JP2008134778A - Power supply starter - Google Patents

Power supply starter Download PDF

Info

Publication number
JP2008134778A
JP2008134778A JP2006319848A JP2006319848A JP2008134778A JP 2008134778 A JP2008134778 A JP 2008134778A JP 2006319848 A JP2006319848 A JP 2006319848A JP 2006319848 A JP2006319848 A JP 2006319848A JP 2008134778 A JP2008134778 A JP 2008134778A
Authority
JP
Japan
Prior art keywords
power
circuit
signal
power supply
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319848A
Other languages
Japanese (ja)
Inventor
Toshio Iwai
敏夫 岩井
Yuko Kobayashi
悠浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006319848A priority Critical patent/JP2008134778A/en
Publication of JP2008134778A publication Critical patent/JP2008134778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Power Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it is always needed to delay a fixed time period t (e.g., 0.3 second) until a power supply circuit actually starts after a power switch is turned on to cope with chattering in starting power supply. <P>SOLUTION: Mounting a battery 1 supplies voltage to a power supply circuit 6, and a voltage detection circuit 2 generates a mounting signal of the battery 1. The circuit 2 detects a voltage, and a switch 4 inputs a power-on signal to power on a portable electronic device and a power-off signal to power off the device to a control circuit 3. By receiving the power-off signal, a delay circuit 5 stops a P. ON. Hi_3 signal to control the power supply circuit 6 for a prescribed time period, a storage circuit 7 stores the power-on signal or the mounting signal, and the delay circuit 5 inputs the P. ON. Hi_3 signal to the power supply circuit 6 after making a delay for a prescribed time period to apply the voltage from the battery 1 to the power supply circuit 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電源回路の起動装置に関し、特にポータブル電子機器等の電源に適用される電池回路の起動装置に好適である。   The present invention relates to a starter for a power supply circuit, and is particularly suitable for a starter for a battery circuit applied to a power source of a portable electronic device or the like.

近年、電池駆動のポータブル機器に於ける電源回路に関しては、各回路やICに対応した適切な電圧と電流容量の電源を供給するという従来からの基本的な性能に加えて、省電力、起動時間の短縮、高速な起動が可能なこと等が求められている。   In recent years, regarding power supply circuits in battery-powered portable devices, in addition to the conventional basic performance of supplying power with appropriate voltage and current capacity corresponding to each circuit and IC, power saving and startup time It is required that the system can be shortened and can be started at high speed.

通常、マイコンを利用して機器全体を制御している場合でも、電源の起動制御や、電源切断(以降、OFFと称す)の制御には、マイコンとは別に設けた専用ICを使用することが多い。その理由は、本体電源がOFFの時にマイコンが常に動いているよりも、本体電源がOFFの時には専用ICのみが動いている方が、メイン電池から消費する漏れ電流を減らすことが出来るからである。   Normally, even when the entire device is controlled using a microcomputer, a dedicated IC provided separately from the microcomputer may be used for power start-up control and power-off control (hereinafter referred to as OFF). Many. The reason is that the leakage current consumed from the main battery can be reduced if only the dedicated IC is operating when the main unit power is OFF, rather than the microcomputer is always operating when the main unit power is OFF. .

また、マイコンとは別に設けた専用ICを使用する方が、比較的消費電力の大きいマイコンの電源を、本体電源が通電(以降、ONと称す)している時に、スイッチング電源から供給する事が出来るので、機器全体として消費する電力についても、減らす事が出来る。

従来、電源起動装置は特許文献1に記載されたものが知られている。その電源起動装置の概要を図4に示す。図4において、41はポータブル機器用のメイン電池である。42は電圧検出回路で、メイン電池41が装着されたとき、電源起動要因の一つとなるメイン電池装着信号を制御回路43に送る。メイン電池装着信号を受けて、制御回路43は、電源回路46を起動するための起動制御信号である「P.ON.Hi_1」を出力する。「P.ON.Hi_1」は遅延回路45で遅延され、「P.ON.Hi_2」となる。この「P.ON.Hi_2」が、実際には電源回路46を起動する。なお、44は電源スイッチであり、制御回路43にとって電源起動要因の一つとなる通電信号及び通電を切断した切断信号を制御回路43に送信する。
In addition, if a dedicated IC provided separately from the microcomputer is used, the power of the microcomputer with relatively large power consumption can be supplied from the switching power supply when the main power supply is energized (hereinafter referred to as ON). As a result, the power consumed by the entire device can be reduced.

Conventionally, the power supply starting device described in Patent Document 1 is known. An outline of the power activation device is shown in FIG. In FIG. 4, 41 is a main battery for portable equipment. A voltage detection circuit 42 sends a main battery mounting signal, which is one of the power activation factors, to the control circuit 43 when the main battery 41 is mounted. Upon receiving the main battery mounting signal, the control circuit 43 outputs “P.ON.Hi_1”, which is a start control signal for starting the power supply circuit 46. “P.ON.Hi_1” is delayed by the delay circuit 45 to become “P.ON.Hi_2”. This “P.ON.Hi_2” actually activates the power supply circuit 46. A power switch 44 transmits to the control circuit 43 an energization signal that is one of the power activation factors for the control circuit 43 and a disconnection signal that cuts off the energization.

以上のように構成された従来の電源起動装置について、その動作について説明する。 まず、メイン電池41がポータブル機器に装着されると、電源回路46と制御回路43とに電源が供給されるが、それだけでは機器としての電源は入らない。電源の起動と電源OFFとを、マイコンに換わって専用で制御する制御回路43が、電源回路46に電源をONするための制御信号を送ることで機器の電源が入る。つまり、制御回路43が機器全体の電源の起動を管理している。   The operation of the conventional power activation device configured as described above will be described. First, when the main battery 41 is attached to a portable device, power is supplied to the power circuit 46 and the control circuit 43, but the power as a device is not turned on by itself. The control circuit 43 that exclusively controls the activation of the power supply and the power supply OFF in place of the microcomputer sends a control signal for turning on the power supply to the power supply circuit 46 to turn on the power of the device. That is, the control circuit 43 manages the activation of the power supply of the entire device.

例えばメイン電池41が二次電池の場合には、メイン電池41が十分に充電され、所定の電圧を備えていれば、電圧検出回路42がその電圧を検出して、制御回路43に起動要因の一つであるメイン電池装着信号を送る。一方、メイン電池41の充電が不十分なとき、電源回路46と制御回路43とにメイン電池41の電源は供給されるが、電源回路46が動作するのに十分な電圧に達していないため、電圧検出回路42がその電圧不足を検出判定し、制御回路43にメイン電池装着信号を送らない。その結果機器の電源は入らない。この電圧検出回路42には、一般的な電圧検出タイプのリセットICが適用可能で、そのリセット出力信号をメイン電池装着信号として、制御回路43に送ることによって機能を実現できる。   For example, when the main battery 41 is a secondary battery, if the main battery 41 is sufficiently charged and has a predetermined voltage, the voltage detection circuit 42 detects the voltage and causes the control circuit 43 to One main battery mounting signal is sent. On the other hand, when the main battery 41 is insufficiently charged, the power of the main battery 41 is supplied to the power supply circuit 46 and the control circuit 43, but the voltage does not reach a sufficient voltage for the power supply circuit 46 to operate. The voltage detection circuit 42 detects and determines that the voltage is insufficient, and does not send a main battery mounting signal to the control circuit 43. As a result, the device will not turn on. A general voltage detection type reset IC can be applied to the voltage detection circuit 42, and the function can be realized by sending the reset output signal to the control circuit 43 as a main battery mounting signal.

十分に充電されているメイン電池41が装着され、電圧検出回路42がメイン電池装着信号を制御回路43に送ると、制御回路43は電源回路46を起動するための起動制御信号である「P.ON.Hi_1」を出力する。「P.ON.Hi_1」はそのままでは電源回路46を起動するわけではなく、遅延回路45で遅延される。遅延回路45は、電源OFF状態を表すLowから電源ON状態を表すHiへの信号変化のタイミングを遅延し、「P.ON.Hi_2」を作る。この「P.ON.Hi_2」の電源OFF状態を表すLowから電源ON状態を表すHiへの信号変化が、電源回路46を直接起動する。   When a sufficiently charged main battery 41 is attached and the voltage detection circuit 42 sends a main battery attachment signal to the control circuit 43, the control circuit 43 is an activation control signal “P. ON.Hi_1 "is output. “P.ON.Hi — 1” is not activated as it is, but is delayed by the delay circuit 45. The delay circuit 45 delays the signal change timing from Low indicating the power OFF state to Hi indicating the power ON state, and creates “P.ON.Hi_2”. The signal change from Low representing the power OFF state of “P.ON.Hi_2” to Hi representing the power ON state directly activates the power supply circuit 46.

この遅延回路45が必要な理由を、図5のタイミング図を使って以下説明する。同図の電池入力(以下、1番目と称す)のタイミング図は、メイン電池41を機器に装着した時機器に印加される電圧を表している。また、P.ON.Hi_1(以下、2番目と称す)のタイミング図は、「P.ON.Hi_1」の出力タイミングを表している。同様に、P.ON.Hi_2(以下、3番目と称す)のタイミング図は、「P.ON.Hi_2」の出力タイミングを表している。   The reason why the delay circuit 45 is necessary will be described below with reference to the timing chart of FIG. The timing diagram of the battery input (hereinafter referred to as the first) in FIG. 6 represents the voltage applied to the device when the main battery 41 is mounted on the device. P.P. ON. The timing chart of Hi_1 (hereinafter referred to as the second) represents the output timing of “P.ON.Hi_1”. Similarly, P.I. ON. The timing diagram of Hi_2 (hereinafter referred to as the third) represents the output timing of “P.ON.Hi_2”.

通常、メイン電池41を機器に装着した時には、図5の1番目のタイミング図のA点〜G点に示すように、電池の端子が本体の端子と繋がるときに「電源投入時のチャタリング」と呼ばれる現象が発生する。「電源投入時のチャタリング」とは、電池の端子が本体の端子と繋がるときに、端子どうしが繋がる丁度その瞬間に、極短い時間ではあるが短い周期で繋がったり離れたりを繰り返す現象である。この現象は、メカニカルな電気接点が繋がるときには、期間の長い短いはあるにしても、必ず発生する現象である。以下「電源投入時のチャタリング」を、単にチャタリングとも称す。   Normally, when the main battery 41 is mounted on a device, as shown by points A to G in the first timing diagram of FIG. 5, when the battery terminal is connected to the terminal of the main body, “chattering at power on” The phenomenon called occurs. “Chattering at power-on” is a phenomenon in which when terminals of a battery are connected to terminals of the main body, the terminals are connected or separated at a short period, but at the very moment when the terminals are connected. This phenomenon is a phenomenon that always occurs when mechanical electrical contacts are connected, even if the period is long or short. Hereinafter, “chattering at power-on” is also simply referred to as chattering.

上記の説明で示したように、メイン電池41の電源が機器に接続されると、電圧検出回路42がメイン電池装着信号を制御回路43に送り、制御回路43が同図のA点で「P.ON.Hi_1」を出力するが、その電源投入時のチャタリングの発生している期間における「P.ON.Hi_1」のタイミング波形は、図5の2番目のタイミング図にあるように、1番目の機器にかかる電池入力のタイミング波形とほぼ同じである。もちろん、実際には2番目のタイミング波形の「P.ON.Hi_1」の出力変化には、各回路のほんのわずかな応答速度の遅れが全体的にはあるにしても、機器にかかる電池入力の電圧タイミングとほぼ同じタイミングで「P.ON.Hi_1」が出力される。   As shown in the above description, when the power source of the main battery 41 is connected to the device, the voltage detection circuit 42 sends a main battery mounting signal to the control circuit 43, and the control circuit 43 displays “P” at point A in FIG. .. ON.Hi_1 "is output, but the timing waveform of" P.ON.Hi_1 "during the chattering period when the power is turned on is the first as shown in the second timing diagram of FIG. This is almost the same as the timing waveform of the battery input applied to the device. Of course, the actual change in the output of “P.ON.Hi_1” in the second timing waveform actually has a slight delay in the response speed of each circuit, but the battery input to the device “P.ON.Hi_1” is output at almost the same timing as the voltage timing.

もし、このままの「P.ON.Hi_1」のタイミングで、チャタリングに起因するON/OFFを電源回路46に付与すると、図では概念的に示しているため長い周期であるが、実際にははるかに短い周期で電源がON/OFFを繰り返すことになるため、電源回路46が誤動作する。つまり、電源回路46の出力回路部分に使用しているデカップコンデンサ等に前のONの期間に充電された電圧が残ったままになることとなり、電源回路46が誤動作する。   If ON / OFF due to chattering is given to the power supply circuit 46 at the timing of “P.ON.Hi_1” as it is, it is a long cycle because it is conceptually shown in the figure, but in fact it is much more Since the power supply is repeatedly turned on and off in a short cycle, the power supply circuit 46 malfunctions. That is, the voltage charged in the previous ON period remains in the decoupling capacitor or the like used in the output circuit portion of the power supply circuit 46, and the power supply circuit 46 malfunctions.

