JP2008138194A5 - - Google Patents

Download PDF

Info

Publication number
JP2008138194A5
JP2008138194A5 JP2007291067A JP2007291067A JP2008138194A5 JP 2008138194 A5 JP2008138194 A5 JP 2008138194A5 JP 2007291067 A JP2007291067 A JP 2007291067A JP 2007291067 A JP2007291067 A JP 2007291067A JP 2008138194 A5 JP2008138194 A5 JP 2008138194A5
Authority
JP
Japan
Prior art keywords
group
organic
pigment
nanoparticles according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291067A
Other languages
Japanese (ja)
Other versions
JP5224785B2 (en
JP2008138194A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007291067A priority Critical patent/JP5224785B2/en
Priority claimed from JP2007291067A external-priority patent/JP5224785B2/en
Publication of JP2008138194A publication Critical patent/JP2008138194A/en
Publication of JP2008138194A5 publication Critical patent/JP2008138194A5/ja
Application granted granted Critical
Publication of JP5224785B2 publication Critical patent/JP5224785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記課題は下記の手段により達成された。
(1)良溶媒に有機材料を溶解した有機材料溶液と、前記良溶媒と相溶性でありかつ前記有機材料に対しては貧溶媒となる溶媒とを下記数式(1)で表されるレイノルズ数が60以上となる条件下で混合し前記有機材料のナノ粒子を析出させた分散液とすることを特徴とする有機ナノ粒子の製造方法。
Re=ρUL/μ ・・・ 数式(1)
(数式(1)中、Reはレイノルズ数を表し、ρは有機材料溶液の密度を表し、Uは有機材料溶液と貧溶媒とが出会うときの相対速度を表し、Lは有機材料溶液と貧溶媒とが出会う部分の流路もしくは供給口の等価直径を表し、μは有機材料溶液の粘性係数を表す。)
(2)前記有機ナノ粒子の平均粒径が60nm以下となるように粒子径を制御して析出させることを特徴とする(1)に記載の有機ナノ粒子の製造方法
(3)前記貧溶媒に前記有機材料溶液を供給管から噴流して混合することを特徴とする(1)または(2)に記載の有機ナノ粒子の製造方法。
(4)前記貧溶媒を攪拌することを特徴とする(3に記載の有機ナノ粒子の製造方法。
(5)前記レイノルズ数が100以上である(1)〜(4)のいずれか1項に記載の有機ナノ粒子の製造方法。
(6)前記レイノルズ数が2500以下である(1)〜(5)のいずれか1項に記載の有機ナノ粒子の製造方法。
(7)前記分散液が分子量1000以上の高分子化合物を含有することを特徴とする(1)〜(6)のいずれか1項に記載の有機ナノ粒子の製造方法。
(8)前記分散液が実質的に水不溶性の高分子化合物を含有することを特徴とする(1)〜(7)のいずれか1項に記載の有機ナノ粒子の製造方法。
(9)前記高分子化合物が下記一般式(1)で表されることを特徴とする(7)または(8)に記載の有機ナノ粒子の製造方法。

