JP2008135883A - High-frequency power monitor circuit - Google Patents

High-frequency power monitor circuit Download PDF

Info

Publication number
JP2008135883A
JP2008135883A JP2006319316A JP2006319316A JP2008135883A JP 2008135883 A JP2008135883 A JP 2008135883A JP 2006319316 A JP2006319316 A JP 2006319316A JP 2006319316 A JP2006319316 A JP 2006319316A JP 2008135883 A JP2008135883 A JP 2008135883A
Authority
JP
Japan
Prior art keywords
main signal
antenna
signal line
frequency power
monitor circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006319316A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Tajima
竜彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006319316A priority Critical patent/JP2008135883A/en
Publication of JP2008135883A publication Critical patent/JP2008135883A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently monitor high-frequency electric power without extra loss of the high-frequency electric power flowing through a main signal line. <P>SOLUTION: An antenna (for example, a patch antenna) 20 is disposed at a position where no coupling (direct electromagnetic coupling) is caused for the main signal line (for example, a microstrip) 10 on a dielectric substrate 11, and a leak radio wave inevitably radiated from the main signal line 10 is received by the antenna 20 to efficiently monitor the high-frequency electric power flowing through the main signal line 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高周波電力モニタ回路に関し、更に詳しくは、誘電体基板上の主信号線路に流れる高周波信号の電力(信号レベル)を非接触でモニタする高周波電力モニタ回路に関する。   The present invention relates to a high-frequency power monitor circuit, and more particularly to a high-frequency power monitor circuit that monitors the power (signal level) of a high-frequency signal flowing in a main signal line on a dielectric substrate in a contactless manner.

基地局や移動局(携帯電話)に代表される無線通信装置では、RF信号を高周波増幅器で増幅してアンテナより送信すると共に、送信電力をモニタして増幅器にいフィードバックし、出力一定制御(Auto Power Control)を行っている。特に、ミリ波やマイクロ波電力のモニタを行う場合は、主信号回路にモニタ回路を接触させることで反射や回路インピーダンスに悪影響を与えない様、モニタを非接触で行う必要がある。また、主信号電力とモニタ電力との比は、主信号電力の大きさによらず一定(リニア)である必要がある。この様な条件を満たすものとして、従来は、例えば特許文献1,2に示されるように、主信号回路の一部に方向性結合器をカップリング(電磁結合)させることで高周信号波電力をモニタしていた。   In wireless communication devices typified by base stations and mobile stations (cell phones), RF signals are amplified by a high-frequency amplifier and transmitted from an antenna, and transmission power is monitored and fed back to the amplifier for constant output control (Auto Power Control). In particular, when monitoring millimeter wave or microwave power, it is necessary to perform monitoring in a non-contact manner so as not to adversely affect reflection and circuit impedance by bringing the monitor circuit into contact with the main signal circuit. Further, the ratio between the main signal power and the monitor power needs to be constant (linear) regardless of the magnitude of the main signal power. In order to satisfy such conditions, conventionally, as shown in Patent Documents 1 and 2, for example, high frequency signal wave power is obtained by coupling (electromagnetic coupling) a directional coupler to a part of the main signal circuit. I was monitoring.

図5は従来技術を説明する図で、図5(A)は高周波電力のモニタに方向性結合器を使用した典型的な構成を示している。図において、10は主信号を伝送するマイクロストリップ(伝送路)であり、誘電体基板11の表面に設けたストリップ導体(主線)12と背面の接地導体13とからなる。50は方向性結合器であり、主線12のλ/4に渡ってカップリングさせたストリップ導体(副線)51を含み、該副線51の一方をモニタポートMPに接続すると共に、他方を抵抗54と接地線55とからなる終端回路53で終端している。   FIG. 5 is a diagram for explaining the prior art. FIG. 5A shows a typical configuration in which a directional coupler is used for monitoring high-frequency power. In the figure, reference numeral 10 denotes a microstrip (transmission path) that transmits a main signal, and includes a strip conductor (main line) 12 provided on the surface of the dielectric substrate 11 and a ground conductor 13 on the back surface. A directional coupler 50 includes a strip conductor (sub-line) 51 coupled over λ / 4 of the main line 12, and one of the sub-lines 51 is connected to the monitor port MP and the other is a resistor. The terminal circuit 53 is terminated by a termination circuit 53 composed of 54 and a ground line 55.

