JP2008133825A - Stationary blade and steam turbine - Google Patents

Stationary blade and steam turbine Download PDF

Info

Publication number
JP2008133825A
JP2008133825A JP2007282812A JP2007282812A JP2008133825A JP 2008133825 A JP2008133825 A JP 2008133825A JP 2007282812 A JP2007282812 A JP 2007282812A JP 2007282812 A JP2007282812 A JP 2007282812A JP 2008133825 A JP2008133825 A JP 2008133825A
Authority
JP
Japan
Prior art keywords
stationary blade
blade
cavity
plate
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007282812A
Other languages
Japanese (ja)
Other versions
JP4939368B2 (en
Inventor
Hiroyuki Yamashita
洋行 山下
Yasutomo Kaneko
康智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007282812A priority Critical patent/JP4939368B2/en
Publication of JP2008133825A publication Critical patent/JP2008133825A/en
Priority to PCT/JP2008/069373 priority patent/WO2009057532A1/en
Priority to US12/666,022 priority patent/US8851844B2/en
Application granted granted Critical
Publication of JP4939368B2 publication Critical patent/JP4939368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary blade and a steam turbine capable of inhibiting self-excited vibration with a simple structure. <P>SOLUTION: In the stationary blade 20, a cavity 40 extending in a blade width direction is formed, and slits 28a, 28c making the cavity 40 communicate to an outside are formed. A waveform flat spring 44 slidingly butts on at least one of a face side member 25 and a back side member 27 is provided between the face side member 25 which is a section in a face side of the cavity 40 and the back side member 27 which is a section in a back side of the cavity 40. When a stationary blade 20 elastically deforms, the waveform flat spring 44 generates friction with at least either one of the face side member 25 and the back side member 27. Relative position fluctuation between the face side member 25 and the back side member 27 is attenuated by the friction. Consequently, self-excited vibration generated on the stationary blade can be inhibited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気タービンに用いられる静翼に関し、特に、静翼の内部構造と、この内部構造の静翼を有する蒸気タービンに関する。   The present invention relates to a stationary blade used in a steam turbine, and more particularly, to an internal structure of a stationary blade and a steam turbine having the stationary blade of the internal structure.

近年、蒸気タービンにおいては、軽量化を図るため、静翼の内部に空洞を形成した中空構造とする技術が知られている。さらに、性能の向上を図るため、静翼の空洞と外部とを連通させるスリットを設け、静翼の表面に付着した水滴を空洞に取り込んで除去する技術が提案されている(例えば、特許文献1参照)。空洞に取り込まれた水は、静翼と結合されているシュラウドに向けて流されて排出される。   In recent years, in order to reduce the weight of a steam turbine, a technique of forming a hollow structure in which a cavity is formed inside a stationary blade is known. Furthermore, in order to improve the performance, a technique has been proposed in which a slit for communicating the cavity of the stationary blade and the outside is provided, and water droplets adhering to the surface of the stationary blade are taken into the cavity and removed (for example, Patent Document 1). reference). The water taken in the cavity is discharged toward the shroud connected to the stationary blade.

このような蒸気タービンの静翼には、その外装形状(幾何学的形状)や質量、タービン作動時における静翼周囲の環境(例えば、静翼を通過する蒸気の流速や質量)に応じて、自励振動(フラッタ)が生じることがある。特に、静翼の質量が小さい場合や、翼幅(翼の全長)が長い場合、自励振動が生じ易くなることが知られている。   Depending on the exterior shape (geometrical shape) and mass of the steam blade of such a steam turbine, the environment around the stationary blade at the time of turbine operation (for example, the flow velocity and mass of steam passing through the stationary blade), Self-excited vibration (flutter) may occur. In particular, it is known that self-excited vibration is likely to occur when the mass of the stationary blade is small or when the blade width (the entire length of the blade) is long.

このような自励振動を抑制するため、静翼とシュラウドの結合部に減衰機構(ダンパ)を設けることで、静翼に生じた振動を減衰させる技術が提案されている(例えば、特許文献2,3参照)。   In order to suppress such self-excited vibration, a technique for attenuating vibration generated in the stationary blade by providing a damping mechanism (damper) at the joint between the stationary blade and the shroud has been proposed (for example, Patent Document 2). , 3).

特開平11−336503号公報Japanese Patent Laid-Open No. 11-336503 特許第3461562号公報Japanese Patent No. 3461562 特許第2877837号公報Japanese Patent No. 2877837

ところで、上述のような内部に空洞を有する静翼(以下、中空静翼と記す)は、内部に空洞を有しない中実の静翼(以下、中実静翼と記す)に比べて軽量なものとなる。よって、中空静翼には、中実静翼に比べて自励振動が生じ易く、これを抑制する必要がある。   By the way, a stationary vane having a cavity inside as described above (hereinafter referred to as a hollow stationary blade) is lighter than a solid stationary blade having no cavity inside (hereinafter referred to as a solid stationary blade). It will be a thing. Therefore, the self-excited vibration is more likely to occur in the hollow stationary blade than in the solid stationary blade, and it is necessary to suppress this.

しかしながら、上述の減衰機構を、中空静翼を採用する蒸気タービンに適用することは、設計構造上、極めて困難である。例えば、中空静翼とシュラウドとの結合部に、特許文献1,2のような減衰機構を設けようとすると、減衰機構が中空静翼からシュラウドに続く空洞を塞いでしまうこととなり、空洞に取り込まれた水をシュラウドに向けて良好に排出することができないという問題がある。   However, it is extremely difficult to apply the above-described damping mechanism to a steam turbine that employs a hollow stationary blade because of the design structure. For example, if an attempt is made to provide a damping mechanism as in Patent Documents 1 and 2 at the joint between the hollow stationary blade and the shroud, the damping mechanism will block the cavity that continues from the hollow stationary blade to the shroud and is taken into the cavity. There is a problem that the discharged water cannot be discharged well toward the shroud.

そこで、本発明は、上記に鑑みてなされたものであって、簡素な構成で自励振動を抑制可能な静翼及び蒸気タービンを提供することを目的とする。   Therefore, the present invention has been made in view of the above, and an object thereof is to provide a stationary blade and a steam turbine capable of suppressing self-excited vibration with a simple configuration.

上記の目的を達成するために、請求項1に係る静翼は、蒸気タービンに用いられ、内部に空洞が形成され、且つ該空洞と外部とを連通させるスリットが形成されている静翼であって、空洞から翼内面に摺接可能な摺接部材が設けられていることを特徴とする。   In order to achieve the above object, a stator blade according to claim 1 is a stator blade used in a steam turbine, in which a cavity is formed and a slit is formed to communicate the cavity and the outside. In addition, a sliding contact member capable of sliding contact from the cavity to the blade inner surface is provided.

請求項2に係る静翼は、前記静翼であって、空洞より腹側の部分である腹側部と、空洞より背側の部分である背側部とを有し、摺接部材は、腹側部と背側部との間に設けられ、腹側部と背側部のうち少なくとも一方と接するものとする。   The stationary blade according to claim 2 is the stationary blade, and includes a ventral side portion that is a portion on the ventral side from the cavity and a back side portion that is a portion on the back side from the cavity, and the sliding contact member is It is provided between the ventral part and the dorsal part, and is in contact with at least one of the ventral part and the dorsal part.

請求項3に係る静翼は、前記静翼であって、摺接部材は、腹側部と背側部を、それぞれ翼厚方向外向きに付勢する付勢部材であるものとする。   According to a third aspect of the present invention, the stationary blade is the stationary blade, and the sliding contact member is a biasing member that biases the abdominal side portion and the back side portion outward in the blade thickness direction.

請求項4に係る静翼は、前記静翼であって、付勢部材は、翼幅方向に沿って延びる板状を呈し、撓みによる弾性力によって腹側部と背側部を押圧する板状バネ部材であるものとする。   The stationary blade according to claim 4 is the stationary blade, wherein the urging member has a plate shape extending along the blade width direction, and presses the abdominal side portion and the back side portion by an elastic force due to bending. It is assumed to be a spring member.

請求項5に係る静翼は、前記静翼であって、板状バネ部材は、断面が波形状を呈し、腹側部と背側部には波形の頂部が接しているものとする。   According to a fifth aspect of the present invention, the stationary blade is the stationary blade, wherein the plate-like spring member has a corrugated cross section, and a corrugated apex is in contact with the abdominal side and the back side.

請求項6に係る静翼は、前記静翼であって、板状バネ部材は、断面が略C字形状を呈し、腹側部と背側部のいずれか一方にはC字形の開端部が接しており、他方にはC字形の基部が接しているものとする。   The stationary blade according to claim 6 is the stationary blade, wherein the plate-like spring member has a substantially C-shaped cross section, and a C-shaped open end portion is provided on one of the abdominal side portion and the back side portion. It is assumed that a C-shaped base is in contact with the other.

請求項7に係る静翼は、前記静翼であって、板状バネ部材は、断面が弓形状を呈し、腹側部と背側部のいずれか一方には弓形の端部が接しており、他方には弓形の基部が接しているものとする。   The stator blade according to claim 7 is the stator blade, wherein the plate-like spring member has a bow-shaped cross section, and an arcuate end portion is in contact with either the ventral side portion or the dorsal side portion. The other side is in contact with an arcuate base.

請求項8に係る静翼は、前記静翼であって、断面が弓形状を呈する板状バネ部材が、翼厚方向に沿って二つ配置されており、かつ、各板状バネ部材の基部の裏面同士が、互いに摺接しているものとする。   The stationary blade according to claim 8 is the stationary blade, wherein two plate-like spring members having a bow-shaped cross section are arranged along the blade thickness direction, and a base portion of each plate-like spring member It is assumed that the back surfaces of each other are in sliding contact with each other.

請求項9に係る静翼は、前記静翼であって、板状バネ部材の端部が、板厚方向に複数枚の板状に分割された分割構造あるいはスリット構造となっているものとする。   The stator blade according to claim 9 is the stator blade, wherein an end portion of the plate-like spring member has a divided structure or a slit structure divided into a plurality of plates in the plate thickness direction. .

請求項10に係る静翼は、前記静翼であって、板状バネ部材は、断面がコの字形状を呈し、腹側部と背側部にはコの字形の腕部が接しているものとする。   The stationary blade according to claim 10 is the stationary blade, wherein the plate-like spring member has a U-shaped cross section, and a U-shaped arm portion is in contact with the abdominal side portion and the back side portion. Shall.

請求項11に係る静翼は、前記静翼であって、腹側部と背側部は、前縁部と後縁部で互いに結合されるものであり、板状バネ部材は、腹側部と背側部のうち一方に結合されるものとする。   The stator blade according to claim 11 is the stator blade, wherein the abdominal side portion and the back side portion are coupled to each other at the front edge portion and the rear edge portion, and the plate-like spring member is provided on the abdominal side portion. And one of the dorsal sides.

請求項12に係る静翼は、前記静翼であって、板状バネ部材により仕切られた空洞のうち、スリット介して外部と連通していない空洞には、制振材が設けられているものとする。   The stationary blade according to claim 12 is the stationary blade, wherein a damping material is provided in a cavity partitioned by a plate-like spring member and not communicating with the outside through a slit. And

請求項13に係る静翼は、前記静翼であって、翼の平均反り線に対して略直交して設けられて、内部に形成された空洞を前縁側の空洞と後縁側の空洞とに区画する板状の仕切壁を備えており、かつ、後縁側の空洞内に、制振材が充填されているものとする。   A stationary blade according to a thirteenth aspect is the stationary blade, which is provided substantially orthogonal to the average warp line of the blade, and the cavity formed inside is divided into a cavity on the leading edge side and a cavity on the trailing edge side. It is assumed that a partition wall in the form of a plate is provided, and a damping material is filled in the cavity on the rear edge side.

請求項14に係る蒸気タービンは、前記静翼が、ロータ軸の周方向に所定の間隔で配列されていることを特徴とする。   The steam turbine according to a fourteenth aspect is characterized in that the stationary blades are arranged at predetermined intervals in the circumferential direction of the rotor shaft.

請求項15に係る蒸気タービンは、前記蒸気タービンであって、中実静翼が混在して配列されているものとする。   A steam turbine according to a fifteenth aspect is the steam turbine, in which solid stationary blades are mixedly arranged.

請求項16に係る蒸気タービンは、前記蒸気タービンであって、前記静翼と中実静翼が交互に配列されているものとする。   The steam turbine according to a sixteenth aspect is the steam turbine, wherein the stationary blades and the solid stationary blades are alternately arranged.

請求項17に係る蒸気タービンは、前記蒸気タービンであって、異なる固有振動数を有する複数種類の静翼が配列されているものとする。   The steam turbine according to claim 17 is the steam turbine in which a plurality of types of stationary blades having different natural frequencies are arranged.

請求項1に係る静翼によれば、空洞から翼内面に摺接可能な摺接部材を設けることとしたので、静翼が弾性変形すると、摺接部材は、空洞から翼内面に摺接し、翼内面との間に摩擦を生じさせる。この摩擦により静翼の弾性変形を減衰することで、静翼に生じる自励振動を抑制することができる。   According to the stationary blade according to claim 1, since the sliding contact member that can slide from the cavity to the blade inner surface is provided, when the stationary blade is elastically deformed, the sliding contact member slides from the cavity to the blade inner surface, Friction is generated between the blade inner surfaces. By attenuating the elastic deformation of the stationary blade by this friction, the self-excited vibration generated in the stationary blade can be suppressed.

請求項2に係る静翼によれば、摺接部材を、腹側部と背側部との間に設けられ、腹側部と背側部のうち少なくとも一方と接するものとしたので、静翼が弾性変形すると、摺接部材と、腹側部と背側部のうち少なくとも一方との間に摩擦が生じ、この摩擦により腹側部と背側部の間で生じる相対的な位置変動を減衰することができる。これにより、静翼に生じる自励振動を抑制することができる。   According to the stator blade according to claim 2, since the sliding contact member is provided between the abdominal part and the dorsal part, and is in contact with at least one of the abdominal part and the dorsal part, When the elastic deformation occurs, friction is generated between the sliding contact member and at least one of the abdomen and the dorsal side, and this friction attenuates the relative position fluctuation that occurs between the abdomen and the dorsal side. can do. Thereby, the self-excited vibration which arises in a stationary blade can be suppressed.

請求項3に係る静翼によれば、摺接部材を、腹側部と背側部をそれぞれ翼厚方向外向きに付勢する付勢部材としたので、腹側部と背側部の間に相対的な位置変動が生じると、付勢部材は、この付勢力に応じた大きさの動摩擦力を、腹側部と背側部のうち少なくとも一方との間に生じさせることができる。付勢部材の剛性の選定や、空洞に配設した状態(初期状態)における付勢力を調節することで、腹側部と背側部との間における位置変動の減衰特性を、所望の特性に設定することができる。   According to the stationary blade according to the third aspect, since the sliding contact member is an urging member that urges the abdominal side portion and the back side portion outward in the blade thickness direction, respectively, When the relative position variation occurs, the urging member can generate a dynamic friction force having a magnitude corresponding to the urging force between at least one of the abdominal side portion and the back side portion. By selecting the rigidity of the urging member and adjusting the urging force in the state of being placed in the cavity (initial state), the attenuation characteristics of the position fluctuation between the ventral side and the dorsal side can be changed to the desired characteristics. Can be set.

請求項4に係る静翼によれば、付勢部材を、板状を呈し、撓みによる弾性力によって腹側部と背側部を押圧する板状バネ部材としたので、矩形状の板状部材をプレス成形等により幅方向に湾曲させるだけで、板状バネ部材の長手方向すなわち静翼の翼幅方向に延びる付勢部材を容易に実現することができる。   According to the stator blade according to claim 4, since the urging member is a plate-like spring member that has a plate shape and presses the abdomen and the dorsal side by the elastic force due to the bending, the rectangular plate member The urging member extending in the longitudinal direction of the plate-like spring member, that is, the blade width direction of the stationary blade can be easily realized simply by curving the plate in the width direction by press molding or the like.

請求項5に係る静翼によれば、板状バネ部材を、断面が波形状を呈するものとしたので、腹側部又は背側部に、波形状の複数の頂部で摺接することができ、腹側部又は背側部との間に良好に摩擦を生じさせることができる。   According to the stator blade according to claim 5, since the cross-sectional spring member has a wave shape, the abdomen side or the back side can be slidably contacted with a plurality of wave tops, Friction can be generated between the ventral part or the dorsal part.