Figure 2008138194
〔式中、Rは、(m+n)価の連結基を表し、Rは単結合あるいは2価の連結基を表す。Aは、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基からなる群より選ばれる基を有する1価の有機基、または置換基を有してもよい有機色素構造もしくは複素環を含有する1価の有機基を表す。ただし、n個のAは互いに同一であっても、異なっていてもよい。mは1〜8の数を表し、nは2〜9の数を表し、m+nは3〜10を満たす。Pは高分子化合物残基を表す。〕
(10)前記高分子化合物が下記一般式(2)で表されることを特徴とする(9)に記載の有機ナノ粒子の製造方法。
Figure 2008138194
〔式中、Rは、(x+y)価の連結基を表す。RおよびRは、各々独立に単結合または2価の連結基を表す。Aは、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基からなる群より選ばれる基を有する1価の有機基、または置換基を有してもよい有機色素構造もしくは複素環を含有する1価の有機基を表す。ただし、x個のAは互いに同一であっても、異なっていてもよい。yは1〜8の数を表し、xは2〜9の数を表し、x+yは3〜10を満たす。Pは高分子化合物残基を表す。〕
(11)前記有機材料が有機顔料であることを特徴とする(1)〜(10)のいずれか1項に記載の有機ナノ粒子の製造方法。
(12)前記有機顔料がピロロピロール化合物顔料であることを特徴とする(11)に記載の有機ナノ粒子の製造方法。
(13)前記ピロロピロール化合物顔料がC.I.ピグメントレッド254、C.I.ピグメントレッド255、C.I.ピグメントレッド264、及びC.I.ピグメントレッド272のいずれかであることを特徴とする(12)に記載の有機ナノ粒子の製造方法。
(14)前記有機顔料がフタロシアニン化合物顔料であることを特徴とする(11)に記載の有機ナノ粒子の製造方法。
(15)前記フタロシアニン化合物顔料がC.I.ピグメントグリーン36、C.I.ピグメントグリーン7、及びC.I.ピグメントブルー15:6のいずれかであることを特徴とする(14)に記載の有機ナノ粒子の製造方法。
(16)前記有機顔料がジオキサジン化合物顔料であることを特徴とする(11)に記載の有機ナノ粒子の製造方法。
(17)前記ジオキサジン化合物顔料がC.I.ピグメントバイオレット23またはC.I.ピグメントバイオレット37であることを特徴とする(16)に記載の有機ナノ粒子の製造方法。
(18)前記有機ナノ粒子を、前記貧溶媒が10L以上のスケールで析出させることを特徴とする(1)〜(17)のいずれか1項に記載の有機ナノ粒子の製造方法。
(19)(1)〜(18)のいずれか1項に記載の方法で製造された有機ナノ粒子。
(20)重合性モノマーおよび/または重合性オリゴマーを含む媒体に、(19)に記載の有機ナノ粒子を含んでなることを特徴とするカラーフィルタ用インクジェットインク。
(21)(19)に記載の有機ナノ粒子と、バインダーと、モノマーもしくはオリゴマーと、光重合開始剤もしくは光重合開始剤系とを少なくとも含む着色感光性樹脂組成物。
(22)仮支持体上に、少なくとも、(21)に記載の着色感光性樹脂組成物を含む感光性樹脂層を設けたことを特徴とする感光性樹脂転写材料。
(23)(20)に記載のインクジェットインク、(21)に記載の着色感光性樹脂組成物、及び/又は(22)に記載の感光性樹脂転写材料を用いて作製したことを特徴とするカラーフィルタ。
(24)(23)に記載のカラーフィルタを備えたことを特徴とする液晶表示装置。
(25)前記表示装置がVA方式であることを特徴とする(24)に記載の液晶表示装置。
(26)(23)に記載のカラーフィルタを備えたことを特徴とするCCDデバイス。
The above problems have been achieved by the following means.
(1) An organic material solution in which an organic material is dissolved in a good solvent, and a solvent that is compatible with the good solvent and that is a poor solvent for the organic material is represented by the following Reynolds number: A method for producing organic nanoparticles, characterized in that a dispersion is prepared by mixing under conditions where the value is 60 or more to precipitate nanoparticles of the organic material.
Re = ρUL / μ Equation (1)
(In formula (1), Re represents the Reynolds number, ρ represents the density of the organic material solution, U represents the relative velocity when the organic material solution and the poor solvent meet, and L represents the organic material solution and the poor solvent. Represents the equivalent diameter of the flow path or supply port of the part where and meet, and μ represents the viscosity coefficient of the organic material solution.)
(2) The method of producing organic nanoparticles described before Symbol average particle size of the organic nanoparticles, characterized in that the deposit by controlling the particle size so that the 60nm or less (1).
(3) The method for producing organic nanoparticles according to (1) or (2), wherein the organic material solution is jetted from a supply pipe into the poor solvent and mixed.
(4) The method for producing organic nanoparticles according to (3), wherein the poor solvent is stirred.
(5) The method for producing organic nanoparticles according to any one of (1) to (4), wherein the Reynolds number is 100 or more.
(6) The method for producing organic nanoparticles according to any one of (1) to (5), wherein the Reynolds number is 2500 or less.
(7) The method for producing organic nanoparticles according to any one of (1) to (6), wherein the dispersion contains a polymer compound having a molecular weight of 1000 or more.
(8) The method for producing organic nanoparticles according to any one of (1) to (7), wherein the dispersion contains a substantially water-insoluble polymer compound.
(9) The method for producing organic nanoparticles according to (7) or (8), wherein the polymer compound is represented by the following general formula (1).
Figure 2008138194