係る構成では、伝送路10を流れる高周波信号電力のうち、端子(1)から(2)に進む電力に比例したモニタ出力Pfを、端子(2)から(1)に進む電力とは無関係に取り出すことができる。即ち、伝送路10の端子(1)に入力する電力をPiとするとき、副線の端子(3)へは数分の1の電力Pfが現れ、端子(4)には更にその1/10以下の電力Prが現れる。この場合の結合度(coupling)Cは、
C=10log(Pi/Pf)
で表され、方向性(directivity)Dは、
D=10log(Pf/Pr)
で表される。更に、伝送路10を端子(2)に通り抜ける電力をPoとすると、挿入損(insertion loss)Lは、
L=10log(Pi/Po)
で表される。
In such a configuration, out of the high-frequency signal power flowing through the transmission line 10, the monitor output Pf proportional to the power going from the terminal (1) to (2) is taken out regardless of the power going from the terminal (2) to (1). be able to. That is, when the power input to the terminal (1) of the transmission line 10 is Pi, a fraction of the power Pf appears at the terminal (3) of the sub line, and the terminal (4) further reduces to 1/10. The following power Pr appears. The coupling C in this case is
C = 10 log (Pi / Pf)
And the directivity D is
D = 10 log (Pf / Pr)
It is represented by Furthermore, if the power passing through the transmission line 10 to the terminal (2) is Po, the insertion loss L is
L = 10 log (Pi / Po)
It is represented by

図5(B)に方向性結合器のギャップsと結合度Cの関係の具体例を示す。グラフ(1)→(4)は端子(1),(4)間の結合度、グラフ(1)→(3)は端子(1),(3)間の結合度を示し、いずれもXバンド(8〜12GHz)における特性を示している。横軸はギャップsと基板11の厚みhとの比s/hである。グラフ(1)→(3)に注目すると、方向性結合器のモニタ電力は、ギャップsを0に近づけることで−5dB程度になるが、ギャップsが基板厚h(例えば0.5mm)の3倍程度になると、結合度Cは−30dB以下となっており、殆どカップリングは無い。
特開2002−223135 特開2000−49273
FIG. 5B shows a specific example of the relationship between the gap s and the degree of coupling C of the directional coupler. Graph (1) → (4) shows the degree of coupling between terminals (1) and (4), and graph (1) → (3) shows the degree of coupling between terminals (1) and (3), both of which are in X band. The characteristic in (8-12GHz) is shown. The horizontal axis represents the ratio s / h between the gap s and the thickness h of the substrate 11. When paying attention to the graph (1) → (3), the monitor power of the directional coupler becomes about −5 dB by bringing the gap s close to 0, but the gap s is 3 of the substrate thickness h (for example, 0.5 mm). When it is about double, the degree of coupling C is -30 dB or less, and there is almost no coupling.
JP2002-223135 JP 2000-49273 A

しかしながら、上記方向性結合器を使用した場合の様に、主信号電力の一部を取り出してモニタする方式であると、主信号伝送路ではその分が必ず挿入損となるため、伝送効率が著しく悪化していた。   However, as in the case where the directional coupler is used, if the method is to extract and monitor a part of the main signal power, the main signal transmission path always has an insertion loss, so the transmission efficiency is remarkably high. It was getting worse.

本発明は上記従来技術の問題点に鑑みなされたものであり、その目的は、主信号線路を流れる高周波電力に別段の損失を与えることなく、該高周波電力を効率よくモニタ可能な高周波電力モニタ回路を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a high-frequency power monitoring circuit capable of efficiently monitoring the high-frequency power without giving a special loss to the high-frequency power flowing through the main signal line. Is to provide.

本発明の第1の態様による高周波電力モニタ回路は、誘電体基板上の主信号線路に対してカップリングが生じない位置にアンテナを配置し、前記主信号線路から放射される漏れ電波を前記アンテナで受信して前記主信号線路に流れる高周波電力をモニタするものである。   The high-frequency power monitor circuit according to the first aspect of the present invention has an antenna disposed at a position where no coupling occurs with respect to the main signal line on the dielectric substrate, and leaks radio waves radiated from the main signal line. And the high frequency power flowing through the main signal line is monitored.

