JP2008133396A - Manufacturing method for water-absorbing resin - Google Patents

Manufacturing method for water-absorbing resin Download PDF

Info

Publication number
JP2008133396A
JP2008133396A JP2006321939A JP2006321939A JP2008133396A JP 2008133396 A JP2008133396 A JP 2008133396A JP 2006321939 A JP2006321939 A JP 2006321939A JP 2006321939 A JP2006321939 A JP 2006321939A JP 2008133396 A JP2008133396 A JP 2008133396A
Authority
JP
Japan
Prior art keywords
water
weight
absorbent resin
unsaturated monomer
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321939A
Other languages
Japanese (ja)
Other versions
JP5183918B2 (en
Inventor
Junichi Takatori
潤一 鷹取
Masaya Matsuda
賢哉 松田
Yasuhiro Nawata
康博 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2006321939A priority Critical patent/JP5183918B2/en
Publication of JP2008133396A publication Critical patent/JP2008133396A/en
Application granted granted Critical
Publication of JP5183918B2 publication Critical patent/JP5183918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-absorbing resin with a high water-retaining ability and a high water-absorbing ability capable of being preferably used for a sanitation material, and to provide its manufacturing method. <P>SOLUTION: In the method for manufacturing the water-absorbing resin by polymerizing a water-soluble ethylenic unsaturated monomer, a polymerization reaction of the water-soluble ethylenic unsaturated monomer is performed in the presence of a diamine compound represented by the formula (I) (wherein R<SP>1</SP>represents a 1-6C straight alkylene group or a phenylene group, and R<SP>2</SP>, R<SP>3</SP>, R<SP>4</SP>and R<SP>5</SP>each independently represent a methyl group, an ethyl group or a hydrogen atom) or its salt and a water-soluble radical polymerization initiator, and after the polymerization reaction, a cross-linking agent is added to perform a cross-linking reaction. The water-absorbing resin obtained by the method is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸水性樹脂及びその製造方法に関する。さらに詳しくは、紙おむつ、失禁パッド、生理用ナプキン等の衛生材料に好適に使用し得る吸水性樹脂及びその製造方法に関する。   The present invention relates to a water absorbent resin and a method for producing the same. More specifically, the present invention relates to a water absorbent resin that can be suitably used for sanitary materials such as disposable diapers, incontinence pads, sanitary napkins and the like, and a method for producing the same.

吸水性樹脂は、紙おむつ、生理用品等の衛生材料、保水材、土壌改良材等の農園芸材料、ケーブル用止水材、結露防止材等の工業資材等種々の分野に広く利用されている。このような吸水性樹脂として、例えば、澱粉−アクリロニトリルグラフト共重合体の加水分解物、澱粉−アクリル酸グラフト重合体の中和物、酢酸ビニル−アクリル酸エステル共重合体のケン化物、ポリアクリル酸部分中和物等が知られている。   Water-absorbing resins are widely used in various fields such as sanitary materials such as disposable diapers and sanitary goods, agricultural and horticultural materials such as water retention materials and soil improvement materials, water-proofing materials for cables, and anti-condensation materials. Examples of such a water-absorbing resin include a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, and polyacrylic acid. Partially neutralized products are known.

近年、紙おむつ、生理用ナプキン等の衛生材料においては、使用時の快適性の観点から、吸収体を薄型化にする傾向にある。この場合、嵩高く吸水能の低い親水性繊維の含有量を少なくし、吸水能が高い吸水性樹脂の割合を多くする必要がある。このような吸収体、及びそれを用いた吸水性物品に使用される吸水性樹脂に望まれる特性としては、水性液体に接した際の高い保水能や適切な吸水速度、とりわけ加圧下における高い吸水能等があげられる。   In recent years, sanitary materials such as disposable diapers and sanitary napkins tend to make the absorbent body thinner from the viewpoint of comfort during use. In this case, it is necessary to reduce the content of hydrophilic fibers having a high bulkiness and a low water absorption capacity, and to increase the proportion of the water absorbent resin having a high water absorption capacity. Properties desired for such an absorbent body and a water-absorbent resin used in a water-absorbent article using the absorber include a high water retention capacity when contacting with an aqueous liquid, an appropriate water absorption speed, particularly high water absorption under pressure. Noh.

しかしながら、保水能と加圧下での吸水能及び吸水速度とは相反する関係にある。一般的に高い保水能を持つ吸水性樹脂を得るには、吸水性樹脂の架橋密度を下げる必要があるが、架橋密度を下げるとゲル強度が弱くなり、加圧下での吸水能が低下する。さらに、未架橋成分の増加により、液体と接した際、ママコ状態となることで吸水速度は低下する傾向にある。   However, there is a contradictory relationship between water retention capacity, water absorption capacity under pressure and water absorption speed. In general, in order to obtain a water-absorbing resin having a high water-retaining ability, it is necessary to lower the cross-linking density of the water-absorbing resin. However, if the cross-linking density is lowered, the gel strength becomes weak and the water-absorbing ability under pressure is reduced. Furthermore, due to an increase in the amount of uncrosslinked components, the water absorption rate tends to decrease due to the mamako state when in contact with the liquid.

一方、加圧下での吸水能を上げるためには、架橋密度を高める必要があるが、そのために保水能が低下する。従って、そのような吸水性樹脂を用いた吸収性物品では、吸収性物品全体の吸収容量が低下することとなる。   On the other hand, in order to increase the water absorption capacity under pressure, it is necessary to increase the cross-linking density. Therefore, in the absorbent article using such a water absorbent resin, the absorption capacity of the entire absorbent article is reduced.

これに対し、吸水性樹脂のモノマーとして汎用されているα−水素を持つアクリル酸系モノマーは、その重合条件によってはモノマー自身による架橋構造が生成しやすく、例えば、重合開始剤として過硫酸カリウム等の過硫酸塩を使用した場合では、架橋剤を用いなくても、この自己架橋が起こりやすい。そのため、吸水性樹脂自体の架橋密度を下げることが難しく、高い吸水能とゲル強度の両方を兼ね備えた吸水性樹脂を得ることが困難である。   On the other hand, the acrylic acid-based monomer having α-hydrogen, which is widely used as a monomer of the water-absorbing resin, easily forms a crosslinked structure by the monomer itself depending on the polymerization conditions, such as potassium persulfate as a polymerization initiator. When this persulfate is used, this self-crosslinking tends to occur without using a crosslinking agent. Therefore, it is difficult to lower the crosslink density of the water absorbent resin itself, and it is difficult to obtain a water absorbent resin having both high water absorption ability and gel strength.

上記の問題点を解決すべく、亜リン酸及び/又はその塩の存在下で水溶液重合させて吸水性樹脂前駆体を得た後、該吸水性樹脂前駆体と表面架橋剤を混合して加熱する方法(特許文献1参照)、次亜リン酸存在下で逆相懸濁重合させて吸水性樹脂前駆体を得た後、該吸水性樹脂を表面架橋する方法(特許文献2参照)等が知られている。   In order to solve the above-described problems, a water-absorbing resin precursor is obtained by performing aqueous solution polymerization in the presence of phosphorous acid and / or a salt thereof, and then the water-absorbing resin precursor and a surface cross-linking agent are mixed and heated. (Refer to Patent Document 1), reverse-phase suspension polymerization in the presence of hypophosphorous acid to obtain a water-absorbent resin precursor, and then surface-crosslinking the water-absorbent resin (refer to Patent Document 2). Are known.

しかしながら、これらの方法で得られた吸水性樹脂は、前記性能を充分に満足させることができないという欠点を有している。このため、保水能及び加圧下での吸水能に優れた吸水性樹脂の開発が望まれている。
特開平9−124710号公報 特開平2−255804号公報
However, the water-absorbent resin obtained by these methods has a drawback that the performance cannot be sufficiently satisfied. For this reason, development of a water-absorbing resin excellent in water retention ability and water absorption ability under pressure is desired.
JP-A-9-124710 JP-A-2-255804

本発明の課題は、保水能及び加圧下での吸水能が高く、衛生材料にも好適に使用し得る吸水性樹脂及びその製造方法を提供することにある。   An object of the present invention is to provide a water-absorbing resin that has a high water-holding capacity and high water-absorbing capacity under pressure and can be suitably used for sanitary materials, and a method for producing the same.

本発明は、水溶性エチレン性不飽和単量体を重合させて吸水性樹脂を製造する方法であって、式(I):   The present invention is a method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer, which comprises the formula (I):

Figure 2008133396
Figure 2008133396

(式中、R1は炭素数1〜6の直鎖アルキレン基又はフェニレン基を、R2、R3、R4及びR5はそれぞれ独立してメチル基、エチル基又は水素原子を示す)
で表されるジアミン化合物又はその塩、及び水溶性ラジカル重合開始剤の存在下、前記水溶性エチレン性不飽和単量体の重合反応を行い、重合反応後、架橋剤を添加して架橋反応を行うことを特徴とする吸水性樹脂の製造方法、並びに該方法により得られる吸水性樹脂に関する。
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms or a phenylene group, and R 2 , R 3 , R 4 and R 5 each independently represents a methyl group, an ethyl group or a hydrogen atom)
In the presence of a diamine compound or a salt thereof and a water-soluble radical polymerization initiator, the water-soluble ethylenically unsaturated monomer is subjected to a polymerization reaction, and after the polymerization reaction, a crosslinking agent is added to perform a crosslinking reaction. The present invention relates to a method for producing a water-absorbent resin, and a water-absorbent resin obtained by the method.

本発明の製造方法によれば、保水能及び加圧下での吸水能が高い吸水性樹脂が得られる。   According to the production method of the present invention, a water-absorbing resin having a high water retention capacity and high water absorption capacity under pressure can be obtained.