[Wherein, R 1 represents a (m + n) -valent linking group, and R 2 represents a single bond or a divalent linking group. A 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and A monovalent organic group having a group selected from the group consisting of a hydroxyl group, or a monovalent organic group containing an organic dye structure or a heterocyclic ring which may have a substituent. However, n pieces of A 1 may be the same as or different from each other. m represents a number of 1 to 8, n represents a number of 2 to 9, and m + n satisfies 3 to 10. P 1 represents a polymer compound residue. ]
(10) The method for producing organic nanoparticles according to (9), wherein the polymer compound is represented by the following general formula (2).
Figure 2008138194
[Wherein R 3 represents a (x + y) -valent linking group. R 4 and R 5 each independently represents a single bond or a divalent linking group. A 2 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and A monovalent organic group having a group selected from the group consisting of a hydroxyl group, or a monovalent organic group containing an organic dye structure or a heterocyclic ring which may have a substituent. However, x A 2 may be the same or different. y represents a number of 1 to 8, x represents a number of 2 to 9, and x + y satisfies 3 to 10. P 2 represents a polymer compound residue. ]
(11) The method for producing organic nanoparticles according to any one of (1) to (10), wherein the organic material is an organic pigment.
(12) The method for producing organic nanoparticles according to (11), wherein the organic pigment is a pyrrolopyrrole compound pigment.
(13) The pyrrolopyrrole compound pigment is C.I. I. Pigment red 254, C.I. I. Pigment red 255, C.I. I. Pigment red 264, and C.I. I. The method for producing organic nanoparticles according to (12), which is any one of CI Pigment Red 272.
(14) The method for producing organic nanoparticles according to (11), wherein the organic pigment is a phthalocyanine compound pigment.
(15) The phthalocyanine compound pigment is C.I. I. Pigment green 36, C.I. I. Pigment green 7, and C.I. I. The method for producing organic nanoparticles according to (14), which is any one of CI Pigment Blue 15: 6.
(16) The method for producing organic nanoparticles according to (11), wherein the organic pigment is a dioxazine compound pigment.
(17) The dioxazine compound pigment is C.I. I. Pigment violet 23 or C.I. I. It is a pigment violet 37, The manufacturing method of the organic nanoparticle as described in (16) characterized by the above-mentioned.
(18) The method for producing organic nanoparticles according to any one of (1) to (17), wherein the organic solvent is precipitated on a scale in which the poor solvent is 10 L or more.
(19) Organic nanoparticles produced by the method according to any one of (1) to (18).
(20) An ink-jet ink for a color filter, comprising the organic nanoparticle according to (19) in a medium containing a polymerizable monomer and / or a polymerizable oligomer.
(21) A colored photosensitive resin composition comprising at least the organic nanoparticles according to (19), a binder, a monomer or an oligomer, and a photopolymerization initiator or a photopolymerization initiator system.
(22) A photosensitive resin transfer material, wherein a photosensitive resin layer containing at least the colored photosensitive resin composition according to (21) is provided on a temporary support.
(23) A color produced by using the inkjet ink according to (20), the colored photosensitive resin composition according to (21), and / or the photosensitive resin transfer material according to (22). filter.
(24) A liquid crystal display device comprising the color filter according to (23).
(25) The liquid crystal display device according to (24), wherein the display device is a VA system.
(26) A CCD device comprising the color filter according to (23).

