JP2008136684A - Manufacturing method of polymer covered electrode - Google Patents

Manufacturing method of polymer covered electrode Download PDF

Info

Publication number
JP2008136684A
JP2008136684A JP2006326245A JP2006326245A JP2008136684A JP 2008136684 A JP2008136684 A JP 2008136684A JP 2006326245 A JP2006326245 A JP 2006326245A JP 2006326245 A JP2006326245 A JP 2006326245A JP 2008136684 A JP2008136684 A JP 2008136684A
Authority
JP
Japan
Prior art keywords
electrode
film
polymer film
conductive polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326245A
Other languages
Japanese (ja)
Inventor
Matsuhiko Nishizawa
松彦 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2006326245A priority Critical patent/JP2008136684A/en
Publication of JP2008136684A publication Critical patent/JP2008136684A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a polymer covered electrode capable of providing adhesion of a deposited film whole body by changing environment in the periphery of the electrode without impairing functions of the electrode and the polymer by a simple method of forming a self-organizing monomolecular film without treating the polymer film to be deposited and the electrode. <P>SOLUTION: This method for covering the electrode formed on the surface of an insulating material with a conductive polymer film having biocompatibility, is characterized in adsorbing molecules easily connected to the conductive polymer film, on the surface of the insulating material in the periphery of the electrode and, secondly, forming the conductive polymer film on the electrode by electrolytic polymerization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、密着性が向上した高分子被覆電極の製造方法に関するものである。   The present invention relates to a method for producing a polymer-coated electrode with improved adhesion.

従来、電極と細胞・組織との接合界面の設計は細胞エレクトロニクス研究の中心課題であり、神経系埋め込みデバイスの開発においても極めて重要である。細胞外電気刺激は、いまだに容易ではなく、特に電極のサイズが微小であるときには、電気分解によるガス発生を起こさないよう電流を流す必要があることから、流せる電流が制限を受けるために困難である。多孔質の白金黒電極などが、大電流を流せる電極材料として使われてきたが、機械的に脆いために柔軟性を有する神経電極プローブなどには適用が難しい。しかも、このような金属電極と細胞や組織との間には有意な相互作用は期待できない。   Conventionally, the design of the interface between electrodes and cells / tissues has been a central issue in cell electronics research, and is extremely important in the development of neurological implant devices. Extracellular electrical stimulation is still not easy, especially when the size of the electrode is very small, and it is necessary to pass a current so as not to cause gas generation due to electrolysis. . A porous platinum black electrode or the like has been used as an electrode material capable of flowing a large current, but it is difficult to apply to a flexible nerve electrode probe because it is mechanically fragile. Moreover, no significant interaction can be expected between such metal electrodes and cells or tissues.

ポリピロール(PPy)のような導電性高分子は、繊維状の構造に起因する広大な表面積を有し、それゆえ大容量の電極材料となる。しかも、PPyは、成膜が容易で表面に生化学機能を付与しやすく、生体適合性も高いので、神経系デバイスのための界面材料として極めて魅力的であり、すでに、埋め込み医療デバイスへの適用が検討されてきている(例えば、特許文献1参照)。   Conductive polymers such as polypyrrole (PPy) have a large surface area due to the fibrous structure and are therefore high capacity electrode materials. Moreover, PPy is very attractive as an interface material for nervous system devices because it is easy to form a film, easily imparts a biochemical function to the surface, and has high biocompatibility, and has already been applied to implantable medical devices. Have been studied (see, for example, Patent Document 1).

以上のような体内で用いるデバイスへの応用に加えて、体外での細胞工学もバイオインターフェースの設計を必要とする。最近の細胞配置技術の進歩によって、電極アレイと組み合わせた細胞ネットワークを用いたバイオアッセイが可能になろうとしている。たとえば、本発明者は、PC12神経細胞をマイクロ電極アレイ上にパターン状に配置することに成功している。導電性高分子によって電極表面と細胞との電気的接続を仲立ちすることは、このような次世代型のバイオアッセイを実現するためにも重要である。電解重合法は、微小な電極上にだけ合成ができ、電気量で膜厚などが制御できるといった工学上重要な利点がある。その中でも、PPyなどの電析可能な高分子がポリ乳酸を凌ぐ生体適合性を有することや、そのような高分子による生化学ドーピングの可能性が示されたことによって、期待される機能や使用されようとする場面が生体内埋め込みなどへ、どんどん拡充している。それにともなって、高分子膜の密着性の確保が必要となってきている。   In addition to the application to devices used in the body as described above, cell engineering outside the body also requires the design of a biointerface. Recent advances in cell placement technology are enabling bioassays using cell networks in combination with electrode arrays. For example, the present inventor has succeeded in arranging PC12 neurons in a pattern on a microelectrode array. Intermediating the electrical connection between the electrode surface and the cell by the conductive polymer is important for realizing such a next-generation bioassay. The electrolytic polymerization method has an important engineering advantage that it can be synthesized only on a minute electrode and the film thickness can be controlled by the amount of electricity. Among them, expected functions and uses are shown by the fact that polymers capable of electrodeposition such as PPy have biocompatibility superior to polylactic acid and the possibility of biochemical doping with such polymers. The scenes that are about to be expanded are expanding to in vivo implantation. Accordingly, it is necessary to ensure the adhesion of the polymer film.