本発明は、水溶性エチレン性不飽和単量体をラジカル性重合開始剤の存在下で重合させて吸水性樹脂を製造する方法において、水溶性エチレン性不飽和単量体の重合反応を、特定のジアミン化合物の存在下で行い、重合反応後、架橋剤を添加して架橋反応を行う点に特徴を有するものである。本発明におけるジアミン化合物の作用の詳細は明らかではないが、水溶性エチレン性不飽和単量体の重合において生ずる自己架橋の制御に関係があるものと推察される。即ち、ジアミン化合物が存在することにより、重合時の自己架橋が適度に抑制され、重合後に架橋反応を行うことにより、水溶性エチレン性不飽和単量体の重合体の表面層が架橋されて、保水能及び加圧下での吸水能が高い吸水性樹脂が得られるものと考えられる。   The present invention specifies a polymerization reaction of a water-soluble ethylenically unsaturated monomer in a method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a radical polymerization initiator. This is characterized in that it is carried out in the presence of the diamine compound, and after the polymerization reaction, a crosslinking agent is added to carry out the crosslinking reaction. Although the details of the action of the diamine compound in the present invention are not clear, it is presumed to be related to the control of self-crosslinking that occurs in the polymerization of the water-soluble ethylenically unsaturated monomer. That is, due to the presence of the diamine compound, self-crosslinking during polymerization is moderately suppressed, and by performing a crosslinking reaction after polymerization, the surface layer of the water-soluble ethylenically unsaturated monomer polymer is crosslinked, It is considered that a water-absorbing resin having a high water retention capacity and high water absorption capacity under pressure can be obtained.

本発明に用いられる水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びそのアルカリ塩(本明細書においては「アクリル」及び「メタアクリル」を合わせて「(メタ)アクリル」と表記する。以下同様);2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸及びそのアルカリ塩;(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられ、これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらのなかでは、工業的にも入手が容易な点から、アクリル酸及びそのアルカリ塩、メタアクリル酸及びそのアルカリ塩、アクリルアミド、メタアクリルアミド並びにN,N−ジメチルアクリルアミドが好ましい。なお、アルカリ塩としては、リチウム、ナトリウム、カリウム等のアルカリ金属の塩等が挙げられる。
Examples of the water-soluble ethylenically unsaturated monomer used in the present invention include (meth) acrylic acid and alkali salts thereof (in this specification, “acrylic” and “methacrylic” together with “(meth) acrylic”). 2- (meth) acrylamide-2-methylpropanesulfonic acid and its alkali salts; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylate , N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate and other nonionic monomers; N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, and diethylaminopropyl Examples include amino group-containing unsaturated monomers such as (meth) acrylamide and quaternized products thereof. These may be used alone or in combination of two or more. Of these, acrylic acid and its alkali salts, methacrylic acid and its alkali salts, acrylamide, methacrylamide and N, N-dimethylacrylamide are preferred from the viewpoint of easy industrial availability. Examples of the alkali salt include salts of alkali metals such as lithium, sodium and potassium.

本発明で用いられる水溶性ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシピバレート、過酸化水素等の過酸化物、2,2’−アゾビス〔2−(N−フェニルアミジノ)プロパン〕2塩酸塩、2,2’−アゾビス〔2−(N−アリルアミジノ)プロパン〕2塩酸塩、2,2’−アゾビス{2−〔1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル〕プロパン}2塩酸塩、2,2’−アゾビス{2−メチル−N−〔1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル〕プロピオンアミド}、2,2’−アゾビス〔2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド〕、4,4’−アゾビス(4−シアノ吉草酸)等のアゾ化合物等が挙げられ、これらは、単独で用いても、2種以上を併用してもよい。これらのなかでは、入手が容易で取り扱いやすいという観点から、過硫酸塩が好ましく、過硫酸カリウム、過硫酸アンモニウム及び過硫酸ナトリウムがより好ましい。   Examples of the water-soluble radical polymerization initiator used in the present invention include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, peroxides such as hydrogen peroxide, 2,2′-azobis [2- ( N-phenylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2,2′-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane} dihydrochloride, 2,2′-azobis {2-methyl-N- [1,1-bis ( Droxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 4,4′-azobis (4-cyanovaleric acid), etc. These azo compounds may be used, and these may be used alone or in combination of two or more. Among these, from the viewpoint of easy availability and easy handling, persulfates are preferable, and potassium persulfate, ammonium persulfate, and sodium persulfate are more preferable.

なお、水溶性ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、L−アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。   The water-soluble radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, L-ascorbic acid and the like.

水溶性ラジカル重合開始剤の使用量は、重合反応の適度な進行を促進する観点から、水溶性エチレン性不飽和単量体100重量部に対して、0.005〜1重量部が好ましく、0.05〜0.5重量部がより好ましい。なお、水溶性エチレン性不飽和単量体100重量部とは、特に明記のない限り、重合反応に使用する水溶性エチレン性不飽和単量体の総量を意味する。   The amount of the water-soluble radical polymerization initiator used is preferably 0.005 to 1 part by weight, preferably 0.05 to 0.5 parts per 100 parts by weight of the water-soluble ethylenically unsaturated monomer, from the viewpoint of promoting appropriate progress of the polymerization reaction. Part by weight is more preferred. The 100 parts by weight of the water-soluble ethylenically unsaturated monomer means the total amount of the water-soluble ethylenically unsaturated monomer used for the polymerization reaction unless otherwise specified.

本発明で用いられるジアミン化合物は、式(I):   The diamine compound used in the present invention has the formula (I):

Figure 2008133396
Figure 2008133396

(式中、R1は炭素数1〜6の直鎖アルキレン基又はフェニレン基を、R2、R3、R4及びR5はそれぞれ独立してメチル基、エチル基又は水素原子を示す)
で表される。
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms or a phenylene group, and R 2 , R 3 , R 4 and R 5 each independently represents a methyl group, an ethyl group or a hydrogen atom)
It is represented by

式(I)で表されるジアミン化合物としては、例えばジアミノメタン、エチレンジアミン、1,6−ヘキサメチレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン等のN位無置換体:N−メチルエチレンジアミン、N−エチルエチレンジアミン、N−メチル−1,3−プロパンジアミン、N−メチル−o−フェニレンジアミン、N−メチル−p−フェニレンジアミン等のN位一置換体:N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジメチル−o−フェニレンジアミン、N,N−ジメチル−p−フェニレンジアミン、N,N−ジエチル−p−フェニレンジアミン等のN位二置換体:N,N’−ジメチルエチレンジアミン、N,N’−ジメチル−1,3−プロパンジアミン等のN、N’位一置換体:N,N,N’−トリメチルジエチルアミン、N,N−ジメチル−N’−エチルエチレンジアミン、N,N,N’−トリエチルエチレンジアミン、N,N,N’−トリメチル−1,3−プロパンジアミン等のN位二置換N’位一置換体:N,N,N’,N’−テトラメチルジアミノメタン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラエチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,3−プロパンジアミン、N,N,N’,N’−テトラエチル−1,3−プロパンジアミン、N,N,N’,N’−テトラメチル−1,4−ブタンジアミン、N,N,N’,N’−テトラメチル−1,6−ヘキサンジアミン、N,N,N’,N’−テトラメチル−p−フェニレンジアミン等のN、N’位二置換体等が挙げられる。前記ジアミン化合物の塩としては、塩酸塩、硫酸塩、シュウ酸塩等が挙げられる。これらの中で、工業的に入手しやすく水溶性エチレン性不飽和単量体と混合しやすいという観点から、エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン及びこれらの塩が好ましい。これらの化合物は、それぞれ単独で用いてもよく、2種以上混合して用いてもよい。   Examples of the diamine compound represented by the formula (I) include N-position unsubstituted compounds such as diaminomethane, ethylenediamine, 1,6-hexamethylenediamine, o-phenylenediamine, and p-phenylenediamine: N-methylethylenediamine, N -N-substituted mono-substituents such as ethylethylenediamine, N-methyl-1,3-propanediamine, N-methyl-o-phenylenediamine, N-methyl-p-phenylenediamine: N, N-dimethylethylenediamine, N, N -N-disubstituted compounds such as diethylethylenediamine, N, N-dimethyl-o-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine: N, N'-dimethyl N, N'-position mono-substitution such as ethylenediamine, N, N'-dimethyl-1,3-propanediamine : N, N, N′-trimethyldiethylamine, N, N-dimethyl-N′-ethylethylenediamine, N, N, N′-triethylethylenediamine, N, N, N′-trimethyl-1,3-propanediamine, etc. N-disubstituted N′-monosubstituted: N, N, N ′, N′-tetramethyldiaminomethane, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— Tetraethylethylenediamine, N, N, N ′, N′-tetramethyl-1,3-propanediamine, N, N, N ′, N′-tetraethyl-1,3-propanediamine, N, N, N ′, N '-Tetramethyl-1,4-butanediamine, N, N, N', N'-tetramethyl-1,6-hexanediamine, N, N, N ', N'-tetramethyl-p-phenylenediamine, etc. N, N Position disubstitution, and the like. Examples of the salt of the diamine compound include hydrochloride, sulfate, oxalate and the like. Among these, ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N′-dimethyl are used from the viewpoint of being easily industrially available and easily mixed with water-soluble ethylenically unsaturated monomers. Ethylenediamine and their salts are preferred. These compounds may be used alone or in combination of two or more.

ジアミン化合物の使用量は、残存モノマーや水可溶分を低減する観点から、水溶性エチレン性不飽和単量体100重量部に対して、0.001〜0.5重量部が好ましく、0.01〜0.2重量部がより好ましい。   The amount of the diamine compound used is preferably 0.001 to 0.5 parts by weight, and 0.01 to 0.2 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer, from the viewpoint of reducing residual monomers and water-soluble components. More preferred.