レイノルズ数(Re)の値は、小さいほど層流を形成しやすく、大きいほど乱流を形成しやすい。本発明の製造方法においては、レイノルズ数を60以上で調節して、有機ナノ粒子の粒子径を制御して得ることができ、100以上とすることが好ましく、150以上とすることがより好ましい。本発明のレイノズル数に上限はないが、本発明においてはレイノルズ数の制御が形成後の粒子の性能に大きく影響しうること考慮し、レイノルズ数は3500以下の範囲で調節して良好な有機ナノ粒子を制御して得ることが好ましく、3000以下であることがより好ましく、2500以下であることが特に好ましい。また、本発明の製造方法においては、得られるナノ粒子の平均粒径が60nm以下となるようにレイノルズ数を制御し、40nm以下が更に好ましく、30nm以下となるようにレイノルズ数を制御することが特に好ましい。
The smaller the Reynolds number (Re) value, the easier it is to form a laminar flow, and the larger the value, the easier it is to form turbulent flow. In the production method of the present invention, the Reynolds number can be adjusted to 60 or more to control the particle size of the organic nanoparticles, and is preferably 100 or more, more preferably 150 or more. Although there is no upper limit to the number of Reynolds nozzles of the present invention, considering that the Reynolds number control can greatly affect the performance of the particles after formation in the present invention, the Reynolds number can be adjusted within a range of 3500 or less to achieve good organic nano It is preferable to obtain particles by controlling, more preferably 3000 or less, and particularly preferably 2500 or less. In the production method of the present invention , the Reynolds number is controlled so that the average particle size of the obtained nanoparticles is 60 nm or less , more preferably 40 nm or less, and the Reynolds number is controlled so as to be 30 nm or less. Particularly preferred.

