JP2008132556A - Overhead dressing method and overhead dressing device for grinding wheel - Google Patents

Overhead dressing method and overhead dressing device for grinding wheel Download PDF

Info

Publication number
JP2008132556A
JP2008132556A JP2006319528A JP2006319528A JP2008132556A JP 2008132556 A JP2008132556 A JP 2008132556A JP 2006319528 A JP2006319528 A JP 2006319528A JP 2006319528 A JP2006319528 A JP 2006319528A JP 2008132556 A JP2008132556 A JP 2008132556A
Authority
JP
Japan
Prior art keywords
dressing
straightness
correction
axis
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006319528A
Other languages
Japanese (ja)
Other versions
JP5030558B2 (en
Inventor
Tsukio Onoe
月雄 尾上
Yuichi Kiyama
裕一 木山
Fumihiro Sano
文宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP2006319528A priority Critical patent/JP5030558B2/en
Publication of JP2008132556A publication Critical patent/JP2008132556A/en
Application granted granted Critical
Publication of JP5030558B2 publication Critical patent/JP5030558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dressing method for increasing overhead dressing precision of a grinding wheel. <P>SOLUTION: In this dressing method for overhead-dressing the grinding wheel w by using a single grindstone dressing instrument 2 changing its position due to travel of a non-numerically controlled shaft 22 being not numerically controlled in the right and left directions and fixed to a numerically controlled vertical shaft 4, the non-numerically controlled right and left shafts are moved without moving the numerically controlled vertical shaft in advance to measure straightness S<SB>i</SB>for the vertical shaft at distance between pitches obtained by dividing stroke of the non-numerically controlled right and left shaft by each correction point p<SB>i</SB>, to calculate straightness correction amount ΔS<SB>i</SB>for the distance between pitches, and to start dressing of the grinding wheel by single grindstone dressing by using this straightness correction amount ΔS<SB>i</SB>as the correction amount for the vertical shaft. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車部品、電気・電子機器部品、金型部材等のワークの表面を平面研削する砥石車の頭上ドレッシング方法およびそれに用いる頭上ドレッシング装置に関する。   The present invention relates to an overhead dressing method for a grinding wheel for surface-grinding the surface of a workpiece such as an automobile part, an electrical / electronic equipment part, a mold member or the like, and an overhead dressing apparatus used therefor.

回転軸に水平方向に軸承された砥石車を、左右方向および鉛直(上下)方向に移動可能なドレッシング器具で頭上ドレッシングする方法は知られている(例えば、特許文献1および特許文献2参照。)。   A method of overhead dressing a grinding wheel supported in a horizontal direction on a rotating shaft with a dressing device capable of moving in a horizontal direction and a vertical (vertical) direction is known (see, for example, Patent Document 1 and Patent Document 2). .

例えば、所定のドレス量分だけ砥石車をドレッシングする単石ドレッシング器具と、ワーク(工作物)について砥石車で研削を実行しているときにドレッシング作業を行う旨の指示を与えるためのドレス割込指示手段と、前記ドレス割込指示手段からの指示が与えられたときに、前記ワーク研削の作業を中断し、前記単石ドレッシング器具の左右および上下の動作を制御して前記砥石車をドレッシングすると共に、当該ドレッシング作業が終了したときに、前記ワーク研削の作業を再開する制御手段と、を具備する研削装置が提案され、実施されている(例えば、特許文献1参照。)。   For example, a single stone dressing device that dresses a grinding wheel by a predetermined dress amount, and a dress interruption to give instructions to perform dressing work when grinding a workpiece (workpiece) with a grinding wheel When the instructions from the instruction means and the dress interruption instruction means are given, the work grinding operation is interrupted, and the grinding wheel is dressed by controlling the left and right and up and down movements of the single stone dressing device. At the same time, there has been proposed and implemented a grinding apparatus comprising a control means for resuming the work grinding work when the dressing work is completed (see, for example, Patent Document 1).

また、ワークを研削加工するための研削砥石車が着脱可能に装着される主軸と、この主軸を回転可能に支持するとともに、前記ワークに対して前記主軸の軸線方向を含む直交3軸方向に相対移動可能な主軸頭と、この主軸頭に対して前記主軸の軸線方向と直交する方向に相対移動可能に設けられたドレッシング装置本体と、このドレッシング装置本体に対して前記主軸の軸線方向と直交する方向に相対移動可能に設けられ、前記研削砥石をドレッシングするためのドレッサを回転可能に支持しているドレッサ支持体とを備え、前記ドレッサが前記研削砥石車をドレッシングする動作と前記研削砥石車が前記ワークを研削加工する動作とを同時に行う連続ドレッシング研削加工時には、前記ドレッサで前記研削砥石車をドレッシング可能なドレッシング位置に前記ドレッシング装置本体を移動させ、前記連続ドレッシング研削加工以外の通常の研削加工時には、前記ドレッサと前記ワークとが干渉しない待避位置に前記ドレッシング装置本体を移動させるようにした研削装置も提案されている(例えば、特許文献2参照。)。   In addition, a spindle on which a grinding wheel for grinding a workpiece is detachably mounted, and the spindle is rotatably supported, and relative to the workpiece in three orthogonal directions including the axial direction of the spindle. A movable spindle head, a dressing device main body provided to be movable relative to the spindle head in a direction orthogonal to the axial direction of the main shaft, and a perpendicular to the axial direction of the spindle relative to the dressing device main body A dresser support that is rotatably provided in a direction and supports a dresser for dressing the grinding wheel so as to be rotatable. The operation of the dresser dressing the grinding wheel and the grinding wheel During continuous dressing grinding that simultaneously performs the grinding operation of the workpiece, the dresser capable of dressing the grinding wheel with the dresser. A grinding apparatus is also proposed in which the dressing apparatus body is moved to a singing position, and the dressing apparatus body is moved to a retracted position where the dresser and the workpiece do not interfere during normal grinding other than the continuous dressing grinding process. (For example, see Patent Document 2).

さらに、数値制御されていない非数値制御軸の移動によって、位置変化を受ける他の軸の位置を補正する位置補正方式において、前記非数値制御軸の機械座標位置を記憶する機械座標位置レジスタと、前記非数値制御軸の位置検出器からのフィードバック信号によって、前記機械座標位置レジスタを更新するレジスタ更新手段と、予め測定された真直度補正データを格納する真直度補正データメモリと、前記機械座標位置に対応した真直度補正データを読み出して、前記非数値制御軸の移動によって位置変化する他の軸を補正する真直度補正を行う真直度補正手段と、を有する位置補正数値制御装置も提案されている。(例えば、特許文献3参照。)。   Further, in a position correction method for correcting the position of another axis that undergoes a position change by movement of a non-numeric control axis that is not numerically controlled, a machine coordinate position register that stores a machine coordinate position of the non-numeric control axis; Register update means for updating the machine coordinate position register by a feedback signal from a position detector of the non-numeric control axis, a straightness correction data memory for storing straightness correction data measured in advance, and the machine coordinate position Also, a position correction numerical control device having straightness correction means for reading straightness correction data corresponding to the above and performing straightness correction for correcting another axis whose position changes due to the movement of the non-numeric control axis has been proposed. Yes. (For example, refer to Patent Document 3).

上記位置補正数値制御装置のバージョンアップ版は、ファナック株式会社より"FANUC Series" 30-MODEL A,300-MODEL A, 300is-MODEL A の商品名で販売されている。 An upgraded version of the above-mentioned position correction numerical control device is sold by FANUC CORPORATION under the product names of “FANUC Series” 30 i -MODEL A, 300 i -MODEL A, 300 is -MODEL A.

特開2000−135675号公報JP 2000-135675 A 特開2000−237957号公報JP 2000-237957 A 特開平7−104812号公報JP-A-7-104812

前記特許文献2に記載の砥石車のドレッシング方法は回転ドレッサの移動方向2軸とも数値制御されているので両軸間の真直度もよく、砥石車のドレッシングを精度よく行うことができる。しかし、砥石車に切り込みを懸けるドレッサ(単石ドレッシング器具)の上下軸がサーボモータおよびボールネジの駆動で数値制御され、ドレッサの左右方向(砥石車の幅方向)移動軸が油圧シリンダ駆動のように非数値制御軸である場合、軸の移動距離が大きい場合に工作機械において生じる一方の軸の位置が変化することにより他軸の位置が変化する現象を解消するための位置補正が必要となるが、油圧シリンダ駆動軸が非数値制御軸であるため、かかる位置補正を数値制御することができない。   The grinding wheel dressing method described in Patent Document 2 is numerically controlled for both of the two moving directions of the rotary dresser, so that the straightness between the two axes is good and the grinding wheel can be dressed with high accuracy. However, the vertical axis of the dresser (single stone dressing device) that cuts the grinding wheel is numerically controlled by driving the servo motor and ball screw, and the horizontal axis of the dresser (width direction of the grinding wheel) is the hydraulic cylinder drive. If it is a non-numeric control axis, position correction is necessary to eliminate the phenomenon that the position of one axis changes due to the change of the position of one axis that occurs in the machine tool when the movement distance of the axis is large. Since the hydraulic cylinder drive shaft is a non-numeric control shaft, the position correction cannot be numerically controlled.

後者の単石ドレッシング器具を用いるドレッシング方法においては、単石ドレッシング器具の上下軸と単石ドレッシング器具の左右往復移動軸間の真直度が低くなるためにドレッシングされた砥石車の加工精度が低下する欠点がある。   In the latter dressing method using a single stone dressing device, since the straightness between the vertical axis of the single stone dressing device and the left and right reciprocating movement axis of the single stone dressing device is low, the processing accuracy of the dressed grinding wheel decreases. There are drawbacks.

本発明は、特許文献3記載の位置補正数値制御装置を単石ドレッシング器具による砥石車のドレッシング方法に応用することによって砥石車のドレッシング精度を向上させることを目的とする。   An object of the present invention is to improve the dressing accuracy of a grinding wheel by applying the position correction numerical control device described in Patent Literature 3 to a grinding wheel dressing method using a single stone dressing device.

請求項1の発明は、非数値制御で左右軸方向に移動可能であり、かつ、数値制御で上下方向に移動可能な上下軸に固定された単石ドレッシング器具を用いて回転軸に水平方向に軸承された砥石車を頭上ドレッシングする方法において、予め数値制御の上下軸を移動させないで非数値制御の左右軸を移動させて非数値制御の左右軸のストロークを各補正点数p(pは30〜1800の整数)で割ったピッチ間距離における上下軸への真直度Sを測定し、数値制御装置の真直度補正量記録部に入力し、ピッチ間距離を(b−a)、このピッチ間距離における真直度Sの最大値Smaxおよび最小値Sminとからこのピッチ間距離における真直度補正量ΔS=(Smax−Smin)/(b−a)として数値制御装置の真直度補正手段でこの各ピッチ間距離における各ピッチ誤差補正点位置における真直度補正量ΔSを演算し、この補正点位置における真直度補正量ΔSを上下軸の補正量として記録部に送信してドレッシング量を補正し、ついで、単石ドレッシングによる砥石車のドレッシングを開始することにより左右軸のピッチ誤差補正点pで上下軸にΔSの補正をかけたドレッシング量のドレッシングを行うことを特徴とする、砥石車の頭上ドレッシング方法を提供するものである。 The invention of claim 1 can be moved in the horizontal direction with respect to the rotary shaft using a single stone dressing device that can be moved in the left-right axis direction by non-numeric control and can be moved in the vertical direction by numerical control. In the method of overhead dressing a wheeled wheel, the left and right axes of non-numerical control are moved in advance without moving the vertical axes of numerical control, and the strokes of the left and right axes of non-numerical control are corrected by the correction points p i ( pi is The straightness S i to the vertical axis at the distance between the pitches divided by an integer of 30 to 1800 is measured and input to the straightness correction amount recording unit of the numerical controller, and the pitch distance is (b−a). From the maximum value S max and the minimum value S min of the straightness S i at the pitch distance, the straightness correction amount ΔS i = (S max −S min ) / (b−a) at the pitch distance Straightness correction means Calculating a straightness correction amount [Delta] S i in each pitch error correction point position in the pitch distance, correcting the dressing amount straightness correction amount [Delta] S i in the correction point position by sending the recording unit as a correction amount of the vertical axis Then, dressing of the grinding wheel is performed by starting dressing of the grinding wheel by single stone dressing and performing dressing amount dressing by correcting ΔS i on the vertical axis at the pitch error correction point p i on the horizontal axis. The present invention provides a method for overhead dressing of a car.

請求項2の発明は、油圧駆動で左右軸方向に移動可能であり、かつ、サーボモータで上下方向に移動可能な上下軸に固定された単石ドレッシング器具、予め測定された真直度補正データSを格納する真直度補正データメモリ、予め数値制御の上下軸を移動させないで油圧駆動の左右軸を移動させて非数値制御の左右軸のストロークを各補正点数p(pは30〜1800の整数)で割ったピッチ間距離における上下軸への真直度Sを測定し、数値制御装置の真直度補正量記録部に入力し、ピッチ間距離を(b−a)、このピッチ間距離における真直度Sの最大値Smaxおよび最小値Sminとからこのピッチ間距離における真直度補正量ΔS=(Smax−Smin)/(b−a)とする真直度補正手段、および、前記左右軸の位置検出器からのフィードバックパルスWPfによって前記上下軸座標位置レジスタを更新するレジスタ更新手段、とを有する頭上ドレッシング装置を提供するものである。 The invention of claim 2 is a monolithic dressing device fixed to the vertical axis that can be moved in the left-right axis direction by a hydraulic drive and that can be moved in the vertical direction by a servo motor, straightness correction data S measured in advance. straightness correction data memory for storing i, the respective correction points p i (p i strokes of the left and right axis without moving the vertical axis by moving the lateral axis of the hydraulic drive non-numeric control of the advance numerical control 30-1800 The straightness S i to the vertical axis at the distance between the pitches divided by an integer) is measured and input to the straightness correction amount recording unit of the numerical controller, and the distance between the pitches is (b−a). Straightness correction means for obtaining a straightness correction amount ΔS i = (S max −S min ) / (b−a) at the pitch distance from the maximum value S max and the minimum value S min of the straightness S i at , Position detection of the left and right axis And an overhead dressing device having register updating means for updating the vertical axis coordinate position register by a feedback pulse WPf from the device.

非数値制御軸と数値制御軸間の各位置座標における真直度の変位量を近似させてドレッシング補正量を定めるので、精度よく砥石車のドレッシングを行うことができる。   Since the dressing correction amount is determined by approximating the straight displacement amount at each position coordinate between the non-numeric control axis and the numerical control axis, the grinding wheel can be dressed with high accuracy.

以下、図を用いて本発明をさらに詳細に説明する。
図1は真直度補正量を求める図(a)と、真直度補正における移動軸のピッチ誤差補正点と移動軸の機械座標における真直度の相関図(b)を示す。図2は砥石車の幅方向の頭上左端から中央経由、右端に到るドレッシング量で、図2(a)はドレス補正量なしでドレス速度200rpmでドレッシングされた砥石車のドレッシング量分布図、図2(b)はドレス速度200rpm、補正点数128点、ドレス量1μmでドレッシングされた砥石車のドレッシング量分布図、図2(c)はドレス速度200rpm、補正点数128点、ドレス量2μmでドレッシングされた砥石車のドレッシング量分布図である。図3は頭上ドレッシング装置の一部を切り欠いた正面図、図4は頭上ドレッシング装置の側面図、図5は頭上ドレッシング装置の図3におけるB−B面方向から見た背面断面図、図6はドレッサ量補正制御装置の図、および、図7はドレッサ量補正を実施する研削装置の概略構成図である。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1A is a diagram for obtaining a straightness correction amount, and FIG. 1B is a correlation diagram of straightness in the machine coordinate of the moving axis and the pitch error correction point of the moving axis in the straightness correction. FIG. 2 shows the dressing amount from the overhead left end in the width direction of the grinding wheel to the right end through the center, and FIG. 2 (a) is a dressing amount distribution diagram of the grinding wheel dressed at a dress speed of 200 rpm without a dress correction amount. 2 (b) is a dressing amount distribution diagram of a grinding wheel dressed at a dressing speed of 200 rpm, a correction point of 128 points, and a dressing amount of 1 μm. FIG. 2C is a dressing rate of 200 rpm, a correction point of 128 points, and a dressing amount of 2 μm. It is a dressing amount distribution map of a grinding wheel. 3 is a front view of the overhead dressing device with a part cut away, FIG. 4 is a side view of the overhead dressing device, FIG. 5 is a rear cross-sectional view of the overhead dressing device as seen from the direction B-B in FIG. FIG. 7 is a diagram of a dresser amount correction control device, and FIG. 7 is a schematic configuration diagram of a grinding device that performs dresser amount correction.

図3、図4および図5に示す頭上ドレッシング装置1において、2は単石ドレッシング器具、3は単石ダイヤモンド、4はボールスプライン、5はボールネジ(上下軸)、6と7はドッグ、8はベアリング、9はACサーボモータ、10は端子台、11はピニオンギア、12は螺合体、13はモータ軸、14はカバー、15はオイルキャップ、16はモータカバーである。前記ボールスプライン4はボールネジ5の鉛直線上にあり螺合体12に固定されている。wは仮想線で示す砥石車である。   3, 4 and 5, 2 is a single stone dressing device, 3 is a single stone diamond, 4 is a ball spline, 5 is a ball screw (vertical axis), 6 and 7 are dogs, 8 is A bearing, 9 is an AC servo motor, 10 is a terminal block, 11 is a pinion gear, 12 is a screwed body, 13 is a motor shaft, 14 is a cover, 15 is an oil cap, and 16 is a motor cover. The ball spline 4 is on the vertical line of the ball screw 5 and is fixed to the screwed body 12. w is a grinding wheel indicated by a virtual line.

ボールスプライン4に固定された単石ドレッシング器具2は、ACサーボモータ9の回転駆動力をモータ軸13に固定されたピニオンギア11を介してギア14を回転駆動させ、ギア14を固定する螺合体12の内雌ネジを外挿するボールネジ5を回転駆動させることによりボールスプライン4の上下方向移動に連れて上下方向移動しる。下方向に単石ドレッシング器具2が移動したときは、砥石車wの外周に切り込みが可能である。切り込み量は、ACサーボモータ9の回転駆動量により制御される。   The single stone dressing device 2 fixed to the ball spline 4 is a screwed body that fixes the gear 14 by rotating the gear 14 through the pinion gear 11 fixed to the motor shaft 13 by the rotational driving force of the AC servo motor 9. The ball spline 4 is moved up and down as the ball spline 4 is moved up and down by rotationally driving the ball screw 5 for inserting the 12 internal female screws. When the single stone dressing device 2 moves downward, it can be cut into the outer periphery of the grinding wheel w. The cut amount is controlled by the rotational drive amount of the AC servo motor 9.

前記単石ドレッシング器具2は、スライド板21に下方向向きに固定され、該スライド板21右側は油圧シリンダー機構20のピストン(左右軸)22の先端側に留めピン25を介して固定具で固定され、スライドベース24上を左右方向(砥石幅方向)に滑走する。図示されていない油圧ポンプより油圧配管26、27、ソレノイドバルブ(図示されていない)を経由して油が油圧シリンダー23内のピストンの後側に供給されるとスライド板21は左方向に前進し、油がピストンの前側に供給されるとスライド板21は右方向に後退する。ピストン22の左右ストローク幅(実線で示す単石ダイヤモンドドレッシング器具2と仮想線で示す単石ダイヤモンドドレッシング器具2'間の距離)は、砥石車横幅の1.2〜1.5倍で十分である。   The single stone dressing device 2 is fixed to the slide plate 21 in the downward direction, and the right side of the slide plate 21 is fixed to the front end side of the piston (left and right axis) 22 of the hydraulic cylinder mechanism 20 with a fixing pin 25 via a fixing tool. Then, it slides on the slide base 24 in the left-right direction (grinding wheel width direction). When oil is supplied from a hydraulic pump (not shown) to the rear side of the piston in the hydraulic cylinder 23 via hydraulic pipes 26 and 27 and a solenoid valve (not shown), the slide plate 21 moves forward in the left direction. When the oil is supplied to the front side of the piston, the slide plate 21 moves backward in the right direction. The left-right stroke width of the piston 22 (distance between the single stone diamond dressing device 2 shown by the solid line and the single stone diamond dressing device 2 'shown by the phantom line) is sufficient to be 1.2 to 1.5 times the lateral width of the grinding wheel. .

スライドベース24の取付板28は、研削装置本体の砥石頭の上に砥石軸と平行に砥石頭ハウジング30にボルト29および皿バネ31を用いて固定される。32および33は保護カバーである。 The mounting plate 28 of the slide base 24 is fixed on the grinding wheel head of the grinding apparatus main body to the grinding wheel head housing 30 in parallel with the grinding wheel axis by using bolts 29 and disc springs 31. 32 and 33 are protective covers.

図4および図5に見受けられるように頭上ドレッシング装置1の油圧シリンダー機構20側には機械座標を読み取る位置検出器スケール40が取り付けられている。位置検出器45からのフィードバックパルスWPfを受信したレジスタ更新手段50により前記上下軸5,6座標位置レジスタを更新する。図中、41はスケールカバー、42はスケールホルダーカバー、43はスケールブラケット、44はコマである。 As can be seen in FIGS. 4 and 5, a position detector scale 40 for reading machine coordinates is attached to the hydraulic cylinder mechanism 20 side of the overhead dressing apparatus 1. The register update means 50 that receives the feedback pulse WPf from the position detector 45 updates the vertical axis 5 and 6 coordinate position registers. In the figure, 41 is a scale cover, 42 is a scale holder cover, 43 is a scale bracket, and 44 is a top.

図6のドレッサ量補正制御装置において、レジスタ更新手段50は左右軸24の位置検出器45からのフィードバックパルスWPfよって、機械座標位置レジスタ51を更新する。また、真直度補正データメモリ53(64)には、左右軸24の機械座標位置に対応した真直度補正データSが格納される。真直度補正手段52は左右軸の機械座標位置に対応した真直度補正データΔY(ΔSに相当)を真直度補正データメモリ53から読み出して、上下軸指令値(ドレス量)Ycに加えて補正された指令(Yc+ΔY)で上下軸サーボモータ9を制御する。 In the dresser amount correction control device of FIG. 6, the register updating means 50 updates the machine coordinate position register 51 by the feedback pulse WPf from the position detector 45 of the left and right axis 24. Moreover, the straightness correction data memory 53 (64), straightness correction data S i corresponding to the machine coordinate position of the lateral axis 24 is stored. Straightness correcting means 52 reads the lateral axis of the machine coordinate positions straightness corresponding to the correction data [Delta] Y (corresponding to [Delta] S i) from straightness correction data memory 53, the vertical axis command value corrected by adding the (dress amount) Yc The vertical axis servo motor 9 is controlled by the command (Yc + ΔY).

図1aに示されるように、真直度補正データΔSは、予めサーボモータ数値制御の上下軸4,5を移動させないで油圧駆動の左右軸22を移動させて非数値制御の左右軸のストロークを各補正点数p(pは30〜180の整数)で割ったピッチ間距離における上下軸への真直度Sを測定し、数値制御装置の真直度補正量記録部に入力し、ピッチ間距離を(b−a)、このピッチ間距離における真直度Sの最大値Smax(図1aではα)および最小値Smin(図1aではβ)とからこのピッチ間距離における真直度補正量ΔS=(Smax−Smin)/(b−a)とする。図1aではΔS=(β−α)/(b−a)。 As shown in FIG. 1a, the straightness correction data ΔS i is obtained by moving the hydraulically driven left and right axis 22 without moving the servo motor numerically controlled vertical axes 4 and 5 in advance, and calculating the stroke of the non-numerically controlled left and right axes. The straightness S i to the vertical axis at the distance between the pitches divided by the number of correction points p i (p i is an integer of 30 to 180) is measured and input to the straightness correction amount recording unit of the numerical controller, distance (b-a), straightness correction amount in the inter-pitch distance from the (in Fig. 1a alpha) maximum value S max of straightness S i in the pitch distance and a minimum value S min (in FIG. 1a beta) Let ΔS i = (S max −S min ) / (b−a). In FIG. 1a, ΔS i = (β−α) / (b−a).

図1bに示されるように、機械座標の左右方向軸をX、上下方向軸をYとすると、真直度補正を行わないで上下軸のみをピッチ点p〜pへ移動させる指令を行った場合、単石ドレッシング器具2のX軸上の軌跡(点Aの軌跡)は左右軸の真直度誤差の軌跡(B部の軌跡)の影響を受けてしまうので、Y座標の真直度補正を行う。Y軸(移動軸)のみをピッチ点p〜pへ移動させる指令を行うと、B部がp〜pにあるときは真直度補正によりそれらに対応する真直度補正量ΔSからΔS(図1bではεからε4)がY軸に与えられる。このY軸の補正動作によりX軸とY軸をつなぐB部の軌跡がX軸の勾配の影響を受けたとしても、Y軸上の点A(単石ドレッシング器具2)の軌跡はX軸の勾配の影響が除去されたものとなっている。 As shown in FIG. 1b, if the horizontal axis of machine coordinates is X i and the vertical axis is Y i , a command to move only the vertical axis to pitch points p 1 to p i without straightness correction is given. If this is done, the trajectory on the X axis of the single stone dressing device 2 (the trajectory of point A) will be affected by the trajectory of the straightness error on the left and right axes (the trajectory of part B), so that the straightness of the Y coordinate is corrected. I do. When a command for moving only the Y axis (moving axis) to the pitch points p 1 to p i is issued, when the B portion is located at p 1 to p i , the straightness correction amount corresponding to the straightness correction amount ΔS 1 is used. ΔS i1 to ε 4 in FIG. 1b) is given to the Y axis. Even if the trajectory of the portion B connecting the X axis and the Y axis is affected by the gradient of the X axis by the correction operation of the Y axis, the trajectory of the point A (single stone dressing device 2) on the Y axis is The effect of the gradient is eliminated.

真直度補正データΔS作成ソフトウエアは、ファナック株式会社より"FANUC Series" 30-MODEL A,300-MODEL A, 300is-MODEL Aの商品名で販売されている。砥石車幅が大きくなると補正点数pも大きくなる。補正点数p30〜200では、"FANUC Series" 30-MODEL Aが用いられ、補正点数p300〜1000では、"FANUC Series" 300-MODEL Aが、補正点数p600〜2000では"FANUC Series" 300is-MODEL Aが用いられる。砥石車のドレッシングにおいては砥石車の幅およびドレス速度50〜300rpmから判断して"FANUC Series" 300-MODEL Aで十分である。 Straightness correction data ΔS i creation software is sold by FANUC Corporation under the product names of “FANUC Series” 30 i -MODEL A, 300 i -MODEL A, 300 is -MODEL A. As the grinding wheel width increases, the number of correction points p i also increases. In the correction points p i 30~200, "FANUC Series" 30 i -MODEL A is used, the correction point number p i 300 to 1000, is "FANUC Series" 300 i -MODEL A , the correction point number p i 600 to 2000 "FANUC Series" 300 is -MODEL A is used. In the grinding wheel dressing, "FANUC Series" 300 i- MODEL A is sufficient based on the grinding wheel width and the dressing speed of 50 to 300 rpm.

図7のドレッサ量補正を実施する研削装置60において、プロセッサ61は、ROM62に格納されたシステムプログラムに従って数値制御装置全体を制御する。RAM63には各種のデータあるいは入出力信号が格納される。   In the grinding apparatus 60 that performs the dresser amount correction of FIG. 7, the processor 61 controls the entire numerical controller according to the system program stored in the ROM 62. Various data or input / output signals are stored in the RAM 63.

不揮発性メモリ64には図示されていないバッテリによってバックアップされたCMOSが使用され、電源切断後も保持すべきパラメータ、ピッチ誤差補正量及び砥石車補正データ等が格納さる。また、不揮発性メモリ64には、本実施例の真直度補正データが格納される。   The non-volatile memory 64 uses a CMOS that is backed up by a battery (not shown), and stores parameters, pitch error correction amounts, grinding wheel correction data, and the like that should be retained even after the power is turned off. The non-volatile memory 64 stores straightness correction data of this embodiment.

グラフィック制御回路65はディジタル信号を表示用の信号に変換し、表示装置66に与える。表示装置66にはCRTあるいは液晶表示装置が使用される。表示装置66は対話形式で加工プログラムを作成していくときに、形状、加工条件及び生成された加工プログラム等を表示する。   The graphic control circuit 65 converts the digital signal into a display signal and supplies it to the display device 66. As the display device 66, a CRT or a liquid crystal display device is used. The display device 66 displays the shape, machining conditions, the generated machining program, and the like when creating the machining program in an interactive format.

表示装置66に表示される内容(対話形データ入力画面)に従ってデータを入力することにより加工プログラムを作成することができる。画面の上部にはデータの意味を表す図形が表示され、下部に入力すべきデータの種類が表示される。また、画面にはその画面で受けられる作業又はデータがメニュー形式で表示される。メニューのうちどの項目を選択するかは、メニューの下のソフトウェアキー73を押すことにより行い、ソフトウェアキー73の意味は各画面毎に変化する。   A machining program can be created by inputting data in accordance with the contents (interactive data input screen) displayed on the display device 66. A graphic representing the meaning of the data is displayed at the top of the screen, and the type of data to be input is displayed at the bottom. In addition, operations or data received on the screen are displayed in a menu format on the screen. Which item to select from the menu is determined by pressing the software key 73 below the menu, and the meaning of the software key 73 changes for each screen.

キーボード67はシンボリックキー、数値キー等からなり、必要な図形、データをこれらのキーを使用して入力する。PMC(プログラマブル・マシン・コントローラ)72はバス71経由でM機能信号等を受けて、シーケンス・プログラムで処理して、出力信号を出力し、研削装置60を制御する。また、PMC72は、研削装置側からの入力信号を受けて、シーケンス・プログラムで処理を行い、バス71を経由して、プロセッサ61に必要な入力信号を転送する。   The keyboard 67 includes symbolic keys, numerical keys, and the like, and necessary figures and data are input using these keys. A PMC (programmable machine controller) 72 receives an M function signal or the like via the bus 71, processes it with a sequence program, outputs an output signal, and controls the grinding device 60. Further, the PMC 72 receives an input signal from the grinding apparatus side, performs processing by a sequence program, and transfers a necessary input signal to the processor 61 via the bus 71.

軸制御回路68はプロセッサ61からの軸の移動指令を受けて、軸の指令をサーボアンプ69に出力する。サーボアンプ69はこの移動指令を受けて、研削装置60のサーボモータを駆動する。   The axis control circuit 68 receives an axis movement command from the processor 61 and outputs an axis command to the servo amplifier 69. The servo amplifier 69 receives this movement command and drives the servo motor of the grinding device 60.

研削装置60には、プリセットボタン80が機械操作盤に設けられている。   The grinding device 60 is provided with a preset button 80 on the machine operation panel.

図6に戻って、軸22には測定スケール40が固定されており、測定スケール40に対向して位置検出器45が設けられている。軸22が移動すると、位置検出器45から移動量に応じたフィードバックパルスWPfが出力される。   Returning to FIG. 6, a measurement scale 40 is fixed to the shaft 22, and a position detector 45 is provided facing the measurement scale 40. When the shaft 22 moves, the position detector 45 outputs a feedback pulse WPf corresponding to the amount of movement.

レジスタ更新手段50はこのフィードバックパルスWPfによって左右軸の機械座標位置レジスタ51の機械座標位置を更新する。また、真直度補正データメモリ53には、予め左右軸の機械座標位置に対応した真直度補正データSが格納されている。 The register update means 50 updates the machine coordinate position of the machine coordinate position register 51 on the left and right axes with this feedback pulse WPf. Moreover, the straightness correction data memory 53, straightness correction data S i corresponding to the machine coordinate position of the pre-lateral axis is stored.

真直度補正手段52は左右軸22の機械座標位置に対応した真直度補正データを読み出し、真直度補正データをY軸制御回路68yに送る。Y軸制御回路68yでは、Y軸指令Ycに真直度補正データΔYを加えて、補正された指令(Yc+ΔY)でY軸サーボモータ9を制御する。   The straightness correction means 52 reads straightness correction data corresponding to the machine coordinate position of the left and right axis 22, and sends the straightness correction data to the Y-axis control circuit 68y. The Y-axis control circuit 68y adds straightness correction data ΔY to the Y-axis command Yc, and controls the Y-axis servo motor 9 with the corrected command (Yc + ΔY).

また、原点復帰時には左右軸の機械座標位置を非数値制御軸プリセット手段80でプリセットする。次に非数値制御軸プリセット手段80の動作について述べる。(ステップ1)原点復帰動作を手動等で行い、オペレータがプリセットボタン80を押すと、プリセット信号がPMC72経由で、送られてきて、非数値制御軸プリセット信号がオンになる。(ステップ2)非数値制御軸プリセット信号がオンになると、非数値制御軸プリセット手段80は左右軸の機械座標位置レジスタ51を0にプリセットする。(ステップ3)ついで、非数値制御軸プリセット手段80は原点復帰完了信号をPMC72に送り、これによって原点復帰が完了し、真直度補正手段52が機能を開始する。   Further, when returning to the origin, the machine coordinate positions of the left and right axes are preset by the non-numerical control axis preset means 80. Next, the operation of the non-numeric control axis preset means 80 will be described. (Step 1) When the origin return operation is performed manually and the operator presses the preset button 80, a preset signal is sent via the PMC 72, and the non-numeric control axis preset signal is turned on. (Step 2) When the non-numeric control axis preset signal is turned on, the non-numeric control axis preset means 80 presets the machine coordinate position register 51 of the left and right axes to zero. (Step 3) Next, the non-numeric control axis preset means 80 sends an origin return completion signal to the PMC 72, whereby the origin return is completed, and the straightness correction means 52 starts its function.

図2に真直度補正された砥石車の幅方向の指令された補正量(Yc+ΔY)を示す。砥石車中央および両端での真直度補正量ΔY(ΔS)が大きいことが理解される。 FIG. 2 shows the commanded correction amount (Yc + ΔY) in the width direction of the grinding wheel corrected for straightness. It is understood that the straightness correction amount ΔY (ΔS i ) at the center and both ends of the grinding wheel is large.

非数値制御軸と数値制御軸間の各位置座標における真直度の変位量を近似させてドレッシング補正量を定めるので、精度よく砥石車のドレッシングを行うことができる。   Since the dressing correction amount is determined by approximating the straight displacement amount at each position coordinate between the non-numeric control axis and the numerical control axis, the grinding wheel can be dressed with high accuracy.

真直度補正量を求める図を示す。The figure which calculates | requires straightness correction amount is shown. 砥石車幅方向のドレッシング量を示す。The dressing amount in the grinding wheel width direction is shown. 頭上ドレッシング装置の一部を切り欠いた正面図である。It is the front view which notched a part of overhead dressing apparatus. 頭上ドレッシング装置の側面図である。It is a side view of an overhead dressing apparatus. 頭上ドレッシング装置の図3におけるB−B面方向から見た背面断面図である。It is the back sectional view seen from the BB surface direction in Drawing 3 of an overhead dressing device. ドレッサ量補正制御装置の図である。It is a figure of a dresser amount correction control apparatus. ドレッサ量補正を実施する研削装置の概略構成図である。It is a schematic block diagram of the grinding device which performs dresser amount correction | amendment.

符号の説明Explanation of symbols

1 頭上ドレッシング装置
2 単石ドレッシング器具
3 単石ダイヤモンド
w 砥石車
4 ボールスプライン
5 ボールネジ
9 ACサーボモータ
20 油圧シリンダー機構
22 ピストン軸
40 スケール
45 位置検出器
50 レジスタ更新手段
52 真直度補正手段
60 研削装置
80 プリセット手段
DESCRIPTION OF SYMBOLS 1 Overhead dressing device 2 Single stone dressing device 3 Single stone diamond w Grinding wheel 4 Ball spline 5 Ball screw 9 AC servo motor 20 Hydraulic cylinder mechanism 22 Piston shaft 40 Scale 45 Position detector 50 Register update means 52 Straightness correction means 60 Grinding apparatus 80 preset means

Claims (2)

非数値制御で左右軸方向に移動可能であり、かつ、数値制御で上下方向に移動可能な上下軸に固定された単石ドレッシング器具を用いて回転軸に水平方向に軸承された砥石車を頭上ドレッシングする方法において、予め数値制御の上下軸を移動させないで非数値制御の左右軸を移動させて非数値制御の左右軸のストロークを各補正点数p(pは30〜1800の整数)で割ったピッチ間距離における上下軸への真直度Sを測定し、数値制御装置の真直度補正量記録部に入力し、ピッチ間距離を(b−a)、このピッチ間距離における真直度Sの最大値Smaxおよび最小値Sminとからこのピッチ間距離における真直度補正量ΔS=(Smax−Smin)/(b−a)として数値制御装置の真直度補正手段でこの各ピッチ間距離における各ピッチ誤差補正点位置における真直度補正量ΔSを演算し、この補正点位置における真直度補正量ΔSを上下軸の補正量として記録部に送信してドレッシング量を補正し、ついで、単石ドレッシングによる砥石車のドレッシングを開始することにより左右軸のピッチ誤差補正点pで上下軸にΔSの補正をかけたドレッシング量のドレッシングを行うことを特徴とする、砥石車の頭上ドレッシング方法。 A grinding wheel mounted horizontally on the rotary shaft overhead using a single stone dressing device that can be moved in the left and right axis direction by non-numeric control and can be moved in the vertical direction by numerical control. a method of dressing, the stroke of moving the lateral axis of the non-numerical control not move the upper and lower axes of advance numerical control non-numeric control lateral axis in each of the correction points p i (p i is an integer of 30 to 1,800) The straightness S i to the vertical axis at the divided pitch distance is measured and input to the straightness correction amount recording unit of the numerical controller, the pitch distance is (b−a), and the straightness S at this pitch distance is the maximum value of i S max and a minimum value S min straightness correction amount in the inter-pitch distance from the [Delta] S i = each in (S max -S min) / straightness correcting means (b-a) as a numerical controller In distance between pitches Calculating a straightness correction amount [Delta] S i in each pitch error correction point position, corrects the dressing amount straightness correction amount [Delta] S i in the correction point position by sending the recording unit as a correction amount of the vertical axis, then a single An overhead dressing method for a grinding wheel, characterized by starting dressing of a grinding wheel by stone dressing and performing dressing of a dressing amount by applying ΔS i correction to the vertical axis at a pitch error correction point p i on the left and right axes . 油圧駆動で左右軸方向に移動可能であり、かつ、サーボモータで上下方向に移動可能な上下軸に固定された単石ドレッシング器具、
予め測定された真直度補正データSを格納する真直度補正データメモリ、
予め数値制御の上下軸を移動させないで油圧駆動の左右軸を移動させて非数値制御の左右軸のストロークを各補正点数p(pは30〜1800の整数)で割ったピッチ間距離における上下軸への真直度Sを測定し、数値制御装置の真直度補正量記録部に入力し、ピッチ間距離を(b−a)、このピッチ間距離における真直度Sの最大値Smaxおよび最小値Sminとからこのピッチ間距離における真直度補正量ΔS=(Smax−Smin)/(b−a)とする真直度補正手段、および、
前記左右軸の位置検出器からのフィードバックパルスWPfによって前記上下軸座標位置レジスタを更新するレジスタ更新手段、
とを有する頭上ドレッシング装置。
A monolithic dressing device that is movable on the left and right axis by hydraulic drive and fixed on the vertical axis that can be moved in the vertical direction by a servo motor,
Straightness correction data memory for storing straightness correction data S i measured in advance;
In the pitch distance divided by the correction point number a stroke of the left and right axes of the non-numerical control to move the lateral axis of the hydraulic drive p i (p i is an integer of 30 to 1800) without moving the upper and lower axes of advance numerical control The straightness S i to the vertical axis is measured and input to the straightness correction amount recording unit of the numerical control device, the distance between the pitches is (b−a), and the maximum value S max of the straightness S i at this distance between the pitches. A straightness correction means for calculating a straightness correction amount ΔS i = (S max −S min ) / (b−a) at the pitch distance from the minimum value S min , and
Register updating means for updating the vertical axis coordinate position register with a feedback pulse WPf from the position detector on the left and right axes;
And an overhead dressing device.
JP2006319528A 2006-11-28 2006-11-28 Overhead dressing method and overhead dressing apparatus for grinding wheel Active JP5030558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319528A JP5030558B2 (en) 2006-11-28 2006-11-28 Overhead dressing method and overhead dressing apparatus for grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319528A JP5030558B2 (en) 2006-11-28 2006-11-28 Overhead dressing method and overhead dressing apparatus for grinding wheel