本発明において、水溶性エチレン性不飽和単量体を、ジアミン化合物及び水溶性ラジカル重合開始剤の存在下で重合させる方法は、特に限定されず、代表的な方法である、逆相懸濁重合法、水溶液重合法等が用いられる。逆相懸濁重合では、例えば、水溶性エチレン性不飽和単量体の水溶液、水溶性ラジカル重合開始剤、及び必要に応じて架橋剤を混合して、界面活性剤及び/又は高分子保護コロイドの存在下、炭化水素溶媒中で加熱することにより重合が行われる。また、水溶液重合法では、水溶性エチレン性不飽和単量体の水溶液、水溶性ラジカル重合開始剤、及び必要に応じて架橋剤を混合して、加熱することにより重合が行われる。   In the present invention, a method for polymerizing a water-soluble ethylenically unsaturated monomer in the presence of a diamine compound and a water-soluble radical polymerization initiator is not particularly limited, and is a typical method, reverse phase suspension weight. A combination method, an aqueous solution polymerization method, or the like is used. In the reverse phase suspension polymerization, for example, an aqueous solution of a water-soluble ethylenically unsaturated monomer, a water-soluble radical polymerization initiator, and, if necessary, a crosslinking agent are mixed to obtain a surfactant and / or polymer protective colloid. Polymerization is carried out by heating in a hydrocarbon solvent in the presence of. In the aqueous solution polymerization method, polymerization is carried out by mixing an aqueous solution of a water-soluble ethylenically unsaturated monomer, a water-soluble radical polymerization initiator, and, if necessary, a crosslinking agent and heating.

以下に、水溶性エチレン性不飽和単量体の重合方法の一例として、逆相懸濁重合法についてより詳しく説明する。   Hereinafter, the reverse phase suspension polymerization method will be described in more detail as an example of the polymerization method of the water-soluble ethylenically unsaturated monomer.

水溶性エチレン性不飽和単量体の水溶液における単量体の濃度は、20重量%〜飽和濃度の範囲であることが好ましい。   The concentration of the monomer in the aqueous solution of the water-soluble ethylenically unsaturated monomer is preferably in the range of 20% by weight to the saturated concentration.

また、水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸のように酸基を有する場合、その酸基をアルカリ化合物等によって中和しておいても良い。中和に用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等が挙げられる。これらのアルカリ化合物は単独で用いても、併用してもよい。   In addition, when the water-soluble ethylenically unsaturated monomer has an acid group such as (meth) acrylic acid or 2- (meth) acrylamide-2-methylpropanesulfonic acid, the acid group is neutralized by an alkali compound or the like. You can keep it together. Examples of the alkali compound used for neutralization include sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like. These alkali compounds may be used alone or in combination.

アルカリ化合物による全酸基に対する中和度は、得られる吸水性樹脂の浸透圧を高めることで吸収能力を高め、かつ余剰のアルカリ化合物の存在により、安全性等に問題が生じないようにする観点から、10〜100モル%が好ましく、30〜80モル%がより好ましい。   The degree of neutralization of all acid groups by the alkali compound is to increase the osmotic pressure of the resulting water-absorbent resin to increase the absorption capacity, and from the presence of excess alkali compound, the viewpoint of preventing problems such as safety Therefore, 10 to 100 mol% is preferable, and 30 to 80 mol% is more preferable.

必要に応じて、重合反応前の水溶性エチレン性不飽和単量体の水溶液と混合される架橋剤(以降「内部架橋剤」ともいう)としては、例えば重合性不飽和基を2個以上有する化合物等が用いられる。その具体例としては、例えば、(ポリ)エチレングリコール[本明細書において、例えば、「ポリエチレングリコール」と「エチレングリコール」を合わせて「(ポリ)エチレングリコール」と表記する。以下同様]、(ポリ)プロピレングリコール、トリメチロールプロパン、グリセリンポリオキシエチレングリコール、ポリオキシプロピレングリコール、(ポリ)グリセリン等のポリオール類のジ又はトリ(メタ)アクリル酸エステル類;前記のポリオールとマレイン酸、フマール酸等の不飽和酸類とを反応させて得られる不飽和ポリエステル類;N,N’−メチレンビス(メタ)アクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネートやヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N”−トリアリルイソシアネート、ジビニルベンゼン等が挙げられる。   As necessary, the crosslinking agent mixed with the aqueous solution of the water-soluble ethylenically unsaturated monomer before the polymerization reaction (hereinafter also referred to as “internal crosslinking agent”) has, for example, two or more polymerizable unsaturated groups. A compound or the like is used. Specific examples thereof include, for example, (poly) ethylene glycol [in this specification, for example, “polyethylene glycol” and “ethylene glycol” are collectively referred to as “(poly) ethylene glycol”. The same shall apply hereinafter), (poly) propylene glycol, trimethylolpropane, glycerin polyoxyethylene glycol, polyoxypropylene glycol, di- or tri (meth) acrylates of polyols such as (poly) glycerin; Unsaturated polyesters obtained by reacting unsaturated acids such as acid and fumaric acid; Bisacrylamides such as N, N′-methylenebis (meth) acrylamide; Obtained by reacting polyepoxide and (meth) acrylic acid Di (meth) acrylic acid esters obtained by reacting polyisocyanate such as tolylene diisocyanate and hexamethylene diisocyanate with hydroxyethyl (meth) acrylate; allyl Modified starch, allylated cellulose Diallyl phthalate, N, N ', N "- triallyl isocyanate, divinyl benzene, and the like.

また、内部架橋剤としては、重合性不飽和基を2個以上有する前記化合物以外に、その他の反応性官能基を2個以上有する化合物を用いることもできる。その具体例としては、例えば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のグリシジル基含有化合物、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられ、これらは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。   Further, as the internal cross-linking agent, in addition to the compound having two or more polymerizable unsaturated groups, a compound having two or more other reactive functional groups can also be used. Specific examples thereof include, for example, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, glycidyl group-containing compounds such as (poly) glycerin diglycidyl ether, (poly) ethylene glycol, (poly) propylene Examples include glycol, (poly) glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and glycidyl (meth) acrylate, and these may be used alone or in combination of two or more.

前記内部架橋剤としては、(ポリ)エチレングリコールジアクリレート、(ポリ)エチレングリコールジグリシジルエーテル及びN,N’−メチレンビスアクリルアミドが、反応性に優れているので好ましい。   As the internal cross-linking agent, (poly) ethylene glycol diacrylate, (poly) ethylene glycol diglycidyl ether and N, N′-methylenebisacrylamide are preferable because of excellent reactivity.

内部架橋剤の使用量は、吸水性能の観点から、水溶性エチレン性不飽和単量体100重量部に対して、3重量部以下が好ましく、1重量部以下がより好ましい。   The amount of the internal crosslinking agent used is preferably 3 parts by weight or less and more preferably 1 part by weight or less with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer from the viewpoint of water absorption performance.

界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N−アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン等が挙げられ、これらは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの中では、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルが好ましい。   Examples of the surfactant include sucrose fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid ester, sorbitol fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene Alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropyl alkyl ether, Polyethylene glycol fatty acid ester, alkyl glucoside, N-alkyl gluconamides Polyoxyethylene fatty acid amides, polyoxyethylene alkyl amines, and the like. These may be used alone or in combination of two or more. Among these, sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester are preferable.

界面活性剤の使用量は、重合時の懸濁安定性の観点から、水溶性エチレン性不飽和単量体の水溶液100重量部に対して、0.1〜5重量部が好ましく、0.3〜3重量部がより好ましい。   The amount of the surfactant used is preferably from 0.1 to 5 parts by weight, preferably from 0.3 to 3 parts by weight, based on 100 parts by weight of the aqueous solution of the water-soluble ethylenically unsaturated monomer, from the viewpoint of suspension stability during polymerization. Is more preferable.

高分子保護コロイドとしては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、エチレン・無水マレイン酸共重合体、エチレン・プロピレン・無水マレイン酸共重合体、ブタジエン・無水マレイン酸共重合体、酸化型ポリエチレン、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられ、これらは、それぞれ単独で使用してもよいし、2種以上を併用してもよい。これらのなかでも、単量体水溶液の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、酸化型ポリエチレン及びエチレン・アクリル酸共重合体が好ましい。   Examples of polymer protective colloids include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified EPDM (ethylene / propylene / diene / terpolymer), and maleic anhydride. Acid-modified polybutadiene, ethylene / maleic anhydride copolymer, ethylene / propylene / maleic anhydride copolymer, butadiene / maleic anhydride copolymer, oxidized polyethylene, ethylene / acrylic acid copolymer, ethyl cellulose, ethyl hydroxyethyl cellulose These may be used singly or in combination of two or more. Among these, from the viewpoint of dispersion stability of the aqueous monomer solution, maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, oxidized polyethylene, and ethylene / acrylic acid copolymer. Coalescence is preferred.

高分子保護コロイドの使用量は、重合時の懸濁安定性の観点から、水溶性エチレン性不飽和単量体の水溶液100重量部に対して、0.1〜5重量部が好ましく、0.3〜3重量部がより好ましい。   The amount of the polymeric protective colloid used is preferably from 0.1 to 5 parts by weight, preferably from 0.3 to 3 parts by weight, based on 100 parts by weight of the aqueous solution of the water-soluble ethylenically unsaturated monomer, from the viewpoint of suspension stability during polymerization. Part is more preferred.

炭化水素溶媒としては、例えば、n−ヘキサン、n−ヘプタン、n−オクタン、リグロイン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられ、これらは、それぞれ単独で使用してもよいし、2種以上を併用してもよい。これらのなかでも、工業的に入手が容易であり、品質が安定しており、かつ安価である観点から、n−ヘキサン、n−ヘプタン及びシクロヘキサンが好ましい。   Examples of the hydrocarbon solvent include aliphatic hydrocarbons such as n-hexane, n-heptane, n-octane, and ligroin, alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane, benzene, and toluene. And aromatic hydrocarbons such as xylene, and the like. These may be used alone or in combination of two or more. Among these, n-hexane, n-heptane, and cyclohexane are preferable from the viewpoint of industrial availability, stable quality, and low cost.

炭化水素溶媒の使用量は、水溶性エチレン性不飽和単量体の懸濁安定性の観点から、水溶性エチレン性不飽和単量体100重量部に対して、50〜600重量部が好ましく、80〜550重量部がより好ましい。   The amount of the hydrocarbon solvent used is preferably 50 to 600 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer from the viewpoint of suspension stability of the water-soluble ethylenically unsaturated monomer. 80 to 550 parts by weight is more preferable.

