3, Example 4, Example 5, and Comparative Example described above is shown in Table 2, and the physical properties of each green compact and sintered body Is shown in Table 3. The oil content in Table 3 is a value obtained by subjecting the sintered bodies produced in each Example and Comparative Example to oil treatment and measuring the oil content.

Figure 2008138226
Figure 2008138226

Figure 2008138226
Figure 2008138226

上記した実施例1、実施例2、実施例3、実施例4、実施例5及び比較例で得た焼結摺動部材について、下記に示す試験条件により軸受性能を試験した。試験方法の概略図を図1に示す。ここで、図示のように円筒形状の軸受に挿入された相手軸は時計廻りに45°、反時計廻りに45°と合計90°の範囲で反復運動する。荷重は鉛直方向下部からレバーを介して錘で加える構造である。
「軸受性能試験」
試験条件
すべり速度 0.5m/min
荷重(面圧) 200kgf/平方cm
揺動角 −45°〜+45°
試験時間 20時間
相手軸 機械構造用炭素鋼(S45C)焼入材
試験方法 ラジアルジャーナル揺動試験
潤滑方法 試験開始時に摺動面にグリースを薄く塗布した
Bearing performance was tested under the test conditions shown below for the sintered sliding members obtained in Example 1, Example 2, Example 3, Example 4, Example 5, and Comparative Example. A schematic diagram of the test method is shown in FIG. Here, as shown in the figure, the mating shaft inserted into the cylindrical bearing repeatedly moves in the range of 45 ° clockwise and 45 ° counterclockwise in a total range of 90 °. The load is applied by a weight from the lower part in the vertical direction via a lever.
"Bearing performance test"
Test condition sliding speed 0.5m / min
Load (surface pressure) 200kgf / square cm
Oscillation angle -45 ° to + 45 °
Test time 20 hours Counter shaft Machine structural carbon steel (S45C) quenching material test method Radial journal swing test lubrication method Grease was applied thinly to the sliding surface at the start of the test

