JP2008131899A - Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance - Google Patents

Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance Download PDF

Info

Publication number
JP2008131899A
JP2008131899A JP2006320650A JP2006320650A JP2008131899A JP 2008131899 A JP2008131899 A JP 2008131899A JP 2006320650 A JP2006320650 A JP 2006320650A JP 2006320650 A JP2006320650 A JP 2006320650A JP 2008131899 A JP2008131899 A JP 2008131899A
Authority
JP
Japan
Prior art keywords
endoplasmic reticulum
reticulum stress
cell
substance
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320650A
Other languages
Japanese (ja)
Inventor
Osamu Hori
修 堀
Masahiro Takagi
昌宏 高木
Eiichi Tamiya
栄一 民谷
Masatoshi Tsukamoto
匡俊 塚本
Hiromi Ushijima
ひろみ 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO DEVICE TECHNOLOGY KK
Kanazawa University NUC
Japan Advanced Institute of Science and Technology
Original Assignee
BIO DEVICE TECHNOLOGY KK
Kanazawa University NUC
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO DEVICE TECHNOLOGY KK, Kanazawa University NUC, Japan Advanced Institute of Science and Technology filed Critical BIO DEVICE TECHNOLOGY KK
Priority to JP2006320650A priority Critical patent/JP2008131899A/en
Publication of JP2008131899A publication Critical patent/JP2008131899A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for screening an endoplasmic reticulum stress-related substance by which the substance related to the endoplasmic reticulum stress can readily and precisely be judged by utilizing an easily available cell line having a high reproduction rate, and to provide a cell-evaluating chip. <P>SOLUTION: The method for screening the endoplasmic reticulum stress-related substance includes culturing cells by changing the concentration of the endoplasmic reticulum stress-inducing substance stepwise, and by evaluating the influence of the test substance on the endoplasmic reticulum stress from the difference of the recovering concentration of the cell survival rate by the presence or absence of the test substance. In another embodiment, the method includes carrying out the cell culture by changing the concentration of the endoplasmic reticulum stress-inducing substance, and by evaluating the influence of the test substance from the difference of a BiP detection-starting concentration by the presence or absence of the test substance. Both the methods can be used in combination. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小胞体ストレスに関与する物質をスクリーニングするためのスクリーニング方法に関するものであり、さらには前記スクリーニングに用いる細胞評価チップに関するものである。   The present invention relates to a screening method for screening a substance involved in endoplasmic reticulum stress, and further relates to a cell evaluation chip used for the screening.

疾病発症に関わる生体ストレスとしては酸化ストレスが知られており、これを抑制する多様な機能性物質が探索され、研究されている。一方、近年、新たなストレスとして小胞体ストレスが見出され、酸化ストレスと同様に、各種疾病への関与が示唆されている。   Oxidative stress is known as a biological stress related to the onset of diseases, and various functional substances that suppress this have been searched and studied. On the other hand, endoplasmic reticulum stress has recently been found as a new stress, and it has been suggested to be involved in various diseases as well as oxidative stress.

小胞体ストレスとは、小胞体内において生合成途中の不安定なタンパク質が物理・化学的刺激によって正常な折り畳み構造の構築に失敗し、異常タンパク質となって小胞体に蓄積してしまう状態を言う。小胞体内において、生合成途中の不安定なタンパク質は物理・化学的刺激を受けやすく、その刺激によって異常な折り畳み構造を持つ異常タンパク質へと変化してしまう。小胞体で正しく折り畳まれたタンパク質はゴルジ体へと運ばれるが、折り畳みに失敗した前記異常タンパク質は小胞体内に停留される。   Endoplasmic reticulum stress refers to a state in which unstable proteins in the course of biosynthesis in the endoplasmic reticulum fail to build a normal folding structure due to physical and chemical stimulation, and accumulate in the endoplasmic reticulum as abnormal proteins. . In the endoplasmic reticulum, unstable proteins in the course of biosynthesis are susceptible to physical and chemical stimuli, and these stimuli change into abnormal proteins with an abnormal folding structure. Proteins that are correctly folded in the endoplasmic reticulum are transported to the Golgi apparatus, while the abnormal protein that fails to fold is retained in the endoplasmic reticulum.