なお、逆相懸濁重合法にて重合する際、原料モノマーである水溶性エチレン性不飽和単量体を一括で添加して重合反応を行う重合法、水溶性エチレン性不飽和単量体を複数に分けて添加して重合反応を行う多段重合法のいずれの方法も採用することができるが、経済性に優れている観点から、水溶性エチレン性不飽和単量体を複数に分けて添加して重合反応を行う多段重合法が好ましい。多段重合法で行う場合、ジアミン化合物は、1段目から存在させても、2段目以降で存在させてもよいが、得られる吸水性樹脂の吸水速度を速くする観点から、2段目以降で存在させることが好ましい。また、2段目以降に用いる水溶性エチレン性不飽和単量体は、1段目に用いる単量体と同種であっても、異なる種類であってもよい。   In addition, when polymerizing by the reverse phase suspension polymerization method, a polymerization method in which a water-soluble ethylenically unsaturated monomer as a raw material monomer is added at once to perform a polymerization reaction, a water-soluble ethylenically unsaturated monomer is Any method of the multistage polymerization method in which the polymerization reaction is carried out by adding in several parts can be adopted, but from the viewpoint of excellent economic efficiency, the water-soluble ethylenically unsaturated monomer is added in several parts Thus, a multistage polymerization method in which a polymerization reaction is performed is preferable. When performing by the multistage polymerization method, the diamine compound may be present from the first stage or from the second stage, but from the viewpoint of increasing the water absorption rate of the resulting water-absorbent resin, the second and subsequent stages. It is preferable to make it exist. The water-soluble ethylenically unsaturated monomer used in the second and subsequent stages may be the same as or different from the monomer used in the first stage.

重合反応の際の反応温度は、適度な反応の進行を促進する観点から、20〜110℃が好ましく、40〜90℃がより好ましい。また、反応時間は、使用する原料等の種類等によっても異なるため一概には決定することができないが、0.1〜2時間程度が好ましい。重合反応は、窒素ガス等の不活性ガス雰囲気下で行うことが好ましい。水溶性エチレン性不飽和単量体の重合反応の終了は、反応熱による温度上昇により反応温度が最大になること等によって確認することができる。   The reaction temperature during the polymerization reaction is preferably 20 to 110 ° C., more preferably 40 to 90 ° C., from the viewpoint of promoting appropriate progress of the reaction. In addition, the reaction time varies depending on the type of raw material used and the like, and thus cannot be determined unconditionally, but is preferably about 0.1 to 2 hours. The polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen gas. The completion of the polymerization reaction of the water-soluble ethylenically unsaturated monomer can be confirmed by, for example, maximizing the reaction temperature due to a temperature rise due to reaction heat.

本発明においては、水溶性エチレン性不飽和化合物の重合反応後、架橋剤(以降「後架橋剤」ともいう)を添加して、架橋反応を行う。   In the present invention, after the polymerization reaction of the water-soluble ethylenically unsaturated compound, a crosslinking agent (hereinafter also referred to as “post-crosslinking agent”) is added to carry out the crosslinking reaction.

後架橋剤としては、水溶性エチレン性不飽和化合物の重合体のカルボキシル基と反応し得るものであれば特に限定されず、例えば、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセロール(ポリ)グリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のグリシジル基含有化合物、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン等が挙げられ、これらは、それぞれ単独で使用してもよいし、2種類以上を併用してもよい。これらの中では、反応性の観点から、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル及び(ポリ)グリセリンジグリシジルエーテルが好ましい。   The post-crosslinking agent is not particularly limited as long as it can react with the carboxyl group of the polymer of the water-soluble ethylenically unsaturated compound.For example, (poly) ethylene glycol diglycidyl ether, (poly) glycerol (poly) Glycidyl group-containing compounds such as glycidyl ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether, (poly) ethylene glycol, (poly) propylene glycol, (poly) glycerin, pentaerythritol, ethylenediamine, polyethyleneimine These may be used singly or in combination of two or more. Among these, (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether are preferable from the viewpoint of reactivity.

後架橋剤の使用量は、その種類によって異なるので一概には決定することができないが、水溶性エチレン性不飽和単量体100重量部に対して、加圧下での吸水能を向上させる観点から、0.01重量部以上が好ましく、保水能を向上させる観点から、5重量部以下が好ましい。これらの観点から、後架橋剤の使用量は、水溶性エチレン性不飽和単量体100重量部に対して、0.01〜5重量部が好ましく、0.02〜4重量部がより好ましく、0.03〜3重量部がさらに好ましい。   The amount of the post-crosslinking agent varies depending on the type and cannot be determined unconditionally. From the viewpoint of improving the water absorption capacity under pressure with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer. 0.01 parts by weight or more is preferable, and from the viewpoint of improving water retention capacity, 5 parts by weight or less is preferable. From these viewpoints, the amount of the post-crosslinking agent used is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 4 parts by weight, and 0.03 to 3 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer. Part is more preferable.

後架橋剤を添加する時期は単量体の重合反応終了後であればよく、特に限定されない。後架橋剤の添加は、水の存在下で行うことが好ましい。後架橋剤を添加する際の水の量は、水溶性エチレン性不飽和単量体100重量部に対して、加圧下での吸水能を向上させる観点から、5重量部以上が好ましく、保水能を向上させる観点から、300重量部以下が好ましい。これらの観点から、水の使用量は、水溶性エチレン性不飽和単量体100重量部に対して、5〜300重量部が好ましく、10〜100重量部がより好ましく、10〜50重量部がさらに好ましい。なお、前記水の量は、重合反応系に含まれる水と後架橋剤を添加する際に必要に応じて用いられる水との合計量を意味し、重合反応系に過剰の水、炭化水素溶媒等の溶媒が含まれている場合は、架橋剤を添加する前に、それらの溶媒を適宜留去することが好ましい。   The time for adding the post-crosslinking agent is not particularly limited as long as it is after completion of the polymerization reaction of the monomer. The post-crosslinking agent is preferably added in the presence of water. The amount of water when adding the post-crosslinking agent is preferably 5 parts by weight or more from the viewpoint of improving water absorption capacity under pressure with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer. From the viewpoint of improving the content, 300 parts by weight or less is preferable. From these viewpoints, the amount of water used is preferably 5 to 300 parts by weight, more preferably 10 to 100 parts by weight, and 10 to 50 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer. Further preferred. The amount of water means the total amount of water contained in the polymerization reaction system and water used as necessary when adding the post-crosslinking agent. Excess water, hydrocarbon solvent in the polymerization reaction system When such a solvent is contained, it is preferable to distill off the solvent as appropriate before adding the crosslinking agent.

架橋反応の際の反応温度は、使用する後架橋剤の種類等によっても異なるため、一概には決定できない。本発明において使用するジアミン化合物が、末端に一級アミノ基(-NH2)及び/又は二級アミノ基(一置換アミノ基)を有する場合、適度な反応の進行を促進する観点から、50℃以上が好ましく、ジアミン化合物が架橋剤として作用するのを防止する観点から、150℃以下が好ましい。これらの観点から、反応温度は、50〜150℃が好ましく、70〜130℃がより好ましい。   The reaction temperature at the time of the crosslinking reaction varies depending on the type of post-crosslinking agent used and the like, and therefore cannot be determined unconditionally. In the case where the diamine compound used in the present invention has a primary amino group (-NH2) and / or a secondary amino group (monosubstituted amino group) at the terminal, from the viewpoint of promoting the progress of an appropriate reaction, 50 ° C or higher Preferably, 150 ° C. or lower is preferable from the viewpoint of preventing the diamine compound from acting as a crosslinking agent. From these viewpoints, the reaction temperature is preferably 50 to 150 ° C, more preferably 70 to 130 ° C.

また本発明において使用するジアミン化合物が、末端に三級アミノ基(二置換アミノ基)を有する場合、架橋反応の反応温度は、適度な反応の進行を促進する観点から、50℃以上が好ましく、熱分解を防止する観点から、250℃以下が好ましい。これらの観点から、反応温度は、50〜250℃が好ましく、70〜180℃がより好ましい。   In addition, when the diamine compound used in the present invention has a tertiary amino group (disubstituted amino group) at the terminal, the reaction temperature of the crosslinking reaction is preferably 50 ° C. or more from the viewpoint of promoting an appropriate progress of the reaction, From the viewpoint of preventing thermal decomposition, 250 ° C. or lower is preferable. From these viewpoints, the reaction temperature is preferably 50 to 250 ° C, more preferably 70 to 180 ° C.

架橋反応の反応時間は、使用する後架橋剤によって異なるので、一概には決定できないが、30分〜6時間程度が好ましい。架橋反応を終了した後、重合反応や架橋反応に使用した水、炭化水素溶媒等の溶媒を留去することにより、本発明の吸水性樹脂が得られる。   The reaction time of the cross-linking reaction varies depending on the post-crosslinking agent used, and thus cannot be determined unconditionally, but is preferably about 30 minutes to 6 hours. After completion of the crosslinking reaction, the water-absorbent resin of the present invention is obtained by distilling off a solvent such as water or a hydrocarbon solvent used for the polymerization reaction or the crosslinking reaction.

本発明において末端に一級アミノ基(-NH2)及び/又は二級アミノ基(一置換アミノ基)を有するジアミン化合物を使用する場合、重合反応後や架橋反応後に溶媒を留去するときの温度は、溶媒を速やかに留去する観点から、60℃以上が好ましく、ジアミン化合物が架橋剤として作用するのを防止する観点から、150℃以下が好ましい。これらの観点から、溶媒を留去するときの温度は、60〜150℃が好ましく、80〜130℃がより好ましい。 In the present invention, when using a diamine compound having a primary amino group (—NH 2 ) and / or a secondary amino group (monosubstituted amino group) at the terminal, the temperature at which the solvent is distilled off after the polymerization reaction or after the crosslinking reaction Is preferably 60 ° C. or higher from the viewpoint of quickly distilling off the solvent, and preferably 150 ° C. or lower from the viewpoint of preventing the diamine compound from acting as a crosslinking agent. From these viewpoints, the temperature when the solvent is distilled off is preferably 60 to 150 ° C, more preferably 80 to 130 ° C.