有機粒子の粒径に関しては、計測法により数値化して集団の平均の大きさを表現する方法があるが、よく使用されるものとして、分布の最大値を示すモード径、積分分布曲線の中央値に相当するメジアン径、各種の平均径(数平均、長さ平均、面積平均、質量平均、体積平均等)などがあり、本発明においては、特に断りのない限り、平均粒径とは数平均径をいう。有機ナノ粒子(一次粒子)の平均粒径はナノメートルサイズであり、平均粒径は前記の範囲であることが特に好ましい。なお本発明の製造方法で形成される粒子は結晶質粒子でも非晶質粒子でもよく、またはこれらの混合物でもよい。
また、粒子の単分散性を表す指標として、本発明においては、特に断りのない限り、体積平均粒径(Mv)と数平均粒径(Mn)の比(Mv/Mn)を用いる。有機ナノ粒子の(一次粒子)の単分散性、つまりMv/Mnは、1.0〜2.0であることが好ましく、1.0〜1.8であることがより好ましく、1.0〜1.5であることが特に好ましい。
有機粒子の粒径の測定方法としては、顕微鏡法、重量法、光散乱法、光遮断法、電気抵抗法、音響法、動的光散乱法が挙げられ、顕微鏡法、動的光散乱法が特に好ましい。顕微鏡法に用いられる顕微鏡としては、例えば、走査型電子顕微鏡、透過型電子顕微鏡などが挙げられる。動的光散乱法による粒子測定装置として、例えば、日機装社製ナノトラックUPA−EX150、大塚電子社製ダイナミック光散乱光度計DLS−7000シリーズなどが挙げられる。
Regarding the particle size of organic particles, there is a method of expressing the average size of the population by quantifying by a measurement method, but as a common use, the mode diameter indicating the maximum value of the distribution, the median value of the integral distribution curve Median diameter, various average diameters (number average, length average, area average, mass average, volume average, etc.), etc. In the present invention, unless otherwise specified, the average particle diameter is the number average. The diameter. The average particle size of the organic nanoparticles (primary particles) is nanometer size, and the average particle size is particularly preferably in the above range . The particles formed by the production method of the present invention may be crystalline particles, amorphous particles, or a mixture thereof.
In the present invention, the ratio (Mv / Mn) of the volume average particle diameter (Mv) and the number average particle diameter (Mn) is used as an index representing the monodispersity of the particles unless otherwise specified. The monodispersity of organic nanoparticles (primary particles), that is, Mv / Mn, is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, and 1.0 to A ratio of 1.5 is particularly preferred.
Examples of the method for measuring the particle size of organic particles include microscopy, gravimetric method, light scattering method, light blocking method, electrical resistance method, acoustic method, and dynamic light scattering method. Particularly preferred. Examples of the microscope used for the microscopy include a scanning electron microscope and a transmission electron microscope. Examples of the particle measuring apparatus by the dynamic light scattering method include Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd. and Dynamic Light Scattering Photometer DLS-7000 series manufactured by Otsuka Electronics Co., Ltd.