電源回路46がこのような誤動作を発生した場合、電源回路46は通常よりも高い電圧を過渡的に出力する事がある。この高い電圧は、時によっては各回路を構成しているICや電気部品の絶対最大定格を越えるような高い電圧に達することもある。従って、このような高い電圧が印加されたICや電気部品は、絶対最大定格を越えた電圧により、ダメージ場合によっては破壊されてしまうケースが発生する。   When the power supply circuit 46 causes such a malfunction, the power supply circuit 46 may transiently output a voltage higher than normal. This high voltage sometimes reaches a high voltage that exceeds the absolute maximum ratings of the ICs and electrical components constituting each circuit. Therefore, there are cases where ICs and electrical components to which such a high voltage is applied are destroyed in some cases due to a voltage exceeding the absolute maximum rating.

そこで従来の電源起動装置では、「P.ON.Hi_1」で直接電源回路46をON/OFFせず、その後に遅延回路45を挿入し、出力回路部分に使用しているデカップコンデンサ等に残った残存電圧が放電するのに十分な時間を経た後「P.ON.Hi_1」のLowからHiへの変化を遅延させた「P.ON.Hi_2」を用い、電源回路46をON/OFFすることにより、図5の3番目の波形に示すように、「P.ON.Hi_1」の電源起動のLowからHiへの変化のタイミングを所定期間tだけ遅らせた信号が、「P.ON.Hi_2」である。   Therefore, in the conventional power start-up device, the power supply circuit 46 is not directly turned ON / OFF by “P.ON.Hi_1”, and the delay circuit 45 is inserted after that and remains in the decoupling capacitor used for the output circuit portion. The power supply circuit 46 is turned ON / OFF by using “P.ON.Hi_2” obtained by delaying the change from “Low” to “Hi” of “P.ON.Hi_1” after a sufficient time for the residual voltage to discharge. Thus, as shown in the third waveform in FIG. 5, a signal obtained by delaying the timing of the change from “Low” to “Hi” of the power activation of “P.ON.Hi_1” by a predetermined period t is “P.ON.Hi_2”. It is.

すなわち、遅延回路45は「P.ON.Hi_2」のLowレベルからHiレベルへの変化による電源起動のタイミングを期間tだけ遅らせ、電源OFFの制御のHiレベルからLowレベルへの変化のタイミングには遅延をかけないように構成する。この構成により、電源OFFの期間には必ず期間t以上の時間を確保できる。   That is, the delay circuit 45 delays the power activation timing by the change of “P.ON.Hi_2” from the Low level to the Hi level by the period t, and the timing of the change from the Hi level to the Low level of the power OFF control is Configure to avoid delays. With this configuration, a time longer than the period t can be ensured during the power-off period.

これは、別の意味でも必要な構成である。つまり、電源をOFFする方向の制御タイミングには、電源の強制リセットや、出力回路の短絡に対する保護のための緊急電源OFF等の緊急性の高い制御が含まれる。このため電源OFF方向の制御は直ちに実行する必要がある。なお、この制御の実際の回路構成としては、例えば遅延回路45の前後をダイオードで接続するなどの方法で、容易に実現することができる。   This is a necessary configuration in another sense. In other words, the control timing in the direction of turning off the power includes highly urgent control such as forced reset of the power or turning off the emergency power for protection against a short circuit of the output circuit. For this reason, it is necessary to immediately execute the control in the power OFF direction. The actual circuit configuration of this control can be easily realized by, for example, a method of connecting the front and rear of the delay circuit 45 with a diode.

改めて、図5の1番目の波形と3番目の波形を見ると、電池1の入力時等にどのような短い周期の電源投入時のチャタリングが発生しても、「P.ON.Hi_2」には期間t以上の電源OFFの期間が確保された後、次の電源が入るように制御出来ている。
特開2006―18574号公報
5A and 5B, the first waveform and the third waveform shown in FIG. 5 indicate that “P.ON.Hi_2” is not affected by any short cycle power-on chattering when the battery 1 is input. Can be controlled so that the next power supply is turned on after a power-off period of at least the period t is secured.
JP 2006-18574 A

しかしながら上記の従来の構成では、電源の起動要因(供給信号及び通電信号の総称)が成立し、実際に電源回路が起動するまでには、図5のA点からB点及びD点からE点のように必ず期間tの遅延が発生する。電源スイッチのONが起動要因の時も同様で、同図のG点からH点及びJ点からK点のように機器の使用者が電源スイッチをONしてから、実際に電源回路が起動するまでにも期間tの遅延が発生する。   However, in the conventional configuration described above, the power source activation factor (generic name for the supply signal and the energization signal) is established, and until the power circuit is actually activated, the points A to B and D to E in FIG. As described above, a delay of the period t always occurs. The same is true when the power switch is turned on, and the power supply circuit actually starts after the user turns on the power switch, such as points G to H and J to K in the figure. Until this occurs, a delay of period t occurs.

これは、図5のタイミング図に示したように、機器の使用者が電源スイッチをONすると、制御回路43はそれを検出して直ちに「P.ON.Hi_1」を発行するが、その後に遅延回路45が入るので、実際に電源回路46をONする「P.ON.Hi_2」がLowレベルからHiレベルへ変化するのは期間t後となり、電源はすぐには入らず、期間tの遅延が発生する。   As shown in the timing diagram of FIG. 5, when the user of the device turns on the power switch, the control circuit 43 detects it and immediately issues “P.ON.Hi_1”. Since the circuit 45 is turned on, “P.ON.Hi_2” that actually turns on the power supply circuit 46 changes from the Low level to the Hi level after the period t, the power supply is not turned on immediately, and the delay of the period t is delayed. appear.

また、最近の機器では、電源回路に接続されている回路の規模も大きくなり、出力回路部分に使用しているデカップコンデンサの容量も大きくなっている。その結果、デカップコンデンサ等に残った残存電圧が放電するのに必要な時間は長くなり、電源投入時のチャタリング対策のため必要な所定期間tも等価的に長くなってきている。例えば、最近の機器では、0.3秒程度の所定期間tを設けている機器も製品化されている。   In recent devices, the scale of the circuit connected to the power supply circuit has increased, and the capacity of the decoupling capacitor used in the output circuit portion has also increased. As a result, the time required for discharging the residual voltage remaining in the decoupling capacitor or the like becomes longer, and the predetermined period t required for chattering countermeasures when the power is turned on is equivalently longer. For example, in recent devices, devices that have a predetermined period t of about 0.3 seconds have been commercialized.

一方、使い勝手の追求の中では、近年高速起動に関する要求が強くなってきている。ポータブルの機器の中でも、特に映像や音声を記録する目的で使用するデジタルスチルカメラやムービーなどでは、普段は電源をOFFし待機しておくことで電池の消耗を押さえながら、いざ目の前で目的とするイベントが発生しそうになると、瞬時に機器を起動し、撮影又は録音するような使い方が出来るような対応が求められてきている。   On the other hand, in the pursuit of usability, there has been a strong demand for high-speed startup in recent years. Among portable devices, especially digital still cameras and movies that are used to record video and audio, the power is usually turned off and standby is performed to keep the battery running down while aiming at the moment. When an event is likely to occur, there is a need for a response that allows the device to be instantly activated and used for shooting or recording.

そのようなクイック起動に関する要求が強くなってきている状況の中で、電源スイッチをONしてから実際に電源回路が起動するまでに常に所定期間t(例えば0.3秒)が必要であるという問題点を有していた。   In such a situation where the demand for quick activation is becoming stronger, it is said that a predetermined period t (for example, 0.3 seconds) is always required after the power switch is turned on until the power circuit is actually activated. Had problems.

本発明は上記従来の問題点を解決するもので、電池装着時の電源投入時のチャタリング対策でどうしても必要な遅延期間tに対応しながら、電源スイッチで機器をONしたときの電源起動時には期間tを必要とせず、即座に電源を起動する事が出来る電源起動装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and it corresponds to a delay period t that is inevitably necessary for chattering measures at the time of power-on when a battery is mounted, while a period t at the time of power activation when the device is turned on with a power switch. It is an object of the present invention to provide a power activation device that can immediately activate a power source without requiring a power source.

この目的を達成するために本発明の電源起動装置は、電子機器に電力を供給する電力供給手段と、前記電力供給手段から電力の供給を検出し、供給信号を発生する電力検出手段と、前記電子機器に通電する通電信号及び前記通電を切断する切断信号を発生する切替手段と、前記通電信号、前記切断信号及び前記供給信号に応じて、前記電子機器に前記電力供給手段からの電力を通電する電源手段と、前記電力供給手段による前記供給信号の停止、または前記切替手段による前記切断信号の発生の少なくとも何れか一方以降の所定期間を遅延する遅延手段と、前記遅延手段が遅延を開始する開始点と、前記開始点から前記所定期間内に前記電力検出手段から発生した前記供給信号または前記切替手段から発生した通電信号の少なくとも何れか一方を記憶する記憶手段と、前記記憶手段が記憶した当該供給信号または当該通電信号を、前記開始点から前記所定期間以降に前記電源手段に通電制御する制御手段とを備える構成を有している。   In order to achieve this object, a power activation device of the present invention includes a power supply unit that supplies power to an electronic device, a power detection unit that detects supply of power from the power supply unit and generates a supply signal, and Switching means for generating an energization signal for energizing the electronic device and a disconnection signal for disconnecting the energization, and energizing the electronic device with electric power from the power supply unit according to the energization signal, the disconnection signal, and the supply signal Power supply means, delay means for delaying a predetermined period after at least one of the stop of the supply signal by the power supply means or generation of the disconnection signal by the switching means, and the delay means start delaying At least one of a start point and the supply signal generated from the power detection unit or the energization signal generated from the switching unit within the predetermined period from the start point Storage means for storing, the supply signal or the energizing signal said memory means has stored, and has a configuration and a control means for controlling current applied to said power supply means after the predetermined period from the start point.

本発明は、電池装着時の電源投入時のチャタリング対策に必要な期間tに対しては対応しながら、電源スイッチで機器をONしたときの電源起動時では期間tを必要とせず、直ちに電源を起動する事が出来る電源起動装置を提供出来る。   The present invention copes with the period t required for chattering countermeasures when the power is turned on when the battery is mounted, but does not require the period t when the power is turned on when the device is turned on with the power switch, and immediately turns on the power. A power activation device that can be activated can be provided.

本発明の電源起動装置は、電子機器に電力を供給する電力供給手段と、前記電力供給手段から電力の供給を検出し、供給信号を発生する電力検出手段と、前記電子機器に通電する通電信号及び前記通電を切断する切断信号を発生する切替手段と、前記通電信号、前記切断信号及び前記供給信号に応じて、前記電子機器に前記電力供給手段からの電力を通電する電源手段と、前記電力供給手段による前記供給信号の停止、または前記切替手段による前記切断信号の発生の少なくとも何れか一方以降の所定期間を遅延する遅延手段と、前記遅延手段が遅延を開始する開始点と、前記開始点から前記所定期間内に前記電力検出手段から発生した前記供給信号または前記切替手段から発生した通電信号の少なくとも何れか一方を記憶する記憶手段と、前記記憶手段が記憶した当該供給信号または当該通電信号を、前記開始点から前記所定期間以降に前記電源手段に通電制御する制御手段とを備える。この構成により、電力検出手段から供給信号が停止、または切替手段が切断信号を生成した際には、制御手段が遅延手段に所定期間遅延指令を出すことで、当該所定期間電源手段に電力の供給を停止するため、電子機器に対する電源投入や電子機器内部スイッチ等のON/OFFに際して必ず発生するチャタリングに起因する不具合を抑制できる。また、当該所定時間経過後は、供給信号または通電信号により速やかに電源手段に対し電力供給手段から電力を供給することができ、電源投入または電子機器内部スイッチ等のON時にチャタリングによる不具合防止の待ち時間を解消することができる。   The power activation device of the present invention includes a power supply unit that supplies power to an electronic device, a power detection unit that detects supply of power from the power supply unit and generates a supply signal, and an energization signal that energizes the electronic device And a switching means for generating a disconnection signal for disconnecting the energization, a power supply means for energizing the electronic device with power from the power supply means in response to the energization signal, the disconnection signal, and the supply signal, and the power A delay unit that delays a predetermined period after at least one of the stop of the supply signal by the supply unit or the generation of the disconnection signal by the switching unit; a start point at which the delay unit starts delay; and the start point Storage means for storing at least one of the supply signal generated from the power detection means and the energization signal generated from the switching means within the predetermined period from The supply signal or the energizing signal serial storage means for storing, and a control means for controlling energization to said power supply means after the predetermined period from the start point. With this configuration, when the supply signal is stopped from the power detection unit or the switching unit generates a disconnection signal, the control unit issues a delay command to the delay unit for a predetermined period, thereby supplying power to the power supply unit for the predetermined period. Therefore, it is possible to suppress problems caused by chattering that always occurs when the power to the electronic device is turned on or the electronic device internal switch is turned on / off. In addition, after the predetermined time has elapsed, power can be supplied from the power supply means to the power supply means promptly by a supply signal or energization signal, and waiting for prevention of troubles due to chattering when the power is turned on or the electronic device internal switch is turned on. Time can be eliminated.