Publications (2)

Publication Number Publication Date
JP2008132556A true JP2008132556A (en) 2008-06-12
JP5030558B2 JP5030558B2 (en) 2012-09-19

Family

ID=39557762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319528A Active JP5030558B2 (en) 2006-11-28 2006-11-28 Overhead dressing method and overhead dressing apparatus for grinding wheel

Country Status (1)

Country Link
JP (1) JP5030558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107283315A (en) * 2017-08-16 2017-10-24 无锡市利钧轴承有限公司 Special-shaped wheel face trimming device and its dressing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161540U (en) * 1984-04-02 1985-10-26 株式会社池貝 Machine tool cross rail straightness correction device
JPH01281872A (en) * 1988-04-30 1989-11-13 Okuma Mach Works Ltd Correcting method for grindstone of numerically controlled grinding machine
JPH03287341A (en) * 1990-03-31 1991-12-18 Okuma Mach Works Ltd Positioning correcting method and straightness correcting method for feed unit
JPH07104812A (en) * 1993-10-04 1995-04-21 Fanuc Ltd Position correcting system
JPH07164280A (en) * 1993-12-10 1995-06-27 Seiko Seiki Co Ltd Straightness correcting device
JP2002028863A (en) * 2000-07-18 2002-01-29 Okamoto Machine Tool Works Ltd Vertical dressing method for grinding wheel and grinding device
JP2002096234A (en) * 2000-09-20 2002-04-02 Mori Seiki Co Ltd Controlling method and device for driving mechanism part in nc machine tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161540U (en) * 1984-04-02 1985-10-26 株式会社池貝 Machine tool cross rail straightness correction device
JPH01281872A (en) * 1988-04-30 1989-11-13 Okuma Mach Works Ltd Correcting method for grindstone of numerically controlled grinding machine
JPH03287341A (en) * 1990-03-31 1991-12-18 Okuma Mach Works Ltd Positioning correcting method and straightness correcting method for feed unit
JPH07104812A (en) * 1993-10-04 1995-04-21 Fanuc Ltd Position correcting system
JPH07164280A (en) * 1993-12-10 1995-06-27 Seiko Seiki Co Ltd Straightness correcting device
JP2002028863A (en) * 2000-07-18 2002-01-29 Okamoto Machine Tool Works Ltd Vertical dressing method for grinding wheel and grinding device
JP2002096234A (en) * 2000-09-20 2002-04-02 Mori Seiki Co Ltd Controlling method and device for driving mechanism part in nc machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107283315A (en) * 2017-08-16 2017-10-24 无锡市利钧轴承有限公司 Special-shaped wheel face trimming device and its dressing method

Also Published As

Publication number Publication date
JP5030558B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5816632B2 (en) Predictive control and virtual display system for numerically controlled machine tools
JP4689745B2 (en) Tool vector display device for machine tools
WO2012057280A1 (en) Method for measuring tool dimension, measurement device, and machine tool
JP2000207008A (en) Teach-in system
KR19990023831A (en) Position control device and its method, numerical control program creation device and its method, and numerical control machine tool control method
KR940009090B1 (en) Grinder robot
CN101224562B (en) Method for controlling a moveable tool, apparatus and mechanical tool
JP6022086B2 (en) Machine tool controller
JP5030558B2 (en) Overhead dressing method and overhead dressing apparatus for grinding wheel
JP2008105119A (en) Grinding method by use of grinding machine, and grinding machine
JP5399331B2 (en) Workpiece grinding method and grinding machine, moving path data calculation program used therefor, and storage medium therefor
CN107643729B (en) Numerical controller with manual handle feeding function
JPH11179628A (en) Nc machine tool
JP2021168031A (en) Method of machining and machine tool
JP2007172325A (en) Method of machining free curve and numerical control device
JPH08267350A (en) Deburring method
JP3205827B2 (en) Processing data creation device for non-circular workpieces
JP2006035340A (en) Gear grinding device and gear grinding method
JP2973196B2 (en) Grinding method for non-round workpieces
WO2023063166A1 (en) Grinding device
JP2005088106A (en) Method and apparatus for calculating working data
JP3084287B2 (en) Processing data creation device
JPH07314312A (en) Data compensator
JP2698977B2 (en) Program creation method and program data input device
JPH11254269A (en) Nc grinding method and nc grinding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091103

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250