本発明では、主信号線路から必然的に放射される漏れ電波をカップリング(電磁結合)が生じない位置に設けたアンテナで受信する構成により、主信号線路に別段の挿入損を与えることなく、主信号電力を効率よくモニタできる。   In the present invention, the configuration in which the leaked radio wave inevitably radiated from the main signal line is received by an antenna provided at a position where coupling (electromagnetic coupling) does not occur, without causing a separate insertion loss to the main signal line, The main signal power can be monitored efficiently.

なお、「主信号線路に対してカップリングが生じない位置」についての一例の目安を言うと、主信号線路がマイクロストリップの場合は、上記図5(B)のグラフ(1)→(3)からも明らかな様に、主信号線路から誘電体基板厚h(例えば0.5mm)の2〜3倍以上離れた位置と言う事になる。   Note that an example of the “position at which coupling does not occur with respect to the main signal line” refers to an example of the graph (1) → (3) in FIG. 5B when the main signal line is a microstrip. As can be seen from the above, it is said to be a position away from the main signal line by 2 to 3 times or more of the dielectric substrate thickness h (for example, 0.5 mm).

本発明の第2の態様では、前記アンテナは、誘電体基板表面に設けた平面導体と、背面の接地導体とを有する平面アンテナからなる。従って、アンテナを使用した高周波電力モニタ回路を小型かつ安価に実装できる。好ましくは、一例の平面アンテナは半波長のパッチアンテナである。    In the second aspect of the present invention, the antenna comprises a planar antenna having a planar conductor provided on the surface of the dielectric substrate and a ground conductor on the back surface. Therefore, a high-frequency power monitor circuit using an antenna can be mounted in a small and inexpensive manner. Preferably, the exemplary planar antenna is a half-wave patch antenna.

本発明の第3の態様では、前記モニタする信号の中心周波数を主信号の中心周波数からずらしたものである。後述する如く平面アンテナについての電磁解析により、モニタする信号の中心周波数を主信号の中心周波数からずらした(例えば10乃至20%程度ずらした)周波数領域で相対的に高い受信感度(アンテナ利得)が得られた。    In the third aspect of the present invention, the center frequency of the signal to be monitored is shifted from the center frequency of the main signal. As will be described later, a relatively high reception sensitivity (antenna gain) is obtained in a frequency region in which the center frequency of the signal to be monitored is shifted from the center frequency of the main signal (for example, about 10 to 20%) by electromagnetic analysis of the planar antenna. Obtained.

本発明の第4の態様による高周波電力モニタ回路は、誘電体基板上の主信号線路に対してカップリングが生じない位置に複数の素子アンテナを所定間隔で配置してアレーアンテナを構成すると共に、前記主信号線路から放射される漏れ電波を前記アレーアンテナで受信して前記主信号線路に流れる高周波電力をモニタするものである。本発明では、各素子アンテナの受信出力を同相合成することで、アレーアンテナに高い受信利得が得られる。   The high-frequency power monitor circuit according to the fourth aspect of the present invention is configured as an array antenna by arranging a plurality of element antennas at predetermined intervals at positions where no coupling occurs with respect to the main signal line on the dielectric substrate. The leakage radio wave radiated from the main signal line is received by the array antenna and the high frequency power flowing through the main signal line is monitored. In the present invention, a high reception gain can be obtained in the array antenna by combining the reception outputs of the respective element antennas in phase.

本発明の第5の態様では、主信号線路とアンテナとからなる回路を金属ケースでシールドしたものである。従って、外部からの不要電波(雑音)が干渉することなく、主信号線路の高周波電力のみを適正にモニタできる。    In the fifth aspect of the present invention, a circuit composed of a main signal line and an antenna is shielded by a metal case. Therefore, it is possible to properly monitor only the high-frequency power of the main signal line without interference from unnecessary radio waves (noise) from the outside.