上記電源起動装置における記憶手段が前記切断信号または前記供給信号の停止の何れかを受信したとき、前記制御手段は、前記電源手段への通電を直ちに停止する制御を行う構成とすることもできる。この構成により、電源手段の通電停止を優先して実行できる、すなわち切断信号または供給信号停止という電源手段への通電停止を直ちに行い、遅延時間tを通電停止期間に組み込めることが実現でき、遅延時間tによる通電の遅れ、すなわち待ち時間を抑制できる。   When the storage means in the power activation device receives either the disconnection signal or the stop of the supply signal, the control means may perform control to immediately stop energization of the power supply means. With this configuration, it is possible to prioritize and stop the energization of the power supply means, that is, to immediately stop energization of the power supply means such as the disconnection signal or supply signal stop, and to incorporate the delay time t into the energization stop period. The delay of energization due to t, that is, the waiting time can be suppressed.

上記電源起動装置における記憶手段が前記切断信号と前記供給信号とを同時に受信したとき、前記制御手段は、前記電源手段に対し当該切断信号を優先する制御を行うと共に、当該供給信号を前記記憶手段に記憶する制御を行い、前記所定期間経過以降直ちに、当該電源手段に供給信号を送信する制御を行う構成であっても良い。この構成により、切断信号または供給信号定礎といった電源OFF要因を常に最優先して行えるため、電源OFFの制御の中で、例えば緊急性の高い電源リセットまたは出力回路の短絡に対する保護等の制御を確実に実行することができる。   When the storage means in the power activation device receives the disconnection signal and the supply signal at the same time, the control means controls the power supply means to give priority to the disconnection signal, and the supply signal is stored in the storage means. It is also possible to adopt a configuration in which control for storing the power supply signal is performed and control for transmitting a supply signal to the power supply means immediately after the predetermined period has elapsed. With this configuration, power-off factors such as disconnection signals or supply signal foundations can always be given the highest priority. Therefore, during power-off control, for example, control such as highly urgent power reset or protection against output circuit short-circuiting is ensured. Can be executed.

上記電源起動装置の遅延手段における前記所定時間を計測する電源は、前記電子機器に備えるバックアップ電源とするとこができる。この構成により、メインの電池が完全にはずれて、電源供給が止まっている期間も継続して遅延時間を計測する事ができるため、例えば停電時や電池が不用意に外れた時等で電源供給が不意に停止した後電源供給が再開した際に、遅延することなく機器の動作を再開できる。   The power source for measuring the predetermined time in the delay means of the power activation device can be a backup power source provided in the electronic device. With this configuration, the delay time can be measured continuously even when the main battery is completely disconnected and the power supply is stopped. For example, when power is lost or the battery is accidentally removed, power is supplied. When the power supply resumes after suddenly stopping, the operation of the device can be resumed without delay.

上記電源起動装置の遅延手段における前記所定時間を計測する電源が、少なくとも前記所定期間全域に渡り前記遅延手段を動作できる容量を有する蓄電手段と、逆流防止ダイオードとを含む構成が好ましい。この構成により、例えば電源が装着部から不用意に外れる等により電源手段への電源供給が停止する場合であっても、バックアップ電池を必要としないため、遅延時間の計測に対する支障はなく、電子機器のコストを低下させることができる。   Preferably, the power source for measuring the predetermined time in the delay means of the power activation device includes a power storage means having a capacity capable of operating the delay means over at least the entire predetermined period, and a backflow prevention diode. With this configuration, even when the power supply to the power supply means is stopped due to, for example, the power supply being inadvertently disconnected from the mounting portion, no backup battery is required, so there is no hindrance to delay time measurement, and electronic equipment The cost can be reduced.

上記所定期間を計測する基準は、時計回路の基準信号を適用することが好ましい。この構成により、常に一定の基準信号を確保することができ、遅延時間を所定の時間とすることができる。   It is preferable to apply a reference signal of a clock circuit as a reference for measuring the predetermined period. With this configuration, a constant reference signal can always be ensured, and the delay time can be set to a predetermined time.

また、通電により動作する電子機器に電力を供給する電力供給回路と、前記電力供給回路から電力が供給されている供給信号を発生させる電力検出回路と、前記電子機器に通電する通電信号及び前記通電を切断する切断信号を発生する切替回路と、前記通電信号、前記切断信号及び前記供給信号に応じて、前記電子機器に前記電力供給回路から電力を導通する電源回路とを含む電源起動装置に供され、前記電力供給回路による前記供給信号の停止、または前記切替回路による前記切断信号の発生の少なくとも何れか一方以降の所定期間を遅延する遅延回路と、前記遅延回路が遅延を開始する開始点と、前記開始点から前記所定期間内に前記電力検出回路から発生した前記供給信号または前記切替回路から発生した通電信号の少なくとも何れか一方を記憶する記憶回路と、前記記憶回路で記憶した当該供給信号または当該通電信号を、前記開始点から前記所定期間以降に前記電源手段に通電制御する制御回路とを集積した電源起動用集積回路を電子機器に適用することが好ましい。この構成により、電源起動回路が1チップ化することができるため、電子機器の小型化と省電力とが達成できる。   In addition, a power supply circuit that supplies power to an electronic device that operates by energization, a power detection circuit that generates a supply signal supplied with power from the power supply circuit, an energization signal that energizes the electronic device, and the energization A power supply starter comprising: a switching circuit that generates a disconnection signal for disconnecting power; and a power supply circuit that conducts power from the power supply circuit to the electronic device in response to the energization signal, the disconnection signal, and the supply signal. A delay circuit that delays a predetermined period after at least one of the stop of the supply signal by the power supply circuit or the generation of the disconnect signal by the switching circuit, and a starting point at which the delay circuit starts delaying , At least one of the supply signal generated from the power detection circuit and the energization signal generated from the switching circuit within the predetermined period from the start point An integrated circuit for power activation, in which a storage circuit for storing the power supply and a control circuit for controlling energization of the power supply means after the predetermined period from the start point for the supply signal or the energization signal stored in the storage circuit Is preferably applied to electronic equipment. With this configuration, the power activation circuit can be made into one chip, so that downsizing and power saving of the electronic device can be achieved.

以下、本発明の電源起動装置における最良の実施形態について、図1及び図2を参照しながら詳述する。図1は本発明の電源起動装置における一実施形態の構成図であり、1は電力を電子機器に供給する電池(電力供給手段)、2は電池1が不図示の電池装着部に装着され電圧を検出し供給信号を発生する電圧検出回路(電力検出手段)、3は制御回路(制御手段)、4は電源スイッチ(切替手段)、5は遅延回路(遅延手段)、6は電源回路、そして7は記憶回路である。制御回路3は、電圧検出回路2、電源スイッチ4、遅延回路5及び記憶回路7に接続され電源回路6に制御信号を送信する。   Hereinafter, the best embodiment of the power start-up device of the present invention will be described in detail with reference to FIGS. FIG. 1 is a configuration diagram of an embodiment of a power supply activation apparatus according to the present invention. 1 is a battery (power supply means) for supplying power to an electronic device, and 2 is a voltage when a battery 1 is mounted on a battery mounting section (not shown). Is a voltage detection circuit (power detection means) for detecting a supply signal, 3 is a control circuit (control means), 4 is a power switch (switching means), 5 is a delay circuit (delay means), 6 is a power supply circuit, and Reference numeral 7 denotes a memory circuit. The control circuit 3 is connected to the voltage detection circuit 2, the power switch 4, the delay circuit 5, and the storage circuit 7, and transmits a control signal to the power circuit 6.

次に、図1の回路ブロック構成及び働きについて説明する。ムービーやデジタルスチルカメラ等の携帯電子機器(不図示)を駆動する電池1を不図示の装着部に装着すると、電源回路6に電圧を印加すると共に、電圧検出回路2が電池1の装着を検出し、制御部3に装着信号(供給信号)を送信する。このとき、装着信号は単に電池1の装着を示すに留まらず、電池1が電源回路6を介して携帯電子機器を駆動するだけの電圧を有するか否かの信号も生成する。すなわち、電圧検出回路2は、電池1が1次電池の場合には使い込みで電圧または容量の不足を検出した時は装着信号を送出しなく、2次電池の場合では充電不足を検出した時は装着信号を送出しない。また、携帯電子機器の電源の入り切りを制御する電源スイッチ4により、携帯電子機器をON/OFFすると共に、通電信号及び切断信号を生成する。   Next, the circuit block configuration and operation of FIG. 1 will be described. When a battery 1 for driving a portable electronic device (not shown) such as a movie or a digital still camera is attached to an attachment portion (not shown), a voltage is applied to the power supply circuit 6 and the voltage detection circuit 2 detects the attachment of the battery 1. Then, a mounting signal (supply signal) is transmitted to the control unit 3. At this time, the attachment signal is not only indicative of attachment of the battery 1, but also generates a signal indicating whether or not the battery 1 has a voltage sufficient to drive the portable electronic device via the power supply circuit 6. That is, when the battery 1 is a primary battery, the voltage detection circuit 2 does not send out a mounting signal when it detects a lack of voltage or capacity, and when the battery 1 is a secondary battery, it detects a lack of charge. Does not send a wearing signal. In addition, the portable electronic device is turned on / off by the power switch 4 that controls turning on / off of the portable electronic device, and an energization signal and a disconnection signal are generated.

電源スイッチ4で携帯電子機器の電源を投入すると、図2の電池入力(以下、1番目と称す)のタイミング図に示すように電源投入時チャタリングが生じる。なお、同図では概念的に示しているため周期は長いように見受けられるが、実際には非常に短周期でしかも不規則的に高い電圧レベル(以下、Hiレベルと称す)から低い電圧レベル(以下、Lowレベルと称す)への移行と、LowレベルからHiレベルへの移行がチャタリング期間繰り返される。制御回路3がHiレベルからLowレベルへの移行(実質的に切断信号)を受信すると、直ちに遅延回路5に対し所定期間tの遅延を指令する制御を行う。なお、電圧検出回路2からの装着信号の停止を生成した場合でも、装着信号停止の受信に伴い、直ちに遅延回路5に対し所定期間tの遅延を指令する制御を行う。このように、電源スイッチ4が生成する切断信号と電圧検出回路2が生成する装着信号の停止とは、共に電源供給をOFFする要因であるため、電源OFF要因と称する。また、電源スイッチ4が生成する通電信号と電圧検出回路2が生成する装着信号とは、共に電源供給をONする要因であるため、電源ON要因と称する。   When the power of the portable electronic device is turned on with the power switch 4, chattering occurs when the power is turned on as shown in the timing diagram of the battery input (hereinafter referred to as the first) in FIG. Although the period seems to be long because it is conceptually shown in the figure, it is actually a very short period and irregularly high voltage level (hereinafter referred to as Hi level) to low voltage level (hereinafter referred to as Hi level). Hereinafter, the transition to the Low level) and the transition from the Low level to the Hi level are repeated in the chattering period. When the control circuit 3 receives a transition from the Hi level to the Low level (substantially a disconnection signal), it immediately controls the delay circuit 5 to instruct a delay of a predetermined period t. Even when the stop of the mounting signal from the voltage detection circuit 2 is generated, control for instructing the delay circuit 5 to delay for a predetermined period t is immediately performed with the reception of the mounting signal stop. Thus, both the disconnection signal generated by the power switch 4 and the stop of the mounting signal generated by the voltage detection circuit 2 are factors that turn off the power supply, and are therefore referred to as power-off factors. The energization signal generated by the power switch 4 and the mounting signal generated by the voltage detection circuit 2 are both factors that turn on the power supply and are therefore called power-on factors.