特表2001−515343号公報Special table 2001-515343 gazette

本発明の目的は、析出する高分子膜や電極には何も施さずに、自己組織化単分子膜の形成という簡便な方法で、電極や高分子の機能を損なうことなく、電極周辺部の環境を変化させて析出膜全体の密着性を得ることができる高分子被覆電極の製造方法を提供することである。   The object of the present invention is to provide a simple method of forming a self-assembled monolayer without applying anything to the polymer membrane or electrode to be deposited, and without impairing the function of the electrode or polymer. An object of the present invention is to provide a method for producing a polymer-coated electrode capable of changing the environment and obtaining the adhesion of the entire deposited film.

本発明によれば、絶縁性材料の表面に形成した電極を、導電性高分子膜で被覆する方法において、前記電極周辺の前記絶縁性材料の表面に前記導電性高分子膜と結合し易い分子を吸着させ、次に電解重合により前記電極上に前記導電性高分子膜を形成することを特徴とする高分子被覆電極の製造方法が得られる。   According to the present invention, in the method of coating the electrode formed on the surface of the insulating material with the conductive polymer film, the molecule that easily binds to the conductive polymer film on the surface of the insulating material around the electrode. Can be adsorbed, and then the conductive polymer film is formed on the electrode by electrolytic polymerization. Thus, a method for producing a polymer-coated electrode is obtained.

また、本発明によれば、前記絶縁性材料の表面に形成した前記電極は、絶縁性基板の平面上に作製した回路状電極、または、絶縁部を有する針状電極であることを特徴とする高分子被覆電極の製造方法が得られる。   Further, according to the present invention, the electrode formed on the surface of the insulating material is a circuit electrode manufactured on a plane of an insulating substrate or a needle electrode having an insulating portion. A method for producing a polymer-coated electrode is obtained.

また、本発明によれば、前記導電性高分子膜と結合し易い分子は、オクタデシルトリクロロシランなどの疎水性基を有するシランカップリング剤であることを特徴とする高分子被覆電極の製造方法が得られる。   Further, according to the present invention, there is provided the method for producing a polymer-coated electrode, wherein the molecule that is easily bonded to the conductive polymer film is a silane coupling agent having a hydrophobic group such as octadecyltrichlorosilane. can get.

また、本発明によれば、前記導電性高分子膜は、ポリピロールであることを特徴とする高分子被覆電極の製造方法が得られる。   Further, according to the present invention, there is obtained a method for producing a polymer-coated electrode, wherein the conductive polymer film is polypyrrole.