アルツハイマー病やパーキンソン病、ポリグルタミン病、プリオン病、筋萎縮生側索硬化症(ALS)等に代表される神経変性疾患においては、多くの場合、神経細胞内に異常なタンパク質が凝集体を形成していることが認められ、神経変性との関連が強く示唆されてきた。最近になり、小胞体ストレスと神経細胞死との関連性が次々と指摘され、神経変性疾患における小胞体ストレスの役割がにわかに脚光を浴びている。その他にも、インシュリンを盛んに合成分泌する膵臓のβ細胞等、タンパク合成を盛んに行う細胞で小胞体ストレスが生じやすく、糖尿病を初めとした生活習慣病の発症にも関わっていることも示唆されている。   In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, polyglutamine disease, prion disease, and amyotrophic lateral sclerosis (ALS), abnormal proteins often form aggregates in nerve cells. It has been observed that the association with neurodegeneration has been strongly suggested. Recently, the relevance between endoplasmic reticulum stress and neuronal cell death has been pointed out one after another, and the role of endoplasmic reticulum stress in neurodegenerative diseases is attracting attention. In addition, endoplasmic reticulum stress is likely to occur in cells that actively synthesize proteins, such as pancreatic β cells that actively synthesize and secrete insulin, suggesting that it is also involved in the development of lifestyle-related diseases such as diabetes. Has been.

現在、加齢や疾病への幅広い関与から、酸化ストレスについて健康関連市場等で非常に注目されているが、小胞体ストレスもこれに匹敵する大きな要因となる可能性が高く、今後は小胞体ストレスについても関心が高まるものと予想される。   Currently, oxidative stress is attracting a great deal of attention in the health-related market due to its wide involvement in aging and disease, but endoplasmic reticulum stress is likely to be a major factor comparable to this, and in the future, endoplasmic reticulum stress Interest is also expected to increase.

このような状況から、例えば小胞体ストレスの測定方法や小胞体ストレスに影響を及ぼす物質の探索についての研究が各方面で進められており(例えば、特許文献1〜特許文献7等を参照)、小胞体ストレスの研究を進める上で、有用な情報が得られるようになってきている。
特開2001−066302号公報 特開2003−212790号公報 特開2004−309186号公報 特開2005−065692号公報 特開2005−204516号公報 特開2005−245247号公報 特開2006−034288号公報
From such a situation, for example, research on the measurement method of endoplasmic reticulum stress and the search for substances that affect endoplasmic reticulum stress have been promoted in various directions (see, for example, Patent Literature 1 to Patent Literature 7). Useful information has been gained in research on endoplasmic reticulum stress.
JP 2001-066302 A JP 2003-212790 A JP 2004-309186 A Japanese Patent Laid-Open No. 2005-065652 JP 2005-204516 A JP 2005-245247 A JP 2006-034288 A

ところで、前述の各特許文献に記載される技術の多くは、遺伝子改変を行った特殊な細胞、若しくはトランスジェニック動物、特定の病態動物、特定の遺伝子が欠損している特定の細胞等に小胞体ストレスを誘導する物質と被検物質とを作用させ、例えばアポトーシスに特異的な変化を調べるという手法に関するものであり、いずれも遺伝子改変細胞や遺伝子改変動物が必要である。   By the way, many of the techniques described in each of the above-mentioned patent documents are such that the endoplasmic reticulum can be applied to special cells that have been genetically modified, or transgenic animals, specific pathological animals, specific cells lacking a specific gene, etc. The present invention relates to a technique in which a stress-inducing substance and a test substance are allowed to act, for example, to examine changes specific to apoptosis, and both require genetically modified cells and genetically modified animals.

しかしながら、遺伝子改変細胞や遺伝子改変動物は、その作成が容易ではなく、コスト等の点において、汎用の手法とするには課題が多い。また、小胞体ストレスマーカの発現量を測定する方法も提案されているが、複雑な生化学的手法が必要であるという問題がある。さらに、例えば特許文献6等において、単純にアポトーシス等を調べることで小胞体ストレスに影響を及ぼす物質を探索することが提案されているが、様々な変動要因があり、また判別する基準も明確でないため、小胞体ストレスに影響を及ぼす物質を正確に選別することは難しい。   However, genetically modified cells and genetically modified animals are not easy to create, and there are many problems in making them general-purpose methods in terms of cost and the like. Moreover, although the method of measuring the expression level of an endoplasmic reticulum stress marker is proposed, there exists a problem that a complicated biochemical method is required. Furthermore, for example, Patent Document 6 proposes to search for substances that affect endoplasmic reticulum stress by simply examining apoptosis, but there are various variable factors, and the criteria for discrimination are not clear. Therefore, it is difficult to accurately select substances that affect endoplasmic reticulum stress.