請求項6に係る静翼によれば、板状バネ部材を断面がC字形状を呈するものとしたので、板状バネ部材は、腹側部又は背側部に対して十分な面積をもって摺接することができ、腹側部又は背側部との間に良好に摩擦を生じさせることができる。平らな板状部材を、幅方向に丸めるよう湾曲させるだけで容易に板状バネ部材を実現することができる。   According to the stator blade according to claim 6, since the plate-like spring member has a C-shaped cross section, the plate-like spring member is in sliding contact with the abdominal side portion or the back side portion with a sufficient area. It is possible to generate friction between the ventral part or the dorsal part. A plate-like spring member can be easily realized simply by bending a flat plate-like member so as to be rounded in the width direction.

請求項7に係る静翼によれば、板状バネ部材を断面が弓形状を呈するものとしたので、板状バネ部材は、腹側部又は背側部に対して十分な面積をもって摺接することができ、腹側部又は背側部との間に良好に摩擦を生じさせることができる。平らな板状部材に緩やかな山折りと谷折りをそれぞれ2箇所形成するだけで容易に板状バネ部材を実現することができる。   According to the stator blade according to claim 7, since the cross section of the plate spring member has an arcuate shape, the plate spring member is in sliding contact with the ventral portion or the dorsal portion with a sufficient area. Thus, friction can be generated between the ventral part or the dorsal part. A plate-like spring member can be easily realized only by forming two gentle mountain folds and two valley folds on a flat plate-like member.

請求項8に係る静翼によれば、基部の裏面同士を互いに摺接させることにより摩擦を生じさせることができるようになっているので、板状バネ部材の端部を、例えば、溶接により背側部または腹側部に固定することができるので、板バネの寸法公差、及び翼(腹側部及び背側部)の寸法公差から発生する、端部と背側部との片当たり、および端部と腹側部材との片当たりを確実に防止することができる。
なお、基部の裏面同士の片当たりは、板状バネ部材の材料を適宜選択する(裏面同士が片当たりしないような材料を選択する)ことにより回避することができる。
According to the stator blade according to the eighth aspect, since the friction can be generated by bringing the back surfaces of the base portions into sliding contact with each other, the end portion of the plate spring member is connected to the back by, for example, welding. Can be fixed to the side or the ventral side, so that the contact between the end and the dorsal side resulting from the dimensional tolerance of the leaf springs and the dimensional tolerance of the wings (ventral and dorsal), and It is possible to reliably prevent contact between the end portion and the ventral member.
In addition, the contact | abutting of the back surfaces of a base part can be avoided by selecting the material of a plate-shaped spring member suitably (selecting the material which back surfaces do not contact each other).

請求項9に係る静翼によれば、静翼が弾性変形すると、分割された板と板との間に摩擦減衰が発生することとなる。これにより、腹側部と背側部との間における相対的な位置変動をさらに減衰させることができ、静翼に生じる自励振動をより一層抑制することができる。   According to the stator blade according to the ninth aspect, when the stator blade is elastically deformed, friction damping is generated between the divided plates. Thereby, the relative position fluctuation between the abdominal part and the back part can be further attenuated, and the self-excited vibration generated in the stationary blade can be further suppressed.

請求項10に係る静翼によれば、板状バネ部材を断面がコの字形状を呈するものとしたので、板状バネ部材をコンパクトなものとすることができ、空洞への配設が容易になる。平らな板状部材に折曲を2箇所形成するだけで容易に板状バネ部材を実現することができる。   According to the stator blade according to the tenth aspect, since the plate-like spring member has a U-shaped cross section, the plate-like spring member can be made compact and easy to be placed in the cavity. become. A plate-like spring member can be easily realized simply by forming two bent portions on a flat plate-like member.

請求項11に係る静翼によれば、板状バネ部材を腹側部と背側部のうち一方に結合されるものとしたので、板状バネ部材を空洞の所望の位置に固定することができる。これにより、腹側部と背側部との間における位置変動の減衰特性に、バラツキが生じることを抑制することが可能となる。   According to the stator blade according to the eleventh aspect, since the plate spring member is coupled to one of the abdominal side portion and the back side portion, the plate spring member can be fixed at a desired position of the cavity. it can. Thereby, it becomes possible to suppress the occurrence of variation in the attenuation characteristic of the position variation between the abdominal side and the back side.

請求項12に係る静翼によれば、スリット介して外部と連通していない空洞には、制振材を設けるものとしたので、制振材の変形抵抗により腹側部材と背側部材との間における相対的な位置変動を減衰することができる。   According to the stator blade of the twelfth aspect, since the vibration damping material is provided in the cavity that does not communicate with the outside through the slit, the deformation between the abdominal member and the back member is caused by the deformation resistance of the vibration damping material. Relative position fluctuations between them can be attenuated.

請求項13に係る静翼によれば、仕切板により仕切られた後縁側の空洞内には、制振材が設けられている。制振材の変形抵抗を利用して腹側部と背側部との間における相対的な位置変動を減衰することができる。
また、板状バネ部材の代わりに、後縁側の空洞内に、制振材が充填されることとなるので、板バネの寸法公差、及び翼(腹側部及び背側部)の寸法公差から発生する板バネの片当たりを防止することができる。
According to the stator blade according to the thirteenth aspect, the damping material is provided in the cavity on the rear edge side partitioned by the partition plate. By utilizing the deformation resistance of the damping material, it is possible to attenuate the relative position fluctuation between the ventral portion and the dorsal portion.
Moreover, since the damping material is filled in the cavity on the rear edge side instead of the plate spring member, from the dimensional tolerance of the leaf spring and the dimensional tolerance of the wing (abdomen side and back side) It is possible to prevent the generated leaf spring from hitting one piece.

請求項14に係る蒸気タービンによれば、前記静翼を、ロータ軸の周方向に所定の間隔で配列されるものとしたので、同一の段の翼群に、中実静翼に比べて自励振動(フラッタ)の生じにくい中空の静翼を配列して、自励振動を抑制することができる。   According to the steam turbine of the fourteenth aspect, since the stationary blades are arranged at a predetermined interval in the circumferential direction of the rotor shaft, the stationary blades are arranged in the same stage blade group as compared with the solid stationary blades. Self-excited vibration can be suppressed by arranging hollow stationary blades that are less likely to generate excited vibration (flutter).

請求項15に係る蒸気タービンによれば、中実静翼が混在して配列されているものとしたので、静翼の外装形状を異ならせることなく、固有振動数が大きく異なる静翼を隣り合わせに配置することが可能となる。これにより、同一の段の翼群において固有振動数が略等しいものが隣り合って配置されることに起因する自励振動を抑制することが可能となる。   According to the steam turbine of the fifteenth aspect, since the solid stationary blades are mixedly arranged, the stationary blades having greatly different natural frequencies are arranged side by side without changing the exterior shape of the stationary blades. It becomes possible to arrange. As a result, it is possible to suppress self-excited vibration resulting from the fact that blades having substantially the same natural frequency are arranged adjacent to each other in the same stage blade group.

請求項16に係る蒸気タービンによれば、前記静翼と中実静翼が交互に配列されているものとしたので、同一の段の翼群において隣り合う静翼は、確実に固有振動数が異なるものとすることができる。これにより、固有振動数が略等しいものが隣り合って配置されることに起因する自励振動をより抑制することができる。   According to the steam turbine of the sixteenth aspect, since the stationary blades and the solid stationary blades are alternately arranged, the stationary blades adjacent to each other in the same stage blade group surely have a natural frequency. Can be different. Thereby, the self-excited vibration resulting from arrange | positioning the thing with a substantially equal natural frequency adjacent can be suppressed more.

請求項17に係る蒸気タービンによれば、異なる固有振動数の静翼が配列されるものとしたので、翼表面に付着した水分を空洞に取り込み除去できる中空の静翼を同一の段の翼群になるべく多く配列することができる。これにより、固有振動数が略等しいものが隣り合って配置されることに起因する自励振動を抑制すると共に、蒸気タービンの性能向上を図ることができる。   According to the steam turbine of the seventeenth aspect, since the stationary blades having different natural frequencies are arranged, the hollow stationary blades that can take in and remove moisture adhering to the blade surface into the cavities are arranged in the same stage. As many as possible can be arranged. Thereby, while suppressing the self-excited vibration resulting from arrange | positioning the thing with a substantially equal natural frequency adjacent, the performance improvement of a steam turbine can be aimed at.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

まず、本実施例に係る蒸気タービンの構成について図1〜図3を用いて説明する。図1は、蒸気タービンの概略構成を模式的に示す図であり、図2は、蒸気タービンを低圧最終段側から見た外観図であり、図3は、図2に示される静翼を背側から見た拡大図である。   First, the configuration of the steam turbine according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a schematic configuration of the steam turbine, FIG. 2 is an external view of the steam turbine as viewed from the low-pressure final stage side, and FIG. 3 is a back view of the stationary blade shown in FIG. It is the enlarged view seen from the side.

本実施例に係る蒸気タービンは、原子力発電プラント等で用いられるものであり、このようなプラントには、図1に示すように、高圧の蒸気を発生する蒸気発生器3と、蒸気発生器3から高圧の蒸気が直接供給される高圧蒸気タービン5と、蒸気発生器3及び高圧蒸気タービン5からの蒸気の湿分を分離して加熱する湿分分離加熱器7と、湿分分離加熱器7から低圧の蒸気が供給される低圧蒸気タービン1が設けられている。本実施例では、一例として、湿分分離加熱器7から蒸気の供給を受ける低圧の蒸気タービン1について説明する。   The steam turbine according to the present embodiment is used in a nuclear power plant or the like, and in such a plant, as shown in FIG. 1, a steam generator 3 that generates high-pressure steam, and a steam generator 3 A high-pressure steam turbine 5 to which high-pressure steam is directly supplied from the steam generator, a moisture separator heater 7 for separating and heating the steam moisture from the steam generator 3 and the high-pressure steam turbine 5, and a moisture separator heater 7 A low-pressure steam turbine 1 to which low-pressure steam is supplied from is provided. In this embodiment, as an example, a low-pressure steam turbine 1 that receives supply of steam from a moisture separator heater 7 will be described.

蒸気タービン1において、湿分分離加熱器7からの蒸気は、蒸気入口10に供給され、蒸気タービン1に形成されている蒸気通路12を、ロータ軸14の軸方向(図中、矢印Aで示す)に沿って流れる。蒸気通路12には、動翼16と静翼20が交互に配置されており、蒸気タービン1は、静翼20での圧力降下によって運動エネルギを生じさせ、これを動翼16によって回転トルクに変換している。   In the steam turbine 1, the steam from the moisture separation heater 7 is supplied to the steam inlet 10, and the steam passage 12 formed in the steam turbine 1 is indicated by the axial direction of the rotor shaft 14 (indicated by an arrow A in the figure). ) Flow along. In the steam passage 12, the moving blades 16 and the stationary blades 20 are alternately arranged, and the steam turbine 1 generates kinetic energy due to a pressure drop in the stationary blades 20, and this is converted into rotational torque by the moving blades 16. is doing.

動翼16は、ロータ軸14に結合されており、これを回転駆動する。一方、静翼20は、図1〜図3に示すように、ロータ軸14の径方向(図中、矢印Rで示す)内側の端22aがシュラウド30に、径方向外側の端22cが翼根リング32に、それぞれ溶接により結合されている(図3に溶接部を符号34で示す)。   The rotor blade 16 is coupled to the rotor shaft 14 and rotationally drives it. On the other hand, as shown in FIGS. 1 to 3, the stationary blade 20 has an inner end 22 a in the radial direction (indicated by an arrow R) of the rotor shaft 14 at the shroud 30 and an outer end 22 c in the radial direction at the blade root. Each ring 32 is joined by welding (the welded portion is indicated by reference numeral 34 in FIG. 3).

動翼16と静翼20は、図1に示すように、一対となって一個の「段」を構成しており、蒸気タービン1には、多数の段18,18a,・・・,18zが設けられている。これら段18,18a,・・・,18zは、蒸気通路12を上流側から下流側に向かうに従って、動翼16及び静翼20の翼幅(ロータ軸14に略直交する方向の翼の長さ)が、長くなるよう構成されている。蒸気通路12の最も下流側にある段18を「低圧最終段」という。低圧最終段18の静翼20は、上流側の段18aにある静翼20aに比べて、特に翼幅が長いものとなっている。低圧最終段18において、静翼20は、図2及び図3に示すように、ロータ軸14の周方向(図中、矢印Pで示す)に所定の間隔で複数配列されており、翼群19を形成している。   As shown in FIG. 1, the moving blade 16 and the stationary blade 20 constitute a pair of “stages”, and the steam turbine 1 includes a large number of stages 18, 18 a,. Is provided. These stages 18, 18 a,..., 18 z are the blade widths of the moving blades 16 and the stationary blades 20 (the lengths of the blades in a direction substantially perpendicular to the rotor shaft 14) as the steam passage 12 moves from the upstream side to the downstream side. ) Is configured to be long. The stage 18 on the most downstream side of the steam passage 12 is referred to as a “low pressure final stage”. The stationary blade 20 of the low-pressure final stage 18 has a particularly long blade width compared to the stationary blade 20a in the upstream stage 18a. In the low-pressure final stage 18, a plurality of stationary blades 20 are arranged at a predetermined interval in the circumferential direction of the rotor shaft 14 (indicated by an arrow P in the drawing) as shown in FIGS. 2 and 3. Is forming.

次に、本実施例に係る静翼20の構成について、図3〜図6を用いて説明する。図4は、静翼の翼形を示す図であり、図5は、静翼を腹側から見た図であり、図6は、板状バネ部材の斜視図である。なお、図4は、図5のA−A線による断面図となっている。   Next, the configuration of the stationary blade 20 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a view showing an airfoil shape of a stationary blade, FIG. 5 is a view of the stationary blade viewed from the ventral side, and FIG. 6 is a perspective view of a plate-like spring member. 4 is a cross-sectional view taken along line AA in FIG.

静翼20は、図4に示すように、主に腹側を構成する腹側部材25と、主に背側を構成する背側部材27とを有している。腹側部材25と背側部材27は、それぞれ金属製の板状部材を、互いに異なる反り方で湾曲させたものである。腹側部材25は、その表面が静翼20の腹面24をとなるよう反りが形成されている。一方、背側部材27は、その表面が静翼20の背面26となるよう反りが形成されている。   As shown in FIG. 4, the stationary blade 20 includes a ventral member 25 that mainly configures the ventral side, and a dorsal member 27 that mainly configures the dorsal side. The abdominal member 25 and the dorsal member 27 are formed by bending metal plate-like members in different ways of warping. The abdomen side member 25 is warped so that the surface thereof becomes the abdominal surface 24 of the stationary blade 20. On the other hand, the back member 27 is warped so that the surface thereof becomes the back surface 26 of the stationary blade 20.

腹側部材25と背側部材27は、図5に示すように、略同一の長さに亘って翼幅方向(矢印Sで示す)に延びている。加えて、腹側部材25には、前縁側スリット28aと,後縁側スリット28cが複数形成されている。   As shown in FIG. 5, the abdominal member 25 and the dorsal member 27 extend in the wing span direction (indicated by arrow S) over substantially the same length. In addition, the ventral member 25 has a plurality of front edge side slits 28a and rear edge side slits 28c.

なお、「翼幅方向」とは、図4に示す翼形の断面に垂直な方向であり、翼の平均反り線(骨格線ともいう、図中、一点鎖線Cで示す)に直交する方向である。本実施例において「翼幅方向」は、ロータ軸14の径方向Rと略同一のものとなっている。   The “blade width direction” is a direction perpendicular to the cross section of the airfoil shown in FIG. 4, and is a direction orthogonal to the average warp line of the wing (also referred to as a skeleton line, indicated by a one-dot chain line C in the figure). is there. In this embodiment, the “blade width direction” is substantially the same as the radial direction R of the rotor shaft 14.

静翼20は、腹側部材25と背側部材27を組み合わせ、前縁部36と後縁部38において溶接して結合することで(溶接部を符号37,39で示す)、その外装形状が形成される。これにより、静翼20の内部、すなわち腹側部材25の裏面25aと背側部材27の裏面27aとの間には、翼幅方向Sに沿って延びる空洞40が形成される。また、静翼20の内部には、腹側部材25の裏面25aと背側部材27の裏面27aにより、翼内面(25a,27a)が形成されることになる。   The stationary blade 20 is formed by combining the ventral member 25 and the back member 27 and welding and joining them at the front edge portion 36 and the rear edge portion 38 (welded portions are indicated by reference numerals 37 and 39). It is formed. As a result, a cavity 40 extending along the blade width direction S is formed inside the stationary blade 20, that is, between the back surface 25 a of the ventral member 25 and the back surface 27 a of the back member 27. Inside the stationary blade 20, the blade inner surface (25 a, 27 a) is formed by the back surface 25 a of the abdominal member 25 and the back surface 27 a of the back member 27.