電源OFF要因を制御回路3が受信すると、図2のP.ON.Hi_3(以下、2番目と称す)のタイミング図に示すように、電源回路6に対する起動制御信号「P.ON.Hi_3」の送信を停止する。この電源OFF要因を制御回路3が検知し、遅延回路5の遅延期間内に電源ON要因を制御回路3が受信すると、記憶回路7に記憶させる。また、遅延回路5の遅延期間経過後に電源ON要因を制御回路3が検知すると、電源回路6にHiレベルの起動制御信号「P.ON.Hi_3」を送信する。すなわち、制御回路3は、電源OFF要因を検知すると直ちに電源回路6への起動制御信号「P.ON.Hi_3」の送信を停止(HiレベルからLowレベルにする)し、遅延回路5による所定の遅延期間(例えば、デカップコンデンサ等の残留電圧の放電時間よりも長い時間)は起動制御信号「P.ON.Hi_3」をLowレベルに保持する制御を行う。また、制御回路3は、電源ON要因を検知すると、遅延回路5の遅延期間でなければ直ちに電源回路6への起動制御信号「P.ON.Hi_3」をLowレベルからHiレベルにする制御を行い、遅延回路5の遅延期間内であれば記憶回路7に電源ON要因の受信を記憶させる制御を行う。なお、電源ON要因を制御回路3が検知している状態で電源ON要因を検知(例えば、本実施形態では、制御回路3が装着信号を検知している状態で、通電信号を検知する場合)した際には、起動制御信号「P.ON.Hi_3」はHiレベルを維持し続ける。逆に、図2のe点からg点に示すように、電源OFF要因(同図e点)から遅延回路5による遅延期間t経過中(e点からf点)及び経過後(f点からg点)も電源ON要因を制御回路3が検知しない場合には、電源回路6への起動制御信号「P.ON.Hi_3」はLowレベルを維持し続け、電源ON要因を制御回路3が検出する(同図g点)と、制御回路3は直ちに起動制御信号「P.ON.Hi_3」をHiレベルにし、電源OFF要因を制御回路3が検出する(同図g点からh点)まで、起動制御信号「P.ON.Hi_3」をHiレベルに維持し続ける。   When the control circuit 3 receives the power OFF factor, the P.P. ON. As shown in the timing diagram of Hi_3 (hereinafter referred to as second), transmission of the activation control signal “P.ON.Hi_3” to the power supply circuit 6 is stopped. When the control circuit 3 detects this power-off factor and the control circuit 3 receives the power-on factor within the delay period of the delay circuit 5, it is stored in the storage circuit 7. When the control circuit 3 detects the power ON factor after the delay period of the delay circuit 5 elapses, a Hi level activation control signal “P.ON.Hi — 3” is transmitted to the power supply circuit 6. That is, as soon as the power supply OFF factor is detected, the control circuit 3 stops the transmission of the start control signal “P.ON.Hi — 3” to the power supply circuit 6 (from the Hi level to the Low level), and the delay circuit 5 In a delay period (for example, a time longer than the discharge time of the residual voltage of the decoupling capacitor or the like), the start control signal “P.ON.Hi — 3” is controlled to be held at the low level. Further, when detecting the power ON factor, the control circuit 3 immediately controls the activation control signal “P.ON.Hi — 3” to the power supply circuit 6 from the Low level to the Hi level unless the delay period of the delay circuit 5 is detected. If it is within the delay period of the delay circuit 5, the storage circuit 7 is controlled to store the reception of the power ON factor. Note that the power ON factor is detected in a state where the power ON factor is detected by the control circuit 3 (for example, in the present embodiment, the energization signal is detected while the control circuit 3 is detecting the mounting signal). In this case, the activation control signal “P.ON.Hi — 3” continues to maintain the Hi level. On the contrary, as shown from the point e to the point g in FIG. 2, during the delay period t by the delay circuit 5 (from the point e to the point f) and after the passage (from the point f to the point g) from the power-off factor (point e in the drawing). If the control circuit 3 does not detect the power ON factor, the activation control signal “P.ON.Hi_3” to the power circuit 6 continues to maintain the Low level, and the control circuit 3 detects the power ON factor. (Point g in the figure), the control circuit 3 immediately sets the activation control signal “P.ON.Hi_3” to the Hi level and starts until the control circuit 3 detects the power-off factor (from point g to h in the figure). The control signal “P.ON.Hi — 3” is kept at the Hi level.

このように、記憶回路7は電源OFF要因を制御回路3が検知し、遅延回路5による遅延期間内に電源ON要因を制御回路3が検知した時、当該電源ON要因を記憶する。例えば図2のa点からd点に示すように、電圧検出回路2が装着信号をa点で検出し電源回路6に起動制御信号「P.ON.Hi_3」を送信することで電源回路6にチャタリングが発生し、b点で電池入力がHiレベルからLowレベルに変動に連動して、遅延回路5が遅延期間tの間にc点で電池入力がLowレベルからHiレベルに達した際には、当該c点における電源ON要因を記憶回路7に記憶し、所定期間tを経過したd点で起動制御信号「P.ON.Hi_3」を電源回路6に送信する。   As described above, when the control circuit 3 detects the power OFF factor and the control circuit 3 detects the power ON factor within the delay period of the delay circuit 5, the storage circuit 7 stores the power ON factor. For example, as shown from point a to point d in FIG. 2, the voltage detection circuit 2 detects the mounting signal at point a and transmits a start control signal “P.ON.Hi_3” to the power supply circuit 6 to the power supply circuit 6. When chattering occurs and the battery input is changed from the Hi level to the Low level at the point b, and the delay circuit 5 reaches the Hi level from the Low level at the point c during the delay period t. Then, the power ON factor at the point c is stored in the memory circuit 7, and the activation control signal “P.ON.Hi — 3” is transmitted to the power circuit 6 at the point d after a predetermined period t has elapsed.

例えば、電源ON要因の一つである電源スイッチ4から通電信号を制御回路3に送信したとしても、装着信号を制御回路3に送信していない状態では現実的には通電でき得なく、また例えば、遅延期間tだけ遅延した後に電池1の接続が外れた場合等では電源回路6を起動し得なく、このような場合には記憶回路7に蓄積されている記憶内容を消去するように制御回路3による制御等を付与しても良い。但し、記憶回路7として電池1を電源とする揮発性にすると、チャタリング期間中に発生する電源ON要因(例えば図2のc点)までも、遅延期間t中の当該チャタリング(同図b点)の電源OFF要因で消失する危惧があり、通電中のみ記憶できる揮発性メモリを適用する場合には、バックアップ電池等を適用することが好ましい。   For example, even if an energization signal is transmitted to the control circuit 3 from the power switch 4 which is one of the power ON factors, in the state where the mounting signal is not transmitted to the control circuit 3, it cannot be actually energized. When the battery 1 is disconnected after being delayed by the delay period t, the power supply circuit 6 cannot be started. In such a case, the control circuit is configured to erase the stored contents stored in the storage circuit 7. You may give control by 3 etc. However, if the memory circuit 7 is volatile using the battery 1 as a power source, even the power ON factor (for example, point c in FIG. 2) that occurs during the chattering period, the chattering during the delay period t (point b in FIG. 2). When a volatile memory that can be stored only during energization is applied, it is preferable to use a backup battery or the like.

すなわち、記憶回路7は、起動制御信号「P.ON.Hi_3」をLowレベルに維持する遅延回路5による遅延期間tの間に、制御回路3が電源ON要因を検出した時だけ、当該電源ON要因を記憶する。本実施形態では、電源ON要因は装着信号及び通電信号だけであるため、遅延期間中の最後に発生した電源ON要因のみを記憶すればよい。   That is, the memory circuit 7 turns on the power ON only when the control circuit 3 detects the power ON factor during the delay period t by the delay circuit 5 that maintains the activation control signal “P.ON.Hi — 3” at the low level. Memorize the factors. In the present embodiment, since the power ON factor is only the mounting signal and the energization signal, it is only necessary to store only the power ON factor that occurs last in the delay period.

また、遅延回路5の機能自体は図4の遅延回路45と同様に、遅延期間tを計測することは同様であるが、従来構成では制御回路43に対して直列に設けられた構成に対し、本実施形態では制御回路3に対し並列に備える構成が異なる。この構成上の相違点により、従来構成では図5を参照して説明したように、電源回路46に対する起動制御信号「P.ON.Hi_2」を遅延することとなるため、電源ON要因の発生直後に遅延期間tにより遅延されるが、本実施形態においては遅延回路5を制御回路3に対して並列に備えるため、電源OFF要因直後に制御回路3が遅延回路5に遅延開始信号を送信し、遅延期間tの間遅延することができ、起動制御信号「P.ON.Hi_3」を電源回路6に付与する時は遅延期間tで遅延することが無く、電子機器の起動開始信号である起動制御信号「P.ON.Hi_3」の発生に同期して電源回路6が作動する。なお、遅延回路5は遅延期間tの計測に連動して遅延期間終了信号を制御回路3に送信し、制御回路3は遅延期間終了信号により直ちに起動制御信号「P.ON.Hi_3」を電源回路6に送信する。   The delay circuit 5 has the same function as that of the delay circuit 45 of FIG. 4 in that the delay period t is measured. However, in the conventional configuration, the configuration provided in series with the control circuit 43 is as follows. In the present embodiment, the configuration provided in parallel to the control circuit 3 is different. Due to this difference in configuration, in the conventional configuration, as described with reference to FIG. 5, the activation control signal “P.ON.Hi_2” to the power supply circuit 46 is delayed. In this embodiment, since the delay circuit 5 is provided in parallel with the control circuit 3, the control circuit 3 transmits a delay start signal to the delay circuit 5 immediately after the power-off factor, The activation control which can be delayed for the delay period t and is not delayed in the delay period t when the activation control signal “P.ON.Hi — 3” is applied to the power supply circuit 6 and is an activation start signal of the electronic device. The power supply circuit 6 operates in synchronization with the generation of the signal “P.ON.Hi — 3”. The delay circuit 5 transmits a delay period end signal to the control circuit 3 in conjunction with the measurement of the delay period t, and the control circuit 3 immediately sends the start control signal “P.ON.Hi_3” to the power supply circuit by the delay period end signal. 6 to send.

この遅延回路5における遅延期間tの計測には、外部からのクロック回路を備える構成や、専用の水晶発振器の発信周波数に基づく構成等がある。なお、上述の2例では専用の回路が必要であるため、回路スペースを必要とするためスペース的なロス及び部品点数の増加に伴うコストアップ等の課題があるが、例えばムービーやデジタルスチルカメラ等の携帯電子機器に標準搭載されている時計回路に適用されているクロック信号を基準信号として適用すると、省スペース化及び低コスト化が達成できる。また、遅延回路5の計測回路を駆動する駆動電源はさしたる容量は必要としないため、電子機器に標準装備されているバックアップ電源またはコンデンサ等の蓄電部品と当該蓄電部品に蓄積された電流の逆流を防止するダイオードとで構成した蓄電回路を適用すると、簡単な構成でしかも安価に構成することができる。なお、これらバックアップ電源または蓄電回路を用いると、例えば電池1が装着部から落下等により不用意に外れることがある場合でも、電子機器自体の動作に連動して電源起動装置の信頼性も保証できる。   The measurement of the delay period t in the delay circuit 5 includes a configuration including an external clock circuit, a configuration based on a transmission frequency of a dedicated crystal oscillator, and the like. In addition, since the dedicated circuit is required in the above two examples, circuit space is required, and thus there is a problem such as a space loss and a cost increase due to an increase in the number of parts. For example, a movie, a digital still camera, etc. When a clock signal applied to a timepiece circuit that is standardly mounted on a portable electronic device is applied as a reference signal, space saving and cost reduction can be achieved. In addition, since the drive power source for driving the measurement circuit of the delay circuit 5 does not require a capacity, a back-up power source or a power storage component such as a capacitor, which is standard equipment in an electronic device, and a backflow of current accumulated in the power storage component are used. When a power storage circuit configured with a diode to be prevented is applied, it can be configured with a simple configuration and at a low cost. When these backup power supplies or power storage circuits are used, the reliability of the power activation device can be ensured in conjunction with the operation of the electronic device itself even when the battery 1 may be inadvertently detached from the mounting portion due to dropping or the like. .

また、制御回路3は、電圧検出回路2が送出する装着信号の有無と電源スイッチ4が送出する通電信号及び切断信号とに応じて、遅延回路5の遅延期間tの開始及び終了と記憶回路7への電源ON信号の記憶とを制御し、電源回路6に起動制御信号「P.ON.Hi_3」を送信する。   Further, the control circuit 3 starts and ends the delay period t of the delay circuit 5 and the storage circuit 7 according to the presence / absence of the mounting signal sent by the voltage detection circuit 2 and the energization signal and the disconnection signal sent by the power switch 4. The power ON signal is stored in the power supply circuit 6 and the activation control signal “P.ON.Hi — 3” is transmitted to the power supply circuit 6.