以上述べた如く本発明によれば、主信号線路の高周波電力を効率よくモニタ可能となり、伝送効率の改善に寄与するところが大きい。特にモバイル機器における電力効率の改善
は、バッテリーの長寿命化に貢献する。
As described above, according to the present invention, the high frequency power of the main signal line can be monitored efficiently, which greatly contributes to the improvement of transmission efficiency. In particular, improvement of power efficiency in mobile devices contributes to longer battery life.

以下、添付図面に従って本発明に好適なる実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。図1は第1の実施の形態による高周波電力モニタ回路の構成を示す図で、図1(A)はモニタ回路の斜視図、図1(B)はモニタ回路をy軸方向に見た側面図を示している。図において、11はガラスエポキシ等からなる高周波回路実装用の誘電体基板、12は基板表面のストリップ導体、13は基板背面の接地導体、21は基板11の対向位置に設けられたアンテナ実装用の誘電体基板、22は基板21の表面(図の下面)のアンテナ導体、23は基板背面(図の上面)の接地導体、14は高周波回路を保護及びシールドするための金属筐体、15は金属からなる蓋部材である。なお、背面の接地導体13,23については、金属筐体14と蓋部材15を接地することでそれぞれ代用でき、省略できる。この点は後述する他の実施の形態でも同様である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. FIG. 1 is a diagram showing a configuration of a high-frequency power monitor circuit according to the first embodiment, FIG. 1 (A) is a perspective view of the monitor circuit, and FIG. 1 (B) is a side view of the monitor circuit viewed in the y-axis direction. Is shown. In the figure, 11 is a dielectric substrate made of glass epoxy or the like for mounting a high-frequency circuit, 12 is a strip conductor on the surface of the substrate, 13 is a ground conductor on the back of the substrate, and 21 is for mounting an antenna provided at a position opposite to the substrate 11. A dielectric substrate, 22 is an antenna conductor on the surface (lower surface in the figure) of the substrate 21, 23 is a ground conductor on the back surface (upper surface in the figure), 14 is a metal housing for protecting and shielding the high-frequency circuit, and 15 is metal. It is a lid member which consists of. The ground conductors 13 and 23 on the back surface can be substituted by grounding the metal casing 14 and the lid member 15 and can be omitted. This also applies to other embodiments described later.

ストリップ導体12は誘電体基盤11及び背面の接地導体13と共にマイクロストリップ(主信号線路)10を構成しており、入力ポートIPから入力した高周波信号を出力ポートOPに伝送する。一般に、マイクロストリップにおける伝送損失は、基板11の誘電体損と、導体12の導体損と、空中に放射される電波の放射損との三つに大別されるが、本発明ではこれらの必然的な損失となるもののうち、放射損分を有効に活用することで効率よい電力モニタを可能としている。例えば、基板11の比誘電率εr=4、厚さh=0.5mmとすると、モニタ信号の周波数10GHz(波長λ≒16mm)における基板厚hの波長λに対する割合は0.5/16=0.032となり、この基板厚hでも少なからず放射損が存在する。   The strip conductor 12 forms a microstrip (main signal line) 10 together with the dielectric substrate 11 and the ground conductor 13 on the back surface, and transmits a high-frequency signal input from the input port IP to the output port OP. In general, transmission loss in a microstrip is roughly divided into three types: dielectric loss of the substrate 11, conductor loss of the conductor 12, and radiation loss of radio waves radiated into the air. Of these, the effective power monitoring is made possible by effectively utilizing the radiation loss. For example, when the relative dielectric constant εr = 4 and the thickness h = 0.5 mm of the substrate 11, the ratio of the substrate thickness h to the wavelength λ at a monitor signal frequency of 10 GHz (wavelength λ≈16 mm) is 0.5 / 16 = 0. 0.032, and there is a considerable radiation loss even with this substrate thickness h.