このように本実施例の静翼20においては、腹側部材25が、静翼20の空洞40より腹側の部分となる本発明の腹側部を構成し、背側部材27が、静翼20の空洞40より背側の部分となる本発明の背側部を構成している。   Thus, in the stationary blade 20 of the present embodiment, the ventral member 25 constitutes the ventral portion of the present invention, which is a portion on the ventral side of the cavity 40 of the stationary blade 20, and the back member 27 is the stationary blade. The back side part of this invention used as the back | dorsal part from the 20 cavity 40 is comprised.

静翼20の内部に形成された空洞40は、腹側部材25に形成されているスリット28a,28cを介して、静翼20の外部と連通している。空洞40とスリット28a,28cが形成された静翼20において、腹面24に付着している水は、例えば図4に矢印Wで示すように、蒸気圧力を受けて腹面24を移動し、スリット28aから空洞40に流入可能となっている。   The cavity 40 formed inside the stationary blade 20 communicates with the outside of the stationary blade 20 through slits 28 a and 28 c formed in the ventral member 25. In the stationary blade 20 in which the cavity 40 and the slits 28a and 28c are formed, the water adhering to the abdominal surface 24 moves along the abdominal surface 24 under the vapor pressure, for example, as shown by an arrow W in FIG. Can flow into the cavity 40.

空洞40に取り込まれた水は、翼幅方向Sをシュラウド30に向けて流れる。シュラウド30には、図3に示すように、静翼20の空洞40と連通する開口31が形成されており、空洞40の水は、矢印Eで示すように、この開口31から排出可能となっている。   The water taken into the cavity 40 flows in the blade width direction S toward the shroud 30. As shown in FIG. 3, the shroud 30 is formed with an opening 31 communicating with the cavity 40 of the stationary blade 20, and water in the cavity 40 can be discharged from the opening 31 as indicated by an arrow E. ing.

このように内部に空洞40を有する中空の静翼20は、内部に空洞を有しない中実静翼に比べて固有振動数が比較的小さなものとなっており、蒸気タービン1の作動時において、自励振動(フラッタ)が生じ易くなっている。自励振動が生じると、静翼20には弾性変形による撓みや捩れが生じ、静翼20の腹側部材25と背側部材27との間には、相対的な位置変動が生じる。   As described above, the hollow stationary blade 20 having the cavity 40 inside has a relatively low natural frequency as compared with the solid stationary blade having no cavity inside. Self-excited vibration (flutter) is likely to occur. When the self-excited vibration occurs, the stationary blade 20 is bent or twisted due to elastic deformation, and a relative position variation occurs between the abdominal member 25 and the back member 27 of the stationary blade 20.

この相対的な位置変動を減衰するため、本実施例に係る静翼20においては、空洞40から、翼内面(25a,27a)に摺接可能な摺接部材が設けられており、静翼20が弾性変形すると、この摺接部材は、翼内面(25a,27a)との間に摩擦が生じるようにしており、以下に詳細を説明する。   In order to attenuate this relative positional variation, the stationary blade 20 according to the present embodiment is provided with a sliding contact member that can slide from the cavity 40 to the blade inner surface (25a, 27a). When this is elastically deformed, the sliding contact member is caused to generate friction between the blade inner surfaces (25a, 27a), which will be described in detail below.

本実施例の静翼20においては、図4に示すように、上記摺接部材として、断面が波形状を呈する波形板バネ44が、腹側部材25と背側部材27の間に設けられている。波形板バネ44は、表側の頂部46a,46c,46e(以下、表側頂部と記す)が腹側部材25の裏面25aに接している。また波形板バネ44は、裏側の頂部48a,48c,48e,48g(以下、裏側頂部と記す)が背側部材27の裏面27aに接している。   In the stationary blade 20 of the present embodiment, as shown in FIG. 4, a corrugated leaf spring 44 having a corrugated cross section is provided between the ventral member 25 and the back member 27 as the sliding contact member. Yes. The corrugated leaf spring 44 has top portions 46 a, 46 c, 46 e (hereinafter referred to as front side top portions) on the front side in contact with the back surface 25 a of the ventral member 25. Further, the corrugated leaf spring 44 is in contact with the back surface 27 a of the back member 27 at the back side top portions 48 a, 48 c, 48 e, 48 g (hereinafter referred to as the back side top portion).

波形板バネ44は、図6に示すように、長手方向(図中、矢印Lで示す)に延びる金属製の平らな板状の部材を、幅方向(図中、矢印Wで示す)に、山折りと谷折りが交互に連続するよう湾曲させたものである。波形板バネ44は、表側頂部46a,46c,46eを結ぶ包絡線が、腹側部材25を裏面25aに沿うように形成されており、裏側頂部48a,48c,48e,48gを結ぶ包絡線が、背側部材27の裏面27aに沿うように形成されている。波形板バネ44は、長手方向Lが、静翼20の翼幅方向Sとなるように位置決めされて、腹側部材25と背側部材27との間にある空洞40に挿入される。   As shown in FIG. 6, the corrugated leaf spring 44 is a flat plate member made of metal extending in the longitudinal direction (indicated by an arrow L in the drawing) in the width direction (indicated by an arrow W in the drawing). It is curved so that mountain folds and valley folds continue alternately. The corrugated leaf spring 44 is formed so that the envelope connecting the front side top portions 46a, 46c, 46e extends along the back side member 25 along the back surface 25a, and the envelope connecting the back side top portions 48a, 48c, 48e, 48g, The back side member 27 is formed along the back surface 27a. The corrugated leaf spring 44 is positioned so that the longitudinal direction L is the blade width direction S of the stationary blade 20, and is inserted into the cavity 40 between the ventral member 25 and the dorsal member 27.

このように空洞40に配設された状態(初期状態)において、波形板バネ44は、撓みにより僅かに弾性変形するように形成されている。この弾性力により、波形板バネ44は、図4に示すように、表側頂部46a,46c,46eが腹側部材25を裏面25aから押圧すると共に、裏側頂部48a,48c,48e,48gが背側部材27を裏面27aから押圧するようになっている。つまり、波形板バネ44は、空洞40に配設すると、腹側部材25と背側部材27とを、それぞれ静翼20の翼厚方向外向きに付勢する(押し広げる)ように構成されている。   Thus, in the state (initial state) arrange | positioned in the cavity 40, the waveform leaf | plate spring 44 is formed so that it may be elastically deformed slightly by bending. Due to this elastic force, as shown in FIG. 4, the corrugated leaf spring 44 has the front side top portions 46a, 46c, 46e pressing the ventral member 25 from the back surface 25a, and the back side top portions 48a, 48c, 48e, 48g are back sides. The member 27 is pressed from the back surface 27a. That is, the corrugated leaf spring 44 is configured to urge (push and spread) the abdominal member 25 and the dorsal member 27 outward in the blade thickness direction of the stationary blade 20 when disposed in the cavity 40. Yes.

なお、「翼厚方向」とは、図4に示す翼形の断面に平行な方向であり、翼の平均反り線(図中、一点鎖線Cで示す)と直交する方向を意味している。   The “blade thickness direction” is a direction parallel to the cross section of the airfoil shown in FIG. 4, and means a direction orthogonal to the average warp line of the blade (shown by a one-dot chain line C in the figure).

以上のように構成された静翼20において、波形板バネ44の表側頂部46a,46c,46eと腹側部材25との裏面25aとの間、および波形板バネの裏側頂部48a,48c,48e,48gと背側部材27の裏面27aとの間には、波形板バネ44の撓みによる付勢力(押圧力)が作用しており、静翼20が弾性変形して腹側部材25の裏面25aと背側部材27との間に相対的な位置変動が生じると、この付勢力に応じた大きさの動摩擦力が作用可能となっている。   In the stationary blade 20 configured as described above, the front side top portions 46a, 46c, 46e of the corrugated leaf spring 44 and the back surface 25a of the ventral member 25, and the back side top portions 48a, 48c, 48e, 48g of the corrugated leaf springs. A biasing force (pressing force) due to the bending of the corrugated leaf spring 44 is acting between the back surface 27a of the back side member 27 and the stationary blade 20 is elastically deformed so that the back surface 25a of the back side member 25 and the back surface 27a of the back side member 25 are back. When a relative position variation occurs between the side member 27, a dynamic frictional force having a magnitude corresponding to the biasing force can be applied.

次に、本実施例に係る静翼20の作用及び効果について、図4を用いて説明する。蒸気タービン1の作動時において、その運転条件によっては、静翼20に自励振動が生じ、静翼20が弾性変形することがある。例えば、腹側部材25が後縁部38側に弾性変形すると共に、背側部材27が前縁部36側に弾性変形するなどして、腹側部材25の裏面25aと背側部材27の裏面27aとの間には、相対的な位置変動が生じることがある。   Next, the operation and effect of the stationary blade 20 according to the present embodiment will be described with reference to FIG. During operation of the steam turbine 1, depending on the operating conditions, self-excited vibration may occur in the stationary blade 20, and the stationary blade 20 may be elastically deformed. For example, the back side 25a of the abdominal member 25 and the back side of the back side member 27 are formed by elastically deforming the abdominal member 25 toward the rear edge 38 and the back side member 27 elastically deforming toward the front edge 36. There may be a relative positional fluctuation between the terminal 27a and the terminal 27a.

このとき、波形板バネ44は、表側頂部46a,46c,46eと腹側部材25の裏面25aの間、および裏側頂部48a,48c,48e,48gと背側部材27の裏面27aとの間のうち少なくとも一方との間には、腹側部材25と背側部材27の相対的な位置変動を抑制する方向に動摩擦力が生じる。この動摩擦力により、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   At this time, the corrugated leaf spring 44 is at least between the front side top portions 46a, 46c, 46e and the back surface 25a of the abdominal side member 25 and between the back side top portions 48a, 48c, 48e, 48g and the back surface 27a of the back side member 27. Between them, a dynamic friction force is generated in a direction that suppresses relative positional fluctuation between the ventral member 25 and the dorsal member 27. This dynamic friction force attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上に説明したように本実施例の静翼20では、空洞から翼内面に摺接可能な摺接部材として波形板バネ44が設けられている。静翼20が弾性変形すると、波形板バネ44は、空洞40から翼内面(25a,27a)に摺接し、翼内面(25a,27a)との間に摩擦を生じさせる。この摩擦により静翼20の弾性変形を減衰することで、静翼20に生じる自励振動を抑制することができる。   As described above, in the stationary blade 20 of the present embodiment, the corrugated leaf spring 44 is provided as a sliding member capable of sliding contact from the cavity to the blade inner surface. When the stationary blade 20 is elastically deformed, the corrugated leaf spring 44 comes into sliding contact with the blade inner surface (25a, 27a) from the cavity 40, and causes friction between the blade inner surface (25a, 27a). By attenuating the elastic deformation of the stationary blade 20 by this friction, the self-excited vibration generated in the stationary blade 20 can be suppressed.

また、本実施例の静翼20では、空洞40より腹側の部分である腹側部材25と、空洞40より背側の部分である背側部材27との間に、腹側部材25と背側部材27のうち少なくとも一方と摺接する摺接部材として波形板バネ44が設けられている。静翼20が弾性変形すると、波形板バネ44は、腹側部材25と背側部材27のうち少なくとも一方との間に摩擦を生じさせる。この摩擦により、腹側部材25と背側部材27の間における相対的な位置変動が減衰される。   Further, in the stationary blade 20 of the present embodiment, the ventral member 25 and the back are disposed between the ventral member 25 that is a portion on the ventral side of the cavity 40 and the backside member 27 that is a portion on the backside of the cavity 40. A corrugated leaf spring 44 is provided as a sliding contact member that is in sliding contact with at least one of the side members 27. When the stationary blade 20 is elastically deformed, the corrugated leaf spring 44 causes friction between at least one of the ventral member 25 and the dorsal member 27. This friction attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27.

また、本実施例の静翼20では、腹側部材25と背側部材27とを、それぞれ翼厚方向外向きに付勢する付勢部材として波形板バネ44が設けられている。腹側部材25と背側部材27の間に相対的な位置変動が生じると、波形板バネ44は、この付勢力に応じた大きさの動摩擦力を、腹側部材25と背側部材27のうち少なくとも一方との間に生じさせることができる。付勢部材としての波形板バネ44の剛性の選定や、空洞に配設した状態(初期状態)における付勢力を調節することで、腹側部材25と背側部材27との間における位置変動の減衰特性を、所望の特性に設定することができる。   Further, in the stationary blade 20 of this embodiment, a corrugated leaf spring 44 is provided as a biasing member that biases the abdominal member 25 and the back member 27 outward in the blade thickness direction. When a relative position change occurs between the ventral member 25 and the dorsal member 27, the corrugated leaf spring 44 applies a dynamic frictional force having a magnitude corresponding to the biasing force between the ventral member 25 and the dorsal member 27. It can be generated between at least one of them. By selecting the rigidity of the corrugated leaf spring 44 as the urging member and adjusting the urging force in the state of being disposed in the cavity (initial state), the position variation between the abdominal member 25 and the back member 27 can be reduced. The attenuation characteristic can be set to a desired characteristic.

また、本実施例の静翼20では、翼幅方向に沿って延びる板状を呈し、撓みによる弾性力によって腹側部材25と背側部材27を押圧する板状バネ部材として波形板バネ44が設けられている。矩形状の板状部材をプレス成形等により幅方向に湾曲させるだけで、板状部材の長手方向すなわち静翼の翼幅方向に延びる付勢部材を容易に実現することができる。   Further, the stationary blade 20 of the present embodiment has a plate shape extending along the blade width direction, and the corrugated leaf spring 44 is a plate-like spring member that presses the abdominal member 25 and the back member 27 by the elastic force caused by the bending. Is provided. An urging member extending in the longitudinal direction of the plate-like member, that is, the blade width direction of the stationary blade can be easily realized simply by bending the rectangular plate-like member in the width direction by press molding or the like.

また、本実施例の静翼20において、波形板バネ44は、断面が波形状を呈しており、腹側部材25と背側部材27には、波形の頂部46a,46c,46e,48a,48c,48e,48gが接している。板状バネ部材をこのような波形状とすることで、腹側部材25と背側部材27の双方に複数の頂部で摺接することができる。これにより、波形板バネ44は、腹側部材25及び/又は背側部材27との間に良好に摩擦を生じさせることができる。   Further, in the stationary blade 20 of this embodiment, the corrugated leaf spring 44 has a corrugated cross section, and the ventral member 25 and the dorsal member 27 have corrugated tops 46a, 46c, 46e, 48a, 48c. , 48e, 48g are in contact. By making the plate-like spring member into such a wave shape, it is possible to make sliding contact with both the ventral member 25 and the dorsal member 27 at a plurality of tops. Thereby, the corrugated leaf | plate spring 44 can produce a favorable friction between the ventral | abdominal member 25 and / or the back | dorsal member 27. FIG.

本実施例に係る静翼について、図7を用いて説明する。図7は、静翼の翼形を示す図である。本実施例に係る静翼は、板状バネ部材と背側部材が結合されて製作される点で、実施例1に係る静翼と異なり、以下に製作工程について詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIG. FIG. 7 is a view showing an airfoil of a stationary blade. Unlike the stator blade according to the first embodiment, the stator blade according to this embodiment will be described in detail below in terms of being manufactured by combining a plate spring member and a back member. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

静翼20Bは、以下のようにして製作される。まず、背側部材27には、波形板バネ44が固定される。具体的には、背側部材27の裏面27aに波形板バネ44の裏側頂部48a,48c,48e,48gがスポット溶接により結合される(溶接部を符号50a,50c,50e,50gで示す)。   The stationary blade 20B is manufactured as follows. First, the corrugated leaf spring 44 is fixed to the back member 27. Specifically, back-side top portions 48a, 48c, 48e, and 48g of the corrugated leaf spring 44 are joined to the back surface 27a of the back-side member 27 by spot welding (welded portions are indicated by reference numerals 50a, 50c, 50e, and 50g).

なお、本実施例において、背側部材27と波形板バネ44との固定には、スポット溶接を用いるものとしたが、結合方法はこれに限定されるものではない。背側部材27に孔をあけて、この孔を埋めるように溶接する、いわゆる「プラグ溶接」を用いて結合することも好適である。   In this embodiment, spot welding is used to fix the back member 27 and the corrugated leaf spring 44, but the coupling method is not limited to this. It is also preferable to form a hole in the dorsal member 27 and to perform bonding using so-called “plug welding” in which welding is performed so as to fill the hole.