以上のように、本実施形態によれば、制御回路3が電源OFF要因の受信により直ちに遅延回路5に対して遅延期間tの計測開始と同時に、起動制御信号「P.ON.Hi_3」をLowレベルに低下することで、電源投入時に必ず発生するチャタリングの悪影響を撲滅させながら、電源ON要因を制御回路3で検出すると直ちに制御回路3は起動制御信号「P.ON.Hi_3」をHiレベルに高めるため、電源ON要因から電源回路6への起動待ち時間を撲滅することができるため、使用者にとって苦痛な起動開始時間の遅延を浴せ得することができる。また、遅延期間tの間に電源ON要因が発生した場合、記憶回路7に電源ON要因を記憶させ、当該所定期間t終了後直ちに制御回路3が起動制御信号「P.ON.Hi_3」を発生させることで、電源投入チャタリング期間にしばしば発生する突発的高電圧印加に起因する電源回路6の構成部品の破壊も抑制することができる。なお、本実施形態の記憶回路7は、遅延回路5が遅延期間中に電源ON要因を記憶すると共に、電源スイッチ4がON状態にあるかOFF状態にあるかのON/OFF状態も記憶する構成を採用することが好ましい。このような構成を採用すると、例えば電源回路6が本体の動作を制御する本体内部制御部等の電源を兼ねる場合には、本体内部制御回路でのON/OFF動作において、電源がON状態かOFF状態かによって本体の動作のみを制御することができる。   As described above, according to the present embodiment, when the control circuit 3 immediately starts measuring the delay period t with respect to the delay circuit 5 upon reception of the power OFF factor, the activation control signal “P.ON.Hi_3” is set to Low. As soon as the power ON factor is detected by the control circuit 3, the control circuit 3 sets the start control signal “P.ON.Hi_3” to the Hi level while eradicating the adverse effects of chattering that always occur when the power is turned on. In order to increase this, it is possible to eliminate the activation waiting time from the power ON factor to the power supply circuit 6, so that it is possible to bathe the delay of the activation start time that is painful for the user. Further, when a power ON factor occurs during the delay period t, the power ON factor is stored in the storage circuit 7, and immediately after the predetermined period t ends, the control circuit 3 generates the start control signal “P.ON.Hi_3”. By doing so, it is possible to suppress the destruction of the components of the power supply circuit 6 due to the sudden application of a high voltage that often occurs during the power-on chattering period. The storage circuit 7 of the present embodiment is configured such that the delay circuit 5 stores the power ON factor during the delay period, and also stores the ON / OFF state of whether the power switch 4 is in the ON state or the OFF state. Is preferably adopted. When such a configuration is adopted, for example, when the power supply circuit 6 also serves as a power supply for the main body internal control unit that controls the operation of the main body, in the ON / OFF operation of the main body internal control circuit, the power is turned on or off. Only the operation of the main body can be controlled depending on the state.

上述のように、本発明に係る電源駆動装置は電源投入時に電源回路で必ず発生するチャタリングに起因した悪影響の抑制を主たる目的とするが、チャタリング自体は電源投入時のみならず、電子機器として例えばムービーを例にとると、液晶表示・停止スイッチ、EVF表示・停止スイッチ、カセットテープやディスク等の可換媒体収納カバー開閉スイッチ、リモートコントロールを介して動作する切替スイッチ、ACアダプタを介しての電源投入・切断動作、ACアダプタと電池との切替等々枚挙に厭わない。これらは何れも電源ON要因としても電源OFF要因としても作用し、必ずしもそれぞれ独立ではなく、電源OFF要因と電源ON要因とが同時に発生する場合もある。その一例について図3を参照して説明する。   As described above, the power supply driving device according to the present invention is mainly intended to suppress adverse effects caused by chattering that always occurs in the power supply circuit when the power is turned on. Taking a movie as an example, a liquid crystal display / stop switch, EVF display / stop switch, a cover for opening and closing a cover for a replaceable medium such as a cassette tape or a disk, a changeover switch operated via a remote control, a power supply via an AC adapter Don't hesitate to switch on and off, switching between AC adapter and battery. These both act as power ON factors and power OFF factors, and are not necessarily independent of each other, and the power OFF factor and the power ON factor may occur simultaneously. An example thereof will be described with reference to FIG.

同図において、21は2次電池、22は電圧検出回路、23は制御回路、24は電源スイッチ、25は遅延回路、26,28及び29はそれぞれ電源回路A、B及びC、27は記憶回路、30はアダプタ接続回路、31は充電回路、32は切替スイッチ、33は充電制御回路である。なお、同図では2次電池21、アダプタ接続回路30及び充電回路31から電源回路A26、電源回路B28及び電源回路C29に電圧を印加する配線は省略している。また、以下の実施形態では、電源回路A26が充電制御回路33及び本体制御回路34の電源回路、電源回路B28は電子機器本体の操作を行う操作スイッチの電源回路、電源回路C29はアダプタ接続回路30を介して携帯電子機器を駆動する駆動電源回路として説明する。   In the figure, 21 is a secondary battery, 22 is a voltage detection circuit, 23 is a control circuit, 24 is a power switch, 25 is a delay circuit, 26, 28 and 29 are power circuits A, B and C, and 27 is a memory circuit, respectively. , 30 is an adapter connection circuit, 31 is a charging circuit, 32 is a changeover switch, and 33 is a charging control circuit. In the figure, wiring for applying a voltage from the secondary battery 21, the adapter connection circuit 30, and the charging circuit 31 to the power supply circuit A26, the power supply circuit B28, and the power supply circuit C29 is omitted. In the following embodiments, the power supply circuit A26 is a power supply circuit for the charging control circuit 33 and the main body control circuit 34, the power supply circuit B28 is a power supply circuit for an operation switch for operating the electronic device main body, and the power supply circuit C29 is an adapter connection circuit 30. As a driving power supply circuit for driving a portable electronic device via

2次電池21は図1における電池1と同様に不図示の携帯電子機器に備える装着部に装着されると、電圧検出回路22で装着を検出し、制御部23に装着信号を送信する。なお、2次電池21が電源回路A26を介して携帯電子機器を駆動するだけの電圧を有する場合は電圧を供給する。すなわち、2次電池21の充電量が不足で電圧が所定値より低い場合には装着信号を制御回路23に送出しない。また、電源スイッチ24は、携帯電子機器の電源の入り切りを制御すると共に、通電信号及び切断信号を生成する。   Similar to the battery 1 in FIG. 1, when the secondary battery 21 is mounted on a mounting unit provided in a portable electronic device (not shown), the voltage detection circuit 22 detects the mounting and transmits a mounting signal to the control unit 23. When the secondary battery 21 has a voltage sufficient to drive the portable electronic device via the power circuit A26, the voltage is supplied. That is, when the charge amount of the secondary battery 21 is insufficient and the voltage is lower than a predetermined value, the mounting signal is not sent to the control circuit 23. The power switch 24 controls turning on / off the power of the portable electronic device, and generates an energization signal and a disconnection signal.

電源スイッチ24により携帯電子機器の電源が投入されると、先の実施形態と同様に電源投入時チャタリングが発生する。また、2次電池21が装着された場合の装着信号の発生によってもチャタリングが発生する。制御回路23が電源スイッチ24または電圧検出回路22から通電信号または装着信号(以下、先の実施形態と同様電源ON要因と称す)の少なくとも何れかを受信すると、電源回路A26に対し起動制御信号「P.ON.Hi_4」を送信し、電源回路A26に2次電池21の電圧を印加する。一方、電源回路24から切断信号の送信または電圧検出回路22から装着信号の停止(以下、先の実施形態と同様電源OFF要因と称す)の少なくとも何れか一方が制御回路23に送信された場合には、直ちに遅延回路25により所定期間t(例えば、デカップコンデンサ等の残留電圧の放電時間よりも長い時間)は起動制御信号「P.ON.Hi_4」をLowレベルに保持する。制御回路23は、所定期間tの間に電源ON要因を制御回路23が受信すると記憶回路27に電源ON要因の受信を記憶させる制御を行い、所定期間t経過後に電源ON要因を受信すると直ちに起動制御信号「P.ON.Hi_4」をHiレベルに変換し続け、電源回路A26起動動制御信号「P.ON.Hi_4」を送信する。これは、先の実施形態で述べた内容とほぼ同一である。なお、記憶回路27は電源スイッチ24がON状態かOFF状態かのON/OFF状態も記憶する。   When the power of the portable electronic device is turned on by the power switch 24, chattering at the time of power-on occurs as in the previous embodiment. Chattering also occurs due to the generation of a mounting signal when the secondary battery 21 is mounted. When the control circuit 23 receives at least one of an energization signal or a mounting signal (hereinafter referred to as a power ON factor as in the previous embodiment) from the power switch 24 or the voltage detection circuit 22, the activation control signal “ P.ON.Hi_4 "is transmitted, and the voltage of the secondary battery 21 is applied to the power supply circuit A26. On the other hand, when at least one of the disconnection signal is transmitted from the power supply circuit 24 or the mounting signal is stopped from the voltage detection circuit 22 (hereinafter referred to as a power-off factor as in the previous embodiment) is transmitted to the control circuit 23. The delay circuit 25 immediately holds the activation control signal “P.ON.Hi — 4” at the low level for a predetermined period t (for example, a time longer than the discharge time of the residual voltage of the decoupling capacitor). The control circuit 23 controls the storage circuit 27 to store the reception of the power ON factor when the control circuit 23 receives the power ON factor during the predetermined period t, and starts immediately when the power ON factor is received after the predetermined period t has elapsed. The control signal “P.ON.Hi_4” is continuously converted to the Hi level, and the power supply circuit A26 activation control signal “P.ON.Hi_4” is transmitted. This is almost the same as the contents described in the previous embodiment. The storage circuit 27 also stores the ON / OFF state of whether the power switch 24 is ON or OFF.

本実施形態では、この2次電池21以外に携帯電子機器にAC電源を変換しDC電源を供給するアダプタ接続回路30、及び2次電池21を充電する充電回路31も備える。これらによる電源供給経路を次に説明する。   In the present embodiment, in addition to the secondary battery 21, an adapter connection circuit 30 that converts AC power to a portable electronic device and supplies DC power and a charging circuit 31 that charges the secondary battery 21 are also provided. The power supply path by these will be described next.

アダプタ接続回路30は、周知のようにAC電源をDC電源に変換する変換回路や、安定化回路等を含み構成される。また、アダプタ接続回路30は、2次電池21を充電する充電回路31に電源を供給する供給源として供される場合が多く、本実施形態ではこの構成を採用している。切替スイッチ32は、携帯電子機器にアダプタ接続回路30を介して直接AC電源から供給するか、充電回路31を介して例えば2次電池21に対し本体充電を行いながら携帯電子機器に電源を供給するかを切り替える。また、アダプタ接続回路30を介してAC電源から直接携帯電子機器に電源を供給する場合や、充電回路31を介して携帯電子機器に電源を供給する場合でも電源ON要因と電源OFF要因とが発生する。なお、本実施形態では説明を簡略化するため、電源スイッチ24による通電信号及び切断信号と、充電回路31にアダプタ回路30から電源の供給及び供給停止に伴う供給信号及び切断信号とについては割愛し、アダプタ接続回路30の出力電圧を電圧検出回路22での検出、切替スイッチ32による切り替え、及び後述する充電制御回路33に起因する電源ON要因または電源OFF要因について説明する。また、電源回路B28は携帯電子機器本体の操作スイッチ(本実施形態では、撮影開始・停止スイッチとする)、電源回路C29は充電回路31を駆動する駆動電源回路として説明する。   As is well known, the adapter connection circuit 30 includes a conversion circuit that converts AC power into DC power, a stabilization circuit, and the like. The adapter connection circuit 30 is often used as a supply source for supplying power to the charging circuit 31 that charges the secondary battery 21, and this configuration is adopted in this embodiment. The changeover switch 32 supplies power to the portable electronic device directly from the AC power source via the adapter connection circuit 30 or supplies the power to the portable electronic device while charging the main body of the secondary battery 21, for example, via the charging circuit 31. Switch between. Even when power is supplied directly from the AC power source to the portable electronic device via the adapter connection circuit 30 or when power is supplied to the portable electronic device via the charging circuit 31, a power ON factor and a power OFF factor are generated. To do. In the present embodiment, for simplification of description, the energization signal and disconnection signal by the power switch 24 and the supply signal and disconnection signal that accompany the supply and stop of power supply from the adapter circuit 30 to the charging circuit 31 are omitted. Next, detection of the output voltage of the adapter connection circuit 30 by the voltage detection circuit 22, switching by the changeover switch 32, and a power ON factor or a power OFF factor due to the charge control circuit 33 described later will be described. The power supply circuit B28 will be described as an operation switch (in this embodiment, a shooting start / stop switch) of the portable electronic device main body, and the power supply circuit C29 will be described as a drive power supply circuit that drives the charging circuit 31.