本発明により、以下の効果が得られる。
本発明では、析出する高分子膜や電極には何も施さずに、オクタデシルトリクロロシランなどの疎水性基を有するシランカップリング剤等による自己組織化単分子膜の形成という簡便な方法で、電極や高分子の機能を損なうことなく、電極周辺部の環境を変化させて析出膜全体の密着性を得ることができる。本発明者は、予め電極基板を自己組織化単分子膜で処理しておくと、生成するPPy膜の密着性が向上することを見出した。導電性高分子膜の密着性は、体内外でおこなうあらゆるタイプのニューロエンジニアリングの実践に貢献すると考えられる。原理的には、この技術は違うタイプの電極系にも適用できる。部分的に電極化した針状電極を修飾して、埋め込み神経デバイスの精度向上と低侵襲化とに寄与できる。
According to the present invention, the following effects can be obtained.
In the present invention, the electrode is formed by a simple method of forming a self-assembled monolayer with a silane coupling agent having a hydrophobic group such as octadecyltrichlorosilane, without applying anything to the polymer film or electrode to be deposited. In addition, the adhesion of the entire deposited film can be obtained by changing the environment around the electrode without impairing the function of the polymer. The inventor has found that when the electrode substrate is previously treated with a self-assembled monomolecular film, the adhesion of the produced PPy film is improved. The adhesion of the conductive polymer film is thought to contribute to the practice of all types of neuroengineering performed inside and outside the body. In principle, this technique can also be applied to different types of electrode systems. A partially electroded needle electrode can be modified to contribute to improving the accuracy and minimizing the invasiveness of the implantable neural device.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1乃至図5は、ポリイミド(PI)基板上の微小電極を密着性の高いPPy膜で被覆する方法を示している。PIは、柔軟で化学的に安定で、生体適合性もあるので医療デバイスに用いる材料として最近の主流となっている。PI基板の表面に予めアルキルシランの自己組織化単分子膜を作製しておくと、PI基板面に沿った横方向のPPyの成長が異方的に促進されてPPyフィルム全体の密着性が増強される。このPPy被覆微小電極を用いて、培養心筋細胞の細胞外電気刺激を、再現性良く、低侵襲的に行うことが出来た。心筋細胞が隣と電気的に共役して一枚のシートになっているために、細胞シート全体が同期して拍動した。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show a method of coating a microelectrode on a polyimide (PI) substrate with a highly adhesive PPy film. PI has recently become the mainstream material for medical devices because it is flexible, chemically stable, and biocompatible. If a self-assembled monolayer of alkylsilane is prepared on the surface of the PI substrate in advance, the lateral PPy growth along the PI substrate surface is anisotropically promoted to enhance the adhesion of the entire PPy film. Is done. Using this PPy-coated microelectrode, extracellular electrical stimulation of cultured cardiomyocytes could be performed with good reproducibility and minimally invasively. Since the cardiomyocytes were electrically conjugated to the next to form a single sheet, the entire cell sheet pulsated synchronously.

実際の実験手順は、次のとおりである。ピロールは、使用直前に蒸留した。オクタデシルトリクロロシラン(Octadecyltrichlorosilane、C18SiC13、信越化学工業株式会社製)、ポリジメチルシロキサン(polydimethylsiloxane、PDMS、信越化学工業株式会社製、製品名「KE-106」)、fluo-3AM(Invitrogen社 Molecular Probes製)は、精製せずに用いた。感光性PIをガラス板上にスピンコートし、90分間、温度150度でベークすることによって、2μm厚のPIフィルムを得た。一対のPtマイクロバンド電極をフォトリソグラフィーでPI被覆基板上に作製した。 The actual experimental procedure is as follows. Pyrrole was distilled immediately before use. Octadecyltrichlorosilane (Octadecyltrichlorosilane, C 18 SiC 13 , manufactured by Shin-Etsu Chemical Co., Ltd.), polydimethylsiloxane (PDMS, manufactured by Shin-Etsu Chemical Co., Ltd., product name “KE-106”), fluo-3AM (Invitrogen Molecular) Probes) was used without purification. Photosensitive PI was spin-coated on a glass plate and baked at a temperature of 150 ° C. for 90 minutes to obtain a PI film having a thickness of 2 μm. A pair of Pt microband electrodes were fabricated on a PI coated substrate by photolithography.

図1は、バンド電極アレイ上にポリピロールを合成・析出させる際の実験構成図である。図1に示すように、ポリイミドを塗ったガラス製基板11上にPtの電極W1、W2を作製し,シリコーンゴムの一種であるPDMSの柵12を貼り付けてから重合溶液13を入れ,参照電極REや対極CEを挿入してバイポテンショスタットBPSで重合電位を印加する。図1(a)に示すように、20μm幅のバンド電極W1、W2が10μm間隔で配してある。この電極基板11を、先ず2プロパノールで処理してから酸素プラズマに曝して、PIフィルムの表面に水酸基を導入した。次に、この基板11を0.2mMのオクタデシルトリクロロシラン/ヘプタン溶液に10分間浸漬して、アルキルシランの自己組織化単分子膜を形成した。PDMSによる柵12を使って、図1に示すように、電気化学セルを構成する。溶液に接する電極面積の総計は1.6×10−3cm2である。 FIG. 1 is an experimental configuration diagram when polypyrrole is synthesized and deposited on a band electrode array. As shown in FIG. 1, Pt electrodes W1 and W2 are prepared on a glass substrate 11 coated with polyimide, a PDMS fence 12 which is a kind of silicone rubber is pasted, and a polymerization solution 13 is placed therein. A polymerization potential is applied with a bipotentiostat BPS with an RE or counter electrode CE inserted. As shown in FIG. 1A, band electrodes W1 and W2 having a width of 20 μm are arranged at intervals of 10 μm. The electrode substrate 11 was first treated with 2 propanol and then exposed to oxygen plasma to introduce hydroxyl groups on the surface of the PI film. Next, the substrate 11 was immersed in a 0.2 mM octadecyltrichlorosilane / heptane solution for 10 minutes to form a self-assembled monolayer of alkylsilane. As shown in FIG. 1, an electrochemical cell is constructed using the fence 12 made of PDMS. The total electrode area in contact with the solution is 1.6 × 10 −3 cm 2 .