Claims (26)

良溶媒に有機材料を溶解した有機材料溶液と、前記良溶媒と相溶性でありかつ前記有機材料に対しては貧溶媒となる溶媒とを下記数式(1)で表されるレイノルズ数が60以上となる条件下で混合し前記有機材料のナノ粒子を析出させることを特徴とする有機ナノ粒子の製造方法。
Re=ρUL/μ ・・・ 数式(1)
(数式(1)中、Reはレイノルズ数を表し、ρは有機材料溶液の密度を表し、Uは有機材料溶液と貧溶媒とが出会うときの相対速度を表し、Lは有機材料溶液と貧溶媒とが出会う部分の流路もしくは供給口の等価直径を表し、μは有機材料溶液の粘性係数を表す。)
An organic material solution in which an organic material is dissolved in a good solvent and a solvent that is compatible with the good solvent and is a poor solvent for the organic material have a Reynolds number of 60 or more represented by the following formula (1): A method for producing organic nanoparticles, characterized in that the organic material nanoparticles are precipitated by mixing under the following conditions.
Re = ρUL / μ Equation (1)
(In formula (1), Re represents the Reynolds number, ρ represents the density of the organic material solution, U represents the relative velocity when the organic material solution and the poor solvent meet, and L represents the organic material solution and the poor solvent. Represents the equivalent diameter of the flow path or supply port of the part where and meet, and μ represents the viscosity coefficient of the organic material solution.)
記有機ナノ粒子の平均粒径が60nm以下となるように粒子径を制御して析出させることを特徴とする請求項1に記載の有機ナノ粒子の製造方法 Method of manufacturing an organic nanoparticles according to claim 1, wherein the average particle diameter before Symbol organic nanoparticles, characterized in that the deposit by controlling the particle size so that the 60nm or less. 前記貧溶媒に前記有機材料溶液を供給管から噴流して混合することを特徴とする請求項1または2に記載の有機ナノ粒子の製造方法。   3. The method for producing organic nanoparticles according to claim 1, wherein the organic material solution is jetted from a supply pipe and mixed with the poor solvent. 前記貧溶媒を攪拌することを特徴とする請求項3に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to claim 3, wherein the poor solvent is stirred. 前記レイノルズ数が100以上である請求項1〜4のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 4, wherein the Reynolds number is 100 or more. 前記レイノルズ数が2500以下である請求項1〜5のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 5, wherein the Reynolds number is 2500 or less. 前記分散液が分子量1000以上の高分子化合物を含有することを特徴とする請求項1〜6のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 6, wherein the dispersion contains a polymer compound having a molecular weight of 1000 or more. 前記分散液が実質的に水不溶性の高分子化合物を含有することを特徴とする請求項1〜7のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 7, wherein the dispersion contains a substantially water-insoluble polymer compound. 前記高分子化合物が下記一般式(1)で表されることを特徴とする請求項7または8に記載の有機ナノ粒子の製造方法。
Figure 2008138194
〔式中、Rは、(m+n)価の連結基を表し、Rは単結合あるいは2価の連結基を表す。Aは、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基からなる群より選ばれる基を有する1価の有機基、または置換基を有してもよい有機色素構造もしくは複素環を含有する1価の有機基を表す。ただし、n個のAは互いに同一であっても、異なっていてもよい。mは1〜8の数を表し、nは2〜9の数を表し、m+nは3〜10を満たす。Pは高分子化合物残基を表す。〕
The method for producing organic nanoparticles according to claim 7 or 8, wherein the polymer compound is represented by the following general formula (1).
Figure 2008138194
[Wherein, R 1 represents a (m + n) -valent linking group, and R 2 represents a single bond or a divalent linking group. A 1 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and A monovalent organic group having a group selected from the group consisting of a hydroxyl group, or a monovalent organic group containing an organic dye structure or a heterocyclic ring which may have a substituent. However, n pieces of A 1 may be the same as or different from each other. m represents a number of 1 to 8, n represents a number of 2 to 9, and m + n satisfies 3 to 10. P 1 represents a polymer compound residue. ]
前記高分子化合物が下記一般式(2)で表されることを特徴とする請求項9に記載の有機ナノ粒子の製造方法。
Figure 2008138194
〔式中、Rは、(x+y)価の連結基を表す。RおよびRは、各々独立に単結合または2価の連結基を表す。Aは、酸性基、窒素原子を有する塩基性基、ウレア基、ウレタン基、配位性酸素原子を有する基、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、および水酸基からなる群より選ばれる基を有する1価の有機基、または置換基を有してもよい有機色素構造もしくは複素環を含有する1価の有機基を表す。ただし、x個のAは互いに同一であっても、異なっていてもよい。yは1〜8の数を表し、xは2〜9の数を表し、x+yは3〜10を満たす。Pは高分子化合物残基を表す。〕
The method for producing organic nanoparticles according to claim 9, wherein the polymer compound is represented by the following general formula (2).
Figure 2008138194