上記した条件で行った軸受揺動試験の結果から、各実施例の摩耗量の結果と摩擦係数の結果をそれぞれ図2と図3に示す。ここで、図2は各実施例及び比較例の軸受性能試験における摩耗量を、図3は各実施例及び比較例の軸受性能試験における摩擦係数の変化を示している。また、図2の摩耗量とは、各実施例で製造した内径20mm、外径28mm、長さ15mmの円筒状の摺動部材の内径寸法が軸受揺動試験によって摩耗したときの変化量を示す。一方図3に示すように、比較例の摺動部材では試験時間10時間を越えるころから摩擦係数がやや上昇し始め、試験時間20時間の時点で0.18を示した。また図2における比較例の軸受摩耗量は0.0117mmであった。当該軸受揺動試験は、鋳鉄鋳物の軸受として一般に利用されている条件を想定した試験方法であるが、荷重(面圧)は50kgf/平方cm以下が通例である。200kgf/平方cmという高い荷重での使用例はあまりなく、本発明品と比較例の軸受性能の差異を引き出すために当該条件を選択している。このように高い荷重条件にもかかわらず比較例は軸受として機能している。一方図3より、各実施例の摩擦係数は20時間の試験中、比較例に比べ0.15〜0.10の低い摩擦係数を維持し、軸受として優れた性能を発揮している。また、図2の軸受摩耗量においては実施例1で0.004mm、実施例2で0.0068mm、実施例3で0.0066mm、実施例4で0.0053mmそして実施例5で0.0026mmの値であり、比較例の0.0117mmと比べいずれもかなり少ない値である。試験後、実施例1、実施例2、実施例3、実施例4及び実施例5の相手軸の表面を観察したところ、遊離黒鉛の潤滑被膜が相手軸表面に形成されていることが確認された。同様に、比較例の相手軸の観察では部分的に潤滑被膜が欠落して金属面が露出していることが確認された。このような結果は、実施例において、原料粉の真空焼鈍による材質の均一化と一定の粒度範囲を有するために焼結後に一定の安定した組織と硬さを得たこと、及び遊離黒鉛の均一分散とが図られたために得られたと推察される。   FIGS. 2 and 3 show the results of the wear amount and the friction coefficient of each example from the results of the bearing swing test performed under the above-described conditions, respectively. Here, FIG. 2 shows the amount of wear in the bearing performance test of each example and comparative example, and FIG. 3 shows the change in the friction coefficient in the bearing performance test of each example and comparative example. The amount of wear in FIG. 2 indicates the amount of change when the inner diameter of a cylindrical sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm manufactured in each example is worn by a bearing swing test. . On the other hand, as shown in FIG. 3, in the sliding member of the comparative example, the friction coefficient started to increase slightly from the time when the test time exceeded 10 hours, and showed 0.18 when the test time was 20 hours. Further, the wear amount of the comparative example in FIG. 2 was 0.0117 mm. The bearing swing test is a test method that assumes the conditions generally used for cast iron casting bearings, but the load (surface pressure) is typically 50 kgf / square cm or less. There are not many examples of use at a high load of 200 kgf / square cm, and the conditions are selected in order to draw out the difference in bearing performance between the product of the present invention and the comparative example. The comparative example functions as a bearing despite such high load conditions. On the other hand, as shown in FIG. 3, the friction coefficient of each example maintained a low coefficient of friction of 0.15 to 0.10 compared with the comparative example during the 20-hour test, and exhibited excellent performance as a bearing. Further, in the bearing wear amount in FIG. 2, 0.004 mm in Example 1, 0.0068 mm in Example 2, 0.0066 mm in Example 3, 0.0053 mm in Example 4, and 0.0026 mm in Example 5. The values are considerably smaller than 0.0117 mm in the comparative example. After the test, the surfaces of the mating shafts of Example 1, Example 2, Example 3, Example 4 and Example 5 were observed, and it was confirmed that a lubricating film of free graphite was formed on the mating shaft surface. It was. Similarly, in the observation of the counterpart shaft of the comparative example, it was confirmed that the lubricant film was partially missing and the metal surface was exposed. Such results show that in the examples, the material was homogenized by vacuum annealing of the raw material powder and had a certain particle size range, so that a certain stable structure and hardness were obtained after sintering, and the free graphite was uniform. It is inferred that it was obtained because of the dispersion.

本発明に係る鋳鉄系焼結摺動部材の製造方法によれば、従来大部分が廃棄物として廃棄されていた成長ねずみ鋳鉄の湿式切粉に対する再利用を可能にすると共に、十分な強度と適切な潤滑性を具備した鋳鉄系焼結摺動部材を工業的な生産方法によって大量に製造することができるものであり、また摺動部材としての機能特性が高いことから各種の産業機械器具用材料として利用することによる経済的効果は極めて高い。   According to the method for producing a cast iron-based sintered sliding member according to the present invention, it is possible to reuse grown gray cast iron, which has been mostly discarded as waste, with respect to wet chips, and to have sufficient strength and appropriateness. Cast iron-based sintered sliding members with excellent lubricity can be produced in large quantities by an industrial production method, and because of their high functional properties as sliding members, they are used for various industrial machine equipment materials. The economic effect of using as is extremely high.

(表1)密度に及ぼす湿式切粉の真空加熱条件と成形圧力との関係を示す表。
(表2)各実施例及び比較例の原料粉の粒度と組成を示す表。
(表3)各実施例及び比較例の成型後の密度と焼結後の密度、硬さ及び含油率を示す表。
軸受性能試験方法の概略を示す図。 各実施例及び比較例の軸受性能試験における摩耗量を示すグラフ。 各実施例及び比較例の軸受性能試験における摩擦係数を示すグラフ。
(Table 1) The table | surface which shows the relationship between the vacuum heating conditions and the molding pressure of the wet swarf which influence on a density.
(Table 2) The table | surface which shows the particle size and composition of the raw material powder | flour of each Example and a comparative example.
(Table 3) The table | surface which shows the density after molding of each Example and a comparative example, the density after sintering, hardness, and oil content.
The figure which shows the outline of a bearing performance test method. The graph which shows the abrasion loss in the bearing performance test of each Example and a comparative example. The graph which shows the friction coefficient in the bearing performance test of each Example and a comparative example.