そして、波形板バネ44が結合された背側部材27と、腹側部材25とを組み合わせ、静翼20Bの前縁部36と後縁部38において溶接により結合する。具体的には、背側部材27の前縁端27fと腹側部材25の前縁端25fを溶接により結合すると共に、背側部材27の後縁側端部27tと腹側部材25の後縁側端部25tを溶接により結合する。   Then, the back side member 27 to which the corrugated leaf spring 44 is coupled and the abdominal side member 25 are combined, and coupled by welding at the front edge portion 36 and the rear edge portion 38 of the stationary blade 20B. Specifically, the front edge 27f of the back member 27 and the front edge 25f of the abdominal member 25 are joined together by welding, and the rear edge 27t of the back member 27 and the rear edge 25t of the abdominal member 25 are joined together. Are joined by welding.

このように構成された静翼20Bは、波形板バネ44の表側頂部46a,46c,46eが腹側部材25の裏面25aに摺接している。静翼20Bが弾性変形すると、波形板バネ44は、表側頂部46a,46c,46eと腹側部材25の裏面25aの間に摩擦を生じさせる。この摩擦により、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   In the stationary blade 20 </ b> B configured in this manner, the front side top portions 46 a, 46 c, 46 e of the wave plate spring 44 are in sliding contact with the back surface 25 a of the ventral member 25. When the stationary blade 20B is elastically deformed, the corrugated leaf spring 44 causes friction between the front side top portions 46a, 46c, 46e and the back surface 25a of the ventral member 25. This friction attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上に説明したように本実施例に係る静翼20Bでは、腹側部材25と背側部材27は、静翼20Bの前縁部36と後縁部38で互いに結合されており、板状バネ部材としての波形板バネ44は、背側部材27に結合されている。これにより、腹側部材25と背側部材27の間に板状バネ部材を設けた静翼を、板状部材を溶接により結合するだけで、静翼20を容易に製作することができる。また、波形板バネ44を、腹側部材25と背側部材27との間の所望の位置に固定することができるため、腹側部材25と背側部材27との間における位置変動の減衰特性にバラツキが生じることを抑制することができる。   As described above, in the stationary blade 20B according to the present embodiment, the abdominal side member 25 and the back side member 27 are coupled to each other at the front edge portion 36 and the rear edge portion 38 of the stationary blade 20B. The corrugated leaf spring 44 as a member is coupled to the back member 27. Thereby, the stator blade 20 can be easily manufactured only by joining the stator blade provided with the plate-like spring member between the abdominal member 25 and the back member 27 by welding. In addition, since the corrugated leaf spring 44 can be fixed at a desired position between the ventral member 25 and the dorsal member 27, the position fluctuation attenuation characteristic between the ventral member 25 and the dorsal member 27 can be reduced. It is possible to suppress the occurrence of variations in the thickness.

なお、本実施例に係る静翼20Bにおいて、波形板バネ44は、背側部材27と結合されるものとしたが、波形板バネ44が結合される相手は、これに限定されるものではない。波形板バネ44を、腹側部材25に結合するものとしても良い。   In the stationary blade 20B according to the present embodiment, the corrugated leaf spring 44 is coupled to the back member 27, but the counterpart to which the corrugated leaf spring 44 is coupled is not limited thereto. . The corrugated leaf spring 44 may be coupled to the ventral member 25.

本実施例に係る静翼について、図8及び図9を用いて説明する。図8は、静翼の翼形を示す図であり、図9は、板状バネ部材の斜視図である。本実施例に係る静翼は、板状バネ部材として、断面が略C字形状を呈する「C字形板バネ」が設けられている点で、実施例1に係る静翼と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   A stationary blade according to the present embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 is a view showing an airfoil shape of a stationary blade, and FIG. 9 is a perspective view of a plate spring member. Unlike the stator blade according to the first embodiment, the stator blade according to the present embodiment is described below in detail in that a “C-shaped leaf spring” having a substantially C-shaped cross section is provided as a plate spring member. Will be explained. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図8に示すように、本実施例に係る静翼20Cにおいては、板状バネ部材として、断面が略C字形状を呈するC字形板バネ52が、腹側部材25と背側部材27の間に設けられている。C字形板バネ52は、開端部54,55の外面54a,55aが腹側部材25の裏面25aに接している。加えて、C字形板バネ52は、基部56の外面56aが背側部材27の裏面27aに接している。つまり、C字形板バネ52は、空洞40に配設されると、開端部54,55が腹側部材25に接し、且つ基部56が背側部材27に接することとなる。    As shown in FIG. 8, in the stationary blade 20 </ b> C according to the present embodiment, a C-shaped leaf spring 52 having a substantially C-shaped cross section is provided between the abdominal member 25 and the back member 27 as the leaf spring member. Is provided. In the C-shaped leaf spring 52, the outer surfaces 54 a and 55 a of the open end portions 54 and 55 are in contact with the back surface 25 a of the ventral member 25. In addition, the outer surface 56 a of the base portion 56 is in contact with the back surface 27 a of the back member 27 in the C-shaped leaf spring 52. In other words, when the C-shaped leaf spring 52 is disposed in the cavity 40, the open end portions 54 and 55 are in contact with the ventral member 25 and the base portion 56 is in contact with the back member 27.

C字形板バネ52は、図9に示すように、長手方向Lに延びる金属製の板状の部材を、幅方向Wに丸めるよう湾曲させたものである。なお、C字形板バネ52は、開端部54,55が腹側部材25の裏面25aに沿うように形成されており、基部56が背側部材27の裏面27aに沿うように形成されている。C字形板バネ52は、その長手方向Lが静翼の翼幅方向となるように位置決めされて、図8に示すように、基部56が背側部材27に溶接により固定される(溶接部を符号58で示す)。このようにして、C字形板バネ52は、空洞40に配設される。   As shown in FIG. 9, the C-shaped leaf spring 52 is formed by bending a metal plate-like member extending in the longitudinal direction L so as to be rounded in the width direction W. The C-shaped leaf spring 52 is formed so that the open end portions 54, 55 are along the back surface 25 a of the abdominal member 25, and the base portion 56 is formed along the back surface 27 a of the back side member 27. The C-shaped leaf spring 52 is positioned so that the longitudinal direction L thereof is the blade width direction of the stationary blade, and the base portion 56 is fixed to the back member 27 by welding as shown in FIG. (Indicated by reference numeral 58). In this way, the C-shaped leaf spring 52 is disposed in the cavity 40.

このように空洞40に配設された状態(初期状態)において、C字形板バネ52は、撓みにより僅かに弾性変形するように形成されている。この弾性力により、C字形板バネ52は、開端部54,55の外面54a,55aが腹側部材25を裏面25aから押圧すると共に、基部56の外面56aが背側部材27を裏面27aから押圧するようになっている。つまり、C字形板バネ52は、腹側部材25と背側部材27とを、それぞれ静翼20Cの翼厚方向(図8の一点差線Cに直交する方向)を外向きに付勢するように構成されている。   Thus, in the state (initial state) arrange | positioned in the cavity 40, the C-shaped leaf | plate spring 52 is formed so that it may be elastically deformed slightly by bending. Due to this elastic force, the outer surfaces 54a and 55a of the open ends 54 and 55 press the ventral member 25 from the back surface 25a, and the outer surface 56a of the base 56 presses the back member 27 from the back surface 27a. It is supposed to be. That is, the C-shaped leaf spring 52 urges the abdominal member 25 and the back member 27 outward in the blade thickness direction of the stationary blade 20C (direction perpendicular to the dashed line C in FIG. 8). It is configured.

このように構成された静翼20Cは、C字形板バネ52の開端部54,55の外面54a,55aが腹側部材25の裏面25aに接すると共に、外面54a,55aと裏面25aとの間には、C字形板バネ52の撓みによる付勢力が作用している。   In the stator blade 20C configured in this way, the outer surfaces 54a and 55a of the open ends 54 and 55 of the C-shaped leaf spring 52 are in contact with the back surface 25a of the ventral member 25, and between the outer surfaces 54a and 55a and the back surface 25a. The urging force by the bending of the C-shaped leaf spring 52 is acting.

静翼20Cが弾性変形すると、C字形板バネ52は、開端部54,55の外面54a,55aと腹側部材25の裏面25aとの間に、付勢力に応じた動摩擦力を生じさせる。この動摩擦力により、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   When the stationary blade 20 </ b> C is elastically deformed, the C-shaped plate spring 52 generates a dynamic friction force corresponding to the urging force between the outer surfaces 54 a and 55 a of the open end portions 54 and 55 and the rear surface 25 a of the ventral member 25. This dynamic friction force attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上説明したように本実施例に係る静翼20Cでは、板状バネ部材として、断面がC字形状を呈し、腹側部材25にC字形の開端部54,55が接し、背側部材27にはC字形の基部56が接するC字形板バネ52が設けられている。板状バネ部材をこのようなC字形とすることで、腹側部材25に対して十分な面積をもって摺接することができ、静翼が弾性変形すると腹側部材との間に良好に摩擦を生じさせることができる。   As described above, in the stationary blade 20C according to the present embodiment, the plate-like spring member has a C-shaped cross section, the C-shaped open end portions 54 and 55 are in contact with the ventral member 25, and the dorsal member 27 Is provided with a C-shaped leaf spring 52 with which a C-shaped base 56 contacts. By making the plate-like spring member into such a C shape, it is possible to make sliding contact with the ventral member 25 with a sufficient area, and when the stationary blade is elastically deformed, friction is generated between it and the ventral member. Can be made.

なお、本実施例に係る静翼20Cにおいては、C字形板バネ52は、基部56が背側部材27に固定されるものとしたが、C字形板バネ52の固定相手は、これに限定されるものではない。C字形板バネ52は、開端部54,55が腹側部材25に固定されるものとしても良い。この場合は、C字形板バネ52の基部56が背側部材27に対して十分な面積をもって摺接することができ、静翼が弾性変形すると背側部材27との間に良好に摩擦を生じさせることができる。   In the stationary blade 20C according to the present embodiment, the C-shaped leaf spring 52 is configured such that the base 56 is fixed to the back member 27. However, the fixing partner of the C-shaped leaf spring 52 is not limited thereto. It is not something. The C-shaped leaf spring 52 may have the open end portions 54 and 55 fixed to the ventral member 25. In this case, the base portion 56 of the C-shaped leaf spring 52 can be slidably contacted with the back side member 27 with a sufficient area, and when the stationary blade is elastically deformed, the friction with the back side member 27 is favorably generated. be able to.

本実施例に係る静翼について、図10及び図11を用いて説明する。図10は、静翼の翼形を示す図であり、図11は、板状バネ部材の斜視図である。本実施例に係る静翼は、板状バネ部材として、断面が弓形状を呈する「弓形板バネ」が設けられている点で、実施例1に係る静翼と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a view showing the airfoil shape of a stationary blade, and FIG. 11 is a perspective view of a plate spring member. The stator blade according to the present embodiment is different from the stator blade according to the first embodiment in that a “bow-shaped leaf spring” having a cross-section having a bow shape is provided as a plate-like spring member. . In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図10に示すように、本実施例に係る静翼20Dにおいては、板状バネ部材として、断面が弓形状を呈する弓形板バネ60が腹側部材25と背側部材27の間に設けられている。弓形板バネ60は、その端部62,63の表面62a,63aが、腹側部材25の裏面25aに接している。加えて、弓形板バネ60は、その基部64の裏面64aが、背側部材27の裏面27aに接している。つまり、弓形板バネ60は、空洞40に配設されると、弓形板バネ60の端部62,63が腹側部材25に接し、且つ基部64が背側部材27に接する。    As shown in FIG. 10, in the stationary blade 20 </ b> D according to the present embodiment, an arcuate leaf spring 60 having a cross-sectional arc shape is provided between the ventral member 25 and the dorsal member 27 as a plate-like spring member. Yes. The arcuate leaf spring 60 has its front surfaces 62 a and 63 a in contact with the back surface 25 a of the ventral member 25. In addition, the back surface 64 a of the base portion 64 of the arcuate leaf spring 60 is in contact with the back surface 27 a of the back member 27. That is, when the arcuate leaf spring 60 is disposed in the cavity 40, the end portions 62 and 63 of the arcuate leaf spring 60 are in contact with the ventral member 25 and the base portion 64 is in contact with the back member 27.

弓形板バネ60は、図11に示すように、長手方向Lに延びる金属製の板状の部材を、幅方向Wに緩やかな山折りと谷折りをそれぞれ2箇所形成して湾曲させたものである。なお、弓形板バネ60は、端部62,63が腹側部材25の裏面25aに沿うように形成されており、基部64が背側部材27の裏面27aに沿うように形成されている。弓形板バネ60は、その長手方向Lが、静翼20Dの翼幅方向となるように位置決めされて基部64が背側部材27に溶接により固定されている(溶接部を符号66で示す)。このようにして弓形板バネ60は、空洞40に配設される。   As shown in FIG. 11, an arcuate leaf spring 60 is formed by bending a metal plate-like member extending in the longitudinal direction L by forming two gentle mountain folds and valley folds in the width direction W. is there. The bow leaf spring 60 is formed so that the end portions 62 and 63 are along the back surface 25 a of the ventral member 25, and the base portion 64 is formed along the back surface 27 a of the back member 27. The arcuate leaf spring 60 is positioned such that its longitudinal direction L is in the blade width direction of the stationary blade 20D, and the base 64 is fixed to the back member 27 by welding (the welded portion is indicated by reference numeral 66). In this way, the bow leaf spring 60 is disposed in the cavity 40.

このように空洞40に配設された状態(初期状態)において、弓形板バネ60は、撓みにより僅かに弾性変形するように形成されている。この弾性力により、弓形板バネ60は、端部62,63の表面62a,63aが腹側部材25を裏面25aから押圧すると共に、基部64の裏面64aが背側部材27を裏面27aから押圧するようになっている。つまり、弓形板バネ60は、腹側部材25と背側部材27とを、それぞれ静翼20Dの翼厚方向(図10の一点差線Cに直交する方向)外向きに付勢するように構成されている。   Thus, in the state (initial state) arrange | positioned in the cavity 40, the arched leaf | plate spring 60 is formed so that it may be elastically deformed slightly by bending. Due to this elastic force, the arcuate leaf spring 60 has the surfaces 62a and 63a of the end portions 62 and 63 pressing the ventral member 25 from the back surface 25a and the back surface 64a of the base portion 64 pressing the back member 27 from the back surface 27a. It is like that. That is, the arcuate leaf spring 60 is configured to urge the abdominal member 25 and the dorsal member 27 outward in the blade thickness direction of the stationary blade 20D (direction perpendicular to the dashed line C in FIG. 10). Has been.

このように構成された静翼20Dは、弓形板バネ60の端部62,63の表面62a,63aが腹側部材25の裏面25aに摺接すると共に、表面62a,63aと裏面25aとの間には、弓形板バネ60の撓みによる付勢力が作用している。   In the stator blade 20D configured as described above, the surfaces 62a and 63a of the end portions 62 and 63 of the arcuate leaf spring 60 are in sliding contact with the back surface 25a of the ventral member 25, and between the front surfaces 62a and 63a and the back surface 25a. The urging force due to the bending of the bow leaf spring 60 is applied.

静翼20Dが弾性変形すると、弓形板バネ60は、端部62,63の表面62a,63aと腹側部材25の裏面25aとの間に、付勢力に応じた動摩擦力を生じさせる。この動摩擦力により、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   When the stationary blade 20D is elastically deformed, the arcuate leaf spring 60 generates a dynamic friction force according to the biasing force between the surfaces 62a and 63a of the end portions 62 and 63 and the back surface 25a of the ventral member 25. This dynamic friction force attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27. As a result, self-excited vibration generated in the stationary blade can be suppressed.

なお、本実施例において、図11に示すように、弓形板バネ60は、基部64と接続部68がなす折り曲げ角度θを変更することにより、腹側部材25及び背側部材27に作用する付勢力、すなわち静翼20Dが弾性変形するときに生じる動摩擦力を、容易に調整することが可能となっている。   In this embodiment, as shown in FIG. 11, the bow leaf spring 60 acts on the ventral member 25 and the dorsal member 27 by changing the bending angle θ formed by the base 64 and the connecting portion 68. It is possible to easily adjust the force, that is, the dynamic friction force generated when the stationary blade 20D is elastically deformed.