また、末端に三級アミノ基(二置換アミノ基)を有するジアミン化合物を使用する場合、溶媒を留去するときの温度は、溶媒を速やかに留去する観点から、60℃以上が好ましく、得られる重合体の内部架橋や熱分解を防止する観点から、250℃以下が好ましい。これらの観点から、溶媒を留去するときの温度は、60〜250℃が好ましく、80〜180℃がより好ましい。   Further, when using a diamine compound having a tertiary amino group (disubstituted amino group) at the terminal, the temperature at which the solvent is distilled off is preferably 60 ° C. or higher from the viewpoint of quickly distilling off the solvent. From the viewpoint of preventing internal crosslinking and thermal decomposition of the obtained polymer, it is preferably 250 ° C. or lower. From these viewpoints, the temperature when the solvent is distilled off is preferably 60 to 250 ° C, more preferably 80 to 180 ° C.

本発明の吸水性樹脂の平均粒径は、吸水性物品に使用された際の吸水速度の観点から、100〜600μmが好ましく、300〜500μmがより好ましい。水溶性エチレン性不飽和単量体の重合を逆相懸濁重合で行う場合は、反応液の攪拌速度等の調整により、得られる重合体の粒径を調整することができる。また、水溶液重合のように、重合体が塊状で得られる場合は、予め粉砕等により所望の粒径に調整した後、架橋反応に供することが好ましい。   The average particle diameter of the water absorbent resin of the present invention is preferably 100 to 600 μm, and more preferably 300 to 500 μm, from the viewpoint of the water absorption rate when used in a water absorbent article. When the water-soluble ethylenically unsaturated monomer is polymerized by reversed-phase suspension polymerization, the particle size of the resulting polymer can be adjusted by adjusting the stirring speed of the reaction solution. In addition, when the polymer is obtained in a lump like aqueous solution polymerization, it is preferably subjected to a crosslinking reaction after previously adjusting to a desired particle size by pulverization or the like.

本発明の吸水性樹脂に求められる保水能及び加圧下での吸水能は、その使用用途によって異なるため、一概には決定できないが、例えば、本発明の吸水性樹脂を紙おむつ等の乳幼児用の衛生材料に用いる場合は、荷重下状態で吸収体から液体の逆戻り量を少なくさせる観点から、無荷重下での生理食塩水保水能が、好ましくは40g/g以上、荷重2.07kPaにおける加圧下での生理食塩水吸水能が、好ましくは25ml/g以上であることが望ましい。なお、生理食塩水とは0.9重量%の塩化ナトリウム水溶液である。   The water retention capacity and the water absorption capacity under pressure required for the water-absorbent resin of the present invention differ depending on the intended use, and thus cannot be determined unconditionally. For example, the water-absorbent resin of the present invention can be determined for hygiene for infants such as disposable diapers. When used as a material, from the viewpoint of reducing the amount of liquid returned from the absorber under load, the physiological saline retention capacity under no load is preferably 40 g / g or more, under pressure under a load of 2.07 kPa. The physiological saline water absorption capacity is preferably 25 ml / g or more. The physiological saline is a 0.9% by weight sodium chloride aqueous solution.

一方、本発明の吸水性樹脂を失禁パッド、生理用ナプキン等の成人用の衛生材料に用いる場合は、前述と同様の観点から、無荷重下での生理食塩水保水能が、好ましくは30g/g以上、荷重4.14kPaにおける加圧下での生理食塩水吸水能が、好ましくは20ml/g以上であることが望ましい。   On the other hand, when the water-absorbent resin of the present invention is used for an adult sanitary material such as an incontinence pad or a sanitary napkin, from the same viewpoint as described above, the physiological saline retention capacity under no load is preferably 30 g / The physiological saline water absorption capacity under pressure with a load of 4.14 kPa or more is preferably 20 ml / g or more.

さらに、吸水性樹脂の吸水速度は、前記と同様の理由によって、20〜80秒が好ましく、30〜60秒がより好ましい。また、吸水性樹脂の水可溶分は、25重量%以下が好ましく、15重量%以下がより好ましい。   Furthermore, the water absorption rate of the water absorbent resin is preferably 20 to 80 seconds, and more preferably 30 to 60 seconds, for the same reason as described above. Further, the water soluble content of the water absorbent resin is preferably 25% by weight or less, and more preferably 15% by weight or less.

なお、本発明の吸水性樹脂には、さらに目的に応じて、滑剤、消臭剤、抗菌剤等の添加剤を添加してもよい。   In addition, you may add additives, such as a lubricant, a deodorizer, an antibacterial agent, to the water absorbing resin of this invention further according to the objective.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.

実施例1
内容積1リットルの三角フラスコに80重量%アクリル酸水溶液92gを入れ、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して、アクリル酸の75モル%を中和した。さらに、水54.4gを加え、37重量%アクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N’−メチレンビスアクリルアミド8.3mg、水溶性ラジカル重合開始剤として過硫酸カリウム0.11g、及びN,N,N’,N’−テトラメチルエチレンジアミン0.046gを添加し、これを重合用溶液とした。
Example 1
An Erlenmeyer flask having an internal volume of 1 liter was charged with 92 g of an 80% by weight aqueous acrylic acid solution, and 102.2 g of a 30% by weight aqueous sodium hydroxide solution was added dropwise while cooling with ice from the outside to neutralize 75% by mole of acrylic acid. Further, 54.4 g of water was added to prepare a 37 wt% partially neutralized acrylic acid aqueous salt solution. In the obtained aqueous solution of partially neutralized acrylic acid, 8.3 mg of N, N′-methylenebisacrylamide as an internal cross-linking agent, 0.11 g of potassium persulfate as a water-soluble radical polymerization initiator, and N, N, N ′, N ′ -0.046 g of tetramethylethylenediamine was added to make a polymerization solution.

攪拌機、攪拌翼、還流冷却器、滴下ロート及び窒素ガス導入菅を備えた内容積2リットルの5つ口円筒型丸底フラスコに、n−ヘプタン321gを加え、ショ糖ステアリン酸エステル(三菱化学フーズ(株)製、商品名:リョートーシュガーエステルS-370)0.92g及び無水マレイン酸変性エチレン・プロピレン共重合体(三井化学(株)製、ハイワックス1105A)0.92gを加えて溶解させた後、前記重合溶液を加えて、攪拌下で懸濁させ、系内を窒素ガスで置換した。引き続き70℃の水浴で昇温し、1時間保持して逆相懸濁重合を行った。   321 g of n-heptane was added to a 5-liter cylindrical round bottom flask with an internal volume of 2 liters equipped with a stirrer, a stirring blade, a reflux condenser, a dropping funnel and a nitrogen gas inlet, and sucrose stearate (Mitsubishi Chemical Foods). Product name: Ryoto Sugar Ester S-370 (0.92 g) and maleic anhydride modified ethylene / propylene copolymer (Mitsui Chemicals, High Wax 1105A) (0.92 g) were added and dissolved. The polymerization solution was added and suspended under stirring, and the system was replaced with nitrogen gas. Subsequently, the temperature was raised in a water bath at 70 ° C. and held for 1 hour to carry out reverse phase suspension polymerization.

重合終了後、125℃の油浴で反応液を昇温し、n−ヘプタンと水との共沸蒸留によりn−ヘプタンを還流しながら120gの水を系外へ除去した後、後架橋剤として2重量%エチレングリコールジグリシジルエーテル水溶液3.0gを添加して、80℃で2時間保持した。さらに水及びn−ヘプタンを125℃で留去し、吸水性樹脂93gを得た。   After completion of the polymerization, the temperature of the reaction solution was raised in an oil bath at 125 ° C., 120 g of water was removed out of the system while refluxing n-heptane by azeotropic distillation of n-heptane and water, and a post-crosslinking agent. 3.0 g of a 2 wt% ethylene glycol diglycidyl ether aqueous solution was added, and the mixture was kept at 80 ° C. for 2 hours. Further, water and n-heptane were distilled off at 125 ° C. to obtain 93 g of a water absorbent resin.

実施例2
内容積1リットルの三角フラスコに80重量%アクリル酸水溶液92gを入れ、外部から氷冷しつつ、30重量%水酸化ナトリウム水溶液102.2gを滴下して、アクリル酸の75モル%を中和した。さらに、水54.4gを加え、37重量%アクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N’−メチレンビスアクリルアミド8.3mg及び水溶性ラジカル重合開始剤として過硫酸カリウム0.11gを添加し、これを1段目重合用溶液とした。
Example 2
An Erlenmeyer flask having an internal volume of 1 liter was charged with 92 g of an 80% by weight aqueous acrylic acid solution, and 102.2 g of a 30% by weight aqueous sodium hydroxide solution was added dropwise while cooling with ice from the outside to neutralize 75% by mole of acrylic acid. Further, 54.4 g of water was added to prepare a 37 wt% partially neutralized acrylic acid aqueous salt solution. To the resulting aqueous solution of partially neutralized acrylic acid salt, 8.3 mg of N, N′-methylenebisacrylamide as an internal crosslinking agent and 0.11 g of potassium persulfate as a water-soluble radical polymerization initiator are added, and this is used for the first stage polymerization. It was set as the solution.

攪拌機、攪拌翼、還流冷却器、滴下ロート及び窒素ガス導入菅を備えた内容積2リットルの5つ口円筒型丸底フラスコに、n−ヘプタン321gを加え、ショ糖ステアリン酸エステル(三菱化学フーズ(株)製、商品名:リョートーシュガーエステルS−370)0.92g、無水マレイン酸変性エチレン・プロピレン共重合体(三井化学(株)製、ハイワックス1105A)0.92gを加えて溶解させた後、上記で調製した1段目重合用溶液の全量を加えて、攪拌下で懸濁させ、系内を窒素ガスで置換した。引き続き70℃に昇温し、1時間保持して1段目の逆相懸濁重合を行った。   321 g of n-heptane was added to a 5-liter cylindrical round bottom flask with an internal volume of 2 liters equipped with a stirrer, a stirring blade, a reflux condenser, a dropping funnel and a nitrogen gas inlet, and sucrose stearate (Mitsubishi Chemical Foods). Product name: Ryoto Sugar Ester S-370 (0.92 g), maleic anhydride-modified ethylene / propylene copolymer (Mitsui Chemicals, High Wax 1105A) (0.92 g) was added and dissolved. The total amount of the first stage polymerization solution prepared above was added and suspended under stirring, and the system was replaced with nitrogen gas. Subsequently, the temperature was raised to 70 ° C. and maintained for 1 hour to carry out the first-stage reverse phase suspension polymerization.