Claims (7)

素地がオールフェライト組織を呈する成長ねずみ鋳鉄鋳物を切削し、当該切削によって得られた切粉を真空炉中にて加熱する加熱工程と、上記切粉を粉砕して所定の粒度範囲の切粉のみを原料粉末として選別する選別工程と、当該原料粉末単体若しくは当該原料粉末に鉄粉又はステンレス合金粉を加えて混合した混合粉末を金型内に充填する充填工程と、当該金型を4トン/平方cm以上5トン/平方cm以下の範囲内の成形圧力で圧縮成型して圧粉体を形成する圧縮成形工程と、次に中性雰囲気又は還元性雰囲気において1100°C以上1150°C以下の範囲内の温度で30分間以上90分間以下の範囲内の時間だけ上記圧粉体を焼結する焼結工程から成ることを特徴とする、鋳鉄系焼結摺動部材の製造方法。   Cutting the growth gray cast iron casting in which the base exhibits an all-ferrite structure, a heating process in which the chips obtained by the cutting are heated in a vacuum furnace, and the chips are pulverized to obtain only chips in a predetermined particle size range. As a raw material powder, a filling step for filling the raw material powder alone or a mixed powder obtained by adding iron powder or stainless steel alloy powder to the raw material powder, and filling the mold with 4 ton / A compression molding step in which a green compact is formed by compression molding at a molding pressure in a range of square cm to 5 ton / square cm; and then in a neutral atmosphere or a reducing atmosphere at 1100 ° C. to 1150 ° C. A method for producing a cast iron-based sintered sliding member, comprising a sintering step in which the green compact is sintered at a temperature within a range for a time within a range from 30 minutes to 90 minutes. 前記加熱工程における加熱が、真空炉にて1Torr(100Pa)以上0.001Torr(0.1Pa)以下の範囲内の真空度で300°C以上600°C以下の範囲内の温度で60分間以上420分間以下の範囲内の時間だけ真空加熱することを特徴とする、請求項1に記載の鋳鉄系焼結摺動部材の製造方法。   The heating in the heating step is performed at a temperature in a range of 300 ° C. or more and 600 ° C. or less for 60 minutes or more and 420 degrees in a vacuum degree in a range of 1 Torr (100 Pa) or more and 0.001 Torr (0.1 Pa) or less in a vacuum furnace. 2. The method for producing a cast iron-based sintered sliding member according to claim 1, wherein vacuum heating is performed for a time within a range of minutes or less. 前記選別工程における原料粉末が、切粉を機械的に粉砕し、36メッシュの篩を通過するが、55メッシュの篩を通過しない粒度範囲の粉末であることを特徴とする、請求項1乃至請求項2記載の鋳鉄系焼結摺動部材の製造方法。   The raw material powder in the selection step is a powder having a particle size range in which a chip is mechanically pulverized and passes through a 36-mesh sieve but does not pass through a 55-mesh sieve. Item 3. A method for producing a cast iron-based sintered sliding member according to Item 2. 前記選別工程における原料粉末が、切粉を機械的に粉砕し、55メッシュの篩を通過する粒度範囲の粉末であることを特徴とする、請求項1乃至請求項2記載の鋳鉄系焼結摺動部材の製造方法。   3. The cast iron-based sintered slide according to claim 1, wherein the raw material powder in the sorting step is a powder in a particle size range in which a chip is mechanically pulverized and passes through a 55 mesh sieve. Manufacturing method of moving member. 前記充填工程における原料粉末に対する混合粉末として、鉄粉又はステンレス合金粉を上記原料粉末重量に対して5%以上30%以下の範囲で加えたことを特徴とする、請求項1乃至請求項4記載の鋳鉄系焼結摺動部材の製造方法。   The mixed powder with respect to the raw material powder in the said filling process added iron powder or stainless steel alloy powder in the range of 5% or more and 30% or less with respect to the said raw material powder weight, The Claim 1 thru | or 4 characterized by the above-mentioned. Of manufacturing a cast iron-based sintered sliding member. 前記焼結工程後に得られた圧粉体に、当該圧粉体の総体積の内10体積%以上20体積%以下の範囲で含油処理を施すことを特徴とする、請求項1乃至請求項5記載の鋳鉄系焼結摺動部材の製造方法。   6. An oil impregnation treatment is performed on the green compact obtained after the sintering step in a range of 10% by volume to 20% by volume of the total volume of the green compact. The manufacturing method of the cast iron type sintered sliding member of description. 請求項1乃至請求項6までの内のいずれか一項に記載の鋳鉄系焼結摺動部材の製造方法によって製造されたことを特徴とする鋳鉄系焼結摺動部材。   A cast iron-based sintered sliding member produced by the method for producing a cast iron-based sintered sliding member according to any one of claims 1 to 6.
JP2006322801A 2006-11-30 2006-11-30 Manufacturing method of cast iron-based sintered sliding member Expired - Fee Related JP4917869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322801A JP4917869B2 (en) 2006-11-30 2006-11-30 Manufacturing method of cast iron-based sintered sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322801A JP4917869B2 (en) 2006-11-30 2006-11-30 Manufacturing method of cast iron-based sintered sliding member