[Wherein R 3 represents a (x + y) -valent linking group. R 4 and R 5 each independently represents a single bond or a divalent linking group. A 2 is an acidic group, a basic group having a nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, a hydrocarbon group having 4 or more carbon atoms, an alkoxysilyl group, an epoxy group, an isocyanate group, and A monovalent organic group having a group selected from the group consisting of a hydroxyl group, or a monovalent organic group containing an organic dye structure or a heterocyclic ring which may have a substituent. However, x A 2 may be the same or different. y represents a number of 1 to 8, x represents a number of 2 to 9, and x + y satisfies 3 to 10. P 2 represents a polymer compound residue. ]
前記有機材料が有機顔料であることを特徴とする請求項1〜10のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 10, wherein the organic material is an organic pigment. 前記有機顔料がピロロピロール化合物顔料であることを特徴とする請求項11に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to claim 11, wherein the organic pigment is a pyrrolopyrrole compound pigment. 前記ピロロピロール化合物顔料がC.I.ピグメントレッド254、C.I.ピグメントレッド255、C.I.ピグメントレッド264、及びC.I.ピグメントレッド272のいずれかであることを特徴とする請求項12に記載の有機ナノ粒子の製造方法。   The pyrrolopyrrole compound pigment is C.I. I. Pigment red 254, C.I. I. Pigment red 255, C.I. I. Pigment red 264, and C.I. I. The method for producing organic nanoparticles according to claim 12, which is any one of CI Pigment Red 272. 前記有機顔料がフタロシアニン化合物顔料であることを特徴とする請求項11に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to claim 11, wherein the organic pigment is a phthalocyanine compound pigment. 前記フタロシアニン化合物顔料がC.I.ピグメントグリーン36、C.I.ピグメントグリーン7、及びC.I.ピグメントブルー15:6のいずれかであることを特徴とする請求項14に記載の有機ナノ粒子の製造方法。   The phthalocyanine compound pigment is C.I. I. Pigment green 36, C.I. I. Pigment green 7, and C.I. I. The method for producing organic nanoparticles according to claim 14, which is any one of CI Pigment Blue 15: 6. 前記有機顔料がジオキサジン化合物顔料であることを特徴とする請求項11に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to claim 11, wherein the organic pigment is a dioxazine compound pigment. 前記ジオキサジン化合物顔料がC.I.ピグメントバイオレット23またはC.I.ピグメントバイオレット37であることを特徴とする請求項16に記載の有機ナノ粒子の製造方法。   The dioxazine compound pigment is C.I. I. Pigment violet 23 or C.I. I. It is a pigment violet 37, The manufacturing method of the organic nanoparticle of Claim 16 characterized by the above-mentioned. 前記有機ナノ粒子を、前記貧溶媒が10L以上のスケールで析出させることを特徴とする請求項1〜17のいずれか1項に記載の有機ナノ粒子の製造方法。   The method for producing organic nanoparticles according to any one of claims 1 to 17, wherein the organic solvent is precipitated on a scale in which the poor solvent is 10 L or more. 請求項1〜18のいずれか1項に記載の方法で製造された有機ナノ粒子。   The organic nanoparticle manufactured by the method of any one of Claims 1-18. 重合性モノマーおよび/または重合性オリゴマーを含む媒体に、請求項19に記載の有機ナノ粒子を含んでなることを特徴とするカラーフィルタ用インクジェットインク。   An ink-jet ink for a color filter comprising the organic nanoparticles according to claim 19 in a medium containing a polymerizable monomer and / or a polymerizable oligomer. 請求項19に記載の有機ナノ粒子と、バインダーと、モノマーもしくはオリゴマーと、光重合開始剤もしくは光重合開始剤系とを少なくとも含む着色感光性樹脂組成物。   A colored photosensitive resin composition comprising at least the organic nanoparticles according to claim 19, a binder, a monomer or an oligomer, and a photopolymerization initiator or a photopolymerization initiator system. 仮支持体上に、少なくとも、請求項21に記載の着色感光性樹脂組成物を含む感光性樹脂層を設けたことを特徴とする感光性樹脂転写材料。   A photosensitive resin transfer material, wherein a photosensitive resin layer containing at least the colored photosensitive resin composition according to claim 21 is provided on a temporary support. 請求項20に記載のインクジェットインク、請求項21に記載の着色感光性樹脂組成物、及び/又は請求項22に記載の感光性樹脂転写材料を用いて作製したことを特徴とするカラーフィルタ。   A color filter produced using the inkjet ink according to claim 20, the colored photosensitive resin composition according to claim 21, and / or the photosensitive resin transfer material according to claim 22. 請求項23に記載のカラーフィルタを備えたことを特徴とする液晶表示装置。   24. A liquid crystal display device comprising the color filter according to claim 23. 前記表示装置がVA方式であることを特徴とする請求項24に記載の液晶表示装置。   The liquid crystal display device according to claim 24, wherein the display device is a VA system. 請求項25に記載のカラーフィルタを備えたことを特徴とするCCDデバイス。
A CCD device comprising the color filter according to claim 25.
JP2007291067A 2006-11-08 2007-11-08 Method for producing organic pigment nanoparticles Expired - Fee Related JP5224785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291067A JP5224785B2 (en) 2006-11-08 2007-11-08 Method for producing organic pigment nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006303415 2006-11-08
JP2006303415 2006-11-08
JP2007291067A JP5224785B2 (en) 2006-11-08 2007-11-08 Method for producing organic pigment nanoparticles