以上説明したように本実施例に係る静翼20Dでは、板状バネ部材として、断面が弓形状を呈し、腹側部材25に弓形の端部62,63が接し、且つ背側部材27に弓形の基部64が接する弓形板バネ60が設けられている。板状バネ部材をこのような弓形とすることで、腹側部材に対して十分な面積をもって摺接することができ、静翼が弾性変形すると腹側部材との間に良好に摩擦を生じさせることができる。平らな板状部材に緩やかな山折りと谷折りをそれぞれ2箇所形成するだけで、板状バネ部材を実現することができる。   As described above, in the stationary blade 20D according to the present embodiment, as a plate-like spring member, the cross section has an arcuate shape, the ventral member 25 is in contact with the arcuate ends 62 and 63, and the dorsal member 27 has an arcuate shape. An arcuate leaf spring 60 is provided in contact with the base 64. By making the plate-shaped spring member into such an arcuate shape, it can be slidably contacted with the ventral member with a sufficient area, and when the stationary blade is elastically deformed, the friction with the ventral member is satisfactorily generated. Can do. A plate-like spring member can be realized only by forming two gentle mountain folds and two valley folds on a flat plate-like member.

なお、本実施例に係る静翼20Dにおいては、弓形板バネ60は、その基部64が背側部材27に固定されるものとしたが、弓形板バネ60の固定相手は、これに限定されるものではない。弓形板バネ60は、その端部62,63が腹側部材25に固定されるものとしても良い。この場合は、弓形板バネの基部が背側部材に対して十分な面積をもって摺接することができ、静翼が弾性変形すると背側部材との間に良好に摩擦を生じさせることができる。   In addition, in the stationary blade 20D according to the present embodiment, the base part 64 of the arcuate leaf spring 60 is fixed to the back member 27, but the fixing counterpart of the arcuate leaf spring 60 is limited to this. It is not a thing. The arcuate leaf spring 60 may have its ends 62 and 63 fixed to the ventral member 25. In this case, the base of the arched leaf spring can be slidably contacted with the back member with a sufficient area, and when the stationary blade is elastically deformed, friction can be generated between the back blade and the back member.

本実施例に係る静翼について、図12及び図13を用いて説明する。図12は、静翼の翼形を示す図であり、図13は、板状バネ部材の斜視図である。本実施例に係る静翼は、板状バネ部材として、断面がコの字形状を呈する「コの字形板バネ」が複数設けられている点で、実施例1に係る静翼と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a view showing an airfoil shape of a stationary blade, and FIG. 13 is a perspective view of a plate spring member. Unlike the stationary blade according to the first embodiment, the stationary blade according to the present embodiment is different from the stationary blade according to the first embodiment in that a plurality of “U-shaped leaf springs” having a U-shaped cross section are provided as plate-shaped spring members. Details will be described in the following. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図12に示すように、本実施例に係る静翼20Eにおいては、板状バネ部材として、断面が略コの字形状を呈するコの字形板バネ70,72,74が腹側部材25と背側部材27の間に設けられている。コの字形板バネ70は、前縁側スリット28aよりも前縁部36側に配設されており、コの字形板バネ72は、前縁側スリット28aと後縁側スリット28cの間に配設されており、コの字形板バネ74は、後縁側スリット28cよりも後縁部38側に配設されている。   As shown in FIG. 12, in the stationary blade 20E according to the present embodiment, U-shaped plate springs 70, 72, and 74 having a substantially U-shaped cross section are provided as the plate-shaped spring members. It is provided between the side members 27. The U-shaped leaf spring 70 is disposed closer to the front edge portion 36 than the front edge side slit 28a, and the U-shaped leaf spring 72 is disposed between the front edge side slit 28a and the rear edge side slit 28c. The U-shaped plate spring 74 is disposed closer to the rear edge 38 than the rear edge slit 28c.

これらコの字形板バネ70,72,74は、それぞれの第1腕部76,82,88の外面76a,82a,88aが腹側部材25の裏面25aに接している。加えて、コの字形板バネ70,72,74は、それぞれの第2腕部78,84,90の外面78a,84a,90aが背側部材27の裏面27aに接している。   In these U-shaped plate springs 70, 72, 74, the outer surfaces 76 a, 82 a, 88 a of the first arm portions 76, 82, 88 are in contact with the back surface 25 a of the ventral member 25. In addition, the U-shaped plate springs 70, 72, and 74 have the outer surfaces 78 a, 84 a, and 90 a of the second arm portions 78, 84, and 90 in contact with the back surface 27 a of the back member 27.

コの字形板バネ70は、図13に示すように、長手方向Lに延びる金属製の板状の部材を、幅方向Wに同一の向きに2箇所、約90度折り曲げて湾曲させたものである。なお、コの字形板バネ70は、第1腕部76が腹側部材25の裏面25aに沿うように形成されており、第2腕部78が背側部材27の裏面27aに沿うように形成されている。コの字板バネ72,74は、コの字状板バネ70と略共通の構成となっている。コの字形板バネ70,72,74は、その長手方向Lが静翼20Eの翼幅方向となるように位置決めされて、それぞれの第2腕部78,84,90が背側部材27に溶接により固定されている(溶接部をそれぞれ符号94,96,98で示す)。このようにしてコの字形板バネ70,72,74は、空洞40に配設される。   As shown in FIG. 13, the U-shaped leaf spring 70 is formed by bending a metal plate-like member extending in the longitudinal direction L by bending it at about 90 degrees in two places in the same direction in the width direction W. is there. The U-shaped leaf spring 70 is formed so that the first arm portion 76 is along the back surface 25 a of the abdominal member 25, and the second arm portion 78 is formed along the back surface 27 a of the back side member 27. Has been. The U-shaped plate springs 72 and 74 have substantially the same configuration as the U-shaped plate spring 70. The U-shaped plate springs 70, 72, 74 are positioned so that the longitudinal direction L thereof is the blade width direction of the stationary blade 20 </ b> E, and the second arm portions 78, 84, 90 are welded to the back member 27. (Welded portions are denoted by reference numerals 94, 96, and 98, respectively). In this way, the U-shaped plate springs 70, 72 and 74 are disposed in the cavity 40.

このように空洞40に配設された状態(初期状態)において、コの字形板バネ70,72,74は、撓みにより僅かに弾性変形するように形成されている。この弾性力により、コの字形板バネ70,72,74は、第1腕部76,82,88の外面76a,82a,88aが腹側部材25を裏面25aから押圧すると共に、第2腕部78,84,90の外面78a,84a,90aが背側部材27を裏面27aから押圧するようになっている。つまり、コの字形板バネ70,72,74は、腹側部材25と背側部材27とを、それぞれ静翼20Eの翼厚方向(図12の一点差線Cに直交する方向)外向きに付勢するように構成されている。   Thus, in the state (initial state) arrange | positioned in the cavity 40, the U-shaped leaf | plate springs 70, 72, and 74 are formed so that it may be elastically deformed slightly by bending. Due to this elastic force, the U-shaped plate springs 70, 72, 74 cause the outer surfaces 76 a, 82 a, 88 a of the first arm portions 76, 82, 88 to press the ventral member 25 from the back surface 25 a and the second arm portion. The outer surfaces 78a, 84a, 90a of 78, 84, 90 press the back side member 27 from the back surface 27a. In other words, the U-shaped leaf springs 70, 72, and 74 have the ventral member 25 and the dorsal member 27 outward from the blade thickness direction of the stationary blade 20E (the direction perpendicular to the dashed line C in FIG. 12). It is configured to be energized.

このように構成された静翼20Eは、コの字形板バネ70,72,74の第1腕部76,82,88の外面76a,82a,88aが腹側部材25の裏面25aに摺接すると共に、これら外面76a,82a,88aと裏面25aとの間には、コの字形板バネ70,72,74の撓みによる付勢力が作用している。静翼20Eが弾性変形すると、コの字形板バネ70,72,74は、第1腕部76,82,88の外面76a,82a,88aと、腹側部材25の裏面25aとの間に付勢力に応じた動摩擦力を生じさせる。この動摩擦力により、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   In the stationary blade 20E configured as described above, the outer surfaces 76a, 82a, 88a of the first arm portions 76, 82, 88 of the U-shaped plate springs 70, 72, 74 are in sliding contact with the back surface 25a of the ventral member 25. The urging force due to the bending of the U-shaped plate springs 70, 72, and 74 acts between the outer surfaces 76a, 82a, and 88a and the back surface 25a. When the stationary blade 20E is elastically deformed, the U-shaped plate springs 70, 72, 74 are attached between the outer surfaces 76a, 82a, 88a of the first arm portions 76, 82, 88 and the rear surface 25a of the abdominal member 25. A dynamic friction force corresponding to the force is generated. This dynamic friction force attenuates the relative positional fluctuation between the ventral member 25 and the dorsal member 27. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上に説明したように本実施例に係る静翼20Eでは、板状バネ部材として、断面が略コの字形状を呈し、腹側部材25にコの字形の第1腕部76,82,88が接し、背側部材27には第2腕部78,84,90が接する、コの字形板バネ70,72,74が設けられている。板状バネ部材をこのようなコの字形とすることで、板状バネ部材の製作を容易なものすることができる。また、板状バネ部材がコンパクトなものとなるため、空洞への配設が容易になる。   As described above, in the stationary blade 20E according to the present embodiment, the plate-like spring member has a substantially U-shaped cross section, and the ventral member 25 has a U-shaped first arm portion 76, 82, 88. Are in contact with each other, and the back member 27 is provided with U-shaped plate springs 70, 72, and 74 that are in contact with the second arm portions 78, 84, and 90. By making the plate-shaped spring member into such a U-shape, the plate-shaped spring member can be easily manufactured. Further, since the plate-like spring member is compact, it can be easily disposed in the cavity.

本実施例に係る静翼について、図14を用いて説明する。図14は、静翼の翼形を示す図である。本実施例に係る静翼は、スリットを介して外部と連通していない空洞には制振材が充填されている点で、実施例5に係る静翼と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   A stationary blade according to the present embodiment will be described with reference to FIG. FIG. 14 is a view showing the airfoil of the stationary blade. Unlike the stationary blade according to the fifth embodiment, the stationary blade according to the present embodiment will be described in detail below in that a cavity that does not communicate with the outside through the slit is filled with a damping material. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図14に示すように、本実施例に係る静翼20Fにおいては、板状バネ部材として、コの字形板バネ70が腹側部材25と背側部材27の間に設けられている。コの字形板バネ70は、前縁側スリット28aよりも前縁部36側に配設されている。コの字形板バネ70は、第1腕部76の外面76aが腹側部材25の裏面25aに接しており、第2腕部78が背側部材27に溶接により固定されている。   As shown in FIG. 14, in the stationary blade 20 </ b> F according to the present embodiment, a U-shaped plate spring 70 is provided between the ventral member 25 and the back member 27 as a plate spring member. The U-shaped leaf spring 70 is disposed closer to the front edge portion 36 than the front edge side slit 28a. In the U-shaped plate spring 70, the outer surface 76a of the first arm portion 76 is in contact with the back surface 25a of the abdominal member 25, and the second arm portion 78 is fixed to the back member 27 by welding.

このようにコの字形板バネ70を配設することで、腹側部材25と背側部材27との間にある空間は、コの字形板バネ70の基部80よりも前縁部36側の空洞40aと、コの字形板バネ70の基部80よりも後縁部38側の空洞40cに仕切られる。   By arranging the U-shaped leaf spring 70 in this way, the space between the abdominal member 25 and the back member 27 is closer to the front edge 36 than the base 80 of the U-shaped leaf spring 70. The cavity 40a and the cavity 40c on the rear edge 38 side of the base 80 of the U-shaped leaf spring 70 are partitioned.

後縁38側の空洞40cは、スリット28a,28cを介して静翼20Fの外部と連通している。静翼20Fの腹面24に付着している水は、スリット28a,28cから空洞40cに流入する。空洞40cに取り込まれた水は、翼幅方向をシュラウド(図3を参照)に向けて流れる。   The cavity 40c on the trailing edge 38 side communicates with the outside of the stationary blade 20F through slits 28a and 28c. The water adhering to the ventral surface 24 of the stationary blade 20F flows into the cavity 40c from the slits 28a and 28c. The water taken into the cavity 40c flows toward the shroud (see FIG. 3) in the wing width direction.

一方、前縁36側の空洞40aは、スリット(28a,28c)を介して静翼20Fの外部とは連通していない。つまり、この空洞40aには、腹面からの水を取り込み、シュラウドに向けて流すという機能を有していない。   On the other hand, the cavity 40a on the front edge 36 side does not communicate with the outside of the stationary blade 20F through the slits (28a, 28c). That is, the cavity 40a does not have a function of taking water from the abdominal surface and flowing it toward the shroud.

そこで本実施例に係る静翼20Fにおいては、この空洞40aに制振材110が設けられている。制振材には、例えば、ゴム系やプラスチック系の材料等がある。   Therefore, in the stationary blade 20F according to the present embodiment, the damping material 110 is provided in the cavity 40a. Examples of the damping material include rubber-based and plastic-based materials.

このように構成された静翼20Fは、コの字形板バネ70の第1腕部76の外面76aが腹側部材25の裏面25aに接すると共に、これら外面76aと裏面25aとの間には、コの字形板バネ70の付勢力が作用している。   In the stator blade 20F configured in this manner, the outer surface 76a of the first arm portion 76 of the U-shaped leaf spring 70 is in contact with the back surface 25a of the ventral member 25, and between the outer surface 76a and the back surface 25a, The biasing force of the U-shaped leaf spring 70 is acting.

静翼20Fが弾性変形すると、コの字形板バネ70は、第1腕部76の外面76aと、腹側部材25の裏面25aとの間に付勢力に応じた動摩擦力を生じさせると共に、空洞40aに設けられた制振材110が変形し、腹側部材25及び背側部材27には制振材110の変形抵抗が作用する。これにより、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   When the stationary blade 20F is elastically deformed, the U-shaped leaf spring 70 generates a dynamic friction force according to the urging force between the outer surface 76a of the first arm portion 76 and the rear surface 25a of the abdominal member 25, and the cavity The damping material 110 provided in 40a is deformed, and the deformation resistance of the damping material 110 acts on the ventral member 25 and the back member 27. Thereby, the relative position fluctuation between the ventral member 25 and the dorsal member 27 is attenuated. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上に説明したように本実施例に係る静翼20Fでは、コの字形板バネ70により仕切られた空洞(40a,40c)のうち、スリット(28a,28c)を介して外部と連通していない空洞40aには、制振材110が設けられている。制振材110の変形抵抗を利用して腹側部材25と背側部材27との間における相対的な位置変動を減衰することができる。   As described above, in the stationary blade 20F according to the present embodiment, among the cavities (40a, 40c) partitioned by the U-shaped leaf springs 70, they do not communicate with the outside via the slits (28a, 28c). A damping material 110 is provided in the cavity 40a. The relative position fluctuation between the ventral member 25 and the dorsal member 27 can be attenuated using the deformation resistance of the damping material 110.

本実施例に係る蒸気タービンについて、図15を用いて説明する。図15は、蒸気タービンの低圧最終段における静翼の配列を示す斜視図である。本実施例に係る蒸気タービンは、上記実施例の静翼(以下、中空静翼と記す)と、内部に空洞を有しない中実静翼が同一の段において混在して配列されている点で、実施例1に係る蒸気タービン1と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   A steam turbine according to the present embodiment will be described with reference to FIG. FIG. 15 is a perspective view showing the arrangement of the stationary blades in the low-pressure final stage of the steam turbine. In the steam turbine according to the present embodiment, the stationary blade of the above embodiment (hereinafter referred to as a hollow stationary blade) and a solid stationary blade having no cavity inside are arranged in the same stage. Unlike the steam turbine 1 according to the first embodiment, the details will be described below. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図15に示すように、本実施例に係る蒸気タービン1Bは、その低圧最終段18Bの翼群19Bにおいて、実施例1の中空静翼20と、内部に空洞を有しない中実静翼120がロータ軸周方向Pに交互に配列されている。中実静翼120は、中空静翼20と略同一の外装形状(幾何学的形状)のものが用いられている。中空静翼20及び中実静翼120は、それぞれ一端が翼根リング32に固定されており、他端が内側シュラウド30に固定されている。   As shown in FIG. 15, the steam turbine 1B according to the present embodiment includes a hollow stationary blade 20 according to the first embodiment and a solid stationary blade 120 having no cavity inside in the blade group 19B of the low-pressure final stage 18B. The rotor shaft is circumferentially arranged in the circumferential direction P. The solid stationary blade 120 has an outer shape (geometric shape) substantially the same as that of the hollow stationary blade 20. Each of the hollow stationary blade 20 and the solid stationary blade 120 has one end fixed to the blade root ring 32 and the other end fixed to the inner shroud 30.