本発明は、このような従来の実情に鑑みて提案されたものであり、入手が容易で増殖率が高い細胞系を利用した簡易な手法でありながら小胞体ストレスに関与する物質を的確に判別することが可能な小胞体ストレス関与物質のスクリーニング方法を提供することを目的とし、さらにはこれに用いる小胞体ストレス関与物質スクリーニング用細胞評価チップを提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and it is a simple technique using a cell line that is easily available and has a high growth rate, but accurately identifies substances involved in endoplasmic reticulum stress. It is an object of the present invention to provide a screening method for an endoplasmic reticulum stress-related substance that can be performed, and further to provide a cell evaluation chip for screening an endoplasmic reticulum stress-related substance used therefor.

前述の目的を達成するために、本発明の小胞体ストレス関与物質のスクリーニング方法は、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無による細胞生存率回復濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする。あるいは、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無によるBiP検出開始濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする。さらには、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無による細胞生存率回復濃度の相違及びBiP検出開始濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする。   In order to achieve the above-mentioned object, the screening method for a substance involved in endoplasmic reticulum stress according to the present invention comprises culturing cells while changing the concentration of an endoplasmic reticulum stress inducer in stages, and recovering cell viability by the presence or absence of a test substance. It is characterized in that the influence of the test substance on the endoplasmic reticulum stress is evaluated based on the difference in concentration. Alternatively, the concentration of the endoplasmic reticulum stress inducer is changed in stages, the cells are cultured, and the influence of the test substance on the endoplasmic reticulum stress is evaluated based on the difference in the BiP detection start concentration depending on the presence or absence of the test substance. It is characterized by. Furthermore, the concentration of the endoplasmic reticulum stress-inducing substance is changed in stages, and the cells are cultured. Based on the difference in the recovery concentration of the cell viability due to the presence or absence of the test substance and the difference in the BiP detection start concentration, It is characterized by evaluating the effect on ER stress.

本発明者らは、小胞体ストレスに関与する物質を的確に判別する方法を模索して、種々の研究を重ねてきた。その結果、小胞体ストレス誘導物質の濃度がある閾値を越えると細胞死が抑制され、細胞の生存率が回復するという現象を見出した。すなわち、細胞に作用する小胞体ストレス誘導物質の濃度を次第に高めていくと、細胞の生存率が低下していくが、ある濃度で急激に細胞の生存率が回復することを見出した。そして、この細胞の生存率が回復する時の小胞体ストレス誘導物質濃度は、小胞体ストレスに関与する物質が共存した場合、低濃度側、あるいは高濃度側にシフトすることがわかってきた。   The inventors of the present invention have made various studies by searching for a method for accurately discriminating substances involved in endoplasmic reticulum stress. As a result, they found that when the concentration of the endoplasmic reticulum stress inducer exceeds a certain threshold, cell death is suppressed and cell viability is restored. That is, it has been found that as the concentration of the endoplasmic reticulum stress inducer acting on the cells is gradually increased, the cell viability decreases, but the cell viability is rapidly recovered at a certain concentration. It has been found that the concentration of the endoplasmic reticulum stress-inducing substance when the cell viability is restored shifts to a low concentration side or a high concentration side when substances involved in endoplasmic reticulum stress coexist.

本発明の第1のスクリーニング方法は、前記現象を利用したものである。すなわち、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無により細胞生存率回復濃度(細胞生存率が回復する小胞体ストレス誘導物質濃度)が変化した場合、被検物質は小胞体ストレスに関与するものと判別される。   The first screening method of the present invention utilizes the above phenomenon. That is, when the concentration of the endoplasmic reticulum stress inducer is changed in stages and the cells are cultured, the cell viability recovery concentration (the endoplasmic reticulum stress inducer concentration at which the cell viability is restored) changes depending on the presence or absence of the test substance. The test substance is determined to be involved in endoplasmic reticulum stress.