アンテナ導体22は誘電体基板21及び背面の接地導体23と共に半波長のパッチアンテナ20を構成しており、マイクロストリップ10から漏れ出る放射電波の一部を受信してモニタポートMPに出力する。10GHz帯の高周波信号をモニタするためのパッチアンテナ20の一例のサイズは、a=7〜8mm(≒b)、基板21の厚みw=1.6mm、比誘電率εr=4。2である。マイクロストリップ10とパッチアンテナ20との間は、図1(B)に示す如く、直接にはカップリング(電磁結合)しない程度に離隔されており、よってマイクロストリップ10に結合損は生じない。カップリングが生じない距離の目安は、例えば基板11の厚みh(0.5mm)の3倍以上である。また、パッチアンテナ20の厚みwについては例えば1.6mmと厚めにすることで、パッチアンテナ20の受信感度を高くしている。   The antenna conductor 22 constitutes a half-wavelength patch antenna 20 together with the dielectric substrate 21 and the ground conductor 23 on the back surface, and receives a part of the radiated radio wave leaking from the microstrip 10 and outputs it to the monitor port MP. The size of an example of the patch antenna 20 for monitoring a high-frequency signal in the 10 GHz band is a = 7 to 8 mm (≈b), the thickness w of the substrate 21 is 1.6 mm, and the relative dielectric constant εr is 4.2. As shown in FIG. 1B, the microstrip 10 and the patch antenna 20 are separated to such an extent that they are not directly coupled (electromagnetically coupled), so that no coupling loss occurs in the microstrip 10. The standard of the distance at which no coupling occurs is, for example, three times or more the thickness h (0.5 mm) of the substrate 11. Further, the receiving sensitivity of the patch antenna 20 is increased by increasing the thickness w of the patch antenna 20 to, for example, 1.6 mm.

放射損成分はマイクロストリップ10の材質や形状により一定の割合で放射されるため、放射損の一部をモニタする本実施の形態では、主信号レベルに依存せずに、一定の割合で高周波電力をモニタできる。また、主信号線路で必然的に損失となるような放射成分を利用するため、従来のように主信号電力の一部を取り出す必要が無く、伝送損失を低減できる。また、モニタ回路の全体を金属筐体14,15で覆うことにより、外部からの不要な電波を遮断でき、主信号線路10の高周波電力のみを正確にモニタできる。   Since the radiation loss component is radiated at a constant rate depending on the material and shape of the microstrip 10, in the present embodiment for monitoring a part of the radiation loss, the high-frequency power is supplied at a constant rate without depending on the main signal level. Can be monitored. Further, since a radiation component that inevitably causes a loss in the main signal line is used, it is not necessary to extract a part of the main signal power as in the conventional case, and transmission loss can be reduced. Further, by covering the entire monitor circuit with the metal casings 14 and 15, unnecessary radio waves from the outside can be blocked, and only the high frequency power of the main signal line 10 can be accurately monitored.

図2は第1の実施の形態による高周波電力モニタ回路の伝達特性を示す図で、図1と図5のモニタ回路を電磁界シミュレータで解析した結果を示している。図中、点線は図5の方向性結合器50を使用した場合、実線は図1のアンテナ20を使用した場合にそれぞれ対応し、特性L1,L2は入力ポートIPから出力ポートOPへの伝達特性を表し、特性M1,M2は入力ポートIPからモニタポートMPへの伝達特性を表す。   FIG. 2 is a diagram showing the transfer characteristics of the high-frequency power monitor circuit according to the first embodiment, and shows the result of analyzing the monitor circuit of FIGS. 1 and 5 with an electromagnetic field simulator. In the figure, the dotted line corresponds to the case where the directional coupler 50 of FIG. 5 is used, the solid line corresponds to the case where the antenna 20 of FIG. 1 is used, and the characteristics L1 and L2 are the transfer characteristics from the input port IP to the output port OP. The characteristics M1 and M2 represent the transfer characteristics from the input port IP to the monitor port MP.