これとは別に、内容積1リットルの三角フラスコに80重量%アクリル酸水溶液128gを入れ、氷冷しながら30重量%水酸化ナトリウム水溶液142.9gを滴下して、アクリル酸の75モル%を中和した。さらに、水33.9gを加え、42重量%アクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、水溶性ラジカル重合開始剤として過硫酸カリウム0.15g、及びN,N,N’,N’−テトラメチルエチレンジアミン0.064gを添加し、これを2段目重合用溶液とした。   Separately, 128g of 80wt% acrylic acid aqueous solution was placed in an Erlenmeyer flask with an internal volume of 1 liter, and 142.9g of 30wt% sodium hydroxide aqueous solution was added dropwise with ice cooling to neutralize 75mol% of acrylic acid. did. Further, 33.9 g of water was added to prepare a 42% by weight aqueous solution of partially neutralized acrylic acid. To the resulting partially neutralized acrylic acid aqueous solution, 0.15 g of potassium persulfate and 0.064 g of N, N, N ′, N′-tetramethylethylenediamine were added as a water-soluble radical polymerization initiator, and this was added to the second stage. A polymerization solution was obtained.

1段目の逆相懸濁重合の終了後、反応液を室温まで冷却し、これに上記で調製した2段目重合用溶液の全量を滴下した後、30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温し、2時間保持して2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the reaction solution is cooled to room temperature, and the whole amount of the second-stage polymerization solution prepared above is added dropwise thereto. Replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C. and held for 2 hours to carry out the second-stage reverse phase suspension polymerization.

重合終了後、125℃の油浴で反応液を昇温し、n−ヘプタンと水との共沸蒸留によりn−ヘプタンを還流しながら260gの水を系外へ除去した後、後架橋剤としてエチレングリコールジグリシジルエーテルの2重量%水溶液8.14gを添加して、80℃で2時間保持した。さらに水及びn−ヘプタンを125℃で留去し、吸水性樹脂230gを得た。   After completion of the polymerization, the temperature of the reaction solution was raised in an oil bath at 125 ° C., and 260 g of water was removed from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. 8.14 g of a 2% by weight aqueous solution of ethylene glycol diglycidyl ether was added and held at 80 ° C. for 2 hours. Further, water and n-heptane were distilled off at 125 ° C. to obtain 230 g of a water absorbent resin.

実施例3
実施例2の2段目重合用溶液の調製において、N,N,N’,N’−テトラメチルエチレンジアミンの代わりにエチレンジアミン0.033gを使用し、さらに、水分及びn−ヘプタンの留去を110℃で行った以外は実施例2と同様にして、吸水性樹脂229gを得た。
Example 3
In the preparation of the second stage polymerization solution of Example 2, 0.033 g of ethylenediamine was used instead of N, N, N ′, N′-tetramethylethylenediamine, and water and n-heptane were distilled off at 110 ° C. 229 g of a water-absorbent resin was obtained in the same manner as in Example 2 except that

実施例4
実施例2の2段目重合用溶液の調製において、N,N,N’,N’−テトラメチルエチレンジアミンの代わりにN,N’−ジメチルエチレンジアミン0.049gを使用し、さらに、水分及びn−ヘプタンの留去を120℃で行った以外は実施例2と同様にして、吸水性樹脂229gを得た。
Example 4
In the preparation of the second-stage polymerization solution of Example 2, 0.049 g of N, N′-dimethylethylenediamine was used instead of N, N, N ′, N′-tetramethylethylenediamine, and water and n-heptane were further used. Was carried out in the same manner as in Example 2 except that 229 g of a water absorbent resin was obtained.

実施例5
実施例2の1段目重合用溶液の調製において、アクリル酸部分中和塩水溶液に、内部架橋剤及び水溶性ラジカル重合開始剤とともに、N,N’−ジメチルエチレンジアミン0.035gを添加し、2段目重合用溶液の調製において、N,N,N’,N’−テトラメチルエチレンジアミンの代わりにN,N’−ジメチルエチレンジアミン0.049gを使用し、さらに、水分及びn−ヘプタンの留去を120℃で行った以外は実施例2と同様にして、吸水性樹脂228gを得た。
Example 5
In the preparation of the first-stage polymerization solution of Example 2, 0.035 g of N, N′-dimethylethylenediamine was added to the aqueous solution of partially neutralized acrylic acid salt together with the internal crosslinking agent and the water-soluble radical polymerization initiator. In the preparation of the eye polymerization solution, 0.049 g of N, N′-dimethylethylenediamine was used instead of N, N, N ′, N′-tetramethylethylenediamine, and water and n-heptane were distilled off at 120 ° C. 228 g of a water-absorbent resin was obtained in the same manner as in Example 2 except that

実施例6
攪拌機、攪拌翼、還流冷却器、滴下ロート及び窒素ガス導入菅を備えた内容積2リットルの5つ口円筒型丸底フラスコに、80重量%アクリル酸水溶液184gを入れ、氷冷しながら11.4重量%水酸化ナトリウム水溶液540gを滴下して、アクリル酸の75モル%を中和し、25重量%アクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N’−メチレンビスアクリルアミド18.4mg、水溶性ラジカル重合開始剤として過硫酸カリウム0.184g、及びN,N,N’,N’−テトラメチルエチレンジアミン0.092gを添加して系内を窒素ガスで置換した後、50℃の水浴にて保持して1時間水溶液重合反応を行った。
Example 6
Into a 5-liter cylindrical round bottom flask with an internal volume of 2 liters equipped with a stirrer, stirring blade, reflux condenser, dropping funnel and nitrogen gas inlet, put 184 g of 80% by weight acrylic acid aqueous solution, and 11.4 wt. 540 g of an aqueous sodium hydroxide solution was added dropwise to neutralize 75 mol% of acrylic acid to prepare a 25 wt% aqueous partially neutralized acrylic acid salt solution. In the obtained aqueous solution of partially neutralized acrylic acid, 18.4 mg of N, N′-methylenebisacrylamide as an internal crosslinking agent, 0.184 g of potassium persulfate as a water-soluble radical polymerization initiator, and N, N, N ′, N ′ -After adding 0.092 g of tetramethylethylenediamine and replacing the inside of the system with nitrogen gas, the solution was kept in a water bath at 50 ° C for 1 hour to carry out an aqueous solution polymerization reaction.

得られた重合反応物を、SUS製ミートチョッパーで粗粉砕した後、140℃の熱風乾燥機で1時間乾燥させた。次いで、この乾燥物をロータスピードミルで粉砕し、目開き850μmのJIS標準篩で分級し、850μm以下の粒子を吸水性樹脂の前駆体として得た。   The resulting polymerization reaction product was coarsely pulverized with a SUS meat chopper and then dried with a hot air dryer at 140 ° C. for 1 hour. Next, the dried product was pulverized with a rotor speed mill and classified with a JIS standard sieve having an opening of 850 μm, and particles having a size of 850 μm or less were obtained as a precursor of a water absorbent resin.

得られた吸水性樹脂の前駆体の全量を、攪拌機、攪拌翼、冷却器及びガス導入管を備えた内容積2リットルのフラスコ内に入れた。一方、水18.4g及び後架橋剤として2重量%エチレングリコールジグリシジルエーテル水溶液6.4gを吸水性樹脂の前駆体に攪拌しながら噴霧にて添加し、130℃の油浴にて加熱して30分間架橋反応を行い、吸水性樹脂172gを得た。   The total amount of the obtained water-absorbent resin precursor was placed in a flask having an internal volume of 2 liters equipped with a stirrer, a stirring blade, a cooler, and a gas introduction tube. On the other hand, 18.4 g of water and 6.4 g of 2% by weight ethylene glycol diglycidyl ether aqueous solution as a post-crosslinking agent were added to the precursor of the water-absorbent resin by spraying and heated in an oil bath at 130 ° C. for 30 minutes. A crosslinking reaction was performed to obtain 172 g of a water absorbent resin.

比較例1
実施例1においてN,N,N’,N’−テトラメチルエチレンジアミンを使用しなかった以外は、実施例1と同様にして、吸水性樹脂92gを得た。
Comparative Example 1
92 g of water-absorbent resin was obtained in the same manner as in Example 1 except that N, N, N ′, N′-tetramethylethylenediamine was not used in Example 1.

比較例2
実施例2においてN,N,N’,N’−テトラメチルエチレンジアミンを使用しなかった以外は、実施例2と同様にして、吸水性樹脂228gを得た。
Comparative Example 2
In the same manner as in Example 2 except that N, N, N ′, N′-tetramethylethylenediamine was not used in Example 2, 228 g of a water absorbent resin was obtained.

比較例3
実施例6においてN,N,N’,N’−テトラメチルエチレンジアミンを使用しなかった以外は、実施例6と同様にして、吸水性樹脂173gを得た。
Comparative Example 3
A water-absorbing resin 173 g was obtained in the same manner as in Example 6 except that N, N, N ′, N′-tetramethylethylenediamine was not used in Example 6.

各実施例及び比較例で得られた吸水性樹脂の評価を以下の方法により行った。以下の項目(1)〜(5)の評価結果を表1に示す。   The water-absorbent resin obtained in each example and comparative example was evaluated by the following method. Table 1 shows the evaluation results of the following items (1) to (5).

(1)生理食塩水保水能
吸水性樹脂2.00gを、綿袋(メンブロード60番、横100mm×縦200mm)に入れ、500mL容のビーカー内に入れる。この綿袋内に生理食塩水500gを注ぎ込み、開口部を輪ゴムで縛り、1時間放置する。その後、遠心力167Gの脱水機(国産遠心機株式会社製、品番:H-122)を用いて、前記綿袋を1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定する。吸水性樹脂を添加せずに同様の操作を行い、綿袋の湿潤時空質量Wb(g)を測定し、次式により生理食塩水保水能を算出する。
生理食塩水保水能(g/g)=[Wa−Wb](g)/吸水性樹脂の質量(g)
(1) Physiological saline water retention capacity 2.00 g of water-absorbing resin is put into a cotton bag (Membroad No. 60, width 100 mm x length 200 mm) and placed in a 500 mL beaker. 500 g of physiological saline is poured into the cotton bag, the opening is tied with a rubber band, and left for 1 hour. Thereafter, the cotton bag was dehydrated for 1 minute using a dehydrator having a centrifugal force of 167G (manufactured by Centrifuge Co., Ltd., product number: H-122), and the weight Wa (g ). The same operation is performed without adding the water-absorbent resin, the wet hourly space mass Wb (g) of the cotton bag is measured, and the physiological saline water retention capacity is calculated by the following formula.
Saline retention capacity (g / g) = [Wa-Wb] (g) / mass of water absorbent resin (g)

(2)加圧下での生理食塩水吸水能
吸水性樹脂の2.07kPa又は4.14kPaの加圧下での生理食塩水吸水能を、図1に機略構成を示した測定装置Xを用いて測定する。
(2) Saline water absorption capacity under pressure The physiological saline water absorption capacity of a water-absorbing resin under pressure of 2.07 kPa or 4.14 kPa is measured using a measuring device X whose schematic configuration is shown in FIG. .

図1に示した測定装置Xは、ビュレット部1と導管2、測定台3、測定台3上に置かれた測定部4からなっている。ビュレット部1は、ビュレット10の上部にゴム栓14、下部に空気導入管11とコック12が連結されており、さらに、空気導入管11の上部にはコック13がある。ビュレット部1から測定台3までは、導管2が取り付けられており、導管2の直径は6mmである。測定台3の中央部には、直径2mmの穴があいており、導管2が連結されている。測定部4は、円筒40と、この円筒40の底部に貼着されたナイロンメッシュ41と、重り42とを有している。円筒40の内径は2.0cmである。ナイロンメッシュ41は200メッシュ(目開き75μm)に形成されている。そして、ナイロンメッシュ41上に所定量の吸水性樹脂5が均一に撒布されるようになっている。重り42は、直径1.9cm、重量59.8g又は119.5gである。この重り42は、吸水性樹脂5上に置かれ、吸水性樹脂5に対して、重量59.8gの重りにより2.07kPaの荷重を、重量119.5gの重りにより4.14kPaの荷重を、それぞれ均一に加えることができるようになっている。   The measuring apparatus X shown in FIG. 1 includes a burette unit 1, a conduit 2, a measuring table 3, and a measuring unit 4 placed on the measuring table 3. The burette unit 1 has a rubber stopper 14 connected to the upper part of the burette 10, an air introduction pipe 11 and a cock 12 connected to the lower part, and a cock 13 located on the upper part of the air introduction pipe 11. A conduit 2 is attached from the burette part 1 to the measuring table 3, and the diameter of the conduit 2 is 6 mm. At the center of the measuring table 3, there is a hole with a diameter of 2mm, and the conduit 2 is connected. The measuring unit 4 includes a cylinder 40, a nylon mesh 41 attached to the bottom of the cylinder 40, and a weight 42. The inner diameter of the cylinder 40 is 2.0 cm. The nylon mesh 41 is formed to 200 mesh (aperture 75 μm). A predetermined amount of the water-absorbing resin 5 is uniformly distributed on the nylon mesh 41. The weight 42 has a diameter of 1.9 cm and a weight of 59.8 g or 119.5 g. This weight 42 is placed on the water-absorbent resin 5, and a 2.07kPa load is applied uniformly to the water-absorbent resin 5 by a weight of 59.8g and a load of 4.14kPa by a weight of 119.5g. Be able to.

このような構成の測定装置Xでは、まずビュレット部1のコック12とコック13を閉め、25℃に調節された生理食塩水をビュレット10上部から入れ、ゴム栓14でビュレット上部の栓をした後、ビュレット部1のコック12、コック13を開ける。次に、測定台3中心部における導管2の先端と空気導入管11の空気導入口とが同じ高さになるように測定台3の高さの調整を行う。   In the measuring apparatus X having such a configuration, first, the cock 12 and the cock 13 of the burette unit 1 are closed, and physiological saline adjusted to 25 ° C. is poured from the upper part of the burette 10, and the stopper at the upper part of the burette is plugged with the rubber plug 14. Then, the cock 12 and the cock 13 of the burette unit 1 are opened. Next, the height of the measurement table 3 is adjusted so that the tip of the conduit 2 at the center of the measurement table 3 and the air introduction port of the air introduction tube 11 have the same height.

一方、円筒40のナイロンメッシュ41上に0.10gの吸水性樹脂5を均一に撒布して、この吸水性樹脂5上に重り42を置く。測定部4は、その中心部が測定台3中心部の導管口に一致するようにして置く。   On the other hand, 0.10 g of the water absorbent resin 5 is uniformly spread on the nylon mesh 41 of the cylinder 40, and the weight 42 is placed on the water absorbent resin 5. The measuring part 4 is placed so that the center part thereof coincides with the conduit port of the central part of the measuring table 3.

吸水性樹脂5が吸水し始めた時点から継続的に、ビュレット10内の生理食塩水の減少量(吸水性樹脂5が吸水した生理食塩水量)Wc(mL)を読み取る。吸水開始から60分間経過後における吸水性樹脂5の加圧下での吸水能を、次式より算出する。
吸水能(mL/g)=Wc/0.10
From the time when the water absorbent resin 5 starts to absorb water, the amount of decrease in physiological saline in the burette 10 (the amount of physiological saline absorbed by the water absorbent resin 5) Wc (mL) is read. The water absorption capacity under pressure of the water absorbent resin 5 after 60 minutes from the start of water absorption is calculated from the following equation.
Water absorption capacity (mL / g) = Wc / 0.10

(3)吸水速度
100ml容のビーカーに、25±0.2℃の温度の生理食塩水50±0.1gを入れ、マグネチックスターラーバー(8mmφ×30mm)を用いて、回転数が600r/minになるように調整する。次に吸水性樹脂2.0±0.002gを前記ビーカーに素早く添加し、添加し終わると同時にストップウォッチをスタートする。吸水性樹脂が生理食塩水を吸水し、渦がなくなるまでの時間(秒)をストップウォッチで測定し、吸水速度とする。
(3) Water absorption speed
In a 100 ml beaker, put 50 ± 0.1 g of physiological saline at a temperature of 25 ± 0.2 ° C., and adjust the rotation speed to 600 r / min using a magnetic stirrer bar (8 mmφ × 30 mm). Next, 2.0 ± 0.002 g of water-absorbing resin is quickly added to the beaker, and the stopwatch is started as soon as the addition is completed. The time (seconds) until the water-absorbing resin absorbs physiological saline and the vortex disappears is measured with a stopwatch, and is defined as the water absorption rate.

(4)水可溶分
500mL容のビーカーに、生理食塩水500±0.1gを量り取り、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、マグネチックスターラーを用いて、600r/minで回転するように調整する。
(4) Water-soluble component
In a 500 mL beaker, weigh 500 ± 0.1 g of physiological saline, add a magnetic stirrer bar (without 8mmφ × 30mm ring), and adjust it to rotate at 600r / min using a magnetic stirrer. .

次に、吸水性樹脂をJIS-Z8801-1982対応の標準ふるい2種(目開き500μm、300μm)で分級し、粒度調整(500μm以下、300μm以上)したもの2.0±0.002gを前記ビーカーに添加し、3時間撹拌する。3時間撹拌後の吸水性樹脂分散水を、標準ふるい(目開き75μm)でろ過し、得られたろ液をさらに桐山式ロート(ろ紙No.6)を用い吸引ろ過する。   Next, 2.0 ± 0.002g of water-absorbent resin classified by JIS-Z8801-1982 standard sieve (mesh size 500μm, 300μm) and particle size adjustment (500μm or less, 300μm or more) is added to the beaker. Stir for 3 hours. The water-absorbent resin-dispersed water after stirring for 3 hours is filtered with a standard sieve (aperture 75 μm), and the obtained filtrate is further filtered with suction using a Kiriyama funnel (filter paper No. 6).

得られたろ液を100mL容のビーカーに80±0.1g量りとり140℃の熱風乾燥機(ADVANTEC社製、型番:FV-320)で恒量になるまで乾燥させ、ろ液固形分の重量Wd(g)を測定する。   The obtained filtrate is weighed 80 ± 0.1 g into a 100 mL beaker and dried with a hot air dryer (model number: FV-320, manufactured by ADVANTEC, Inc.) at 140 ° C. until it reaches a constant weight, and the weight Wd (g ).

一方、吸水性樹脂を用いずに上記操作と同様に行ない、ろ液固形分の重量We(g)を測定して、次式より水可溶分を算出する。
水可溶分(重量%)=〔[(Wd−We)×(500/80)]/2〕×100
On the other hand, it carries out similarly to the said operation, without using a water absorbing resin, measures the weight We (g) of filtrate solid content, and calculates a water-soluble content from following Formula.
Water-soluble content (% by weight) = [[(Wd−We) × (500/80)] / 2] × 100

(5)平均粒径
吸水性樹脂粒子100gに、滑剤として、0.5gの非晶質シリカ(デグサジャパン(株)製、Sipernat 200)を混合する。
(5) Average particle diameter 0.5 g of amorphous silica (manufactured by Degussa Japan Co., Ltd., Sipernat 200) is mixed with 100 g of water-absorbent resin particles as a lubricant.

JIS標準篩を上から、目開き600μmの篩、目開き500μmの篩、目開き355μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μm、目開き106μmの篩及び受け皿の順に組み合わせ、一番上の篩に前記吸水性樹脂を入れ、ロータップ式振盪器を用いて、20分間振盪させる。   From the top of the JIS standard sieve, sieve with an opening of 600 μm, sieve with an opening of 500 μm, sieve with an opening of 355 μm, sieve with an opening of 300 μm, sieve with an opening of 250 μm, sieve with an opening of 180 μm, sieve with an opening of 106 μm, and tray Combine, put the water-absorbent resin on the top sieve, and shake for 20 minutes using a low-tap shaker.

次に、各篩上に残った吸水性樹脂粒子の重量を全量に対する重量百分率として計算し、粒子径の小さい方から順に積算することにより、篩の目開きと篩上に残った重量百分率の積算値との関係を対数確率紙にプロットする。確率紙上のプロットを直線で結ぶことにより、積算重量百分率50重量%に相当する粒子径を平均粒径とする。   Next, the weight of the water-absorbent resin particles remaining on each sieve is calculated as a percentage by weight with respect to the total amount, and by integrating in order from the smaller particle diameter, the sieve weight and the weight percentage remaining on the sieve are integrated. Plot the relationship with the values on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle diameter corresponding to the cumulative weight percentage of 50% by weight is taken as the average particle diameter.

Figure 2008133396
Figure 2008133396

表1に示された結果から、比較例で得られた吸水性樹脂と対比して、実施例で得られた吸水性樹脂は、生理食塩水保水能、加圧下での生理食塩水吸水能が高く、適度な吸水速度であり、かつ水可溶分が少ないことが分かる。   From the results shown in Table 1, the water-absorbing resins obtained in the examples compared with the water-absorbing resins obtained in the comparative examples have the ability to retain physiological saline and absorb physiological saline under pressure. It can be seen that the water absorption rate is high, the water absorption rate is low, and the water-soluble content is small.

本発明の方法によって得られた吸水性樹脂は、例えば紙おむつ、失禁パッド、生理用ナプキン等の衛生材料、特に紙おむつに好適に使用することができる。   The water-absorbent resin obtained by the method of the present invention can be suitably used for sanitary materials such as paper diapers, incontinence pads, sanitary napkins, especially paper diapers.

加圧下での吸水能を測定するための装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the apparatus for measuring the water absorption ability under pressure.

符号の説明Explanation of symbols

X 測定装置
1 ビュレット部
10 ビュレット
11 空気導入管
12 コック
13 コック
14 ゴム栓
2 導管
3 測定台
4 測定部
40 円筒
41 ナイロンメッシュ
42 重り
5 吸水性樹脂
X Measuring device 1 Bullet part 10 Bullet 11 Air introduction pipe 12 Cock 13 Cock 14 Rubber stopper 2 Conduit 3 Measuring table 4 Measuring part 40 Cylinder 41 Nylon mesh 42 Weight 5 Water absorbing resin

Claims (6)

水溶性エチレン性不飽和単量体を重合させて吸水性樹脂を製造する方法であって、式(I):
Figure 2008133396
(式中、R1は炭素数1〜6の直鎖アルキレン基又はフェニレン基を、R2、R3、R4及びR5はそれぞれ独立してメチル基、エチル基又は水素原子を示す)
で表されるジアミン化合物又はその塩、及び水溶性ラジカル重合開始剤の存在下、前記水溶性エチレン性不飽和単量体の重合反応を行い、重合反応後、架橋剤を添加して架橋反応を行うことを特徴とする吸水性樹脂の製造方法。
A method for producing a water-absorbent resin by polymerizing a water-soluble ethylenically unsaturated monomer, which comprises the formula (I):
Figure 2008133396
(In the formula, R 1 represents a linear alkylene group having 1 to 6 carbon atoms or a phenylene group, and R 2 , R 3 , R 4 and R 5 each independently represents a methyl group, an ethyl group or a hydrogen atom)
In the presence of a diamine compound or a salt thereof and a water-soluble radical polymerization initiator, the water-soluble ethylenically unsaturated monomer is subjected to a polymerization reaction, and after the polymerization reaction, a crosslinking agent is added to perform a crosslinking reaction. A method for producing a water-absorbent resin characterized by comprising:
ジアミン化合物又はその塩の使用量が、水溶性エチレン性不飽和単量体100重量部に対して0.001〜0.5重量部である請求項1記載の製造方法。   The production method according to claim 1, wherein the amount of the diamine compound or a salt thereof used is 0.001 to 0.5 parts by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer. 水溶性ラジカル重合開始剤が、過硫酸塩である請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the water-soluble radical polymerization initiator is a persulfate. 請求項1〜3いずれか記載の方法により得られる吸水性樹脂。   The water absorbing resin obtained by the method in any one of Claims 1-3. 生理食塩水保水能が40g/g以上で、荷重2.07kPaにおける加圧下の生理食塩水吸水能が25ml/g以上である、請求項4記載の吸水性樹脂。   The water-absorbent resin according to claim 4, wherein the physiological saline water retention capacity is 40 g / g or more, and the physiological saline water absorption capacity under pressure at a load of 2.07 kPa is 25 ml / g or more. 生理食塩水保水能が30g/g以上で、荷重4.14kPaにおける加圧下の生理食塩水吸水能が20ml/g以上である、請求項4記載の吸水性樹脂。   The water-absorbent resin according to claim 4, wherein the physiological saline water retention capacity is 30 g / g or more, and the physiological saline water absorption capacity under pressure at a load of 4.14 kPa is 20 ml / g or more.
JP2006321939A 2006-11-29 2006-11-29 Method for producing water absorbent resin Active JP5183918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321939A JP5183918B2 (en) 2006-11-29 2006-11-29 Method for producing water absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321939A JP5183918B2 (en) 2006-11-29 2006-11-29 Method for producing water absorbent resin

Publications (2)

Publication Number Publication Date
JP2008133396A true JP2008133396A (en) 2008-06-12
JP5183918B2 JP5183918B2 (en) 2013-04-17

Family

ID=39558454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321939A Active JP5183918B2 (en) 2006-11-29 2006-11-29 Method for producing water absorbent resin

Country Status (1)

Country Link
JP (1) JP5183918B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132861A1 (en) * 2011-03-28 2012-10-04 住友精化株式会社 Process for producing water-absorbing resin
EP2524679B1 (en) 2010-01-13 2015-04-08 Sumitomo Seika Chemicals CO. LTD. Water-absorbable sheet structure
US9925294B2 (en) 2014-07-11 2018-03-27 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
US10065173B2 (en) 2014-07-11 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Process for producing water-absorbent resin
EP3153529B1 (en) 2014-07-11 2019-07-31 Sumitomo Seika Chemicals CO. LTD. Water-absorbing resin and absorbent article
US10525443B2 (en) 2014-07-11 2020-01-07 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
WO2020177458A1 (en) * 2019-03-01 2020-09-10 浙江三赢新材料有限公司 Novel drying process method for preparation of super absorbent resin
US11136420B2 (en) 2014-07-11 2021-10-05 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and method of producing water-absorbent resin
CN117447649A (en) * 2023-12-06 2024-01-26 成都理工大学 Gel particle plugging agent system and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101596623B1 (en) * 2015-01-30 2016-02-22 에스케이이노베이션 주식회사 Water-absorbing resin and preparing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315147A (en) * 1998-03-03 1999-11-16 Nippon Shokubai Co Ltd Production of water absorbing agent
JP2000290316A (en) * 1999-04-09 2000-10-17 Chisso Corp Salt-resistant and water-absorbing resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315147A (en) * 1998-03-03 1999-11-16 Nippon Shokubai Co Ltd Production of water absorbing agent
JP2000290316A (en) * 1999-04-09 2000-10-17 Chisso Corp Salt-resistant and water-absorbing resin

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2524679B1 (en) 2010-01-13 2015-04-08 Sumitomo Seika Chemicals CO. LTD. Water-absorbable sheet structure
KR101872052B1 (en) * 2011-03-28 2018-06-27 스미또모 세이까 가부시키가이샤 Process for producing water-absorbing resin
WO2012132861A1 (en) * 2011-03-28 2012-10-04 住友精化株式会社 Process for producing water-absorbing resin
JPWO2012132861A1 (en) * 2011-03-28 2014-07-28 住友精化株式会社 Method for producing water absorbent resin
US20130324396A1 (en) * 2011-03-28 2013-12-05 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin
JP5823497B2 (en) * 2011-03-28 2015-11-25 住友精化株式会社 Method for producing water absorbent resin
US9221030B2 (en) 2011-03-28 2015-12-29 Sumitomo Seika Chemicals Co., Ltd. Method for producing water-absorbent resin
KR20140012124A (en) * 2011-03-28 2014-01-29 스미또모 세이까 가부시키가이샤 Process for producing water-absorbing resin
US10065173B2 (en) 2014-07-11 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Process for producing water-absorbent resin
US9925294B2 (en) 2014-07-11 2018-03-27 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
EP3153529B1 (en) 2014-07-11 2019-07-31 Sumitomo Seika Chemicals CO. LTD. Water-absorbing resin and absorbent article
US10525443B2 (en) 2014-07-11 2020-01-07 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
US11136420B2 (en) 2014-07-11 2021-10-05 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and method of producing water-absorbent resin
WO2020177458A1 (en) * 2019-03-01 2020-09-10 浙江三赢新材料有限公司 Novel drying process method for preparation of super absorbent resin
CN117447649A (en) * 2023-12-06 2024-01-26 成都理工大学 Gel particle plugging agent system and preparation method thereof
CN117447649B (en) * 2023-12-06 2024-04-02 成都理工大学 Gel particle plugging agent and preparation method thereof

Also Published As

Publication number Publication date
JP5183918B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5183918B2 (en) Method for producing water absorbent resin
JP5099899B2 (en) Method for producing water absorbent resin
TWI527599B (en) Absorbent resin and absorbent articles (4)
TWI618719B (en) Water-absorbent resin and method for producing water-absorbent resin
JP5901524B2 (en) Water absorbent resin
JP5719078B1 (en) Method for producing water absorbent resin
US8198376B2 (en) Process for production of water-absorbable resin
US8940845B2 (en) Method for producing water-absorbing resin
WO2018180864A1 (en) Water-absorbing resin
US20130330566A1 (en) Method for producing water-absorbent resin
US20140194574A1 (en) Method for producing water-absorbent resin, and water-absorbent resin obtained by same
JP5558824B2 (en) Method for producing water absorbent resin
JPWO2019074099A1 (en) Water-absorbent resin and absorbent articles
JP4976679B2 (en) Water absorbent resin and method for producing the same
JP5551438B2 (en) Method for producing water absorbent resin and water absorbent resin obtained thereby
WO2020203723A1 (en) Water absorbent resin and water stop material
WO2006068067A1 (en) Process for producing water-absorbing resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5183918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250