内側シュラウド30において、中空静翼20の空洞40に対応した位置には、空洞40と連通する開口31が形成されている。中空静翼20がスリット(図4参照)から空洞40に取り込んだ水分は、この開口31から排出される。   In the inner shroud 30, an opening 31 communicating with the cavity 40 is formed at a position corresponding to the cavity 40 of the hollow stationary blade 20. Moisture taken into the cavity 40 from the slit (see FIG. 4) by the hollow stationary blade 20 is discharged from the opening 31.

以上のように本実施例に係る蒸気タービン1Bでは、内部に空洞40を有する中空静翼20と内部に空洞を有しない中実静翼120が同一の段18Bの翼群19Bにおいて混在して配列されている。このため、静翼の外装形状を異ならせることなく、固有振動数が大きく異なる中空静翼と中実静翼を隣り合わせに配置することが可能となる。これにより、同一の段の翼群において固有振動数が略等しいものが隣り合って配置されることに起因する自励振動を抑制することができる。   As described above, in the steam turbine 1B according to the present embodiment, the hollow stationary blade 20 having the cavity 40 inside and the solid stationary blade 120 having no cavity inside are mixedly arranged in the blade group 19B of the same stage 18B. Has been. For this reason, it is possible to arrange the hollow stationary blade and the solid stationary blade having different natural frequencies adjacent to each other without changing the exterior shape of the stationary blade. As a result, self-excited vibrations caused by the fact that the blades of the same stage have substantially the same natural frequency are arranged adjacent to each other can be suppressed.

また、本実施例に係る蒸気タービン1Bでは、同一の段18Bの翼群19Bにおいて中空静翼20は、ロータ軸周方向Pに所定の間隔で配列されている。これにより中空静翼20の隣には、同一の外装形状で固有振動数の異なる中実静翼120が、高い確率で配置されることとなる。軽量のため自励振動(フラッタ)の生じやすい中空静翼の隣に、自励振動(フラッタ)の生じにくい中実静翼を配置することができ、上述の自励振動を抑制することができる。   Further, in the steam turbine 1B according to the present embodiment, the hollow stationary blades 20 in the blade group 19B of the same stage 18B are arranged at a predetermined interval in the rotor shaft circumferential direction P. As a result, the solid stator blade 120 having the same exterior shape and different natural frequency is disposed with high probability next to the hollow stator blade 20. A solid stator blade that is less prone to self-excited vibration (flutter) can be placed next to a hollow stator blade that is easy to generate self-excited vibration (flutter) because of its light weight, and the above-described self-excited vibration can be suppressed. .

また、本実施例に係る蒸気タービン1Bでは、同一の段18Bの翼群19Bにおいて中空静翼20と中実静翼120が交互に配列されている。同一の段の翼群において隣り合う静翼は、確実に固有振動数が異なるものとすることができる。   Further, in the steam turbine 1B according to the present embodiment, the hollow stationary blades 20 and the solid stationary blades 120 are alternately arranged in the blade group 19B of the same stage 18B. Adjacent stationary blades in the same stage blade group can reliably have different natural frequencies.

なお、本実施例に係る蒸気タービン1Bでは、中空静翼20と中実静翼120を交互に配列されるものとしたが、中空静翼の配列はこれに限定されるものではない。固有振動数の異なる中空静翼と中実静翼が極力隣り合うように配列されればよく、例えば、中空静翼2つおきに中実静翼を1つ配列しても良い。これにより、中空静翼の隣りには、必ず一つの中実静翼を配置することができる。翼表面に付着した水分を空洞に取り込み除去できる中空静翼を、同一の段になるべく多く配列しつつ、静翼に生じる自励振動を極力抑制することができる。   In the steam turbine 1B according to the present embodiment, the hollow stationary blades 20 and the solid stationary blades 120 are alternately arranged. However, the arrangement of the hollow stationary blades is not limited thereto. It is only necessary that the hollow stationary blades and the solid stationary blades having different natural frequencies be arranged as close as possible. For example, one solid stationary blade may be arranged every two hollow stationary blades. As a result, one solid stationary blade can always be arranged next to the hollow stationary blade. The self-excited vibration generated in the stationary blades can be suppressed as much as possible while arranging as many hollow stationary blades as possible to take in and remove moisture adhering to the blade surface into the cavity.

本実施例に係る蒸気タービンについて、図16を用いて説明する。図16は、蒸気タービンの低圧最終段における静翼の配列を示す斜視図である。本実施例に係る蒸気タービンは、実施例1〜6の中空静翼のうち、固有振動数が互いに異なる第1の静翼と第2の静翼が同一の段において混在して配列されている点で、実施例1に係る蒸気タービン1と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   A steam turbine according to the present embodiment will be described with reference to FIG. FIG. 16 is a perspective view showing the arrangement of the stationary blades in the low-pressure final stage of the steam turbine. In the steam turbine according to the present embodiment, among the hollow stator blades of Embodiments 1 to 6, the first stator blade and the second stator blade having different natural frequencies are mixedly arranged in the same stage. In this regard, unlike the steam turbine 1 according to the first embodiment, details will be described below. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図16に示すように、本実施例に係る蒸気タービン1Cは、その低圧最終段18Cの翼群19Cにおいて、実施例1の中空の静翼20(以下、第1静翼と記す)と、実施例3の中空の静翼20C(以下、第2静翼と記す)がロータ軸14の周方向Pに交互に配列されている。第1静翼20と第2静翼20Cは、上述のように空洞40に設けられる板状バネ部材の形状が異なっているため、固有振動数も異なるものとなっている。なお、第1静翼20と第2静翼20Cでは、腹側部材25と背側部材27が同一のものであり、略同一の外装形状(幾何学的形状)となっている。   As shown in FIG. 16, the steam turbine 1C according to the present embodiment includes a hollow stationary blade 20 of the first embodiment (hereinafter referred to as a first stationary blade) in the blade group 19C of the low-pressure final stage 18C. The hollow stator blades 20C of Example 3 (hereinafter referred to as second stator blades) are alternately arranged in the circumferential direction P of the rotor shaft 14. Since the first stationary blade 20 and the second stationary blade 20C have different shapes of the plate spring members provided in the cavity 40 as described above, their natural frequencies are also different. In the first stator blade 20 and the second stator blade 20C, the abdominal member 25 and the back member 27 are the same and have substantially the same exterior shape (geometric shape).

第1静翼20及び第2静翼20Cは、それぞれ一端が翼根リング32に固定されており、他端が内側シュラウド30に固定されている。内側シュラウド30において、第1静翼20及び第2静翼20Cの空洞40に対応した位置には、空洞40と連通する開口31が形成されている。第1静翼20及び第2静翼20Cがスリット(図4参照)から空洞40に取り込んだ水分は、開口31から排出される。   Each of the first stator blade 20 and the second stator blade 20 </ b> C has one end fixed to the blade root ring 32 and the other end fixed to the inner shroud 30. In the inner shroud 30, an opening 31 communicating with the cavity 40 is formed at a position corresponding to the cavity 40 of the first stationary blade 20 and the second stationary blade 20 </ b> C. The moisture taken into the cavity 40 from the slit (see FIG. 4) by the first stationary blade 20 and the second stationary blade 20C is discharged from the opening 31.

以上のように本実施例に係る蒸気タービン1Cでは、固有振動数が互いに異なる第1静翼20と第2静翼20Cが、同一の段18Cの翼群19Cにおいて混在して配列されている。このため、静翼の外装形状を異ならせることなく、固有振動数が異なる中空の静翼を隣り合わせに配置することが可能となる。これにより、翼表面に付着した水分を空洞に取り込み除去できる中空の静翼のみを用いつつ、同一の段に固有振動数が略等しい静翼が隣り合って配置されることに起因する自励振動を抑制することができる。   As described above, in the steam turbine 1C according to the present embodiment, the first stator blade 20 and the second stator blade 20C having different natural frequencies are mixedly arranged in the blade group 19C of the same stage 18C. For this reason, it becomes possible to arrange | position the hollow stationary blades from which a natural frequency differs adjacently, without making the exterior shape of a stationary blade different. As a result, self-excited vibration caused by the fact that stationary blades having substantially the same natural frequency are arranged next to each other in the same stage while using only hollow stationary blades that can take in and remove moisture adhering to the blade surface. Can be suppressed.

また、本実施例に係る蒸気タービン1Cでは、第1静翼20は、ロータ軸周方向Pに所定の間隔で配列されている。このため、第1静翼20の隣には、固有振動数の異なる第2静翼20Cが確実に配置されることとなる。同一の段の翼群に中空の静翼のみを用いても、固有振動数が略等しいものが隣り合って配置されることに起因する自励振動が生じることをより確実に抑制することができる。   In the steam turbine 1 </ b> C according to the present embodiment, the first stationary blades 20 are arranged in the rotor shaft circumferential direction P at a predetermined interval. For this reason, the second stationary blade 20 </ b> C having a different natural frequency is surely arranged next to the first stationary blade 20. Even when only hollow vanes are used in the same stage blade group, it is possible to more reliably suppress the occurrence of self-excited vibration caused by the fact that substantially equal natural frequencies are arranged adjacent to each other. .

また、本実施例に係る蒸気タービン1Cでは、第1中空静翼20と第2中空静翼20Cが交互に配列されている。同一の段の翼群において隣り合う中空静翼は、確実に固有振動数が異なるものとすることができる。   Moreover, in the steam turbine 1C according to the present embodiment, the first hollow stationary blades 20 and the second hollow stationary blades 20C are alternately arranged. Adjacent hollow stationary blades in the same stage blade group can reliably have different natural frequencies.

なお、本実施例に係る蒸気タービン1Cでは、第1静翼20と第2静翼20Cを交互に配列されるものとしたが、中空の静翼の配列はこれに限定されるものではない。実施例1〜6に記載した中空の静翼のうち、固有振動数が極力異なるものを2種類選定し、これを同一の段の翼群に交互に配列することが好ましい。   In the steam turbine 1C according to the present embodiment, the first stationary blades 20 and the second stationary blades 20C are alternately arranged, but the arrangement of the hollow stationary blades is not limited to this. Of the hollow stationary blades described in Examples 1 to 6, it is preferable to select two types having different natural frequencies as much as possible and to alternately arrange them in the same stage blade group.

本実施例に係る静翼について、図17を用いて説明する。図17は、静翼の翼形を示す図である。本実施例に係る静翼20Gは、翼の平均反り線(前縁と後縁とを結ぶ中心線)Cに対して略直交して設けられて、空洞(静翼20Gの内部)40を前縁側の空洞(キャビティ)C1と後縁側の空洞(キャビティ)C2とに区画する板状のリブ(隔壁:仕切壁)130を備えており、かつ、後縁側の空洞C2内に、制振材131が充填されているという点で上記実施例に係る静翼と異なり、以下に詳細を説明する。なお、上記実施例に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIG. FIG. 17 is a view showing the airfoil of the stationary blade. The stationary blade 20G according to the present embodiment is provided substantially orthogonal to the average warp line (center line connecting the leading edge and the trailing edge) C of the blade, and the cavity (inside the stationary blade 20G) 40 is placed in front. A plate-shaped rib (partition wall: partition wall) 130 is provided that divides into a cavity (cavity) C1 on the edge side and a cavity (cavity) C2 on the rear edge side, and the damping material 131 is provided in the cavity C2 on the rear edge side. Unlike the stationary blade according to the above embodiment in that it is filled, the details will be described below. In addition, about the structure substantially common with the stationary blade which concerns on the said Example, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施例に係る制振材131としては、例えば、図17に示すような鋼球を挙げることができる。また、実施例6のところで説明したゴム系やプラスチック系の材料等で作られた制振材110を、後縁側の空洞C2内に充填することもできる。   As the damping material 131 according to the present embodiment, for example, a steel ball as shown in FIG. Further, the damping material 110 made of the rubber or plastic material described in the sixth embodiment can be filled in the cavity C2 on the trailing edge side.

本実施例に係る静翼20Gによれば、当該静翼20Gが弾性変形すると、空洞C2内に充填された鋼球131同士がぶつかり合い(擦れ合い)、摩擦減衰が発生することとなる(あるいは、空洞C2内に設けられたゴム系やプラスチック系の材料等からなる制振材131が変形し、腹側部材25及び背側部材27には制振材131の変形抵抗が作用することとなる)。これにより、腹側部材25と背側部材27との間における相対的な位置変動が減衰される。この結果、静翼に生じる自励振動を抑制することができる。   According to the stationary blade 20G according to the present embodiment, when the stationary blade 20G is elastically deformed, the steel balls 131 filled in the cavity C2 collide with each other (rubbing) and friction damping occurs (or Then, the damping material 131 made of a rubber or plastic material provided in the cavity C2 is deformed, and the deformation resistance of the damping material 131 acts on the abdominal member 25 and the dorsal member 27. ). Thereby, the relative position fluctuation between the ventral member 25 and the dorsal member 27 is attenuated. As a result, self-excited vibration generated in the stationary blade can be suppressed.

以上に説明したように本実施例に係る静翼20Gでは、リブ130により仕切られた空洞C2内には、制振材131が設けられている。制振材131の変形抵抗を利用して腹側部材25と背側部材27との間における相対的な位置変動を減衰することができる。
また、本実施例に係る静翼20Gでは、板バネの代わりに、後縁側の空洞C2内に、制振材131が充填されることとなるので、板バネの寸法公差、及び翼(腹側部材25及び背側部材27)の寸法公差から発生する板バネの片当たりを防止することができる。
その他の作用効果は、上述した実施例と同じであるので、ここではその説明を省略する。
As described above, in the stationary blade 20G according to the present embodiment, the damping material 131 is provided in the cavity C2 partitioned by the rib 130. The relative position fluctuation between the ventral member 25 and the dorsal member 27 can be attenuated using the deformation resistance of the damping material 131.
Further, in the stationary blade 20G according to the present embodiment, since the damping material 131 is filled in the cavity C2 on the trailing edge side instead of the leaf spring, the dimensional tolerance of the leaf spring and the blade (abdominal side) It is possible to prevent the contact of the leaf spring caused by the dimensional tolerance of the member 25 and the back member 27).
Other functions and effects are the same as those of the above-described embodiment, and thus the description thereof is omitted here.

本実施例に係る静翼について、図18を用いて説明する。図18は、静翼の翼形を示す図である。本実施例に係る静翼20Hは、弓形板バネ60の端部62,63が背側部材27の裏面27aに沿うように配置されており、基部64が腹側部材25の裏面25aに沿うように配置されているという点で、実施例4に係る静翼20Dと異なり、以下に詳細を説明する。なお、実施例4に係る静翼20Dと略共通の構成については、同一の符号を付し、説明を省略する。   A stationary blade according to the present embodiment will be described with reference to FIG. FIG. 18 is a diagram illustrating the airfoil of the stationary blade. The stationary blade 20 </ b> H according to the present embodiment is arranged such that the end portions 62 and 63 of the arcuate leaf spring 60 are along the back surface 27 a of the back member 27, and the base portion 64 is along the back surface 25 a of the ventral member 25. Unlike the stationary blade 20D according to the fourth embodiment, the details will be described below. In addition, about the structure substantially common with the stationary blade 20D which concerns on Example 4, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施例に係る静翼20Hによれば、弓形板バネ60を空洞40内に組み込んだ際に、弓形板バネ60の端部62,63が、腹側部材25の裏面25aの曲率よりも大きな曲率を有する背側部材27の裏面27aに確実に押圧されるように形成されているので、弓形板バネ60の端部62,63を、背側部材27の裏面27aに確実に当接(接触)させることができて、板バネの寸法公差、及び翼(腹側部材25及び背側部材27)の寸法公差から発生する板バネの片当たりを防止することができる。
その他の作用効果は、上述した実施例4と同じであるので、ここではその説明を省略する。
なお、図18中の二点鎖線は、空洞40内に組み入れる前の弓形板バネ60の断面形状を示している。
According to the stationary blade 20H according to the present embodiment, when the arcuate leaf spring 60 is assembled into the cavity 40, the end portions 62 and 63 of the arcuate leaf spring 60 are larger than the curvature of the back surface 25a of the ventral member 25. Since it is formed so as to be surely pressed against the back surface 27a of the back-side member 27 having a curvature, the end portions 62 and 63 of the bow-shaped leaf spring 60 are reliably brought into contact (contact) with the back surface 27a of the back-side member 27. ), And can prevent the leaf springs from coming into contact with each other due to the dimensional tolerances of the leaf springs and the dimensional tolerances of the wings (the ventral member 25 and the dorsal member 27).
Other functions and effects are the same as those of the above-described fourth embodiment, and thus description thereof is omitted here.
Note that the two-dot chain line in FIG. 18 indicates the cross-sectional shape of the arcuate leaf spring 60 before being incorporated into the cavity 40.