10GHzの付近で見ると、アンテナ20を使用したモニタ回路の伝送損失は方向性結
合器50を使用したものに比べて約0.1dB程度改善されており、ハイパワーとなる出力段では無視できない差となっている。また、図2の特性曲線より両回路20,50の中心周波数は略9.9GHzであることが読み取れるが、モニタ電力の周波数特性は中心周波数からずれた9.7〜9.8GHz及び10〜10.2GHzの帯域で、アンテナ20を使用した場合のモニタレベルM2の方が方向性結合器50を使用した場合のモニタレベルM1よりも明らかに大きくなっており、アンテナ20を使用した場合は中心周波数(この例では9.9GHz)から僅かに(10〜20%程度)ずれた帯域でモニタするのが有利であることが分かる。
When viewed in the vicinity of 10 GHz, the transmission loss of the monitor circuit using the antenna 20 is improved by about 0.1 dB compared to that using the directional coupler 50, and the difference that cannot be ignored in the output stage where the power is high. It has become. Further, it can be seen from the characteristic curve of FIG. 2 that the center frequency of both circuits 20 and 50 is approximately 9.9 GHz, but the frequency characteristics of the monitor power are 9.7 to 9.8 GHz and 10 to 10 which are shifted from the center frequency. In the 2 GHz band, the monitor level M2 when the antenna 20 is used is clearly larger than the monitor level M1 when the directional coupler 50 is used, and the center frequency when the antenna 20 is used. It can be seen that it is advantageous to monitor in a band slightly shifted (about 10 to 20%) from (9.9 GHz in this example).

そこで、図示しないが、好ましくは、モニタ信号の抽出線路に9.7〜9.8GHz又は10〜10.2GHzの信号を通過させるフィルタ回路を設けることで、高周波電力をこの帯域の信号を中心にモニタすることが可能である。   Therefore, although not shown, it is preferable to provide a filter circuit that allows signals of 9.7 to 9.8 GHz or 10 to 10.2 GHz to pass through the monitor signal extraction line, so that high-frequency power is centered on signals in this band. It is possible to monitor.

図3は第2の実施の形態による高周波電力モニタ回路の構成を示す図で、金属製蓋部材15の裏面にパッチアンテナ20を実装した場合を示している。図3(A)はモニタ回路の斜視図、図3(B)はモニタ回路をy軸方向に見た側面図を示している。このパッチアンテナ20は、予め金属製蓋部材15の裏面に誘電体基板21の背面(図の上面)を貼り付け、該基板21の表面に平面矩形状(a≒b)のアンテナ導体24を設けて構成されている。更に、アンテナ20の略中央部に同軸コネクタ40を貫通させ、その外部導体41を接地導体23(蓋部材15)に接続し、かつ中心導体42をアンテナ導体24に接続している。この蓋部材15を金属筐体14に取り付けるとモニタ回路ができあがると共に回路全体がシールドされる。本実施の形態ではモニタポートMP(受電点,給電点に相当)をパッチアンテナ20の端部(縁部)より内側に接続できるため、インピーダンス整合が容易に得られ、受信特性が改善される。   FIG. 3 is a diagram showing the configuration of the high-frequency power monitor circuit according to the second embodiment, and shows a case where the patch antenna 20 is mounted on the back surface of the metal lid member 15. 3A is a perspective view of the monitor circuit, and FIG. 3B is a side view of the monitor circuit viewed in the y-axis direction. The patch antenna 20 has a back surface (upper surface in the figure) of a dielectric substrate 21 attached in advance to the back surface of a metal lid member 15 and a planar rectangular (a≈b) antenna conductor 24 provided on the surface of the substrate 21. Configured. Further, the coaxial connector 40 is passed through substantially the center of the antenna 20, the external conductor 41 is connected to the ground conductor 23 (lid member 15), and the center conductor 42 is connected to the antenna conductor 24. When this lid member 15 is attached to the metal casing 14, a monitor circuit is completed and the entire circuit is shielded. In the present embodiment, the monitor port MP (corresponding to a power receiving point and a power feeding point) can be connected to the inner side of the end (edge) of the patch antenna 20, so that impedance matching can be easily obtained and reception characteristics are improved.