アダプタ接続回路30を介して携帯電子機器に電源が供給されると、不図示の電源供給線から電源回路B28に電圧が印加されると共に、電圧検出回路22がアダプタ接続回路30の携帯電子機器への接続を検出し、制御部23にアダプタ接続回路30が携帯電子機器への装着された装着信号を送信する。このとき、装着信号は単にアダプタ接続回路30の接続に対する情報だけに留まらず、アダプタ接続回路30が電源回路B28を介して携帯電子機器を駆動するだけの電圧を有するか否かの信号も生成する。すなわち、電圧検出回路22は、アダプタ接続回路30に付与するAC電圧の安定度及び電圧値も検知し、両者が所定の値を満たさない場合は装着信号を送出しない。また、携帯電子機器に電源がアダプタ接続回路30を介した経路か他の経路(本実施形態では2次電池21の本体充電)かを切り替える切替スイッチ32で、何れの電源経路かの選択信号も生成する。   When power is supplied to the portable electronic device via the adapter connection circuit 30, a voltage is applied from a power supply line (not shown) to the power supply circuit B28, and the voltage detection circuit 22 is supplied to the portable electronic device of the adapter connection circuit 30. And the adapter connection circuit 30 transmits a mounting signal indicating that the mobile electronic device is mounted to the control unit 23. At this time, the mounting signal is not limited to information on the connection of the adapter connection circuit 30 but also generates a signal indicating whether or not the adapter connection circuit 30 has a voltage for driving the portable electronic device via the power supply circuit B28. . That is, the voltage detection circuit 22 also detects the stability and voltage value of the AC voltage applied to the adapter connection circuit 30, and does not send a mounting signal when both do not satisfy the predetermined value. In addition, a changeover switch 32 for switching the power source for the portable electronic device between the path through the adapter connection circuit 30 and another path (in this embodiment, the main body charging of the secondary battery 21), and a selection signal for which power path is selected Generate.

電圧検出回路22が制御回路23に対し装着信号を発信し、切替スイッチ32がアダプタ接続回路30を選択することで選択信号を制御回路23に発信すると、先の実施形態での説明と同様に電源投入時チャタリングが生じる。このチャタリングに起因してHiレベルからLowレベルへの移行を制御回路23が受信すると、直ちに遅延回路25に対し所定期間tの遅延を指令する制御を行う。なお、電圧検出回路22から装着信号の停止を生成した場合でも、装着信号停止の受信に伴い直ちに遅延回路25に対し所定期間tの遅延を指令する制御を行う。これらは先の実施形態での電源OFF要因に相当し、逆は電源ON要因と称す。   When the voltage detection circuit 22 transmits a mounting signal to the control circuit 23 and the changeover switch 32 transmits the selection signal to the control circuit 23 by selecting the adapter connection circuit 30, the power supply is the same as described in the previous embodiment. Chattering occurs when throwing. When the control circuit 23 receives a shift from the Hi level to the Low level due to this chattering, it immediately controls the delay circuit 25 to instruct a delay of a predetermined period t. Even when the stop of the mounting signal is generated from the voltage detection circuit 22, the delay circuit 25 is immediately controlled to instruct a delay of the predetermined period t with the reception of the mounting signal stop. These correspond to the power-off factor in the previous embodiment, and the reverse is referred to as the power-on factor.

電源OFF要因を制御回路23が受信すると、電源回路B28に対し起動制御信号「P.ON.Hi_6」の送信を停止する。電源OFF要因を制御回路23が検知し、遅延回路25の遅延期間t内に電源ON要因を制御回路23が受信すると、記憶回路27に電源ON要因発生を記憶させる。また、遅延回路25の遅延期間t経過後に電源ON要因を制御回路23が検知すると、電源回路B28にHiレベルの起動制御回路「P.ON.Hi_6」を送信する。すなわち、制御回路23は、電源OFF要因を検知すると直ちに電源回路B28への起動制御信号「P.ON.Hi_6」の送信を停止し、遅延回路25による所定期間tは起動制御信号「P.ON.Hi_6」をLowレベルに保持する制御を行う。また、制御回路23は、電源ON要因を検知すると、遅延回路25の遅延期間t以内でなければ直ちに電源回路B28への起動制御信号「P.ON.Hi_6」をLowレベルからHiレベルにする制御を行い、遅延回路25の遅延期間t以内であれば記憶回路27に電源ON要因の受信を記憶させる制御を行う。なお、例えば制御回路23が装着信号を検知している状態で、切替スイッチ32がアダプタ接続回路30を選択した場合にように、電源ON要因を制御回路23が検知している状態で別の電源ON要因を検知した際には、起動制御信号「P.ON.Hi_6」はHiレベルを維持し続ける制御を制御回路23が行う。逆に、電源OFF要因から遅延回路25による遅延期間t経過中及び経過後も、電源ON要因を制御回路23が検知しない場合には、電源回路B28への起動制御信号「P.ON.Hi_6」はLowレベルを維持し続け、電源印要因を制御回路23が検知すると直ちに起動制御信号「P.ON.Hi_6」をHiレベルにし、電源OFF要因を制御回路23が検知するまで、起動制御信号「P.ON.Hi_6」をHiレベルに維持し続ける制御を行う。   When the power supply OFF factor is received by the control circuit 23, transmission of the activation control signal “P.ON.Hi — 6” to the power supply circuit B28 is stopped. When the control circuit 23 detects the power-off factor and the control circuit 23 receives the power-on factor within the delay period t of the delay circuit 25, the storage circuit 27 stores the power-on factor occurrence. When the control circuit 23 detects the power ON factor after the delay period t of the delay circuit 25 elapses, the Hi level activation control circuit “P.ON.Hi — 6” is transmitted to the power supply circuit B28. That is, as soon as the power supply OFF factor is detected, the control circuit 23 stops the transmission of the start control signal “P.ON.Hi — 6” to the power supply circuit B 28, and the start control signal “P.ON” is transmitted for a predetermined period t by the delay circuit 25. .Hi_6 "is held at the low level. Further, when the control circuit 23 detects the power ON factor, the control circuit 23 immediately controls the activation control signal “P.ON.Hi — 6” to the power supply circuit B 28 from the Low level to the Hi level unless it is within the delay period t of the delay circuit 25. If it is within the delay period t of the delay circuit 25, the storage circuit 27 is controlled to store the reception of the power ON factor. Note that, for example, when the control circuit 23 detects the mounting signal and the changeover switch 32 selects the adapter connection circuit 30, another power source is detected while the control circuit 23 detects the power ON factor. When the ON factor is detected, the control circuit 23 performs control to keep the activation control signal “P.ON.Hi — 6” at the Hi level. On the contrary, if the control circuit 23 does not detect the power ON factor during and after the delay period t by the delay circuit 25 from the power OFF factor, the activation control signal “P.ON.Hi — 6” to the power circuit B28 is detected. Continues to maintain the Low level, and immediately after the control circuit 23 detects the power supply factor, the activation control signal “P.ON.Hi — 6” is set to the Hi level, and the activation control signal “P.ON” is detected until the control circuit 23 detects the power OFF factor. P.ON.Hi — 6 ”is kept at the Hi level.

このように、記憶回路27は、電源OFF要因を制御回路23が検知し、遅延回路25による遅延期間t内に電源ON要因を制御回路23が検知した時、当該電源ON要因を記憶する。すなわち、電圧検出回路22が装着信号を検出し電源回路B28に起動制御信号「P.ON.Hi_6」を送信することで電源回路B28にチャタリングが発生し、起動制御信号「P.ON.Hi_6」がHiレベルからLowレベルへの変動に連動し、遅延回路25が遅延期間tの間に制御回路23が電源ON要因を検出した際には、当該電源ON要因を記憶回路27に記憶し、所定期間tの経過以降に起動制御信号「P.ON.Hi_6」を電源回路B28に送信する。   As described above, when the control circuit 23 detects the power OFF factor and the control circuit 23 detects the power ON factor within the delay period t by the delay circuit 25, the storage circuit 27 stores the power ON factor. That is, when the voltage detection circuit 22 detects the mounting signal and transmits the activation control signal “P.ON.Hi_6” to the power supply circuit B28, chattering occurs in the power supply circuit B28, and the activation control signal “P.ON.Hi_6”. When the delay circuit 25 detects the power-on factor during the delay period t in conjunction with the change from the Hi level to the Low level, the power-on factor is stored in the memory circuit 27 and the predetermined circuit After the elapse of the period t, the activation control signal “P.ON.Hi — 6” is transmitted to the power supply circuit B28.

また、切替スイッチ32がアダプタ接続回路30を選択することにより電源ON要因を制御回路32が検出する場合でも、電気回路B28に起動制御信号「P.ON.Hi_6」を送信することに起因して、電源回路B28にチャタリングが同様に発生する。このチャタリングでも、制御回路23が電源OFF要因を検出すると直ちに遅延回路25に所定期間tの遅延を指令し、遅延期間tの間に電源ON要因を制御回路23が検出すると、記憶手段27に電源ON要求を記憶させ、所定期間t終了直後に記憶手段27に格納されている電源ON余韻に基づき、直ちに起動制御信号「P.ON.Hi_6」を電源回路B28に送信し、電源回路B28に通電を開始させる。所定期間t経過後に電源ON要因を制御回路23が検出する場合は、直ちに起動制御信号「P.ON.Hi_6」を電源回路B28に送出する。   Further, even when the control circuit 32 detects the power ON factor by selecting the adapter connection circuit 30 by the changeover switch 32, the start control signal “P.ON.Hi — 6” is transmitted to the electric circuit B28. Similarly, chattering occurs in the power supply circuit B28. Even in this chattering, as soon as the control circuit 23 detects the power-off factor, the delay circuit 25 is instructed to delay the predetermined period t. When the control circuit 23 detects the power-on factor during the delay period t, The ON request is stored, and immediately after the predetermined period t ends, the activation control signal “P.ON.Hi — 6” is immediately transmitted to the power supply circuit B28 based on the power ON reverberation stored in the storage means 27, and the power supply circuit B28 is energized. To start. When the control circuit 23 detects the power ON factor after the elapse of the predetermined period t, the activation control signal “P.ON.Hi — 6” is immediately sent to the power supply circuit B28.

以上のように、電源OFF要因を制御回路23で検出すると、例えば残留電圧の放電時間よりも長い所定期間tの間遅延回路25により遅延を行い、その間起動制御信号「P.ON.Hi_6」は電源回路B28を立ち上げないLowレベルを維持するため、少なくともチャタリングに起因するON/OFF期間の電源回路B28を構成する各種電気部品へ過渡電流が流れ、当該電気部品が破壊されることを抑制できる。しかも、電源ON要因を制御回路23が検知すると、遅延回路25による遅延期間t以内でない限り起動制御信号「P.ON.Hi_6」を直ちに電源回路B28に送信し、遅延回路25の遅延期間t内であっても遅延期間t終了後直ちに起動制御信号「P.ON.Hi_6」を電源回路B28に送信するため、電源ON要因を指令したにも拘わらず電源回路B28の実働が遅れるという不具合が解消できる。   As described above, when the power supply OFF factor is detected by the control circuit 23, for example, the delay circuit 25 performs a delay for a predetermined period t longer than the discharge time of the residual voltage, and the activation control signal “P.ON.Hi_6” is In order to maintain a low level that does not start up the power supply circuit B28, it is possible to suppress a transient current from flowing to various electrical components constituting the power supply circuit B28 during at least an ON / OFF period caused by chattering and destroying the electrical components. . In addition, when the control circuit 23 detects the power ON factor, the activation control signal “P.ON.Hi — 6” is immediately transmitted to the power supply circuit B 28 unless it is within the delay period t by the delay circuit 25, and within the delay period t of the delay circuit 25. However, since the activation control signal “P.ON.Hi — 6” is transmitted to the power supply circuit B28 immediately after the delay period t ends, the problem that the actual operation of the power supply circuit B28 is delayed despite the command of the power ON factor is solved. it can.

次に、充電回路31を介して2次電池21に充電すると共に、携帯電子機器に電源を供給する場合を説明する。なお、本実施形態では前述したように2次電池21を携帯電子機器本体で充電する(すなわち、充電制御回路33が携帯電子機器本体に備える)場合について説明するが、充電回路31が携帯電子機器本体の外部にある場合であっても、アダプタ接続回路30が携帯電子機器に電源を供給する構成であれば同様である。   Next, a case where the secondary battery 21 is charged via the charging circuit 31 and power is supplied to the portable electronic device will be described. In the present embodiment, as described above, the case where the secondary battery 21 is charged by the portable electronic device main body (that is, the charging control circuit 33 is provided in the portable electronic device main body) will be described. The same applies to the case where the adapter connection circuit 30 supplies power to the portable electronic device even when it is outside the main body.

2次電池21を充電する際には、2次電池21が充電不足(所定の電圧を電圧検出回路22で検出できない)状態、2次電池21により携帯電子機器を所望の期間使用できる実用充電完了状態、及び2次電池21を完全に充電した満充電状態の3状態を一般的に充電制御回路33が検出する。また、充電回路31へは、充電不足状態から満充電完了までの間に電圧が印加されるが、ここでは満受電完了時にアダプタ接続回路30から充電回路31への電圧供給は停止され、アダプタ接続回路30により電源が供給される場合を例にとり説明する。   When the secondary battery 21 is charged, the secondary battery 21 is insufficiently charged (predetermined voltage cannot be detected by the voltage detection circuit 22), and the secondary battery 21 can be used for a desired period of time to complete use of the portable electronic device. Generally, the charging control circuit 33 detects the state and three states of the fully charged state where the secondary battery 21 is fully charged. In addition, a voltage is applied to the charging circuit 31 from the insufficient charging state to the completion of the full charging. Here, the voltage supply from the adapter connection circuit 30 to the charging circuit 31 is stopped when the full power reception is completed, and the adapter connection is established. A case where power is supplied from the circuit 30 will be described as an example.

2次電池21が携帯電子機器の装着部に装着されると、電圧検出回路22が2次電池21の電圧を検出する。2次電池21が所定の電圧を満足していると電圧検出回路22により検出した場合には、先に述べた通りの2次電池21から電源回路A26に供給する。電圧検出回路22より2次電池21が所定の電圧を満たさないことを検出した場合には、アダプタ接続回路30から充電回路31に電圧が印加される。この際に、アダプタ接続回路30から所定の電圧が安定的に供給されていない場合は、前述のアダプタ接続回路30による電圧供給とほぼ同様の経路をたどり、制御回路23はHiレベルの起動制御信号「P.ON.Hi_4」を電源回路A26に付与し、充電制御回路33を駆動させる。充電制御回路33が駆動すると、Hiレベルの起動制御信号「P.ON.Hi_5」を電源回路C29に送信制御すると共に、電源回路A26が起動状態となっているため、充電制御回路33はHiレベルの起動制御信号「P.ON.Hi_7」を電源回路充電回路31に送信し制御する。   When the secondary battery 21 is attached to the attachment portion of the portable electronic device, the voltage detection circuit 22 detects the voltage of the secondary battery 21. When the voltage detection circuit 22 detects that the secondary battery 21 satisfies the predetermined voltage, it is supplied from the secondary battery 21 as described above to the power supply circuit A26. When the voltage detection circuit 22 detects that the secondary battery 21 does not satisfy the predetermined voltage, the voltage is applied from the adapter connection circuit 30 to the charging circuit 31. At this time, if a predetermined voltage is not stably supplied from the adapter connection circuit 30, the control circuit 23 follows a path substantially similar to the voltage supply by the adapter connection circuit 30 described above, and the control circuit 23 starts the Hi level start control signal. “P.ON.Hi — 4” is applied to the power supply circuit A 26 to drive the charge control circuit 33. When the charge control circuit 33 is driven, the Hi level start control signal “P.ON.Hi — 5” is transmitted to the power supply circuit C29 and the power supply circuit A26 is in the start state. The activation control signal “P.ON.Hi — 7” is transmitted to the power supply circuit charging circuit 31 for control.

また、前述したように充電制御回路33は、2次電池21に充電する必要がある充電不足状態か、携帯電子機器の駆動部を駆動できる充電量を2次電池に蓄電されている実用充電状態か、2次電池の要領一杯に充電された満充電常態化により切り替える機能を有する。この充電不足状態から実用充電状態となった瞬間、及び実用充電状態から満充電状態になった瞬間にも充電回路31に印加電圧の変化を指令する。しかしながらこの指令に際しては、充電制御回路33内部だけに作用するため、チャタリングは発生しなく、2次電池21が実用充電状態から満充電状態までHiレベルの起動制御信号「P.ON.Hi_7」を充電回路31にチャタリング無く送信制御する。   Further, as described above, the charging control circuit 33 is in a state of insufficient charging that requires charging of the secondary battery 21, or a practical charging state in which the secondary battery stores a charge amount that can drive the drive unit of the portable electronic device. Or, it has a function of switching by normalizing a fully charged secondary battery. The charging circuit 31 is instructed to change the applied voltage at the moment when the charging state is changed from the insufficient charging state to the practical charging state and at the moment when the charging state is changed from the practical charging state to the full charging state. However, since this command only affects the inside of the charging control circuit 33, chattering does not occur, and the secondary battery 21 generates a Hi-level activation control signal “P.ON.Hi — 7” from the practically charged state to the fully charged state. Transmission control is performed on the charging circuit 31 without chattering.

なお、2次電池21の状態変化に際して充電制御回路33が行う起動制御信号「P.ON.Hi_7」の制御は、起動制御信号「P.ON.Hi_4」及び起動制御信号「P.ON.Hi_5」が電源ON要因が生じている状態で、起動制御信号「P.ON.Hi_7」に電源OFF要因及び電源ON要因が生じている。これと類似した電源ON要因及び電源OFF要因と、電源ON要因とが同時に発生する例について図4を参照して説明する。   The activation control signal “P.ON.Hi_7” performed by the charging control circuit 33 when the state of the secondary battery 21 changes is controlled by the activation control signal “P.ON.Hi_4” and the activation control signal “P.ON.Hi_5”. "Is a power ON factor, and a power OFF factor and a power ON factor are generated in the activation control signal" P.ON.Hi_7 ". An example in which a power ON factor and a power OFF factor similar to this and a power ON factor occur simultaneously will be described with reference to FIG.

同図において、35は携帯電子機器本体の操作スイッチ、34は操作スイッチを制御する本体制御回路であり、以下では携帯電子機器を不図示の記録媒体に動画を記録/再生するムービーと通称される撮像機器とし、切替スイッチ35をシャッタレリーズボタンとした例で説明する。なお、他の構成は図3と同一であるため、説明は割愛する、周知のように、ムービーではレンズで集光した被写体反射光像を撮像素子で電気信号に変換し、シャッタレリーズボタン35がOFFの時は撮像素子で変換している電気信号をモニター画面にスルー画像として表示し、シャッタレリーズボタン35がONの時は記録媒体に不図示の記録部(電源回路B28の一部)を起動して記録している撮像画像をモニター画面に表示する。従って、シャッタレリーズボタン35による記録部を起動する電源回路Bの一部の電源ON要因及び電源OFF要因は、電源スイッチ24が電源ON要因の状態(電源回路B28の他の部分が起動状態)で発生する。ムービー等の撮像機能を備える携帯電子機器では、スタンバイ状態と称されるスルー画像を表示している状態から、シャッタレリーズボタン35をONする撮影状態に移行させるが、このシャッタレリーズボタン35による電源ON要因は、本体制御回路34で完結するため、電源起動時のチャタリングは発生しない。   In the figure, 35 is an operation switch of the main body of the portable electronic device, and 34 is a main body control circuit for controlling the operation switch. Hereinafter, the portable electronic device is commonly referred to as a movie for recording / reproducing moving images on a recording medium (not shown). An example in which the imaging device is used and the changeover switch 35 is a shutter release button will be described. Since the other configuration is the same as that in FIG. 3, the description is omitted. As is well known, in a movie, a subject reflected light image collected by a lens is converted into an electrical signal by an image sensor, and a shutter release button 35 is provided. When it is OFF, the electrical signal converted by the image sensor is displayed on the monitor screen as a through image. When the shutter release button 35 is ON, a recording unit (not shown) on the recording medium is activated (part of the power supply circuit B28). Display the captured image recorded on the monitor screen. Accordingly, the power ON factor and the power OFF factor of a part of the power supply circuit B that activates the recording unit by the shutter release button 35 are in a state where the power switch 24 is a power ON factor (other parts of the power supply circuit B28 are activated). appear. In a portable electronic device having an imaging function such as a movie, a state in which a through image called a standby state is displayed is shifted to a shooting state in which the shutter release button 35 is turned on. Since the cause is completed by the main body control circuit 34, chattering at the time of power activation does not occur.

すなわち、シャッタレリーズボタン35が電源OFF要因にあるスルー画像表示状態は記憶回路27が記憶し、シャッタレリーズボタン35をONされると、記憶回路27は電源ON要因を本体制御回路34に送信し、本体制御回路34は電源回路B28に対して起動制御信号「P.ON.Hi_8」を付与することにより、シャッタをON状態に制御する。また、シャッタレリーズボタン34がOFF状態となると、記憶回路27が再びOFF要因を記憶すると共に、本体制御回路34は電源回路B28に対してシャッタOFFを指令するLowレベルを維持する。   That is, the storage circuit 27 stores the through image display state in which the shutter release button 35 is caused by the power OFF factor. When the shutter release button 35 is turned ON, the memory circuit 27 transmits the power ON factor to the main body control circuit 34. The main body control circuit 34 controls the shutter to the ON state by giving the activation control signal “P.ON.Hi_8” to the power supply circuit B28. When the shutter release button 34 is turned off, the storage circuit 27 stores the OFF factor again, and the main body control circuit 34 maintains the low level for instructing the power supply circuit B28 to turn off the shutter.

このように、本体制御回路34を駆動する電源回路B28に電源ON要因が発生している状態であると、電源OFF要因が生じた場合及び電源ON要因が生じた場合は、直ちに電源OFF要因によりシャッタをOFF状態及び電源ON要因によりシャッタをON状態に制御することにより、待ち時間を解消することができ、例えばクイックスタートを実現することができる。   As described above, when the power ON factor is generated in the power supply circuit B28 that drives the main body control circuit 34, when the power OFF factor occurs and when the power ON factor occurs, the power OFF factor immediately By controlling the shutter to the ON state by the shutter OFF state and the power ON factor, the waiting time can be eliminated, for example, a quick start can be realized.

このように携帯電子機器では、撮像の開始・停止を行うシャッタレリーズボタンのみならず、ホワイトバランス調整を担うスイッチ、被写体の拡大率を決定するズームスイッチ、記録媒体への記録または再生を指令する録再スイッチ等多種多様のスイッチが存在し、これらを統合的に制御する本体制御回路を備えることが、スイッチのON/OFF動作により電源起動時のチャタリング発生を防ぐ意味からも好ましい。すなわち、本実施形態ではこの本体制御回路34の電源回路B28は、制御回路23と独立して備えるため、電源起動特のチャタリングの影響を無くすことができ、操作スイッチ類35のON/OFF時のチャタリングによる影響を抑制することができ、クイックスタートが実現できる。   As described above, in a portable electronic device, not only a shutter release button for starting and stopping imaging, but also a switch responsible for white balance adjustment, a zoom switch for determining an enlargement ratio of a subject, and a recording command for recording or reproduction on a recording medium. There are various switches such as re-switches, and it is preferable to have a main body control circuit that controls these switches in an integrated manner from the viewpoint of preventing chattering when the power is turned on by the ON / OFF operation of the switches. That is, in this embodiment, since the power supply circuit B28 of the main body control circuit 34 is provided independently of the control circuit 23, it is possible to eliminate the influence of chattering special to the power activation, and when the operation switches 35 are turned ON / OFF. The effect of chattering can be suppressed and a quick start can be realized.

なお、上述の実施形態では何れも、切替スイッチ24は電源スイッチとして説明したが、電源スイッチに限らず例えばモニター画面の開閉スイッチ、エレクトリックビューファインダーの開閉スイッチ、記録媒体を収納する収納部を開閉するカバーの開閉スイッチ、有線リモコンによる電源ON/OFF等であっても良い。また、チャタリングは電源投入時に発生する場合について説明したが、電源投入時に限らず、例えば使用者による電子機器のリセット、及び独立した外部機器に備える制御回路からのリセット(例えば、映像装置や記録再生装置とリンクするシステム環境における当該映像装置または当該記録再生装置からのリセット要求等)等であっても良い。   In each of the above-described embodiments, the changeover switch 24 is described as a power switch. However, the switch 24 is not limited to the power switch. For example, the monitor screen open / close switch, electric viewfinder open / close switch, and storage unit for storing a recording medium are opened and closed. An open / close switch on the cover, power ON / OFF using a wired remote controller, or the like may be used. In addition, the case where chattering occurs when the power is turned on has been described. However, the chattering is not limited to when the power is turned on. For example, the user resets the electronic device, and resets from a control circuit provided in an independent external device (for example, a video device or recording / playback The reset request from the video device or the recording / reproducing device in a system environment linked to the device may be used.