Publications (3)

Publication Number Publication Date
JP2008138194A JP2008138194A (en) 2008-06-19
JP2008138194A5 true JP2008138194A5 (en) 2011-07-07
JP5224785B2 JP5224785B2 (en) 2013-07-03

Family

ID=39599993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291067A Expired - Fee Related JP5224785B2 (en) 2006-11-08 2007-11-08 Method for producing organic pigment nanoparticles

Country Status (1)

Country Link
JP (1) JP5224785B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010044981A (en) * 2008-08-15 2010-02-25 Fujifilm Corp Display
JP2010180330A (en) * 2009-02-05 2010-08-19 Fujifilm Corp Non-aqueous ink, ink set, method for recording image, device for recording image, and recorded matter
JP2011068837A (en) * 2009-09-28 2011-04-07 Fujifilm Corp Green pigment dispersion containing phthalocyanine compound
JP5929777B2 (en) 2013-02-14 2016-06-08 富士ゼロックス株式会社 Toner set for developing electrostatic image, developer set for electrostatic image, toner cartridge set, process cartridge set, image forming apparatus, and image forming method
KR101964276B1 (en) 2015-10-21 2019-04-01 주식회사 엘지화학 Latex composition for dip-forming and the product prepared thereby
JP6777745B2 (en) * 2016-09-12 2020-10-28 富士フイルム株式会社 Composition, film manufacturing method, near-infrared cut filter manufacturing method, solid-state image sensor manufacturing method, image display device manufacturing method, and infrared sensor manufacturing method
GB201719693D0 (en) * 2017-11-27 2018-01-10 Sensient Colors Uk Ltd Nanoparticle dispersions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508802A (en) * 1997-06-30 2002-03-19 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド C. I. Pigment dispersion containing Pigment Red 222
JP3936558B2 (en) * 2001-07-18 2007-06-27 富士フイルム株式会社 Ink jet recording ink and image forming method
WO2004083170A2 (en) * 2003-03-19 2004-09-30 Ciba Specialty Chemicals Holding Inc. Compounds, a process for their preparation and their use as dyes and pigments
JP4587757B2 (en) * 2003-09-22 2010-11-24 富士フイルム株式会社 Organic pigment fine particles and method for producing the same

Similar Documents

Publication Publication Date Title
JP2008138194A5 (en)
DE102016213201B4 (en) Aqueous ink composition and printing method
JPH06136311A (en) Amine-containing block polymer for ink jet ink containing pigment
JP5242998B2 (en) Ink composition and inkjet recording method
JP3188219B2 (en) Two-component dispersants for wet milling
WO2006019662A1 (en) Pigment dispersion with polymeric dispersant
JP2009138172A (en) Ink composition and image recording method and image recorded matter using the same
US20070015856A1 (en) Ink composition comprising a block or graft polymer and at least one colorant
US8748529B2 (en) Pigment dispersion, ink composition using the same, and printed material
US20150159024A1 (en) Graphenic carbon particle co-dispersions and methods of making same
JP2007254700A (en) Pigment dispersion for oily inkjet and ink composition
JP2021075660A (en) Pigment dispersion
JP2011094112A (en) Pigment dispersion and ink composition using the same
KR20230022973A (en) carbon material dispersion
JP4861810B2 (en) Water-based ink for inkjet recording
JP2009102570A (en) Ink composition, image forming method and image recorded object using it
JP5260943B2 (en) Particle dispersion and ink composition, and image recording method and image recorded material using the same
CN103980764A (en) Carbon black pigmented solid phase change ink formulations
JP2009235133A (en) Pigment dispersion and ink composition using the same
JP2011207963A (en) Pigment dispersion, ink composition, inkjet recording method, and printed matter
JP2013049826A (en) Azo pigment, method for producing azo pigment, dispersion containing azo pigment, coloring composition, and inkjet recording ink
JP2008050506A (en) Composition
US9988551B2 (en) Black pigments comprising graphenic carbon particles
US11781025B2 (en) Aqueous inkjet ink compositions
TWI488872B (en) Synthesis of oil-soluble new compositions used for dispersing pigment nanoparticles and their application on electrowetting display