図4は第3の実施の形態による高周波電力モニタ回路の構成を示す図で、モニタ回路をアレーアンテナで構成した場合を示している。図4(A)にモニタ回路の斜視図、図4(B)にモニタ回路をy軸方向に見た側面図を示す。誘電体基板11上の主信号線路10に対してカップリングが生じない位置に複数の素子アンテナ31a〜31cを所定間隔で配置する。各素子アンテナ31a〜31cのサイズは図1と同様で良く、これらを伝送線10に沿って各素子31a〜31cの受信出力が同相合成されるような素子間隔で配置することでアレーアンテナ30を構成する。同相合成するために位相調整が必要となるような場合には、各素子アンテナ間に線路長を変える様な移相回路を設けても良い。こうして、主信号線路10から放射される漏れ電波をアレーアンテナ30で受信することにより主信号線路10に流れる高周波電力を高いアンテナ利得でモニタする。また、このようなモニタ回路の全体を金属筐体14と蓋部材15とでシーリド(密封)することにより、内部空間における電波伝搬の状態も安定するので、良好な受信特性が得られる。   FIG. 4 is a diagram showing the configuration of the high-frequency power monitor circuit according to the third embodiment, and shows a case where the monitor circuit is configured by an array antenna. 4A is a perspective view of the monitor circuit, and FIG. 4B is a side view of the monitor circuit viewed in the y-axis direction. A plurality of element antennas 31a to 31c are arranged at predetermined intervals at positions where no coupling occurs with respect to the main signal line 10 on the dielectric substrate 11. The size of each of the element antennas 31a to 31c may be the same as that in FIG. 1, and the array antenna 30 is formed by arranging them at element intervals along the transmission line 10 so that the reception outputs of the elements 31a to 31c are combined in phase. Constitute. When phase adjustment is required for in-phase synthesis, a phase shift circuit that changes the line length may be provided between the element antennas. Thus, by receiving the leaked radio wave radiated from the main signal line 10 by the array antenna 30, the high frequency power flowing through the main signal line 10 is monitored with a high antenna gain. Further, since the entire monitor circuit is sealed with the metal casing 14 and the lid member 15, the state of radio wave propagation in the internal space is stabilized, so that good reception characteristics can be obtained.

なお、上記実施の形態では平面アンテナとして矩形状パッチアンテナの例を述べたが、これに限らない。アンテネ導体の平面視形状は円形や楕円形でもよい。また、平面アンテナ以外にも半波長ダイポールアンテナやモノポールアンテナなど、様々な立体形状の高周波アンテナを用い得る。   In the above embodiment, an example of a rectangular patch antenna is described as a planar antenna, but the present invention is not limited to this. The plan view shape of the antenene conductor may be circular or elliptical. In addition to the planar antenna, various three-dimensional high-frequency antennas such as a half-wave dipole antenna and a monopole antenna can be used.

また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組合せの様々な変更が行えることは言うまでも無い。   Moreover, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention. .

第1の実施の形態による高周波電力モニタ回路の構成を示す図である。It is a figure which shows the structure of the high frequency electric power monitor circuit by 1st Embodiment. 第1の実施の形態による高周波電力モニタ回路の伝達特性を示す図である。It is a figure which shows the transfer characteristic of the high frequency electric power monitor circuit by 1st Embodiment. 第2の実施の形態による高周波電力モニタ回路の構成を示す図である。It is a figure which shows the structure of the high frequency electric power monitor circuit by 2nd Embodiment. 第3の実施の形態による高周波電力モニタ回路の構成を示す図である。It is a figure which shows the structure of the high frequency electric power monitor circuit by 3rd Embodiment. 従来技術を説明する図である。It is a figure explaining a prior art.

符号の説明Explanation of symbols

10 マイクロストリップ
11,21 誘電体基板
12 ストリップ導体
13,23 接地導体
14 金属筐体
15 蓋部材
20 アンテナ
22,24 アンテナ導体
30 アレーアンテナ
31 素子アンテナ
DESCRIPTION OF SYMBOLS 10 Microstrip 11, 21 Dielectric board | substrate 12 Strip conductor 13, 23 Ground conductor 14 Metal housing 15 Cover member 20 Antenna 22, 24 Antenna conductor 30 Array antenna 31 Element antenna

Claims (5)