また、図3における切替スイッチ32は、アダプタ接続回路と2次電池とを切り換えるスイッチをして説明したが、一般的にアダプタと携帯電子機器本体との接続はジャックで行うため、ジャックが入っているか否かでの検知でスイッチングする等の機能が適用できる。さらに、同図における制御回路は3つの場合で説明したが、本体制御回路と充電制御回路とを同一にしても良い。すなわち、本体制御回路や充電制御回路等の電子機器本体の駆動部を制御する内部制御回路と、当該内部制御部を制御する制御回路を備える構成であればどのような内部制御回路及び当該内部回路が制御する電源回路を選ばず、本発明が意図する電源投入時のチャタリングに起因する悪影響を抑制しながら、各操作部の操作に応じた駆動部の駆動に際して瞬時動作ができる電子機器を実現することができる。なお、制御回路が多数の内部制御回路を制御する構成を採用すると、多数の内部制御回路の内制御対象の内部制御回路のみ制御することができるため、多数の内部制御回路を同時に制御する構成に比べると消費電力を抑制することができ、電池の長寿命化を図れる等の効果も奏することができる。   3 has been described as a switch for switching between the adapter connection circuit and the secondary battery. Generally, since the adapter and the portable electronic device main body are connected by a jack, the jack is inserted. Functions such as switching based on whether or not there is a detection can be applied. Furthermore, although the control circuit in the figure has been described with three cases, the main body control circuit and the charge control circuit may be the same. That is, any internal control circuit and internal circuit as long as the configuration includes an internal control circuit that controls the drive unit of the electronic device main body, such as a main body control circuit and a charging control circuit, and a control circuit that controls the internal control unit The electronic device capable of instantaneous operation when driving the drive unit according to the operation of each operation unit while suppressing adverse effects caused by chattering at the time of power-on intended by the present invention, regardless of the power supply circuit controlled by be able to. If the control circuit adopts a configuration in which a large number of internal control circuits are controlled, only the internal control circuit to be controlled can be controlled by the large number of internal control circuits. In comparison, power consumption can be suppressed, and effects such as a longer battery life can be achieved.

また、図4では切替スイッチ35をシャッタレリーズボタンとして説明したが、例えばムービーやデジタルスチルカメラのように被写体の反射光像を集光するレンズを保護するレンズバリアの開閉スイッチ、被写体の拡大・縮小率を決定するズーミングスイッチ、ホワイトバランスやカメラ機能のモード等を変更する変更スイッチ、映像や音声を記録媒体に記録/再生を切り換えるスイッチ等であっても良い。   In FIG. 4, the changeover switch 35 is described as a shutter release button. However, for example, a lens barrier open / close switch for protecting a lens that collects a reflected light image of a subject such as a movie or a digital still camera, and enlargement / reduction of the subject. It may be a zooming switch for determining a rate, a change switch for changing a white balance, a camera function mode, or the like, a switch for switching video / audio to / from a recording medium, and the like.

本発明は、クイック起動に関する要求が強く求められている携帯電子機器に、広く適用することができる。   The present invention can be widely applied to portable electronic devices for which there is a strong demand for quick activation.

本発明の電源起動装置における一実施形態を説明する要部ブロック構成図1 is a block diagram of a main part for explaining an embodiment of a power supply starter according to the present invention. 同実施形態における信号のタイミング図Signal timing diagram in the same embodiment 本発明の電源起動装置における他の実施形態を説明する要部ブロック構成図Main part block block diagram explaining other embodiment in power supply starting device of this invention 本発明の電源起動装置における別の実施形態を説明する要部ブロック構成図Main part block block diagram explaining another embodiment in the power supply starting device of this invention 従来の電源起動装置の要部ブロック構成図Main block diagram of a conventional power activation device 従来の各種信号のタイミング図Conventional signal timing diagram

符号の説明Explanation of symbols

1 電池
2 電圧検出回路
3 制御回路
4 電源スイッチ
5 遅延回路
6 電源回路
7 記憶回路
DESCRIPTION OF SYMBOLS 1 Battery 2 Voltage detection circuit 3 Control circuit 4 Power switch 5 Delay circuit 6 Power supply circuit 7 Memory circuit

Claims (7)

電子機器に電力を供給する電力供給手段と、
前記電力供給手段から電力の供給を検出し、供給信号を発生する電力検出手段と、
前記電子機器に通電する通電信号及び前記通電を切断する切断信号を発生する切替手段と、
前記通電信号、前記切断信号及び前記供給信号に応じて、前記電子機器に前記電力供給手段からの電力を通電する電源手段と、
前記電力供給手段による前記供給信号の停止、または前記切替手段による前記切断信号の発生の少なくとも何れか一方以降の所定期間を遅延する遅延手段と、
前記遅延手段が遅延を開始する開始点と、前記開始点から前記所定期間内に前記電力検出手段から発生した前記供給信号または前記切替手段から発生した通電信号の少なくとも何れか一方を記憶する記憶手段と、
前記記憶手段が記憶した当該供給信号または当該通電信号を、前記開始点から前記所定期間以降に前記電源手段に通電制御する制御手段とを備える電源起動装置。
Power supply means for supplying power to the electronic device;
Power detection means for detecting supply of power from the power supply means and generating a supply signal;
A switching means for generating an energization signal for energizing the electronic device and a disconnection signal for disconnecting the energization;
In response to the energization signal, the disconnection signal, and the supply signal, power supply means for energizing the electronic device with power from the power supply means;
Delay means for delaying a predetermined period after at least one of the stop of the supply signal by the power supply means or the generation of the disconnect signal by the switching means;
Storage means for storing at least one of a start point at which the delay means starts delay and the supply signal generated from the power detection means or the energization signal generated from the switching means within the predetermined period from the start point When,
A power supply starter comprising: a control unit configured to control energization of the power supply unit after the predetermined period from the start point with respect to the supply signal or the energization signal stored in the storage unit.
前記記憶手段が前記切断信号または前記供給信号の停止の何れかを受信したとき、
前記制御手段は、前記電源手段への通電を直ちに停止する制御を行う請求項1記載の電源起動装置。
When the storage means receives either the disconnect signal or the stop of the supply signal,
The power supply starter according to claim 1, wherein the control unit performs control to immediately stop energization of the power supply unit.
前記記憶手段が前記切断信号と前記供給信号とを同時に受信したとき、
前記制御手段は、前記電源手段に対し当該切断信号を優先する制御を行うと共に、当該供給信号を前記記憶手段に記憶する制御を行い、前記所定期間経過以降直ちに、当該電源手段に供給信号を送信する制御を行う請求項1または2何れかに記載の電源起動装置。
When the storage means receives the disconnect signal and the supply signal simultaneously,
The control means controls the power supply means to give priority to the disconnection signal, performs control to store the supply signal in the storage means, and transmits the supply signal to the power supply means immediately after the predetermined period has elapsed. The power activation device according to claim 1, wherein control for performing the control is performed.
前記遅延手段における前記所定時間を計測する電源は、前記電子機器に備えるバックアップ電源である請求項1記載の電源起動装置。 The power supply starting device according to claim 1, wherein the power source for measuring the predetermined time in the delay unit is a backup power source provided in the electronic device. 前記遅延手段における前記所定時間を計測する電源が、少なくとも前記所定期間全域に渡り前記遅延手段を動作できる容量を有する蓄電手段と、逆流防止ダイオードとを含む請求項1記載の電源起動装置。 2. The power supply starting device according to claim 1, wherein the power source for measuring the predetermined time in the delay unit includes a power storage unit having a capacity capable of operating the delay unit over at least the predetermined period, and a backflow prevention diode. 前記所定期間を計測する基準は、時計回路の基準信号である請求項4記載の電源起動装置。 5. The power activation device according to claim 4, wherein the reference for measuring the predetermined period is a reference signal of a clock circuit. 通電により動作する電子機器に電力を供給する電力供給回路と、
前記電力供給回路から電力が供給されている供給信号を発生させる電力検出回路と、
前記電子機器に通電する通電信号及び前記通電を切断する切断信号を発生する切替回路と、
前記通電信号、前記切断信号及び前記供給信号に応じて、前記電子機器に前記電力供給回路から電力を導通する電源回路とを含む電源起動装置に供され、
前記電力供給回路による前記供給信号の停止、または前記切替回路による前記切断信号の発生の少なくとも何れか一方以降の所定期間を遅延する遅延回路と、
前記遅延回路が遅延を開始する開始点と、前記開始点から前記所定期間内に前記電力検出回路から発生した前記供給信号または前記切替回路から発生した通電信号の少なくとも何れか一方を記憶する記憶回路と、
前記記憶回路で記憶した当該供給信号または当該通電信号を、前記開始点から前記所定期間以降に前記電源手段に通電制御する制御回路とを集積した電源起動用集積回路。
A power supply circuit that supplies power to an electronic device that operates by energization;
A power detection circuit for generating a supply signal to which power is supplied from the power supply circuit;
A switching circuit for generating an energization signal for energizing the electronic device and a disconnection signal for disconnecting the energization;
In response to the energization signal, the disconnection signal, and the supply signal, the electronic device includes a power supply circuit that conducts power from the power supply circuit to the electronic device,
A delay circuit that delays a predetermined period after at least one of the stop of the supply signal by the power supply circuit or the generation of the disconnect signal by the switching circuit;
A storage circuit that stores at least one of a start point at which the delay circuit starts delaying, and the supply signal generated from the power detection circuit and the energization signal generated from the switching circuit within the predetermined period from the start point When,
An integrated circuit for power activation, in which the supply signal or the energization signal stored in the storage circuit is integrated with a control circuit for energizing the power supply means after the predetermined period from the start point.
JP2006319848A 2006-11-28 2006-11-28 Power supply starter Pending JP2008134778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319848A JP2008134778A (en) 2006-11-28 2006-11-28 Power supply starter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319848A JP2008134778A (en) 2006-11-28 2006-11-28 Power supply starter

Publications (1)

Publication Number Publication Date
JP2008134778A true JP2008134778A (en) 2008-06-12

Family

ID=39559602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319848A Pending JP2008134778A (en) 2006-11-28 2006-11-28 Power supply starter

Country Status (1)

Country Link
JP (1) JP2008134778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079775A (en) * 2008-09-29 2010-04-08 Nec Infrontia Corp Usb low-order unit and usb system
JP2011233177A (en) * 2011-08-25 2011-11-17 Nec Infrontia Corp Usb low-order unit and usb system
CN114365064A (en) * 2019-09-26 2022-04-15 日立安斯泰莫株式会社 Electronic control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323230A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Power closing control system
JPH0519902A (en) * 1991-07-16 1993-01-29 Toshiba Corp Power source control circuit
JPH0686119U (en) * 1993-05-07 1994-12-13 富士通テン株式会社 ACC detection circuit
JPH10187287A (en) * 1996-12-20 1998-07-14 Nec Corp Delay connection switch
JP2004054560A (en) * 2002-07-19 2004-02-19 Fuji Xerox Co Ltd Power source managing device
JP2004287538A (en) * 2003-03-19 2004-10-14 Matsushita Electric Ind Co Ltd Information equipment and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323230A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Power closing control system
JPH0519902A (en) * 1991-07-16 1993-01-29 Toshiba Corp Power source control circuit
JPH0686119U (en) * 1993-05-07 1994-12-13 富士通テン株式会社 ACC detection circuit
JPH10187287A (en) * 1996-12-20 1998-07-14 Nec Corp Delay connection switch
JP2004054560A (en) * 2002-07-19 2004-02-19 Fuji Xerox Co Ltd Power source managing device
JP2004287538A (en) * 2003-03-19 2004-10-14 Matsushita Electric Ind Co Ltd Information equipment and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079775A (en) * 2008-09-29 2010-04-08 Nec Infrontia Corp Usb low-order unit and usb system
JP2011233177A (en) * 2011-08-25 2011-11-17 Nec Infrontia Corp Usb low-order unit and usb system
CN114365064A (en) * 2019-09-26 2022-04-15 日立安斯泰莫株式会社 Electronic control device

Similar Documents

Publication Publication Date Title
US7765334B2 (en) Electronic apparatus for use with removable storage medium, control method therefor, and program for implementing the method
US8654200B2 (en) Imaging apparatus with shake detection
EP1473588A1 (en) Projection display apparatus and controller for controlling the restart of the lamp
US5027150A (en) Camera
JP6739012B2 (en) Imaging device and imaging device system
US8023030B2 (en) Image pickup apparatus
US20140055623A1 (en) Display control apparatus and display control method
US6111609A (en) Electronic recording camera with reduced power consumption
JP4923943B2 (en) Imaging device
US20070122140A1 (en) Camera having power-saving mode
JP2009027913A (en) Battery drive-type device having power saving mode
JP2008134778A (en) Power supply starter
JP4267051B2 (en) Power saving method for video camera / recorder
JP3891184B2 (en) Portable imaging device and power supply switching control method
JP2002101574A (en) Power supply circuit
JP2010176356A (en) Electronic device
JPH11109439A (en) Data recorder
JP2001223939A (en) Image pickup device
JP2011114976A (en) Electronic equipment
EP1484909B1 (en) Camera control device and digital still camera
US20230176642A1 (en) Electronic apparatus, method of controlling the same and non-transitory computer-readable storage medium
US20240048865A1 (en) Image capturing apparatus, control method, and storage medium
JP2007114824A (en) Power source control means
JP2008035678A (en) Power supply apparatus and imaging apparatus
JP2005045894A (en) Battery-driven electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628