本実施例に係る静翼について、図19を用いて説明する。図19(a)は、静翼の翼形を示す図である。本実施例に係る静翼20Jは、板状バネ部材として、断面が弓形状を呈する「弓形板バネ」が二つ設けられているという点で、実施例1に係る静翼20と異なり、以下に詳細を説明する。なお、実施例1に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIG. FIG. 19A is a diagram showing the airfoil shape of the stationary blade. Unlike the stationary blade 20 according to the first embodiment, the stationary blade 20J according to the present embodiment is different from the stationary blade 20 according to the first embodiment in that two “bow-shaped leaf springs” having a bow shape in cross section are provided as plate spring members. Details will be described in the following. In addition, about the structure substantially common with the stationary blade which concerns on Example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図19に示すように、本実施例に係る静翼20Jにおいては、板状バネ部材として、断面が弓形状を呈する弓形板バネ140,141の、基部142,143の裏面142a,143a同士が摺動可能に当接(接触)しているとともに、端部144,145の表面144a,145aが背側部材27の裏面27aに接し、端部146,147の表面146a,147aが腹側部材25の裏面25aに接している。また、各端部144,145,146,147は、溶接により固定されている(溶接部を符号148で示す)。    As shown in FIG. 19, in the stationary blade 20J according to the present embodiment, the back surfaces 142a and 143a of the base portions 142 and 143 of the arcuate leaf springs 140 and 141 having a bow shape in cross section are slid as plate spring members. The front surfaces 144a and 145a of the end portions 144 and 145 are in contact with the back surface 27a of the back side member 27, and the front surfaces 146a and 147a of the end portions 146 and 147 are in contact with the abdominal side member 25. It is in contact with the back surface 25a. Moreover, each edge part 144,145,146,147 is being fixed by welding (a welding part is shown with the code | symbol 148).

本実施例に係る静翼20Jによれば、弓形板バネ140の端部144,145は、溶接により背側部材27に固定され、弓形板バネ141の端部146,147は、溶接により腹側部材25に固定されているので、板バネの寸法公差、及び翼(腹側部材25及び背側部材27)の寸法公差から発生する、端部144,145と背側部材27との片当たり、および端部146,147と腹側部材25との片当たりを確実に防止することができる。
また、基部142の裏面142aと基部143の裏面143aとの片当たりは、弓形板バネ140,141の材料を適宜選択する(裏面142a,143a同士が片当たりしないような材料を選択する)ことにより回避することができる。
その他の作用効果は、上述した実施例1と同じであるので、ここではその説明を省略する。
なお、図19(b)は、空洞40内に組み入れる前の弓形板バネ140,141の断面形状を示している。
According to the stationary blade 20J according to the present embodiment, the end portions 144 and 145 of the arcuate leaf spring 140 are fixed to the back member 27 by welding, and the end portions 146 and 147 of the arcuate leaf spring 141 are abdominal side by welding. Since it is fixed to the member 25, the contact between the end portions 144, 145 and the dorsal member 27 generated from the dimensional tolerance of the leaf spring and the dimensional tolerance of the wing (the ventral member 25 and the dorsal member 27), In addition, it is possible to reliably prevent the end portions 146 and 147 and the ventral member 25 from coming into contact with each other.
Further, the contact between the back surface 142a of the base portion 142 and the back surface 143a of the base portion 143 is appropriately selected by selecting the material of the arched leaf springs 140 and 141 (selecting a material that does not allow the back surfaces 142a and 143a to contact each other). It can be avoided.
Other functions and effects are the same as those of the above-described first embodiment, and thus description thereof is omitted here.
FIG. 19B shows the cross-sectional shape of the bow leaf springs 140 and 141 before being incorporated into the cavity 40.

本実施例に係る静翼について、図20を用いて説明する。図20は、静翼の翼形を示す図である。本実施例に係る静翼20Kは、弓形板バネ60の代わりに、弓形板バネ150が設けられているという点で、実施例10に係る静翼20Hと異なり、以下に詳細を説明する。なお、実施例10に係る静翼と略共通の構成については、同一の符号を付し、説明を省略する。   The stationary blade according to the present embodiment will be described with reference to FIG. FIG. 20 is a view showing the airfoil of the stationary blade. The stationary blade 20K according to the present embodiment is different from the stationary blade 20H according to the tenth embodiment in that an arcuate leaf spring 150 is provided instead of the arcuate leaf spring 60, and the details will be described below. In addition, about the structure substantially common with the stationary blade which concerns on Example 10, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図20に示すように、本実施例に係る弓形板バネ150は、基部151と端部152,153との間に、第1の折曲部154および第2の折曲部155がそれぞれ設けられている。また、基部151は、その表面151aが腹側部材25の裏面25aの曲率と略同じ曲率を有するように形成されており、各端部152,153は、その裏面152a,153aが背側部材27の裏面27aの曲率と略同じ曲率を有するように形成されている。    As shown in FIG. 20, the bow leaf spring 150 according to the present embodiment is provided with a first bent portion 154 and a second bent portion 155 between a base portion 151 and end portions 152 and 153, respectively. ing. The base 151 is formed such that the surface 151 a has substantially the same curvature as the curvature of the back surface 25 a of the ventral member 25, and the back surfaces 152 a and 153 a of the end portions 152 and 153 are the back side member 27. Is formed so as to have substantially the same curvature as that of the back surface 27a.

本実施例に係る静翼20Kによれば、弓形板バネ151を空洞40内に組み込んだ際に、弓形板バネ150の端部152,153の裏面152a,153aが、背側部材27の裏面27aとより多く(広く)接触することとなるので、板バネの寸法公差、及び翼(腹側部材25及び背側部材27)の寸法公差から発生する板バネの片当たりをより一層防止することができるとともに、面圧(単位面積あたりの押圧力)を低減させることができて、弓形板バネ150の端部152,153および背側部材27の摩耗を低減させることができる。
その他の作用効果は、上述した実施例10と同じであるので、ここではその説明を省略する。
According to the stationary blade 20K according to the present embodiment, when the arcuate leaf spring 151 is incorporated into the cavity 40, the back surfaces 152a and 153a of the end portions 152 and 153 of the arcuate leaf spring 150 are the back surface 27a of the back member 27. Therefore, it is possible to further prevent the contact of the leaf spring caused by the dimensional tolerance of the leaf spring and the dimensional tolerance of the wing (the abdominal member 25 and the dorsal member 27). In addition, the surface pressure (pressing force per unit area) can be reduced, and wear of the end portions 152 and 153 of the arcuate leaf spring 150 and the back member 27 can be reduced.
Other functions and effects are the same as those of the above-described tenth embodiment, and thus description thereof is omitted here.

なお、上述した実施例では、腹側部材25が静翼20の腹側部を構成し、背側部材27が静翼20の背側部を構成するものとしたが、腹側部及び背側部の構成はこれに限定されるものではない。腹側部と背側部との間に空洞が形成される静翼であれば良く、例えば、管状の部材を扁平な形状に潰し、さらに湾曲させることで、管状部材の表面に翼の腹面及び背面となる反りを形成すると共に、管状の部材の内部に空洞が形成されるような静翼にも、本発明を適用することができる。   In the above-described embodiment, the ventral member 25 constitutes the ventral portion of the stationary blade 20 and the dorsal member 27 constitutes the dorsal portion of the stationary blade 20. The configuration of the part is not limited to this. Any vane may be used as long as it has a cavity formed between the ventral portion and the dorsal portion.For example, the tubular member is crushed into a flat shape and further bent so that the ventral surface of the wing and The present invention can also be applied to a stationary blade that forms a back surface warp and has a hollow formed inside a tubular member.

また、上述した実施例では、摺接部材として板状バネ部材(C字形板バネ52;弓形板バネ60,140,141,150;コの字形板バネ70,72,74)を設けるものとしたが、摺接部材はこれに限定されるものではない。空洞から翼内面に摺接可能なもの、あるいは基部の裏面同士が摺接可能なものであれば良く、例えば、プラスチック系の部材やゴム系の部材を用いることもできる。   In the above-described embodiment, a plate-like spring member (C-shaped plate spring 52; arcuate plate springs 60, 140, 141, 150; U-shaped plate springs 70, 72, 74) is provided as the sliding contact member. However, the sliding member is not limited to this. Any material can be used as long as it can be slidably contacted from the cavity to the inner surface of the blade or the back surfaces of the bases can be slidably contacted. For example, a plastic member or a rubber member can be used.

さらに、上述した実施例では、付勢部材として板状バネ部材(C字形板バネ52;弓形板バネ60,140,141,150;コの字形板バネ70,72,74)を設けるものとしたが、付勢部材はこれに限定されるものではない。腹側部と背側部をそれぞれ翼厚方向外向きに付勢できれば良く、例えば、コイルスプリングを用いることもできる。   Further, in the above-described embodiment, a plate-like spring member (C-shaped plate spring 52; arcuate plate springs 60, 140, 141, 150; U-shaped plate springs 70, 72, 74) is provided as an urging member. However, the urging member is not limited to this. What is necessary is just to be able to urge each of the abdominal side and the back side outward in the blade thickness direction. For example, a coil spring can also be used.

さらにまた、上述した実施例において、板状バネ部材(C字形板バネ52;弓形板バネ60,150;コの字形板バネ70,72,74)の端部が、図21に示すような板厚方向に複数枚の板状に分割された分割構造(あるいはスリット構造)となっているとさらに好適である。
このような板状バネ部材を採用した場合、静翼が弾性変形すると、分割された板と板との間に摩擦減衰が発生することとなる。これにより、腹側部材25と背側部材27との間における相対的な位置変動をさらに減衰させることができ、静翼に生じる自励振動をより一層抑制することができる。
なお、図21は、弓形板バネ150の端部152,153を分割構造とした場合の一具体例を示している。
Furthermore, in the embodiment described above, the ends of the plate spring members (C-shaped plate spring 52; arcuate plate springs 60, 150; U-shaped plate springs 70, 72, 74) are formed as shown in FIG. It is more preferable that the structure has a divided structure (or slit structure) divided into a plurality of plates in the thickness direction.
When such a plate-like spring member is employed, when the stationary blade is elastically deformed, friction damping occurs between the divided plates. Thereby, the relative position fluctuation between the abdominal member 25 and the back member 27 can be further attenuated, and the self-excited vibration generated in the stationary blade can be further suppressed.
FIG. 21 shows a specific example when the end portions 152 and 153 of the arched leaf spring 150 are divided.

さらにまた、板厚と減衰との間には、図22に示すような関係、すなわち、板厚が増していく(例えば、板厚が1.2mmから1.5mm、あるいは1.5mmから2mmに増加する)と、減衰も大きくなるという特性がある。ここで、「減衰」とは、構造減衰、材料減衰、および摩擦減衰が足し合わさったものである。
したがって、上述した実施例においては、板状バネ部材(C字形板バネ52;弓形板バネ60,150;コの字形板バネ70,72,74)の厚みを変える(コントロールする)ことで、所望の減衰を得るようにすることもできる。
Furthermore, the relationship between the plate thickness and the attenuation is as shown in FIG. 22, that is, the plate thickness increases (for example, the plate thickness is changed from 1.2 mm to 1.5 mm, or from 1.5 mm to 2 mm). Increase), the attenuation also increases. Here, “damping” is the sum of structural damping, material damping, and friction damping.
Therefore, in the above-described embodiment, the thickness of the plate spring member (C-shaped plate spring 52; arcuate plate springs 60, 150; U-shaped plate springs 70, 72, 74) is changed (controlled) to be desired. Can be obtained.

以上のように、本発明に係る静翼は、蒸気タービンに有用であり、特に、湿分分離加熱器から蒸気の供給を受ける低圧蒸気タービンに適している。   As described above, the stationary blade according to the present invention is useful for a steam turbine, and is particularly suitable for a low-pressure steam turbine that receives supply of steam from a moisture separation heater.

実施例1に係る蒸気タービンの概略構成を模式的に示す図である。1 is a diagram schematically illustrating a schematic configuration of a steam turbine according to Embodiment 1. FIG. 実施例1に係る蒸気タービンを低圧最終段側から見た外観図である。It is the external view which looked at the steam turbine concerning Example 1 from the low-pressure last stage side. 図2に示される静翼を背側から見た拡大図である。It is the enlarged view which looked at the stationary blade shown by FIG. 2 from the back side. 実施例1に係る静翼の翼形を示す図であり、図5のA−A線による断面図である。It is a figure which shows the airfoil of the stationary blade which concerns on Example 1, and is sectional drawing by the AA line of FIG. 実施例1に係る静翼を腹側から見た図である。It is the figure which looked at the stationary blade concerning Example 1 from the ventral side. 実施例1に係る板状バネ部材(波形板バネ)の斜視図である。FIG. 3 is a perspective view of a plate spring member (wave plate spring) according to the first embodiment. 実施例2に係る静翼の翼形を示す図である。FIG. 6 is a diagram illustrating an airfoil of a stationary blade according to a second embodiment. 実施例3に係る静翼の翼形を示す図である。FIG. 6 is a diagram illustrating an airfoil of a stationary blade according to a third embodiment. 実施例3に係る板状バネ部材(C字形板バネ)の斜視図である。It is a perspective view of the plate-shaped spring member (C-shaped plate spring) which concerns on Example 3. FIG. 実施例4に係る静翼の翼形を示す図である。FIG. 6 is a diagram illustrating an airfoil of a stationary blade according to a fourth embodiment. 実施例4に係る板状バネ部材(弓形板バネ)の斜視図である。It is a perspective view of the plate-shaped spring member (bow-shaped plate spring) which concerns on Example 4. FIG. 実施例5に係る静翼の翼形を示す図である。FIG. 10 is a diagram illustrating an airfoil of a stationary blade according to a fifth embodiment. 実施例5に係る板状バネ部材(コの字形板バネ)の斜視図である。FIG. 10 is a perspective view of a plate spring member (a U-shaped plate spring) according to a fifth embodiment. 実施例6に係る静翼の翼形を示す図である。FIG. 10 is a diagram illustrating an airfoil of a stationary blade according to a sixth embodiment. 実施例7に係る蒸気タービンの低圧最終段の翼群における静翼の配列を示す斜視図である。FIG. 10 is a perspective view showing an arrangement of stationary blades in a blade group of a low-pressure final stage of a steam turbine according to a seventh embodiment. 実施例8に係る蒸気タービンの低圧最終段の翼群における静翼の配列を示す斜視図である。FIG. 10 is a perspective view showing an arrangement of stationary blades in a blade group of a low-pressure final stage of a steam turbine according to an eighth embodiment. 実施例9に係る静翼の翼形を示す図である。FIG. 10 is a diagram illustrating an airfoil of a stationary blade according to a ninth embodiment. 実施例10に係る静翼の翼形を示す図である。It is a figure which shows the airfoil of the stationary blade concerning Example 10. FIG. 実施例11に係る静翼を示す図であって、(a)は翼形、(b)は空洞内に組み入れる前の弓形板バネの断面形状を示している。It is a figure which shows the stator blade which concerns on Example 11, Comprising: (a) is an airfoil, (b) has shown the cross-sectional shape of the arched leaf | plate spring before incorporating in a cavity. 実施例12に係る静翼の翼形を示す図である。FIG. 10 is a diagram illustrating an airfoil of a stationary blade according to a twelfth embodiment. 板状バネ部材の他の実施例を示す図であって、(a)は側面図、(b)は(a)の要部拡大図である。It is a figure which shows the other Example of a plate-shaped spring member, Comprising: (a) is a side view, (b) is a principal part enlarged view of (a). 板厚と減衰との関係を示すグラフである。It is a graph which shows the relationship between board thickness and attenuation | damping.