誘電体基板上の主信号線路に対してカップリングが生じない位置にアンテナを配置し、前記主信号線路から放射される漏れ電波を前記アンテナで受信して前記主信号線路に流れる高周波電力をモニタすることを特徴とする高周波電力モニタ回路。 An antenna is disposed at a position where coupling does not occur with respect to the main signal line on the dielectric substrate, and leakage radio waves radiated from the main signal line are received by the antenna and high frequency power flowing through the main signal line is monitored. A high frequency power monitor circuit. 前記アンテナは、誘電体基板表面に設けた平面導体と、背面の接地導体とを有する平面アンテナからなることを特徴とする請求項1記載の高周波電力モニタ回路。 2. The high frequency power monitor circuit according to claim 1, wherein the antenna comprises a planar antenna having a planar conductor provided on the surface of the dielectric substrate and a ground conductor on the back surface. 前記モニタする信号の中心周波数を主信号の中心周波数からずらしたことを特徴とする請求項2記載の高周波電力モニタ回路。 3. The high frequency power monitor circuit according to claim 2, wherein a center frequency of the signal to be monitored is shifted from a center frequency of the main signal. 誘電体基板上の主信号線路に対してカップリングが生じない位置に複数の素子アンテナを所定間隔で配置してアレーアンテナを構成すると共に、前記主信号線路から放射される漏れ電波を前記アレーアンテナで受信して前記主信号線路に流れる高周波電力をモニタすることを特徴とする高周波電力モニタ回路。 The array antenna is configured by arranging a plurality of element antennas at a predetermined interval at a position where no coupling occurs with respect to the main signal line on the dielectric substrate, and leaked radio waves radiated from the main signal line are transmitted to the array antenna. A high frequency power monitor circuit that monitors the high frequency power that is received at the main signal line and flows through the main signal line. 主信号線路とアンテナとからなる回路を金属ケースでシールドしたことを特徴とする請求項1,2及び4記載の高周波電力モニタ回路。 5. The high frequency power monitor circuit according to claim 1, wherein a circuit comprising a main signal line and an antenna is shielded by a metal case.
JP2006319316A 2006-11-27 2006-11-27 High-frequency power monitor circuit Withdrawn JP2008135883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319316A JP2008135883A (en) 2006-11-27 2006-11-27 High-frequency power monitor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319316A JP2008135883A (en) 2006-11-27 2006-11-27 High-frequency power monitor circuit

Publications (1)

Publication Number Publication Date
JP2008135883A true JP2008135883A (en) 2008-06-12

Family

ID=39560432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319316A Withdrawn JP2008135883A (en) 2006-11-27 2006-11-27 High-frequency power monitor circuit

Country Status (1)

Country Link
JP (1) JP2008135883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380238A (en) * 2019-07-20 2019-10-25 中国船舶重工集团公司第七二四研究所 A kind of paster antenna of the interior monitoring line of same layer integrated RF

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380238A (en) * 2019-07-20 2019-10-25 中国船舶重工集团公司第七二四研究所 A kind of paster antenna of the interior monitoring line of same layer integrated RF
CN110380238B (en) * 2019-07-20 2020-12-18 中国船舶重工集团公司第七二四研究所 Patch antenna with same-layer integrated radio frequency inner monitoring line

Similar Documents

Publication Publication Date Title
US10673142B2 (en) Antenna module
AU2007294762B2 (en) Printed circuit notch antenna
US10276943B2 (en) Antenna device including patch array antenna and conductive metal member
EP1158604B1 (en) Antenna, antenna device, and radio equipment
US8866693B2 (en) Radio-communication antenna device
US10230160B2 (en) Wireless communication system and wearable electronic device including the same
US8780005B2 (en) Wireless security device
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
JP2011077608A (en) Antenna device
US9306274B2 (en) Antenna device and antenna mounting method
RU2566967C2 (en) Antenna device
US10333226B2 (en) Waveguide antenna with cavity
WO2019227651A1 (en) Portable communication terminal and pifa antenna thereof
JP2008135883A (en) High-frequency power monitor circuit
US20190229391A1 (en) A Waveguide Feed
JP4637606B2 (en) Linear antenna
KR20150032992A (en) Microstrip antenna using groundpatch structure
US20230097476A1 (en) Antenna for Sending and/or Receiving Electromagnetic Signals
CN220774736U (en) Antenna structure and terminal equipment
TWI784678B (en) Mobile device supporting wideband operation
WO2017168705A1 (en) Antenna
JP2003008330A (en) Portable terminal
KR100815480B1 (en) Internal antenna for mobile device
US11291145B2 (en) Integrated antenna device
JP2005286484A (en) Microstrip antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202