また、細胞が備えている小胞体ストレスの防御機構の細胞内情報伝達系でこの機構を活性化するタンパクの1つであるBiPについての検討を行ったところ、やはり小胞体ストレス誘導物質の濃度がある閾値を越えるとBiPが検出され、小胞体ストレスに関与する物質が共存した場合、このBiPが検出される濃度もシフトすることがわかった。   In addition, when an intracellular signal transduction system of endoplasmic reticulum stress protection mechanism possessed by cells was examined for BiP, which is one of the proteins that activate this mechanism, the concentration of endoplasmic reticulum stress inducer was also found. When a certain threshold value was exceeded, BiP was detected, and when a substance involved in endoplasmic reticulum stress coexists, it was found that the concentration at which this BiP was detected also shifted.

本発明の第2のスクリーニング方法は、このような現象を利用したものである。すなわち、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無によりBiP検出開始濃度(BiPが検出される最低小胞体ストレス誘導物質濃度)が変化した場合、被検物質は小胞体ストレスに関与するものと判別される。   The second screening method of the present invention utilizes such a phenomenon. That is, cells are cultured while changing the concentration of the endoplasmic reticulum stress inducer in stages, and when the BiP detection start concentration (the lowest endoplasmic reticulum stress inducer concentration at which BiP is detected) changes depending on the presence or absence of the test substance, The test substance is determined to be involved in endoplasmic reticulum stress.

さらに、これら両者の結果に基づいて判別することで、より正確に小胞体ストレスに関与する物質が選別される。   Furthermore, by discriminating based on the results of both of these, substances involved in endoplasmic reticulum stress are more accurately selected.

小胞体ストレスを抑制する物質や、逆に小胞体ストレスを促進する物質を的確に選別することができれば、小胞体ストレスの研究を進める上で大きな前進となる。本発明のスクリーニング方法においては、遺伝子改変細胞や遺伝子改変動物等は不要であり、細胞生物学の分野で広く使用されている株化細胞を使用してスクリーニングを行うことができ、コスト等の点で有利であり、また煩雑な生化学的手法も不要である。さらに、単純にアポトーシス等を調べる手法と異なり、細胞培養の精度や測定精度等の影響を受け難く、小胞体ストレスに影響を与える否かを正確に把握でき、従来技術に対する優位性は大きい。   If a substance that suppresses endoplasmic reticulum stress or, conversely, a substance that promotes endoplasmic reticulum stress can be selected accurately, it will be a major advance in researching endoplasmic reticulum stress. In the screening method of the present invention, genetically modified cells, genetically modified animals, etc. are not necessary, and screening can be performed using established cell lines widely used in the field of cell biology. In addition, a complicated biochemical method is unnecessary. Furthermore, unlike a technique for simply examining apoptosis or the like, it is difficult to be affected by cell culture accuracy and measurement accuracy, and can accurately grasp whether or not it affects endoplasmic reticulum stress.

一方、本発明の小胞体ストレス関与物質スクリーニング用細胞評価チップは、小胞体ストレス誘導物質溶液が導入される第1の流路と、前記小胞体ストレス誘導物質溶液を希釈する希釈液が導入される第2の流路が略平行に形成され、前記第1の流路には所定の間隔で複数の分岐流路が形成され、当該分岐流路に細胞培養セルが形成されるとともに、各分岐流路の上流位置に前記第1の流路と第2の流路を繋ぐ連結流路が形成されていることを特徴とする。   On the other hand, in the cell evaluation chip for screening an ER stress-inducing substance of the present invention, a first channel into which an ER stress inducer solution is introduced and a diluent for diluting the ER stress inducer solution are introduced. A second flow path is formed substantially in parallel, a plurality of branch flow paths are formed at predetermined intervals in the first flow path, cell culture cells are formed in the branch flow paths, and each branch flow is formed. A connecting flow path connecting the first flow path and the second flow path is formed at an upstream position of the path.

前記構成の細胞評価チップにおいては、第1の流路に所定の濃度の小胞体ストレス誘導物質溶液を流し、第2の流路に希釈液を流すことで、各細胞培養セルに段階的に異なる濃度の小胞体ストレス誘導物質溶液が供給される。したがって、前述の小胞体ストレス誘導物質の濃度を段階に変えて行う細胞の培養が、1つの細胞評価チップで一括して行われ、効率的なスクリーニングが実現される。   In the cell evaluation chip having the above-described configuration, the ER stress inducer solution having a predetermined concentration is flowed through the first flow path, and the dilute liquid is flowed through the second flow path. A concentration of endoplasmic reticulum stress inducer solution is provided. Therefore, cell culturing performed by changing the concentration of the aforementioned endoplasmic reticulum stress inducer in stages is performed in a single cell evaluation chip, thereby realizing efficient screening.