ピロールの電解重合は、0.1Mのピロールと0.1MのKNOとを含む水溶液から、電極電位を規制した電解重合によってPPyを合成・析出させ、バイポテンショスタットBPSを用いて、2本のバンド電極W1、W2の片方に660mV、他方に680mVを印加した。2本の電極W1、W2の電位が20mVずれているために、それぞれの電極W1、W2で成長したPPyによって電極W1、W2間が短絡した直後から、電位差に基づくオーミック電流が流れ始める。したがって、オーミック電流によって電極W1、W2間短絡の瞬間が検知でき、基板面に沿った横方向のPPy膜の成長速度が評価できる。 The electrolytic polymerization of pyrrole was carried out by synthesizing and precipitating PPy from an aqueous solution containing 0.1M pyrrole and 0.1M KNO 3 by electrolytic polymerization with regulated electrode potential, and using bipotentiostat BPS, 660 mV was applied to one of the band electrodes W1 and W2, and 680 mV was applied to the other. Since the potentials of the two electrodes W1 and W2 are shifted by 20 mV, an ohmic current based on the potential difference starts to flow immediately after the electrodes W1 and W2 are short-circuited by PPy grown on the electrodes W1 and W2. Therefore, the moment of short circuit between the electrodes W1 and W2 can be detected by the ohmic current, and the growth rate of the PPy film in the lateral direction along the substrate surface can be evaluated.

心筋細胞は、受精後8〜9日経過したニワトリ胚から取り出した心臓をトリプシンでバラバラにし、繊維芽細胞をシャーレ底面に1時間接着させて除き、得られる心筋細胞1のみを含む細胞分散液(1×106 cell/ml)を電極基板11上に播種して培養した。電極基板11上に接着した心筋細胞1は、隣の細胞とギャップ結合を形成してシート状になる。図2は、培養心筋細胞1をパルスジェネレータPGで電気刺激する際の実験構成図である。図2に示すように、心筋細胞1のシートの電気刺激は、PPy膜14で修飾されたPt電極15と溶液中に挿入したPt版との間に電流パルスを流して行った。刺激時の細胞内Ca2+濃度を蛍光イメージングで測定した。先ず、10μMのfluo-3AMを細胞に取り込ませ、刺激と計測とは、0.90mMのCaCl2、2.68mMのKCl、1.47mMのKH2PO4、0.49mMのMgCl2、136.9mMのNaCl、8.06mMのNa2HPO4、5.55mMのglucose、0.327mMのsodium pyruvate(pH 7.4)中で行った。血清は、蛍光を発するので測定時には除いてある。細胞シートは、Xeランプで照射され、CCDカメラで評価した。 A cardiomyocyte is a cell dispersion containing only cardiomyocytes 1 obtained by removing the heart taken out of a chicken embryo 8-9 days after fertilization with trypsin and removing the fibroblasts by adhering to the bottom of the dish for 1 hour. 1 × 10 6 cell / ml) was seeded on the electrode substrate 11 and cultured. The cardiomyocytes 1 adhered on the electrode substrate 11 form a sheet connection by forming a gap junction with adjacent cells. FIG. 2 is an experimental configuration diagram when the cultured cardiomyocytes 1 are electrically stimulated by the pulse generator PG. As shown in FIG. 2, electrical stimulation of the cardiomyocyte 1 sheet was performed by passing a current pulse between the Pt electrode 15 modified with the PPy film 14 and the Pt plate inserted into the solution. The intracellular Ca 2+ concentration at the time of stimulation was measured by fluorescence imaging. First, 10 μM fluo-3AM was taken into cells, and stimulation and measurement were 0.90 mM CaCl 2 , 2.68 mM KCl, 1.47 mM KH 2 PO 4 , 0.49 mM MgCl 2 , 136. It was carried out in 9 mM NaCl, 8.06 mM Na 2 HPO 4 , 5.55 mM glucose, 0.327 mM sodium pyruvate (pH 7.4). Since serum fluoresces, it is removed at the time of measurement. The cell sheet was irradiated with a Xe lamp and evaluated with a CCD camera.