Publications (2)

Publication Number Publication Date
JP2008138226A true JP2008138226A (en) 2008-06-19
JP4917869B2 JP4917869B2 (en) 2012-04-18

Family

ID=39600002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322801A Expired - Fee Related JP4917869B2 (en) 2006-11-30 2006-11-30 Manufacturing method of cast iron-based sintered sliding member

Country Status (1)

Country Link
JP (1) JP4917869B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488814A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd High temperature and pressure sintering method used cutting scrap
JPS57104601A (en) * 1980-12-19 1982-06-29 Sumitomo Electric Ind Ltd Production of sintered parts
JP2002275507A (en) * 2001-01-15 2002-09-25 Oiles Ind Co Ltd Cast iron based sintered sliding member and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488814A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd High temperature and pressure sintering method used cutting scrap
JPS57104601A (en) * 1980-12-19 1982-06-29 Sumitomo Electric Ind Ltd Production of sintered parts
JP2002275507A (en) * 2001-01-15 2002-09-25 Oiles Ind Co Ltd Cast iron based sintered sliding member and production method therefor

Also Published As

Publication number Publication date
JP4917869B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4887287B2 (en) Sintered metal parts and manufacturing method thereof
JP5858921B2 (en) Ferrous sintered powder metal for wear resistant applications
JP5453251B2 (en) Iron-based powder and composition thereof
CN104759618B (en) A kind of ferrotianium base oil-containing antifriction material
EP1755810A2 (en) Iron-based gear wheels produced by a process comprising uniaxially compacting, sintering and surface densifying
WO2009148402A1 (en) Iron- based pre-alloyed powder
US20130251586A1 (en) Sintered bearing and preparation method thereof
JP2007046166A (en) Use of mixture composed of iron based powder, graphite and solid lubricant particle
JP3378012B2 (en) Manufacturing method of sintered product
KR101918431B1 (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
KR20180072876A (en) Nitrided sintered steels
US7300488B2 (en) Powder metal composition and method for producing components thereof
US5545249A (en) Sintered bearing alloy for high-temperature application and method of manufacturing an article of the alloy
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP4668620B2 (en) Powder composition and method for producing high-density green compact
KR20050105243A (en) Cobalt-based metal powder and method for producing components thereof
RU2333075C2 (en) Method of parts manufacturing on basis of iron by means of pressing at higher pressures
JP4917869B2 (en) Manufacturing method of cast iron-based sintered sliding member
WO2004038054A1 (en) A method of controlling the dimensional change when sintering an iron-based power mixture
JP3795391B2 (en) Cast iron-based sintered sliding member and manufacturing method thereof
JP3795402B2 (en) Cast iron-based sintered sliding member and manufacturing method thereof
US20060198751A1 (en) Co-based water-atomised powder composition for die compaction
JP2002509984A (en) Metal powder obtained from the residue of material cutting of iron parts manufactured by chill casting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees