JP2008133321A - Method for producing thermally decomposed oil from rubber-based waste and apparatus therefor - Google Patents

Method for producing thermally decomposed oil from rubber-based waste and apparatus therefor Download PDF

Info

Publication number
JP2008133321A
JP2008133321A JP2006318765A JP2006318765A JP2008133321A JP 2008133321 A JP2008133321 A JP 2008133321A JP 2006318765 A JP2006318765 A JP 2006318765A JP 2006318765 A JP2006318765 A JP 2006318765A JP 2008133321 A JP2008133321 A JP 2008133321A
Authority
JP
Japan
Prior art keywords
oil
pyrolysis
waste
gas
thermally decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006318765A
Other languages
Japanese (ja)
Other versions
JP4916849B2 (en
Inventor
Hideo Nishimura
秀生 西村
Kazuo Onuki
一雄 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006318765A priority Critical patent/JP4916849B2/en
Publication of JP2008133321A publication Critical patent/JP2008133321A/en
Application granted granted Critical
Publication of JP4916849B2 publication Critical patent/JP4916849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus effective for reducing the generation of an oil sludge in the case of mixing a thermally decomposed oil produced from a rubber-based waste and having a kinematic viscosity corresponding to that of a heavy oil with a commercially available grade A crude oil or gas oil. <P>SOLUTION: The method for producing a thermally decomposed oil from a rubber-based waste includes a thermal decomposition step 3 to thermally decompose a rubber-based waste to generate a thermally decomposed gas and a thermally decomposed oil production step 6 to cool the produced thermally decomposed gas and condense the heavy oil fraction in the thermally decomposed gas. In the above method, one or more kinds of waste plastics selected from polypropylene and polyethylene are thermally decomposed in the thermal decomposition step together with the rubber-based waste, the formed thermally decomposed oil is mixed in a thermally decomposed oil mixing step 14 placed after the thermally decomposed oil production step, the oil sludge formed by the mixing step is separated in an oil sludge separation step 17, and the thermally decomposed oil is recovered after the separation of the oil sludge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はゴム系廃棄物を資源として有効利用するための熱分解油の製造方法および熱分解油の製造装置に関するものである。   The present invention relates to a method for producing pyrolysis oil and an apparatus for producing pyrolysis oil for effectively using rubber waste as a resource.

廃タイヤをはじめとするゴム系廃棄物の処理方法は従来単純焼却や埋立てが中心であったが、循環型社会促進が大きな社会的課題となっていることから、単純焼却や埋立て以外のゴム系廃棄物の有効利用技術が求められている。ゴム系廃棄物の有効利用を目的とした廃棄物処理方法としては、例えば非特許文献1に記載されているように、ゴム系廃棄物を熱分解炉内で熱分解温度以上(通常400℃以上)に加熱して熱分解ガスと熱分解残渣とを生成した後、熱分解ガスを後段で冷却して熱分解ガス中に含まれる熱分解油を分離回収し、回収した熱分解油は複数の沸点留分に分留した後熱分解油等として利用し、熱分解油分離後の熱分解ガスは燃料ガスや化学原料ガスとして利用し、熱分解残渣は炭素質燃料や金属原料等として利用する廃棄物熱分解油化法が提案されている。   Conventional methods for treating rubber waste, including scrap tires, have been centered on simple incineration and landfill, but the promotion of a recycling-oriented society has become a major social issue. Effective utilization technology of rubber waste is required. As a waste processing method for the purpose of effective utilization of rubber waste, for example, as described in Non-Patent Document 1, rubber waste is heated to a thermal decomposition temperature or higher in a pyrolysis furnace (usually 400 ° C. or higher). ) To produce pyrolysis gas and pyrolysis residue, then cool the pyrolysis gas in a later stage to separate and recover the pyrolysis oil contained in the pyrolysis gas. After being distilled into boiling fractions, it is used as pyrolysis oil, etc., pyrolysis gas after pyrolysis oil separation is used as fuel gas or chemical raw material gas, and pyrolysis residue is used as carbonaceous fuel, metal raw material, etc. A waste pyrolysis method has been proposed.

熱分解油化法の熱分解炉の方式としてはロータリーキルン熱分解炉に代表される外熱式熱分解法、流動床熱分解炉や移動床熱分解炉等などに代表される部分燃焼式熱分解法など一般的な方式が適用可能であり、高カロリーガス回収を狙う場合には燃焼空気導入による熱分解ガス部分燃焼や流動化ガス導入に伴う熱分解ガスの希釈がない外熱式熱分解法が特に適している。   As the pyrolysis furnace of the pyrolysis oil conversion method, external combustion type pyrolysis method represented by rotary kiln pyrolysis furnace, partial combustion type pyrolysis represented by fluidized bed pyrolysis furnace, moving bed pyrolysis furnace, etc. General methods such as the method can be applied, and when aiming for high calorie gas recovery, the external thermal pyrolysis method does not dilute the pyrolysis gas partially combusted by introducing combustion air or the pyrolysis gas by introducing fluidized gas Is particularly suitable.

熱分解ガスを冷却して回収した熱分解油の分留方法としては、熱分解油を別置式の蒸留塔に導入して再度加熱・凝縮する一般的な方法のほか、例えば特許文献1に記載されているように、熱分解炉の後段に複数個の分留段を有する蒸留塔を設けてガス状の熱分解油から直接複数の沸点留分に分留する方法が提案されている。さらに、より簡易な分留方法として、例えば特許文献2の図5に記載されているように、熱分解炉の後段に直接冷却式の熱分解油生成装置を設け、熱分解ガスを前記熱分解油生成装置内で温度コントロールした冷却油と向流で直接熱交換させることによって特定の沸点範囲に制御された熱分解油を凝縮回収するとともに、凝縮回収した熱分解油を熱分解ガスの冷却油として使用する方法が提案されている。   As a method for fractionating the pyrolysis oil recovered by cooling the pyrolysis gas, in addition to a general method in which the pyrolysis oil is introduced into a separate distillation tower and heated and condensed again, for example, described in Patent Document 1 As described above, a method has been proposed in which a distillation column having a plurality of fractionation stages is provided at the rear stage of the pyrolysis furnace, and fractionation is performed directly from a gaseous pyrolysis oil into a plurality of boiling fractions. Further, as a simpler fractionation method, for example, as described in FIG. 5 of Patent Document 2, a direct cooling type pyrolysis oil generator is provided at the rear stage of the pyrolysis furnace, and the pyrolysis gas is decomposed into the pyrolysis gas. The thermal cracking oil controlled to a specific boiling point range is condensed and recovered by directly exchanging heat with the cooling oil whose temperature is controlled in the oil generator, and the condensed and recovered thermal cracked oil is cooled as a pyrolysis gas cooling oil. The method of using as is proposed.

「日本ゴム協会誌」第59巻、第10号、565頁、図1 (1986)Journal of the Japan Rubber Association, Vol. 59, No. 10, page 565, Fig. 1 (1986) 「石油用語解説集 第二版」5頁(幸書房)"Glossary of Petroleum Glossary 2nd Edition", p. 5 (Shoshobo) 「PETROTECH」第27巻、第8号、670頁、図3“PETROTECH” Vol. 27, No. 8, p. 670, FIG. 「石炭と重質油 その化学と応用」91頁、図2.26 (講談社サイエンティフィク)"Coal and heavy oil, its chemistry and application", page 91, Figure 2.26 (Kodansha Scientific) 「石炭と重質油 その化学と応用」126頁、17行目〜127頁1行目 (講談社サイエンティフィク)"Coal and heavy oil, its chemistry and application", page 126, line 17 to page 127, line 1 (Kodansha Scientific) 「PETROTECH」第27巻、第8号、670頁、26行目〜33行目“PETROTECH” Vol. 27, No. 8, 670 pages, lines 26-33 「ボイラの燃料と燃焼」、28頁、21行目〜29頁5行目(共立出版株式会社)“Boiler Fuel and Combustion”, page 28, line 21 to page 29, line 5 (Kyoritsu Publishing Co., Ltd.) 「ボイラ研究」第171号、11頁、第11表(1978)"Boiler Research" No.171, page 11, table 11 (1978) 特開昭53−57180公報JP 53-57180 A 特開平8−110024公報JP-A-8-11024 特開平5−331470公報JP-A-5-331470 特開平2−238091公報JP-A-2-238091

しかしながら、既存のゴム系廃棄物の熱分解油化方法の抱える課題として、本発明者らはゴム系廃棄物を熱分解し、熱分解ガスを特許文献2の分留方法を用いてA重油レベルの動粘度および引火点を持つ熱分解油を製造した場合、得られた熱分解油をJIS−K−2205で規定される市販のA重油に混合して使用すると、混合油中に油泥スラッジが発生する問題点があることを見出した。油泥スラッジの発生は燃焼設備のバーナーノズルやフィルター、油供給配管内等の閉塞トラブルの原因となり、操業安定上厄介な問題である。   However, as a problem of the existing method for pyrolyzing oily waste of rubber-based waste, the present inventors thermally decomposed the rubber-based waste, and the pyrolysis gas is converted to A heavy oil level using the fractionation method of Patent Document 2. When a pyrolysis oil having a kinematic viscosity and a flash point is produced and mixed with a commercially available heavy oil A specified in JIS-K-2205, oil sludge sludge is mixed in the mixture oil. We found that there are problems that occur. The generation of oil mud sludge causes clogging troubles in the burner nozzle and filter of the combustion equipment, the oil supply piping, etc., and is a troublesome problem in terms of operational stability.

そこで、本発明者らは、ゴム系廃棄物から製造した熱分解油を市販のA重油と混合する場合の油泥スラッジ発生原因解明を目的として熱分解油性状を調査した結果、熱分解油の物性については引火点60℃以上で動粘度2×10-52/sec前後(測定温度50℃、測定方法JIS−K2283)でA重油と類似しているが、熱分解油の化学組成については芳香族系炭化水素類を主成分とし、かつアスファルテン成分を含む油であり、A重油よりもむしろC重油に近い性状であることがわかった。ここでアスファルテン成分とは例えば非特許文献2〜5に記載されているように、n−ヘプタンに不溶でベンゼンやトルエンに可溶な成分であり、極性基を持った重質な芳香族炭化水素類である。従って、ゴム系廃棄物から製造した重油相当の熱分解油を市販のA重油と混合する際の油泥スラッジ発生原因は非特許文献6、非特許文献7等に記載されているようにC重油の場合と同様にアスファルテン成分起因であると考えられる。即ち熱分解油中のアスファルテン成分は通常は多量に共存する高分子量の芳香族炭化水素類である芳香族マルテン油に囲まれて安定的なコロイド状態を形成して高分散しているが、芳香族マルテン油との親和性が高くアスファルテン成分との親和性が低いパラフィン油が多く含まれているA重油を熱分解油に混合すると混合油中でのアスファルテン成分の安定性が低下して凝集し、油泥スラッジとして析出すると考えられる。 Therefore, the present inventors investigated the properties of pyrolysis oil for the purpose of elucidating the cause of oil sludge generation when mixing pyrolysis oil produced from rubber waste with commercial A heavy oil. Is similar to A heavy oil at a flash point of 60 ° C. or higher and a kinematic viscosity of around 2 × 10 −5 m 2 / sec (measurement temperature 50 ° C., measurement method JIS-K2283), but the chemical composition of pyrolysis oil is It is an oil mainly composed of aromatic hydrocarbons and containing an asphaltene component, and has been found to be close to C heavy oil rather than A heavy oil. Here, the asphaltene component is a component that is insoluble in n-heptane and soluble in benzene or toluene as described in Non-Patent Documents 2 to 5, and is a heavy aromatic hydrocarbon having a polar group. It is kind. Therefore, as described in Non-Patent Document 6, Non-Patent Document 7, etc., the cause of oil mud sludge generation when mixing pyrolysis oil equivalent to heavy oil produced from rubber waste with commercial A heavy oil is Like the case, it is considered to be due to the asphaltene component. In other words, the asphaltene component in pyrolysis oil is usually highly dispersed by forming a stable colloidal state surrounded by aromatic marten oil, which is a high molecular weight aromatic hydrocarbon coexisting in large amounts. When A heavy oil, which contains a lot of paraffinic oil with high affinity with arabic marten oil and low affinity with asphaltene component, is mixed with pyrolysis oil, the stability of the asphaltene component in the mixed oil decreases and aggregates It is thought that it precipitates as oil sludge sludge.

アスファルテン成分に起因する油泥スラッジ発生を軽減する方法としては、例えば特許文献3、特許文献4、非特許文献8に記載されているように、C重油をA重油や軽油等に混合する際の油泥スラッジ発生抑制を目的として、スラッジ溶解機能や界面活性作用によるスラッジ凝縮抑制機能等を有する重油添加剤を添加する方法が知られている。しかしながら、重油添加剤をゴム系廃棄物の熱分解油に適用する際の問題点として、添加剤使用は熱分解油製造コストの上昇を招くため、廃棄物を原料とする重油代替油の商品競争力を支える重要な要素である低価格性が損なわれてしまう点が挙げられる。   As a method for reducing the generation of oil sludge caused by asphaltene components, as described in, for example, Patent Document 3, Patent Document 4, and Non-Patent Document 8, oil mud when C heavy oil is mixed with A heavy oil, light oil, or the like For the purpose of suppressing sludge generation, a method of adding a heavy oil additive having a sludge dissolution function, a sludge condensation suppression function by a surface active action, and the like is known. However, as a problem when applying heavy oil additives to pyrolysis oils of rubber waste, the use of additives leads to an increase in the production cost of pyrolysis oil, so competition for heavy oil substitute oils that use waste as raw materials One of the reasons is that the low price, which is an important factor supporting the power, is lost.

そこで本発明は、ゴム系廃棄物から製造したA重油代替の熱分解油を市販のA重油やA重油の主基材である軽油類と混合する際の油泥スラッジ発生軽減が可能である簡便な熱分解油化方法および装置、すなわち、ゴム系廃棄物からの熱分解油の製造方法および装置を提供することを目的とする。   Therefore, the present invention is a simple and capable of reducing the generation of oil mud sludge when mixing pyrolysis oil for A heavy oil produced from rubber-based waste with commercially available A heavy oil and light oils that are the main base material of A heavy oil. It is an object of the present invention to provide a method and apparatus for pyrolysis oil conversion, that is, a method and apparatus for producing pyrolysis oil from rubber waste.

本発明者らはゴム系廃棄物から製造したA重油代替の熱分解油を市販のA重油や軽油類と混合する際の油泥スラッジ発生を軽減させる方法について鋭意検討した結果、ゴム系廃棄物にポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチックを混合してゴム系廃棄物と共に熱分解炉で熱分解処理した後、熱分解ガスを熱分解油回収装置で冷却して熱分解ガス中の重油留分を凝縮させると、廃プラスチック熱分解生成物に由来するパラフィン系油を含むA重油相当の引火点および動粘度を有する熱分解油を生成することができ、さらに熱分解炉内では廃プラスチックに由来するパラフィン系油分とゴム系廃棄物に由来するアスファルテン成分がガス状態で共存しているために熱分解ガスの凝縮で得られた熱分解油はパラフィン系油とアスファルテン成分がミクロなレベルで混合したアスファルテンの安定性の低い油が生成されることを見出し、ゴム系廃棄物熱分解油中に含まれるアスファルテン成分を予め油泥スラッジ化させて分離して、油泥スラッジ分離後の熱分解油を製品油として回収する本方法を発明した。   As a result of intensive studies on methods for reducing the generation of oil mud sludge when mixing pyrolysis oil for A heavy oil produced from rubber waste with commercially available A heavy oil and light oil, After mixing one or more types of waste plastics of polypropylene and polyethylene, and pyrolyzing with a rubber waste in a pyrolysis furnace, the pyrolysis gas is cooled with a pyrolysis oil recovery device and in the pyrolysis gas When the heavy oil fraction is condensed, a pyrolysis oil having a flash point and kinematic viscosity equivalent to A heavy oil including paraffinic oil derived from waste plastic pyrolysis products can be produced. Because the paraffinic oil component derived from waste plastic and the asphaltene component derived from rubber waste coexist in the gaseous state, the pyrolysis oil obtained by condensation of pyrolysis gas is paraffin. We found that oil with low stability of asphaltenes mixed with oil and asphaltene components at a micro level is generated, and asphaltene components contained in rubber waste pyrolysis oil are separated into oil mud sludge in advance, The present method for recovering pyrolyzed oil after separation of oil sludge as product oil was invented.

係る課題を解決するため、本発明の要旨とするところは以下(1)〜(5)に示す通りである。   In order to solve the problem, the gist of the present invention is as follows (1) to (5).

(1)第1の発明は、ゴム系廃棄物を熱分解して熱分解ガスを生成する熱分解工程と、前記生成した熱分解ガスを冷却して熱分解ガス中の重油留分を凝縮させて熱分解油を生成する熱分解油生成工程とを有するゴム系廃棄物からの熱分解油の製造方法において、前記熱分解工程でゴム系廃棄物と共にポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチックを熱分解処理し、前記熱分解油生成工程の後段に生成した熱分解油を混合する熱分解油混合工程および前記混合により生成する油泥スラッジを分離する油泥スラッジ分離工程を設け、前記油泥スラッジ分離後の熱分解油を回収することを特徴とする。   (1) The first invention is a pyrolysis step of pyrolyzing rubber waste to generate pyrolysis gas, and cooling the generated pyrolysis gas to condense a heavy oil fraction in the pyrolysis gas. In the method for producing pyrolysis oil from rubber waste having a pyrolysis oil production step for producing pyrolysis oil, at least one of polypropylene and polyethylene together with rubber waste in the pyrolysis step A pyrolysis treatment of the waste plastic, and a pyrolysis oil mixing step for mixing the pyrolysis oil produced at the latter stage of the pyrolysis oil production step, and an oil mud sludge separation step for separating the oil mud sludge produced by the mixing, It is characterized by recovering pyrolyzed oil after separation of oil sludge sludge.

(2)第2の発明は、前記廃プラスチックが容器包装リサイクル法で規定される「その他プラスチック製容器包装」であることを特徴とする。   (2) The second invention is characterized in that the waste plastic is “other plastic container packaging” defined by the Containers and Packaging Recycling Law.

(3)第3の発明は、前記熱分解油生成工程での熱分解油の平均滞留時間が1hr以上であることを特徴とする。   (3) The third invention is characterized in that the average residence time of the pyrolysis oil in the pyrolysis oil production step is 1 hr or more.

(4)第4の発明は、前記(1)〜(3)のいずれか1項に記載の方法で製造した熱分解油を、更に、A重油または軽油と混合して製造することを特徴とする。   (4) The fourth invention is characterized in that the pyrolysis oil produced by the method according to any one of (1) to (3) is further mixed with A heavy oil or light oil. To do.

(5)第5の発明は、ゴム系廃棄物にポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチックを混合して熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却して熱分解ガス中の重油留分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を混合する熱分解油混合装置と、前記混合装置内で生成した油泥スラッジを分離除去するための油泥スラッジ分離装置とを備えることを特徴とする。   (5) The fifth invention is a pyrolysis furnace in which one or more types of waste plastics of polypropylene and polyethylene are mixed with rubber waste and pyrolyzed to generate pyrolysis gas, and the generation A pyrolysis oil generator that cools the pyrolysis gas and condenses a heavy oil fraction in the pyrolysis gas to generate pyrolysis oil, a pyrolysis oil mixing device that mixes the generated pyrolysis oil, and And an oil mud sludge separation device for separating and removing the oil mud sludge generated in the mixing device.

本発明により、ゴム系廃棄物を熱分解処理して製造した重油相当の熱分解油を、市販のA重油やA重油の主基材である軽油類と混合した際の油泥スラッジ発生の軽減が可能な熱分解油を製造することができる。   According to the present invention, it is possible to reduce the generation of oil mud sludge when a pyrolysis oil equivalent to heavy oil produced by pyrolysis treatment of rubber waste is mixed with commercially available A heavy oil or light oils which are main base materials of A heavy oil. Possible pyrolysis oils can be produced.

図1は第1の実施形態に係る本発明のゴム系廃棄物の熱分解油化方法および熱分解油化装置を実施するための設備構成の一例を示すブロック図である。   FIG. 1 is a block diagram showing an example of an equipment configuration for carrying out the method for pyrolyzing and converting a rubber waste according to the first embodiment of the present invention and the apparatus for pyrolyzing oil.

ゴム系廃棄物1−aおよびポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチック1−bを例えばスクリューフィーダー等の廃棄物供給装置2を用いて熱分解炉3内に定量供給し、熱分解炉3内で熱分解処理し、可燃性ガスと油分から構成される熱分解ガス4並びに熱分解残渣5を生成する。熱分解炉3の方式としては特に限定するところはなく、外熱ロータリーキルン式熱分解炉や流動層式熱分解炉などの一般的な熱分解方法が適用可能である。熱分解温度条件については温度を上げ過ぎるとガス化が進行し過ぎて油収率が低下することに加え、パラフィン油を主成分とする廃プラスチック熱分解油の環化反応による芳香族化も懸念されるため、炉内温度750℃以下程度とするのが好ましい。   The rubber waste 1-a and one or more types of waste plastics 1-b of polypropylene and polyethylene are quantitatively supplied into the pyrolysis furnace 3 using a waste feeder 2 such as a screw feeder, Pyrolysis treatment is performed in the cracking furnace 3 to generate a pyrolysis gas 4 and a pyrolysis residue 5 composed of combustible gas and oil. The method of the pyrolysis furnace 3 is not particularly limited, and a general pyrolysis method such as an external heat rotary kiln type pyrolysis furnace or a fluidized bed type pyrolysis furnace is applicable. Regarding the pyrolysis temperature condition, if the temperature is raised too much, gasification will progress too much and the oil yield will decrease, and there is also concern about aromatization due to cyclization reaction of waste plastic pyrolysis oil mainly composed of paraffin oil. Therefore, the furnace temperature is preferably about 750 ° C. or less.

熱分解炉3で発生した熱分解ガス4は熱分解炉3の後段に設けた熱分解油生成装置6に導入され、間接冷却式熱交換器通過後の熱分解ガス冷却媒体10と向流で接触させて熱分解ガス中に含まれている重油留分を凝縮させて熱分解油7を生成し、生成した熱分解油7を熱分解油生成装置6内に一時貯留する。熱分解油凝縮後の熱分解ガス11は次工程以降で軽油成分回収、ガス精製等を行って可燃性ガスを回収する。熱分解ガス4と間接冷却式熱交換器通過後の熱分解ガス冷却媒体10とを向流で接触させる方法としては充填塔方式、濡れ壁方式、スプレー方式、スクラバー方式など蒸気凝縮やガス吸収等で用いられている一般的な方法が適用可能である。熱分解油生成装置6内に一時貯留した熱分解油7は、続いて撹拌機13を備えた熱分解油混合装置14に導入し、熱分解油混合装置14内で熱分解油15を撹拌混合して熱分解油中アスファルテン成分を油泥スラッジとして析出させる。アスファルテン成分が油泥スラッジ化した熱分解油は送油ポンプ16により油泥スラッジ分離装置17に送られ、油泥スラッジ18を分離除去した後に製品油19として回収する。   The pyrolysis gas 4 generated in the pyrolysis furnace 3 is introduced into a pyrolysis oil generator 6 provided at the rear stage of the pyrolysis furnace 3 and counterflows with the pyrolysis gas cooling medium 10 after passing through the indirect cooling heat exchanger. The pyrolysis oil 7 is produced by condensing the heavy oil fraction contained in the pyrolysis gas by contacting them, and the produced pyrolysis oil 7 is temporarily stored in the pyrolysis oil generator 6. The pyrolysis gas 11 after the pyrolysis oil condensation collects light oil components, gas purification, etc. in the subsequent steps and collects the combustible gas. As a method of bringing the pyrolysis gas 4 and the pyrolysis gas cooling medium 10 after passing through the indirect cooling heat exchanger into contact with each other in a countercurrent manner, steam condensation, gas absorption, such as a packed tower method, a wet wall method, a spray method, a scrubber method, etc. The general method used in is applicable. The pyrolysis oil 7 temporarily stored in the pyrolysis oil generator 6 is subsequently introduced into a pyrolysis oil mixing device 14 equipped with a stirrer 13, and the pyrolysis oil 15 is stirred and mixed in the pyrolysis oil mixing device 14. Then, the asphaltene component in the pyrolysis oil is precipitated as oil mud sludge. The pyrolyzed oil in which the asphaltene component is converted to oil mud sludge is sent to the oil mud sludge separation device 17 by the oil feed pump 16, and the oil mud sludge 18 is separated and removed, and then recovered as product oil 19.

熱分解油混合工程に求められる機能は、熱分解油中のアスファルテン成分同士を接触して凝集させるために熱分解油中を混合することにあるため、熱分解油混合工程の混合手段については特に限定するところはなく液体流体の一般的な混合手段が適用可能である。図1の撹拌装置を備えた混合槽による方法の他、例えば図2に示すように熱分解油貯蔵タンク22、熱分解油循環ライン25、送液ポンプ24、油泥スラッジ分離装置20を設け、熱分解油を熱分解油回収装置6と熱分解油一時貯留槽22の間で循環させることによって混合させる方法も適用が可能である。一方、超音波振動器等の分子振動に基づく混合手段については、アスファルテン成分の凝集が阻害される恐れがあり好ましくない。   The function required for the pyrolysis oil mixing step is to mix the pyrolysis oil in order to bring the asphaltene components in the pyrolysis oil into contact and agglomerate with each other. There is no limitation, and a general mixing means of liquid fluid can be applied. In addition to the method using the mixing tank equipped with the stirring device of FIG. 1, for example, as shown in FIG. 2, a pyrolysis oil storage tank 22, a pyrolysis oil circulation line 25, a liquid feed pump 24, and an oil mud sludge separation device 20 are provided. A method of mixing the cracked oil by circulating it between the pyrolyzed oil recovery device 6 and the pyrolyzed oil temporary storage tank 22 is also applicable. On the other hand, a mixing means based on molecular vibration such as an ultrasonic vibrator is not preferable because aggregation of asphaltene components may be inhibited.

熱分解油混合工程での処理時間としては、熱分解油混合装置内での熱分解油の平均滞留時間を1hr以上とするのが望ましく、平均滞留時間を1hr以下に短縮するとアスファルテン成分の粒子成長が不十分となる恐れがあり好ましくない。   As the processing time in the pyrolysis oil mixing step, it is desirable that the average residence time of pyrolysis oil in the pyrolysis oil mixing device is 1 hr or more, and when the average residence time is shortened to 1 hr or less, asphaltene component particle growth May be insufficient.

熱分解油混合工程における熱分解油の平均滞留時間の調整方法としては、例えば熱分解油混合装置14内あるいは熱分解油一時貯留槽22内や熱分解油生成装置6内での熱分解油体積を液面レベル計等を用いて一定レベルに維持すると共に熱分解油混合装置14内あるいは熱分解油一時貯留槽22内からの熱分解油の抜出し速度を測定し、次式
(熱分解油混合装置や熱分解油一時貯留槽内での熱分解油体積)/(熱分解油の抜出し速度)≦1時間
を満足するように熱分解油の抜出し速度を調整する方法など、連続槽型反応器等での滞留時間調整手段として考えられる方法の適用が可能である。
As a method for adjusting the average residence time of pyrolysis oil in the pyrolysis oil mixing step, for example, the pyrolysis oil volume in the pyrolysis oil mixing device 14, the pyrolysis oil temporary storage tank 22, or the pyrolysis oil generation device 6 is used. Is maintained at a constant level using a liquid level meter or the like, and the extraction speed of the pyrolysis oil from the pyrolysis oil mixing device 14 or the pyrolysis oil temporary storage tank 22 is measured. Continuous tank reactor, such as a method of adjusting the extraction rate of pyrolysis oil so that the volume of pyrolysis oil in the device or the pyrolysis oil temporary storage tank) / (pyrolysis oil extraction rate) ≦ 1 hour is satisfied It is possible to apply a method considered as a residence time adjusting means.

油泥スラッジ分離装置17、20の方式としては特に限定するところはなく、遠心分離方式やフィルターろ過方式など既存のスラッジ類や汚泥類の分離方式が適用可能である。   The method of the oil / sludge sludge separators 17 and 20 is not particularly limited, and existing sludge and sludge separation methods such as a centrifugal separation method and a filter filtration method can be applied.

ゴム系廃棄物1−aと共に熱分解処理するのに適した廃プラスチック1−bの種類としては、産廃プラスチック系のポリプロピレンやポリエチレンの他、ポリプロピレンおよびポリエチレンを主要構成成分とする容器包装リサイクル法で規定される「その他プラスチック製容器包装(以降、容リプラと略記)」が挙げられる。廃プラスチック1−bの混合比率の適正値は、廃プラスチックの性状や熱分解油と混合する油の性状等によって異なるため、予めゴム系廃棄物と廃プラスチック混合比の異なる熱分解実験を実施して熱分解油を各々生成し、混合対象とする油と熱分解油とによるスラッジ発生量評価試験を行って適正値を求める方法を採用することが望ましい。適正値の一例としてゴム系廃棄物に容リプラ混合して熱分解処理して得た動粘度2×10-62/secの熱分解油を市販のA重油(動粘度2.4 ×10-62/sec、密度0.86g/cm3、キシレン当量0、アニリン点62℃)に混合した例では、廃棄物全処理量に対して容リプラを20%以上混合すれば、熱分解油とA重油との混合時のスラッジ生成を大きく軽減することが可能である。また、A重油の主基材である軽油類と混合する場合についてもA重油の場合と同様、本発明を用いることによって熱分解油と混合する際のスラッジ発生を大きく軽減することが可能となる。 The types of waste plastics 1-b suitable for thermal decomposition treatment with rubber waste 1-a include the container packaging recycling method that uses polypropylene and polyethylene as main components in addition to industrial waste plastics such as polypropylene and polyethylene. “Other plastic containers and packaging (hereinafter abbreviated as“ Ripula ”)” is specified. The appropriate value for the mixing ratio of waste plastic 1-b varies depending on the properties of the waste plastic and the properties of the oil mixed with the pyrolysis oil. It is desirable to employ a method in which each pyrolyzed oil is generated, and an appropriate value is obtained by performing a sludge generation amount evaluation test using the oil to be mixed and the pyrolyzed oil. As an example of an appropriate value, a pyrolysis oil having a kinematic viscosity of 2 × 10 −6 m 2 / sec obtained by mixing a plastic waste with a rubber waste and thermally decomposing it is commercially available heavy oil A (kinematic viscosity 2.4 × 10 -6 m 2 / sec, density 0.86 g / cm 3 , xylene equivalent 0, aniline point 62 ° C.) It is possible to greatly reduce sludge generation when mixing oil and A heavy oil. Moreover, also when mixing with light oils which are the main base material of A heavy oil, it becomes possible to reduce the sludge generation | occurrence | production at the time of mixing with pyrolysis oil by using this invention similarly to the case of A heavy oil. .

(実施例1)
図1に示した本発明を用いて、ゴム系廃棄物1−aを処理規模80t/日、容リプラ1−bを処理規模20t/日で同時に処理し重油相当の熱分解油を製造した例を示す。熱分解炉3はLNG焚き熱風発生炉を備えた外熱式ロータリーキルンを用い、熱分解油生成装置6は熱分解ガス4を冷却媒体と向流で接触させて油状成分を熱分解油7として凝縮させるとともに生成した熱分解油7を熱分解ガスの冷却媒体8として使用する直接熱交換方式を用い、油泥スラッジ分離装置17は遠心分離機を用いた。廃棄物を熱分解炉3に装入して熱分解ガス4と熱分解残渣5を生成し、熱分解ガス4を熱分解油生成装置6に導入して熱分解ガス冷却媒体8、10と接触させて熱分解油7を約20m3/日得た。得られた熱分解油7を熱分解油混合装置14内で平均滞留時間1hrで撹拌混合して油泥スラッジを析出させ、析出した油泥スラッジを遠心分離装置17で分離除去し、油泥スラッジ18分離後の熱分解油を製品油19として回収した。回収した製品油は引火点60℃〜90℃、動粘度(測定温度50℃)1.0×10-5〜2.5×10-52/sec(10〜25cSt)となりA重油クラスの低粘度を有する油であった。製品油に市販のA重油(動粘度2.4 ×10-62/sec、密度0.86g/cm3、キシレン当量0、アニリン点62℃)を混合し、製品油:A重油混合比が9:1.6:4.3:7.1:9の4条件でのスラッジ析出量を評価したとこと、混合油の50hr経過後のスラッジ析出量はいずれの混合比においても0.1質量%以下であった。
(実施例2)
図2に示した本発明を用いて、実施例1と同様にゴム系廃棄物1−aを処理規模80t/日、容リプラ1−bを処理規模20t/日で同時に処理し重油相当の熱分解油を製造した例を示す。熱分解炉3はLNG焚き熱風発生炉を備えた外熱式ロータリーキルンを用い、熱分解油生成装置6は熱分解ガス4を冷却媒体10と向流で接触させて油状成分を熱分解油として凝縮させるとともに生成した熱分解油7を熱分解ガスの冷却媒体8として使用する直接熱交換方式を用い、油泥スラッジ分離装置20は遠心分離機を用いた。廃棄物1を熱分解炉3に装入して熱分解ガス4と熱分解残渣5を生成し、熱分解ガス4を熱分解油生成装置6に導入して熱分解ガス冷却媒体10と接触させて熱分解油7を約20m3/日得た。得られた熱分解油7を熱分解油回収装置と熱分解油一時貯留槽22の間で平均滞留時間1hrで循環させて油泥スラッジを析出させ、析出した油泥スラッジ21を遠心分離装置20で分離除去し、油泥スラッジ分離後の熱分解油23を製品油26として回収した。回収した製品油は引火点60℃〜90℃、動粘度(測定温度50℃)1.0×10-5〜2.5×10-52/sec(10〜25cSt)となりA重油クラスの低粘度を有する油であった。製品油に市販のA重油(動粘度2.4 ×10-62/sec、密度0.86g/cm3、キシレン当量0、アニリン点62℃)を混合し、製品油:A重油混合比が9:1、6:4、3:7、1:9の4条件でのスラッジ析出量を評価したとこと、混合油の50hr経過後のスラッジ析出量はいずれの混合比においても0.1質量%以下であった。
(実施例3)
実施例3として、熱分解油混合装置内での熱分解油の平均滞留時間を0.5hrとし、その他条件は実施例1と同一条件としてゴム系廃棄物を処理規模80t/日、容リプラを処理規模20t/日で同時に処理し重油相当の熱分解油を製造した例を示す。油泥スラッジ分離後の熱分解油を製品油として回収し、実施例1と同様に市販のA重油(動粘度2.4 ×10-62/sec、密度0.86g/cm3、キシレン当量0、アニリン点62℃)を混合し、製品油:A重油混合比が9:1、6:4、3:7、1:9の4条件でのスラッジ析出量を評価したところ、混合油の50hr経過後のスラッジ析出量は、製品油:A重油混合比9:1条件で0.1質量%以下、混合比6:4条件で0.3質量%、混合比3:7条件で0.5質量%、混合比1:9条件で0.1質量%以下となり、実施例1、実施例2に比べA重油との混合安定性が低い熱分解油が得られた。尚、前述のようなスラッジ生成挙動を示す原因は、A重油の混合比が低い条件下(製品油:A重油9:1)では混合油中のアスファルテン成分の安定性がまだ維持されているが、A重油混合比が上昇(製品油:A重油6:4)するとアスファルテン成分の安定性が低下してスラッジ析出が生じ、さらにA重油混合比が上昇してA重油リッチ状態(製品油:A重油1:9)に達するとアスファルテン成分の濃度や含有量が低くなってスラッジ生成が生じ難くなるためであると考えられる。
(比較例1)
比較例1として、図1に示した本発明を用いてゴム系廃棄物を単独処理し、処理規模100t/日で重油相当の熱分解油を製造した例を示す。熱分解炉は実施例1と同様にLNG焚き熱風発生炉を備えた外熱式ロータリーキルンを用い、熱分解油生成装置は実施例1と同様に熱分解ガスを冷却媒体と向流で接触させて油状成分を熱分解油として凝縮させるとともに生成した熱分解油を熱分解ガスの冷却媒体として使用する直接熱交換方式を用い、油泥スラッジ分離装置は実施例1と同様に遠心分離機を用いた。廃棄物を熱分解炉に装入して熱分解ガスと熱分解残渣を生成し、熱分解ガスを熱分解油生成装置に導入して熱分解ガス冷却媒体と接触させて熱分解油を約15m3/日得た。得られた熱分解油を熱分解油混合装置内で平均滞留時間1hr撹拌混合した後遠心分離装置を通過させ、遠心分離装置通過後の熱分解油を製品油として回収した。回収した製品油は引火点60℃〜90℃、動粘度(測定温度50℃)1.0×10-5〜2.5×10-52/sec(10〜25cSt)となり実施例1と同様A重油クラスの低粘度を有する油であった。製品油に市販のA重油(動粘度2.4 ×10-62/sec、密度0.86g/cm3、キシレン当量0、アニリン点62℃)を混合し、製品油:A重油混合比が9:1、6:4、3:7、1:9の4条件でのスラッジ析出量を評価したところ、混合油の50hr経過後のスラッジ析出量は、製品油:A重油混合比9:1条件で0.1質量%以下、混合比6:4条件で0.5質量%、混合比3:7条件で1質量%、混合比1:9条件で0.1質量%以下となり、実施例1〜3に比べA重油との混合安定性が低い熱分解油が得られた。
(Example 1)
Example of producing pyrolysis oil equivalent to heavy oil by simultaneously treating rubber waste 1-a at a treatment scale of 80 t / day and volumetric plasticizer 1-b at a treatment scale of 20 t / day using the present invention shown in FIG. Indicates. The pyrolysis furnace 3 uses an externally heated rotary kiln equipped with an LNG-fired hot air generator, and the pyrolysis oil generator 6 brings the pyrolysis gas 4 into contact with the cooling medium in countercurrent to condense the oily components as pyrolysis oil 7. In addition, a direct heat exchange method in which the pyrolysis oil 7 generated and used as the cooling medium 8 for the pyrolysis gas was used, and the oil mud sludge separation device 17 was a centrifuge. Waste is charged into the pyrolysis furnace 3 to generate pyrolysis gas 4 and pyrolysis residue 5, and the pyrolysis gas 4 is introduced into the pyrolysis oil generator 6 to come into contact with the pyrolysis gas cooling media 8 and 10. As a result, about 20 m 3 / day of pyrolysis oil 7 was obtained. The obtained pyrolyzed oil 7 is stirred and mixed in the pyrolyzed oil mixing device 14 with an average residence time of 1 hr to precipitate oil mud sludge, and the precipitated oil mud sludge is separated and removed by the centrifugal separator 17, and the oil mud sludge 18 is separated. Was recovered as product oil 19. The recovered product oil has a flash point of 60 ° C to 90 ° C and a kinematic viscosity (measured temperature of 50 ° C) of 1.0 x 10 -5 to 2.5 x 10 -5 m 2 / sec (10 to 25 cSt). It was an oil having a low viscosity. Commercial oil A heavy oil (kinematic viscosity 2.4 × 10 −6 m 2 / sec, density 0.86 g / cm 3 , xylene equivalent 0, aniline point 62 ° C.) is mixed with product oil, and product oil: heavy oil A mixture ratio Of 9: 1.6: 4.3: 7.1: 9, the sludge precipitation amount under the four conditions was evaluated, and the sludge precipitation amount after 50 hours of the mixed oil was 0.1 at any mixing ratio. It was below mass%.
(Example 2)
Using the present invention shown in FIG. 2, similar to Example 1, the rubber waste 1-a is treated simultaneously at a treatment scale of 80 t / day, and the volume of rippla 1-b is treated at a treatment scale of 20 t / day. The example which manufactured cracked oil is shown. The pyrolysis furnace 3 uses an externally heated rotary kiln equipped with an LNG-fired hot air generator, and the pyrolysis oil generator 6 brings the pyrolysis gas 4 into contact with the cooling medium 10 in a counterflow to condense the oily components as pyrolysis oil. In addition, a direct heat exchange method in which the pyrolysis oil 7 generated and used as the cooling medium 8 of the pyrolysis gas is used, and the oil mud sludge separation device 20 uses a centrifuge. The waste 1 is charged into the pyrolysis furnace 3 to generate pyrolysis gas 4 and pyrolysis residue 5, and the pyrolysis gas 4 is introduced into the pyrolysis oil generator 6 and brought into contact with the pyrolysis gas cooling medium 10. As a result, about 20 m 3 / day of pyrolysis oil 7 was obtained. The obtained pyrolysis oil 7 is circulated between the pyrolysis oil recovery apparatus and the pyrolysis oil temporary storage tank 22 with an average residence time of 1 hr to precipitate oil mud sludge, and the precipitated oil mud sludge 21 is separated by the centrifugal separator 20. The pyrolysis oil 23 after removal and separation of the oil mud sludge was recovered as product oil 26. The recovered product oil has a flash point of 60 ° C to 90 ° C and a kinematic viscosity (measured temperature of 50 ° C) of 1.0 x 10 -5 to 2.5 x 10 -5 m 2 / sec (10 to 25 cSt). It was an oil having a low viscosity. Commercial oil A heavy oil (kinematic viscosity 2.4 × 10 −6 m 2 / sec, density 0.86 g / cm 3 , xylene equivalent 0, aniline point 62 ° C.) is mixed with product oil, and product oil: heavy oil A mixture ratio Of 9: 1, 6: 4, 3: 7, and 1: 9, the sludge precipitation amount after 50 hours of the mixed oil was 0.1 at any mixing ratio. It was below mass%.
(Example 3)
In Example 3, the average residence time of the pyrolysis oil in the pyrolysis oil mixing device was 0.5 hr, and the other conditions were the same as in Example 1. An example is shown in which a pyrolysis oil equivalent to heavy oil is produced at the same processing scale of 20 t / day. The pyrolysis oil after separation of the oil / sludge sludge was recovered as a product oil, and the same as in Example 1, a commercially available heavy oil A (kinematic viscosity 2.4 × 10 −6 m 2 / sec, density 0.86 g / cm 3 , xylene equivalent) 0, aniline point 62 ° C.), and the amount of sludge deposited under four conditions of product oil: A heavy oil mixing ratio of 9: 1, 6: 4, 3: 7, 1: 9 was evaluated. After 50 hours, the amount of sludge deposited was 0.1% by mass or less under a 9: 1 mixture ratio of product oil: A heavy oil, 0.3% by mass under a 6: 4 condition, and 0. A pyrolysis oil having a mixing stability with A heavy oil lower than that of Example 1 and Example 2 was obtained at 5% by mass and a mixing ratio of 1: 9 under 0.1% by mass. The cause of the sludge generation behavior as described above is that the stability of the asphaltene component in the mixed oil is still maintained under the condition where the mixing ratio of the A heavy oil is low (product oil: A heavy oil 9: 1). As the A fuel oil mixture ratio increases (product oil: A fuel oil 6: 4), the stability of the asphaltene component decreases and sludge precipitation occurs. This is probably because when the fuel oil reaches 1: 9), the concentration and content of the asphaltene component are lowered, and sludge formation is less likely to occur.
(Comparative Example 1)
As Comparative Example 1, an example is shown in which the present invention shown in FIG. 1 is used to treat rubber waste alone to produce pyrolysis oil equivalent to heavy oil at a treatment scale of 100 t / day. As in Example 1, the pyrolysis furnace uses an externally heated rotary kiln equipped with an LNG-fired hot air generator, and the pyrolysis oil generator makes the pyrolysis gas contact with the cooling medium countercurrently, as in Example 1. A direct heat exchange system using the oily component as a pyrolysis oil and using the generated pyrolysis oil as a cooling medium for the pyrolysis gas was used. Waste is charged into a pyrolysis furnace to generate pyrolysis gas and pyrolysis residue, and the pyrolysis gas is introduced into the pyrolysis oil generator and brought into contact with the pyrolysis gas cooling medium so that the pyrolysis oil is about 15 m. 3 / day. The obtained pyrolyzed oil was stirred and mixed in the pyrolyzed oil mixing device for an average residence time of 1 hr and then passed through a centrifugal separator, and the pyrolyzed oil after passing through the centrifugal separator was recovered as product oil. The recovered product oil had a flash point of 60 ° C. to 90 ° C. and a kinematic viscosity (measured temperature of 50 ° C.) of 1.0 × 10 −5 to 2.5 × 10 −5 m 2 / sec (10 to 25 cSt). Similarly, it was an oil having a low viscosity of A heavy oil class. Commercial oil A heavy oil (kinematic viscosity 2.4 × 10 −6 m 2 / sec, density 0.86 g / cm 3 , xylene equivalent 0, aniline point 62 ° C.) is mixed with product oil, and product oil: heavy oil A mixture ratio The sludge precipitation amount under four conditions of 9: 1, 6: 4, 3: 7, and 1: 9 was evaluated. The sludge precipitation amount after 50 hours of the mixed oil was 9: 0.1% by mass or less under one condition, 0.5% by mass with a mixing ratio of 6: 4, 1% by mass with a mixing ratio of 3: 7, and 0.1% by mass or less with a mixing ratio of 1: 9. The pyrolysis oil with low mixing stability with A heavy oil compared with Examples 1-3 was obtained.

また、A重油の主基材である軽油についても前述のA重油の場合と同様な結果となった。   Moreover, the result similar to the case of the above-mentioned A heavy oil was obtained also about the light oil which is the main base material of A heavy oil.

本発明の第1の発明に係る装置の設備例を示すブロック図である。It is a block diagram which shows the equipment example of the apparatus which concerns on 1st invention of this invention. 本発明の第1の発明に係る装置の別の設備例を示すブロック図である。It is a block diagram which shows another example of an installation of the apparatus which concerns on 1st invention of this invention.

符号の説明Explanation of symbols

1−a ゴム系廃棄物
1−b 廃プラスチック
2 廃棄物供給装置
3 熱分解炉
4 熱分解ガス
5 熱分解残渣
6 熱分解油生成装置
7 熱分解油
8 熱分解ガス冷却媒体
9 間接冷却式熱交換器
10 間接冷却式熱交換器通過後の熱分解ガス冷却媒体
11 熱分解油凝縮後熱分解ガス
12 熱分解油移送ライン
13 撹拌機
14 熱分解油混合装置
15 熱分解油
16 送液ポンプ
17 油泥スラッジ分離装置
18 油泥スラッジ
19 製品油
20 油泥スラッジ分離装置
21 油泥スラッジ
22 熱分解油一時貯留槽
23 熱分解油
24 送液ポンプ
25 熱分解油循環ライン
26 製品油
1-a Rubber waste 1-b Waste plastic 2 Waste supply device 3 Pyrolysis furnace 4 Pyrolysis gas 5 Pyrolysis residue 6 Pyrolysis oil generator 7 Pyrolysis oil 8 Pyrolysis gas cooling medium 9 Indirect cooling heat Exchanger 10 Pyrolysis gas cooling medium after passing through indirectly cooled heat exchanger 11 Pyrolysis gas after pyrolysis oil condensation 12 Pyrolysis oil transfer line 13 Stirrer 14 Pyrolysis oil mixing device 15 Pyrolysis oil 16 Liquid feed pump 17 Oil mud sludge separator 18 Oil mud sludge 19 Product oil 20 Oil mud sludge separator 21 Oil mud sludge 22 Pyrolysis oil temporary storage tank 23 Pyrolysis oil 24 Liquid feed pump 25 Pyrolysis oil circulation line 26 Product oil

Claims (5)

ゴム系廃棄物を熱分解して熱分解ガスを生成する熱分解工程と、前記生成した熱分解ガスを冷却して熱分解ガス中の重油留分を凝縮させて熱分解油を生成する熱分解油生成工程とを有するゴム系廃棄物からの熱分解油の製造方法において、前記熱分解工程でゴム系廃棄物と共にポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチックを熱分解処理し、前記熱分解油生成工程の後段に生成した熱分解油を混合する熱分解油混合工程および前記混合により生成する油泥スラッジを分離する油泥スラッジ分離工程を設け、前記油泥スラッジ分離後の熱分解油を回収することを特徴とするゴム系廃棄物からの熱分解油の製造方法。   Pyrolysis process that pyrolyzes rubber waste to generate pyrolysis gas, and pyrolysis that cools the generated pyrolysis gas and condenses the heavy oil fraction in the pyrolysis gas to produce pyrolysis oil In the method for producing pyrolyzed oil from rubber waste having an oil production step, one or more kinds of waste plastics such as polypropylene and polyethylene are pyrolyzed together with rubber waste in the pyrolysis step, A pyrolysis oil mixing step for mixing the pyrolysis oil generated after the pyrolysis oil generation step and an oil mud sludge separation step for separating the oil mud sludge generated by the mixing are provided, and the pyrolysis oil after the oil mud sludge separation is provided. A method for producing pyrolytic oil from rubber waste, characterized in that it is collected. 前記廃プラスチックが容器包装リサイクル法で規定される「その他プラスチック製容器包装」であることを特徴とする請求項1記載のゴム系廃棄物からの熱分解油の製造方法。   2. The method for producing pyrolytic oil from rubber waste according to claim 1, wherein the waste plastic is "other plastic container and packaging" defined by the Container and Packaging Recycling Law. 前記熱分解油生成工程での熱分解油の平均滞留時間が1hr以上であることを特徴とする請求項1または2記載のゴム系廃棄物からの熱分解油の製造方法。   The method for producing pyrolytic oil from rubber waste according to claim 1 or 2, wherein an average residence time of the pyrolytic oil in the pyrolytic oil production step is 1 hr or more. 請求項1〜3のいずれか1項に記載の方法で製造した熱分解油を、更に、A重油または軽油と混合して製造することを特徴とするゴム系廃棄物からの熱分解油の製造方法。   The pyrolysis oil produced by the method according to any one of claims 1 to 3 is further mixed with A heavy oil or light oil to produce the pyrolysis oil from rubber waste. Method. ゴム系廃棄物にポリプロピレン系、ポリエチレン系のいずれか一種類以上の廃プラスチックを混合して熱分解処理して熱分解ガスを生成させる熱分解炉と、前記生成した熱分解ガスを冷却して熱分解ガス中の重油留分を凝縮して熱分解油を生成する熱分解油生成装置と、前記生成した熱分解油を混合する熱分解油混合装置と、前記混合装置内で生成した油泥スラッジを分離除去するための油泥スラッジ分離装置とを備えることを特徴とするゴム系廃棄物からの熱分解油の製造装置。   A pyrolysis furnace that mixes one or more types of waste plastics of polypropylene and polyethylene with rubber waste and pyrolyzes it to generate pyrolysis gas, and heats the generated pyrolysis gas by cooling it. A pyrolysis oil generator for condensing a heavy oil fraction in cracked gas to generate pyrolysis oil, a pyrolysis oil mixing device for mixing the generated pyrolysis oil, and an oil mud sludge generated in the mixer An apparatus for producing pyrolysis oil from rubber waste, comprising an oil mud sludge separation device for separating and removing.
JP2006318765A 2006-11-27 2006-11-27 Method and apparatus for producing pyrolysis oil from rubber waste Active JP4916849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318765A JP4916849B2 (en) 2006-11-27 2006-11-27 Method and apparatus for producing pyrolysis oil from rubber waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318765A JP4916849B2 (en) 2006-11-27 2006-11-27 Method and apparatus for producing pyrolysis oil from rubber waste

Publications (2)

Publication Number Publication Date
JP2008133321A true JP2008133321A (en) 2008-06-12
JP4916849B2 JP4916849B2 (en) 2012-04-18

Family

ID=39558386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318765A Active JP4916849B2 (en) 2006-11-27 2006-11-27 Method and apparatus for producing pyrolysis oil from rubber waste

Country Status (1)

Country Link
JP (1) JP4916849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093860B2 (en) 2013-02-20 2018-10-09 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
CN113173686A (en) * 2021-04-26 2021-07-27 徐州无废城市技术研究院有限公司 Comprehensive treatment system and method for oil sludge
WO2023141353A1 (en) * 2022-01-24 2023-07-27 Baker Hughes Oilfield Operations Llc Stabilizing asphaltene in crude oil using waste plastic antifoulants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2008063490A (en) * 2006-09-08 2008-03-21 Kayaba System Machinery Kk Dry distillation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2008063490A (en) * 2006-09-08 2008-03-21 Kayaba System Machinery Kk Dry distillation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093860B2 (en) 2013-02-20 2018-10-09 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
EP2956524B1 (en) * 2013-02-20 2020-04-08 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
US10717934B2 (en) 2013-02-20 2020-07-21 Recycling Technologies Ltd. Apparatus for treating waste comprising mixed plastic waste
US10760003B2 (en) 2013-02-20 2020-09-01 Recycling Technologies Ltd Process and apparatus for treating waste comprising mixed plastic waste
CN113173686A (en) * 2021-04-26 2021-07-27 徐州无废城市技术研究院有限公司 Comprehensive treatment system and method for oil sludge
WO2023141353A1 (en) * 2022-01-24 2023-07-27 Baker Hughes Oilfield Operations Llc Stabilizing asphaltene in crude oil using waste plastic antifoulants

Also Published As

Publication number Publication date
JP4916849B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
US20180355256A1 (en) Production of hydrocarbon fuels from plastics
JP5144020B2 (en) Waste oiling method
US10655070B2 (en) Hybrid thermal process to separate and transform contaminated or uncontaminated hydrocarbon materials into useful products, uses of the process, manufacturing of the corresponding system and plant
AU2017251761A1 (en) Zone-delineated pyrolysis apparatus for conversion of polymer waste
CN85109131A (en) The process for subsequent treatment of carbonaceous wastes and biomass
CN1455809A (en) Asphalt and resin production to integration of solent deasphalting and gasification
JP2001523557A (en) Treatment of refinery effluent
JP2534461B2 (en) Syngas production method
JP4916849B2 (en) Method and apparatus for producing pyrolysis oil from rubber waste
JP2003321682A (en) Method for treating waste plastic
KR20190104050A (en) Power generation system and process
JP2784270B2 (en) Tank residual oil waste recovery method
KR20090028173A (en) Method for emulsifying waste matter
KR20090078006A (en) A motor car and machinery of used lubricating oil refining process at the same time
JP4154929B2 (en) Method for producing useful substances from plastic
CN103058482A (en) Method for treatment of oil sludge by thermal conversion
EP2809746B1 (en) Process for contacting one or more contaminated hydrocarbons
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
JP2019522067A (en) Hydrocarbon recycling of carbonizer hot gas
US20230357644A1 (en) Method and System for Treating Waste Plastic Material
DE102007051373B4 (en) Process and apparatus for recovering diesel or fuel oil from hydrocarbonaceous residues
JP2011006528A (en) Apparatus for forming oil from petrochemical waste
JP2004256636A (en) Liquefaction treatment apparatus for pet-containing waste plastic
CN113862018B (en) Method and system for producing vehicle fuel from waste plastics
CN1842584A (en) Recycling method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4916849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350