図3(a)は、バンド電極W1、W2のアレイ上にポリピロールを合成・析出させた際の重合電流の推移図である。ポリイミド表面にシランカップリング剤の自己組織化膜を形成させることで,ポリマーが基板面に沿って成長するので,電極W1、W2間が早く短絡する(図中、矢印A)。図3(b)は、短絡直後の様子、図3(c)は、しばらく重合を続けた後の様子である。図3(a)は、PI基板11上に作製したマイクロ電極W1、W2でのPPyの成長について、電解重合時に観測される典型的な電流プロファイルである。図3(a)に示す実線および点線は、それぞれ、680mV、660mVに設定した電極W1、W2での電流である。図中矢印A、Bで示した屈曲点は、バンド電極W1、W2間がPPyで短絡した瞬間を示している。未処理のPI基板の場合、屈曲点(図中矢印B)が不明瞭である。これは、不均一に成長した高分子が点接触するためと考えられる。一方、アルキルシランで処理したPI基板11の場合には、シャープな屈曲点(図中矢印A)によって明瞭に短絡が検出できる。図3(b)は、PPyによる短絡直後の光学顕微鏡写真である。高分子膜は非常に薄く半透明で、基板面に沿って優先的に成長が起こったことを示唆している。均一な横方向成長はライン状の短絡を起こすので、オーミック電流の追加による屈曲が非常にシャープに現れたといえる。続けて重合したときの図3(c)の光学顕微鏡写真では、異方的な膜の成長の様子がより分かりやすい。この横方向優先成長の結果は、従来のガラス基板上で得られた結果と基本的に同じであり、基板11の表面の自己組織化単分子膜がオリゴマーを効果的に捕捉するために、膜の成長端で重合効率が上昇したためと理解できる。表面段差計で測ったところ、PI基板11における今回の結果では、横方向への異方成長率は約20倍であると分かった。   FIG. 3A is a transition diagram of the polymerization current when polypyrrole is synthesized and deposited on the array of band electrodes W1 and W2. By forming a self-assembled film of a silane coupling agent on the polyimide surface, the polymer grows along the substrate surface, so that the electrodes W1 and W2 are short-circuited quickly (arrow A in the figure). FIG. 3B shows a state immediately after the short circuit, and FIG. 3C shows a state after the polymerization is continued for a while. FIG. 3A is a typical current profile observed during electrolytic polymerization for the growth of PPy on the microelectrodes W1 and W2 fabricated on the PI substrate 11. FIG. The solid line and the dotted line shown in FIG. 3A are currents at the electrodes W1 and W2 set to 680 mV and 660 mV, respectively. Inflection points indicated by arrows A and B in the figure indicate the moment when the band electrodes W1 and W2 are short-circuited with PPy. In the case of an untreated PI substrate, the bending point (arrow B in the figure) is unclear. This is thought to be due to the point contact of the non-uniformly grown polymer. On the other hand, in the case of the PI substrate 11 treated with alkylsilane, a short circuit can be clearly detected by a sharp bending point (arrow A in the figure). FIG. 3B is an optical micrograph immediately after a short circuit with PPy. The polymer film is very thin and translucent, suggesting that preferential growth along the substrate surface occurred. Uniform lateral growth causes a line-like short circuit, so it can be said that bending due to the addition of ohmic current appeared very sharply. In the optical micrograph of FIG. 3C when the polymerization is continued, the anisotropic film growth is easier to understand. The result of this lateral preferred growth is basically the same as the result obtained on the conventional glass substrate, and the self-assembled monolayer on the surface of the substrate 11 effectively captures the oligomer. It can be understood that the polymerization efficiency increased at the growth edge of the film. As a result of measuring with a surface step meter, it was found that the anisotropic growth rate in the lateral direction was about 20 times in the result of the PI substrate 11 this time.

図4(a)に示すように、PPy膜14の密着強度をスコッチテープ(接着力:3.7 N/cm)を用いて評価した。2×2cm2のPt電極にPPyを5.5mC重合して評価対象とした。図4(b)〜(d)は、スコッチテープによる剥離試験の結果である。図4(b)に示すように、未処理の場合は全て剥がれてテープ側に移ってしまうが、図4(c)に示すように、シランカップリング剤の自己組織化膜を形成させてから重合した場合は剥がれない。これは、図4(d)に示すような、自己組織化膜によるアンカー効果である。図4(b)に示すように、未処理の電極上のPPy膜は、完全に剥がれてスコッチテープ側に移ってしまった。PPy膜の密着性は、洗浄によってさえも剥がれてしまうことも少なくなく、実用上問題となる。一方、図4(c)に示すように、自己組織化単分子膜を形成させた基板11では、PPy膜14の密着性が高く、スコッチテープによって剥がれることはなかった。図4(d)に模式的に示すように、電極15の周辺にはみ出して成長したPPy膜14が単分子膜16と複合化して、膜全体の密着性を向上させたと考えられる。導電性高分子膜の密着性向上は、培養細胞を用いるニューロエンジニアリングにとって実際的に重要である。加えて、この技術は違うタイプの電極系にも適用できる。部分的に電極化した針状電極を修飾して、埋め込み神経デバイスの精度向上と低侵襲化とに寄与できる。 As shown in FIG. 4A, the adhesion strength of the PPy film 14 was evaluated using a scotch tape (adhesive strength: 3.7 N / cm). PPy was polymerized to 5.5 mC on a 2 × 2 cm 2 Pt electrode, and was evaluated. 4B to 4D show the results of a peel test using a scotch tape. As shown in FIG. 4 (b), when untreated, all peel off and move to the tape side, but as shown in FIG. 4 (c), after forming a self-assembled film of the silane coupling agent. When polymerized, it does not peel off. This is the anchor effect by the self-assembled film as shown in FIG. As shown in FIG. 4B, the PPy film on the untreated electrode was completely peeled off and moved to the scotch tape side. The adhesiveness of the PPy film is often peeled off even by cleaning, which is a practical problem. On the other hand, as shown in FIG. 4C, in the substrate 11 on which the self-assembled monomolecular film was formed, the PPy film 14 had high adhesion and was not peeled off by the scotch tape. As schematically shown in FIG. 4D, it is considered that the PPy film 14 that grew out of the periphery of the electrode 15 was combined with the monomolecular film 16 to improve the adhesion of the entire film. Improving the adhesion of the conductive polymer film is practically important for neuroengineering using cultured cells. In addition, this technique can be applied to different types of electrode systems. A partially electroded needle electrode can be modified to contribute to improving the accuracy and minimizing the invasiveness of the implantable neural device.

0.1×0.1mm2のPPy膜14で修飾されたマイクロ電極15上の心筋細胞1のシートにおける細胞間情報伝達の様子を観察した。心筋細胞1にはfluo-3AMが導入され、測定は室温で行われた。図5(a)は顕微鏡写真を示し、図5(b)は蛍光強度の時間変化を示している。心筋細胞1が収縮するときに、細胞内のCa2+濃度があがって蛍光強度が上がる。図5(b)に示すように、図5(a)中のSite1とSite2とで観測した蛍光強度変化は、ほぼ同期している。5つのサンプルで、同じ結果が、再現性よく,細胞へのダメージを与えることなく得られた。また,このシステムは一週間以上安定であった。 The state of cell-to-cell information transmission in the sheet of cardiomyocytes 1 on the microelectrode 15 modified with the 0.1 × 0.1 mm 2 PPy film 14 was observed. Fluo-3AM was introduced into cardiomyocytes 1 and the measurement was performed at room temperature. FIG. 5 (a) shows a photomicrograph, and FIG. 5 (b) shows a temporal change in fluorescence intensity. When the cardiomyocyte 1 contracts, the intracellular Ca 2+ concentration increases and the fluorescence intensity increases. As shown in FIG. 5B, the fluorescence intensity changes observed at Site 1 and Site 2 in FIG. 5A are almost synchronized. The same results were obtained with five samples with good reproducibility and no damage to the cells. The system was stable for over a week.

本発明の実施の形態の高分子被覆電極の製造方法の、バンド電極アレイ上にポリピロールを合成・析出させる際の実験構成を示す(a)模式平面図、(b)電極付近の光学顕微鏡写真、(c)重合電圧の印加状態の側面図である。(A) schematic plan view showing an experimental configuration when synthesizing and precipitating polypyrrole on a band electrode array in a method for producing a polymer-coated electrode according to an embodiment of the present invention, (b) an optical micrograph near the electrode, (C) It is a side view of the application state of the polymerization voltage. 本発明の実施の形態の高分子被覆電極の製造方法の、培養心筋細胞をパルスジェネレータで電気刺激する際の実験構成を示す側面図である。It is a side view which shows the experiment structure at the time of electrically stimulating a cultured cardiomyocyte with a pulse generator of the manufacturing method of the polymer covering electrode of embodiment of this invention. 本発明の実施の形態の高分子被覆電極の製造方法の、バンド電極アレイ上にポリピロールを合成・析出させた際の(a)重合電流の推移を示すグラフ、(b)電極間が短絡した直後の電極付近の光学顕微鏡写真、(c)さらにしばらく重合を続けた後の電極付近の光学顕微鏡写真である。(A) a graph showing transition of polymerization current when polypyrrole is synthesized and deposited on a band electrode array in a method for producing a polymer-coated electrode according to an embodiment of the present invention, and (b) immediately after a short circuit between electrodes. 2 is an optical micrograph of the vicinity of the electrode, and (c) is an optical micrograph of the vicinity of the electrode after further polymerization. 本発明の実施の形態の高分子被覆電極の製造方法で形成されたPPy膜の、スコッチテープによる剥離試験の(a)試験方法を示す説明図、(b)未処理の場合の試験結果を示す結果図、(c)シランカップリング剤の自己組織化膜を形成させてから重合した場合の試験結果を示す結果図、(d)電極周辺にはみ出して成長したPPyが単分子膜と複合化した状態を示す側面図である。(A) Explanatory drawing which shows the test method of the peeling test by the scotch tape of PPy film formed with the manufacturing method of the polymer covering electrode of embodiment of this invention, (b) The test result in the case of un-processing is shown Result diagram, (c) Result diagram showing test results when polymerizing after forming a self-assembled film of silane coupling agent, (d) PPy that has grown out of the periphery of the electrode is complexed with a monomolecular film It is a side view which shows a state. 本発明の実施の形態の高分子被覆電極の製造方法で形成されたPPyで被覆したPt電極上に培養された培養心筋細胞の(a)光学顕微鏡写真、(b)電流パルスを印加したときの(a)中のSite1およびSite2の蛍光強度変化を示すグラフである。(A) Optical micrograph of cultured cardiomyocytes cultured on a Pt electrode coated with PPy formed by the method for producing a polymer-coated electrode according to an embodiment of the present invention, (b) When a current pulse is applied It is a graph which shows the fluorescence intensity change of Site1 and Site2 in (a).

符号の説明Explanation of symbols

1 心筋細胞
11 基板
12 柵
13 重合溶液
14 PPy膜
15 電極
16 単分子膜
DESCRIPTION OF SYMBOLS 1 Cardiomyocyte 11 Substrate 12 Fence 13 Polymerization solution 14 PPy film 15 Electrode 16 Monomolecular film

Claims (4)

絶縁性材料の表面に形成した電極を、導電性高分子膜で被覆する方法において、前記電極周辺の前記絶縁性材料の表面に前記導電性高分子膜と結合し易い分子を吸着させ、次に電解重合により前記電極上に前記導電性高分子膜を形成することを特徴とする高分子被覆電極の製造方法。   In the method of coating an electrode formed on the surface of an insulating material with a conductive polymer film, molecules that easily bind to the conductive polymer film are adsorbed on the surface of the insulating material around the electrode, A method for producing a polymer-coated electrode, wherein the conductive polymer film is formed on the electrode by electrolytic polymerization. 前記絶縁性材料の表面に形成した前記電極は、絶縁性基板の平面上に作製した回路状電極、または、絶縁部を有する針状電極であることを特徴とする請求項1記載の高分子被覆電極の製造方法。   2. The polymer coating according to claim 1, wherein the electrode formed on the surface of the insulating material is a circuit electrode formed on a plane of an insulating substrate or a needle electrode having an insulating portion. Electrode manufacturing method. 前記導電性高分子膜と結合し易い分子は、オクタデシルトリクロロシランなどの疎水性基を有するシランカップリング剤であることを特徴とする請求項1または2記載の高分子被覆電極の製造方法。   The method for producing a polymer-coated electrode according to claim 1 or 2, wherein the molecule that easily binds to the conductive polymer film is a silane coupling agent having a hydrophobic group such as octadecyltrichlorosilane. 前記導電性高分子膜は、ポリピロールであることを特徴とする請求項1、2または3記載の高分子被覆電極の製造方法。
The method for producing a polymer-coated electrode according to claim 1, wherein the conductive polymer film is polypyrrole.
JP2006326245A 2006-12-01 2006-12-01 Manufacturing method of polymer covered electrode Pending JP2008136684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326245A JP2008136684A (en) 2006-12-01 2006-12-01 Manufacturing method of polymer covered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006326245A JP2008136684A (en) 2006-12-01 2006-12-01 Manufacturing method of polymer covered electrode

Publications (1)

Publication Number Publication Date
JP2008136684A true JP2008136684A (en) 2008-06-19

Family

ID=39598756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326245A Pending JP2008136684A (en) 2006-12-01 2006-12-01 Manufacturing method of polymer covered electrode

Country Status (1)

Country Link
JP (1) JP2008136684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157550A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Porous substrate electrode body and method for producing same
WO2017183712A1 (en) * 2016-04-22 2017-10-26 国立大学法人東北大学 Method of manufacturing cell-nanoscale thin film composite
JP2019506953A (en) * 2016-02-22 2019-03-14 ザ チャールズ スターク ドレイパー ラボラトリー インク Method of manufacturing an implantable neural electrode interface platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281032A (en) * 1988-09-19 1990-03-22 Toyota Central Res & Dev Lab Inc Electrochromic electrode and production thereof
JP2004053395A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Conductive sensor, its manufacturing method, and device having the same
JP2004271228A (en) * 2003-03-05 2004-09-30 Tdk Corp Manufacturing method of humidity sensor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281032A (en) * 1988-09-19 1990-03-22 Toyota Central Res & Dev Lab Inc Electrochromic electrode and production thereof
JP2004053395A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Conductive sensor, its manufacturing method, and device having the same
JP2004271228A (en) * 2003-03-05 2004-09-30 Tdk Corp Manufacturing method of humidity sensor element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157550A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Porous substrate electrode body and method for producing same
JPWO2014157550A1 (en) * 2013-03-28 2017-02-16 国立大学法人東北大学 Porous substrate electrode body and method for producing the same
JP2019506953A (en) * 2016-02-22 2019-03-14 ザ チャールズ スターク ドレイパー ラボラトリー インク Method of manufacturing an implantable neural electrode interface platform
US11938314B2 (en) 2016-02-22 2024-03-26 The Charles Stark Draper Laboratory, Inc. Method of manufacturing an implantable neural electrode interface platform
WO2017183712A1 (en) * 2016-04-22 2017-10-26 国立大学法人東北大学 Method of manufacturing cell-nanoscale thin film composite

Similar Documents

Publication Publication Date Title
Kim et al. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording
Lu et al. Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording
EP1931248B1 (en) Biologically integrated electrode devices
Nguyen‐Vu et al. Vertically aligned carbon nanofiber arrays: an advance toward electrical–neural interfaces
Heim et al. Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation
David-Pur et al. All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation
Nishizawa et al. Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes
US20110257504A1 (en) Biologically integrated electrode devices
US20110087315A1 (en) Co-electrodeposited hydrogel-conducting polymer electrodes for biomedical applications
CN103079462A (en) Implantable micro-component electrodes
WO2021232109A1 (en) Bioanalyte detection and monitoring
US20110087126A1 (en) Light-Proof Electrodes
Koerbitzer et al. Graphene electrodes for stimulation of neuronal cells
CN104340956A (en) Implantable multi-channel flexible microtube electrode and preparation method thereof
Castagnola et al. Multilayer poly (3, 4-ethylenedioxythiophene)-dexamethasone and poly (3, 4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release
Yin et al. Advanced metallic and polymeric coatings for neural interfacing: structures, properties and tissue responses
Eick et al. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures
Kim et al. Iridium oxide on indium-tin oxide nanowires: An all metal oxide heterostructured multi-electrode array for neuronal interfacing
Azim et al. Precision plating of human electrogenic cells on microelectrodes enhanced with precision electrodeposited nano-porous platinum for cell-based biosensing applications
JP2008136684A (en) Manufacturing method of polymer covered electrode
Gablech et al. State‐of‐the‐Art Electronic Materials for Thin Films in Bioelectronics
AU2013201221B2 (en) Biologically integrated electrode devices
WO2019124566A1 (en) Electrode body and production method for electrode body
Merritt et al. Fabrication of microelectrode arrays having high-aspect-ratio microwires
Nick et al. Are carbon nanotube microelectrodes manufactured from dispersion stable enough for neural interfaces?

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Effective date: 20121009

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130305

Free format text: JAPANESE INTERMEDIATE CODE: A02