符号の説明Explanation of symbols

1,1B,1C 蒸気タービン
18,18B,18C 段
19,19B,19C 翼群
20,20B,20C,20D,20E,20F,20G,20H,20J,20K 静翼
24 腹面
25 腹側部材(腹側部)
26 背面
27 背側部材(背側部)
28a,28c スリット
30 内側シュラウド
32 翼根リング
36 前縁部
38 後縁部
40,40a,40c 空洞
44 波形板バネ(板状バネ部材、付勢部材、摺接部材)
46a,46c,46e 表側頂部
48a,48c,48e,48g 裏側頂部
52 C字形板バネ(板状バネ部材、付勢部材、摺接部材)
60 弓形板バネ(板状バネ部材、付勢部材、摺接部材)
70,72,74 コの字形板バネ(板状バネ部材、付勢部材、摺接部材)
110 制振材
120 中実静翼
130 リブ(仕切壁)
131 制振材
140 弓形板バネ(板状バネ部材、付勢部材、摺接部材)
141 弓形板バネ(板状バネ部材、付勢部材、摺接部材)
150 弓形板バネ(板状バネ部材、付勢部材、摺接部材)
1, 1B, 1C Steam turbine 18, 18B, 18C Stage 19, 19B, 19C Blade group 20, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20J, 20K Stator blade 24 Abdominal surface 25 Abdominal side member (abdominal side) Part)
26 Back 27 Back member (back side)
28a, 28c Slit 30 Inner shroud 32 Blade root ring 36 Front edge 38 Rear edge 40, 40a, 40c Cavity 44 Corrugated leaf spring (plate spring member, biasing member, sliding member)
46a, 46c, 46e Front side top portions 48a, 48c, 48e, 48g Back side top portion 52 C-shaped leaf spring (plate spring member, biasing member, sliding member)
60 Bow leaf spring (plate spring member, biasing member, sliding member)
70, 72, 74 U-shaped leaf spring (plate spring member, biasing member, sliding member)
110 Damping material 120 Solid stationary vane 130 Rib (partition wall)
131 Damping material 140 Bow leaf spring (plate spring member, biasing member, sliding member)
141 Bow leaf spring (plate spring member, biasing member, sliding member)
150 Bow leaf spring (plate spring member, biasing member, sliding member)

Claims (17)

蒸気タービンに用いられ、内部に空洞が形成され、且つ該空洞と外部とを連通させるスリットが形成されている静翼であって、
空洞から翼内面に摺接可能な摺接部材が設けられていることを特徴とする静翼。
A stationary blade used in a steam turbine, in which a cavity is formed, and a slit is formed to communicate the cavity and the outside.
A stationary blade characterized in that a sliding contact member capable of sliding contact from the cavity to the inner surface of the blade is provided.
請求項1に記載の静翼であって、
空洞より腹側の部分である腹側部と、空洞より背側の部分である背側部とを有し、
摺接部材は、腹側部と背側部との間に設けられ、腹側部と背側部のうち少なくとも一方と接することを特徴とする静翼。
The stationary blade according to claim 1,
Having a ventral part that is a part of the ventral side of the cavity and a dorsal part that is a part of the dorsal side of the cavity;
The sliding member is provided between the abdomen and the dorsal side, and is in contact with at least one of the abdomen and the dorsal side.
請求項2に記載の静翼であって、
摺接部材は、腹側部と背側部を、それぞれ翼厚方向外向きに付勢する付勢部材であることを特徴とする静翼。
The stationary blade according to claim 2,
The slidable contact member is a urging member that urges the abdominal side portion and the back side portion outward in the blade thickness direction.
請求項3に記載の静翼であって、
付勢部材は、翼幅方向に沿って延びる板状を呈し、撓みによる弾性力によって腹側部と背側部を押圧する板状バネ部材であることを特徴とする静翼。
The stationary blade according to claim 3,
The urging member is a plate blade member that has a plate shape extending in the blade width direction and is a plate spring member that presses the abdominal side portion and the back side portion by an elastic force caused by bending.
請求項4に記載の静翼であって、
板状バネ部材は、断面が波形状を呈し、腹側部と背側部には波形の頂部が接していることを特徴とする静翼。
The stationary blade according to claim 4,
The plate-like spring member has a corrugated cross section, and a corrugated top is in contact with the abdomen and the dorsal side.
請求項4に記載の静翼であって、
板状バネ部材は、断面が略C字形状を呈し、腹側部と背側部のいずれか一方にはC字形の開端部が接しており、他方にはC字形の基部が接していることを特徴とする静翼。
The stationary blade according to claim 4,
The plate-like spring member has a substantially C-shaped cross section, and a C-shaped open end is in contact with one of the abdomen and the back, and a C-shaped base is in contact with the other. Static vane characterized by.
請求項4に記載の静翼であって、
板状バネ部材は、断面が弓形状を呈し、腹側部と背側部のいずれか一方には弓形の端部が接しており、他方には弓形の基部が接していることを特徴とする静翼。
The stationary blade according to claim 4,
The plate-like spring member has an arcuate cross section, and has an arcuate end in contact with either the ventral part or the dorsal part, and an arcuate base in contact with the other. Static wing.
請求項4に記載の静翼であって、
断面が弓形状を呈する板状バネ部材が、翼厚方向に沿って二つ配置されており、かつ、各板状バネ部材の基部の裏面同士が、互いに摺接するように構成されていることを特徴とする静翼。
The stationary blade according to claim 4,
Two plate-like spring members having a bow-shaped cross section are arranged along the blade thickness direction, and the back surfaces of the base portions of the plate-like spring members are configured to be in sliding contact with each other. Characteristic stationary blade.
請求項7または8に記載の静翼であって、
板状バネ部材の端部が、板厚方向に複数枚の板状に分割された分割構造あるいはスリット構造となっていることを特徴とする静翼。
The stator blade according to claim 7 or 8,
A stationary blade having a split structure or a slit structure in which an end portion of a plate spring member is divided into a plurality of plates in a plate thickness direction.
請求項4に記載の静翼であって、
板状バネ部材は、断面がコの字形状を呈し、腹側部と背側部にはコの字形の腕部が接していることを特徴とする静翼。
The stationary blade according to claim 4,
The plate-shaped spring member has a U-shaped cross section, and a U-shaped arm portion is in contact with the abdominal side portion and the back side portion.
請求項4〜10のいずれか1項に記載の静翼であって、
腹側部と背側部は、前縁部と後縁部で互いに結合されるものであり、
板状バネ部材は、腹側部と背側部のうち一方に結合されることを特徴とする静翼。
The stationary blade according to any one of claims 4 to 10,
The ventral and dorsal sides are joined together at the front and back edges,
The stationary blade is characterized in that the plate-like spring member is coupled to one of the ventral side portion and the back side portion.
請求項4〜11のいずれか1項に記載の静翼であって、
板状バネ部材により仕切られた空洞のうち、スリット介して外部と連通していない空洞には、制振材が設けられていることを特徴とする静翼。
The stationary blade according to any one of claims 4 to 11,
A vane characterized in that a damping material is provided in a cavity partitioned by a plate-like spring member and not communicating with the outside through a slit.
翼の平均反り線に対して略直交して設けられて、内部に形成された空洞を前縁側の空洞と後縁側の空洞とに区画する板状の仕切壁を備えており、かつ、後縁側の空洞内に、制振材が充填されていることを特徴とする静翼。   Provided substantially perpendicular to the average warp line of the wing, is provided with a plate-like partition wall that divides a cavity formed inside into a cavity on the leading edge side and a cavity on the trailing edge side, and on the trailing edge side A stationary blade, characterized in that a damping material is filled in the cavity. 請求項1〜13のいずれか1項に記載の静翼が、ロータ軸の周方向に所定の間隔で配列されていることを特徴とする蒸気タービン。   A steam turbine, wherein the stationary blades according to any one of claims 1 to 13 are arranged at a predetermined interval in a circumferential direction of the rotor shaft. 請求項14に記載の蒸気タービンであって、
中実静翼が混在して配列されていることを特徴とする蒸気タービン。
A steam turbine according to claim 14,
A steam turbine characterized by a mixture of solid stationary blades.
請求項15に記載の蒸気タービンであって、
請求項1〜13のいずれか1項に記載の静翼と中実静翼が交互に配列されていることを特徴とする蒸気タービン。
A steam turbine according to claim 15, comprising:
A steam turbine in which the stationary blades and the solid stationary blades according to any one of claims 1 to 13 are alternately arranged.
請求項14に記載の蒸気タービンであって、
異なる固有振動数を有する複数種類の静翼が配列されていることを特徴とする蒸気タービン。
A steam turbine according to claim 14,
A steam turbine, wherein a plurality of types of stationary blades having different natural frequencies are arranged.
JP2007282812A 2006-10-31 2007-10-31 Stator blades and steam turbines Active JP4939368B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007282812A JP4939368B2 (en) 2006-10-31 2007-10-31 Stator blades and steam turbines
PCT/JP2008/069373 WO2009057532A1 (en) 2007-10-31 2008-10-24 Stationary blade and steam turbine
US12/666,022 US8851844B2 (en) 2007-10-31 2008-10-24 Stationary blade and steam turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006296654 2006-10-31
JP2006296654 2006-10-31
JP2007282812A JP4939368B2 (en) 2006-10-31 2007-10-31 Stator blades and steam turbines

Publications (2)

Publication Number Publication Date
JP2008133825A true JP2008133825A (en) 2008-06-12
JP4939368B2 JP4939368B2 (en) 2012-05-23

Family

ID=39558832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282812A Active JP4939368B2 (en) 2006-10-31 2007-10-31 Stator blades and steam turbines

Country Status (1)

Country Link
JP (1) JP4939368B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086400A1 (en) 2010-12-22 2012-06-28 三菱重工業株式会社 Steam turbine stator blade and steam turbine
JP2013036451A (en) * 2011-08-11 2013-02-21 Hashida Giken Kogyo Kk Method for manufacturing stationary blade for steam turbine
JP2013057258A (en) * 2011-09-07 2013-03-28 Mitsubishi Heavy Ind Ltd Stationary blade and steam turbine
WO2013047587A1 (en) * 2011-09-27 2013-04-04 三菱重工業株式会社 Stator blade and vapor turbine
JP2014114721A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Steam turbine
JP2014231843A (en) * 2014-09-10 2014-12-11 三菱日立パワーシステムズ株式会社 Stationary vane of steam turbine, and steam turbine
JP2014231842A (en) * 2014-09-10 2014-12-11 三菱日立パワーシステムズ株式会社 Stationary vane of steam turbine, and steam turbine
JP2015090142A (en) * 2013-11-07 2015-05-11 三菱重工業株式会社 Stationary blade, steam turbine and manufacturing method of stationary blade
JP2015137634A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Rotating machine blade and rotating machine
JP2016138487A (en) * 2015-01-27 2016-08-04 三菱日立パワーシステムズ株式会社 Stationary vane, rotating machine
JP2017115596A (en) * 2015-12-21 2017-06-29 三菱日立パワーシステムズ株式会社 Process of manufacture of blade
WO2018135212A1 (en) * 2017-01-20 2018-07-26 三菱日立パワーシステムズ株式会社 Steam turbine
US11732615B2 (en) 2020-07-20 2023-08-22 Mitsubishi Heavy Industries, Ltd. Steam turbine hollow blade

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155738A (en) * 2016-03-04 2017-09-07 三菱日立パワーシステムズ株式会社 Rotary machine blade and rotary machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801073A (en) * 1952-06-30 1957-07-30 United Aircraft Corp Hollow sheet metal blade or vane construction
US2873944A (en) * 1952-09-10 1959-02-17 Gen Motors Corp Turbine blade cooling
US3475107A (en) * 1966-12-01 1969-10-28 Gen Electric Cooled turbine nozzle for high temperature turbine
JPS6432004A (en) * 1987-07-28 1989-02-02 Toshiba Corp Drain removal type stator blade
JPH0347403A (en) * 1989-07-13 1991-02-28 Toshiba Corp Water drop removing device for steam turbine
JPH09209708A (en) * 1996-02-09 1997-08-12 Mitsubishi Heavy Ind Ltd Stationary blade for rotary fluid machine
JPH11336503A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine stator blade
JP2005315076A (en) * 2004-04-26 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Turbine nozzle and turbine nozzle segment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801073A (en) * 1952-06-30 1957-07-30 United Aircraft Corp Hollow sheet metal blade or vane construction
US2873944A (en) * 1952-09-10 1959-02-17 Gen Motors Corp Turbine blade cooling
US3475107A (en) * 1966-12-01 1969-10-28 Gen Electric Cooled turbine nozzle for high temperature turbine
JPS6432004A (en) * 1987-07-28 1989-02-02 Toshiba Corp Drain removal type stator blade
JPH0347403A (en) * 1989-07-13 1991-02-28 Toshiba Corp Water drop removing device for steam turbine
JPH09209708A (en) * 1996-02-09 1997-08-12 Mitsubishi Heavy Ind Ltd Stationary blade for rotary fluid machine
JPH11336503A (en) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd Steam turbine stator blade
JP2005315076A (en) * 2004-04-26 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Turbine nozzle and turbine nozzle segment

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237959B (en) * 2010-12-22 2015-04-08 三菱日立电力系统株式会社 Steam turbine stator blade and steam turbine
JP2012132375A (en) * 2010-12-22 2012-07-12 Mitsubishi Heavy Ind Ltd Stator blade of steam turbine and steam turbine
CN103237959A (en) * 2010-12-22 2013-08-07 三菱重工业株式会社 Steam turbine stator blade and steam turbine
US9488066B2 (en) 2010-12-22 2016-11-08 Mitsubishi Hitachi Power Systems, Ltd. Turbine vane of steam turbine and steam turbine
WO2012086400A1 (en) 2010-12-22 2012-06-28 三菱重工業株式会社 Steam turbine stator blade and steam turbine
KR101503292B1 (en) * 2010-12-22 2015-03-18 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine stator blade and steam turbine
JP2013036451A (en) * 2011-08-11 2013-02-21 Hashida Giken Kogyo Kk Method for manufacturing stationary blade for steam turbine
JP2013057258A (en) * 2011-09-07 2013-03-28 Mitsubishi Heavy Ind Ltd Stationary blade and steam turbine
WO2013047587A1 (en) * 2011-09-27 2013-04-04 三菱重工業株式会社 Stator blade and vapor turbine
JP2013072333A (en) * 2011-09-27 2013-04-22 Mitsubishi Heavy Ind Ltd Stator blade and steam turbine
JP2014114721A (en) * 2012-12-07 2014-06-26 Mitsubishi Heavy Ind Ltd Steam turbine
JP2015090142A (en) * 2013-11-07 2015-05-11 三菱重工業株式会社 Stationary blade, steam turbine and manufacturing method of stationary blade
JP2015137634A (en) * 2014-01-24 2015-07-30 三菱重工業株式会社 Rotating machine blade and rotating machine
JP2014231842A (en) * 2014-09-10 2014-12-11 三菱日立パワーシステムズ株式会社 Stationary vane of steam turbine, and steam turbine
JP2014231843A (en) * 2014-09-10 2014-12-11 三菱日立パワーシステムズ株式会社 Stationary vane of steam turbine, and steam turbine
JP2016138487A (en) * 2015-01-27 2016-08-04 三菱日立パワーシステムズ株式会社 Stationary vane, rotating machine
JP2017115596A (en) * 2015-12-21 2017-06-29 三菱日立パワーシステムズ株式会社 Process of manufacture of blade
WO2018135212A1 (en) * 2017-01-20 2018-07-26 三菱日立パワーシステムズ株式会社 Steam turbine
KR20190073578A (en) * 2017-01-20 2019-06-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Steam turbine
CN110114555A (en) * 2017-01-20 2019-08-09 三菱日立电力系统株式会社 Steamturbine
KR102243462B1 (en) * 2017-01-20 2021-04-22 미츠비시 파워 가부시키가이샤 Steam turbine
US11028695B2 (en) 2017-01-20 2021-06-08 Mitsubishi Power, Ltd. Steam turbine
CN110114555B (en) * 2017-01-20 2021-12-21 三菱动力株式会社 Steam turbine
US11732615B2 (en) 2020-07-20 2023-08-22 Mitsubishi Heavy Industries, Ltd. Steam turbine hollow blade

Also Published As

Publication number Publication date
JP4939368B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4939368B2 (en) Stator blades and steam turbines
US8851844B2 (en) Stationary blade and steam turbine
JP5660883B2 (en) Steam turbine vane, steam turbine
KR101271363B1 (en) Turbine blade and gas turbine
JP5543032B2 (en) Blade arrangement and gas turbine having the blade arrangement
US9194239B2 (en) Turbine rotor blade and turbo machine
JP5501609B2 (en) Turbine blade and gas turbine
JP2009264219A (en) Steam turbine
JP6118242B2 (en) Rotary machine blades and steam turbines
JP6256836B2 (en) Rotating machine blade and rotating machine
JP5881355B2 (en) Stator blades and steam turbines
JP5501611B2 (en) Turbine blade and gas turbine
JP6257991B2 (en) Rotor blade and rotating machine
JP5501610B2 (en) Turbine blade and gas turbine
JP6150548B2 (en) Rotating machine blade
JP6125407B2 (en) Stator blade, steam turbine, and stator blade manufacturing method
JP5758243B2 (en) Stator blades and steam turbines
JP5805283B2 (en) Steam turbine vane, steam turbine
JP5766861B2 (en) Steam turbine vane, steam turbine
JP2003269104A (en) Fan moving vane having buffer supporting portion
JP6134878B2 (en) Turbine vane damping structure
TW202140916A (en) Snubber shroud configurations
JP2003254003A (en) Rotary machine blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4939368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350