本発明によれば、入手が容易で増殖率が高い細胞系を利用した簡易な手法でありながら、小胞体ストレスに関与する物質を的確に判別することが可能である。また、小胞体ストレスを減らす方法は1種類ではなく、小胞体シャペロンの誘導、翻訳の減衰、異常タンパク質の分解を挙げることができるが、これら3種類を効率的に機能させるには、ストレスを減じるだけでなく増加させた方が良い場合もある。本発明では、幅広い濃度範囲を設定して評価を行うことが可能であり、ストレスの増減について幅広く評価を行うことが可能である。したがって、本発明を利用することで、小胞体ストレスに関する研究を飛躍的に発展させることが可能となる。   According to the present invention, it is possible to accurately discriminate a substance involved in endoplasmic reticulum stress while being a simple technique using a cell line that is easily available and has a high proliferation rate. In addition, there is not one type of method for reducing endoplasmic reticulum stress, but it can include induction of endoplasmic reticulum chaperones, attenuation of translation, and degradation of abnormal proteins. To make these three types function efficiently, reduce stress. Sometimes it is better to increase it. In the present invention, it is possible to perform evaluation by setting a wide concentration range, and it is possible to perform wide evaluation on increase and decrease of stress. Therefore, by utilizing the present invention, it is possible to dramatically develop research on endoplasmic reticulum stress.

以下、本発明を適用した小胞体ストレス関与物質のスクリーニング方法、さらには小胞体ストレス関与物質スクリーニング用細胞評価チップについて、図面を参照して詳細に説明する。   Hereinafter, a screening method for an endoplasmic reticulum stress-involved substance to which the present invention is applied and a cell evaluation chip for endoplasmic reticulum stress-involved substance screening will be described in detail with reference to the drawings.

小胞体ストレスとは、小胞体内において生合成途中の不安定なタンパク質は物理・化学的刺激を受けやすく、その刺激によって小胞体内に異常な折り畳み構造をもつタンパク質が蓄積してしまうことである。これら小胞体ストレスに対して、基本的に細胞はUPR(Unfolded protein response)並びにERAD(Endoplasmic reticulum-associated degradation)と呼ばれる小胞体特異的なストレス応答機構(危機管理)によって異常タンパク質蓄積による小胞体の破綻を回避しようとする。   Endoplasmic reticulum stress means that unstable proteins in the course of biosynthesis in the endoplasmic reticulum are susceptible to physical and chemical stimuli, and that stimulation causes accumulation of proteins with an abnormally folded structure in the endoplasmic reticulum. . In response to these endoplasmic reticulum stresses, the cells basically undergo ER-specific stress response mechanisms (crisis management) called UPR (Unfolded protein response) and ERAD (Endoplasmic reticulum-associated degradation), resulting in abnormal protein accumulation. Try to avoid bankruptcy.

前記ERADは、小胞体内の異常タンパク質をユビキチン化を伴う未解明の分子メカニズムで細胞質側へ引きずり出し、プロテアソームによって分解するシステムである。一方、UPRは、小胞体に局在する分子シャペロンを転写レベルで誘導することによって異常タンパク質の蓄積を回避する転写誘導機構と、小胞体負荷を軽減するためにタンパク質合成を翻訳レベルで抑制する翻訳抑制機構とに分けられる。そして、例えば哺乳類のUPRは、BiPの発現に伴って発現するIRE1、PERK、ATF6という少なくとも3種類の小胞体膜貫通タンパク質によって巧妙に制御されている。例えば、PERKは、翻訳抑制し、異常タンパク質の発生を抑える。ATF6は、転写誘導し、小胞体内のフォールディング能力を増強する。IRE1は、ERAD関連因子を活性化し、分解処理能力を増強する。   The ERAD is a system in which abnormal proteins in the endoplasmic reticulum are dragged to the cytoplasm side by an unexplained molecular mechanism involving ubiquitination and degraded by the proteasome. UPR, on the other hand, induces a molecular chaperone localized in the endoplasmic reticulum at the transcription level to prevent transcription of abnormal proteins, and translation suppresses protein synthesis at the translation level to reduce the endoplasmic reticulum load. It is divided into a suppression mechanism. For example, mammalian UPR is skillfully controlled by at least three types of endoplasmic reticulum transmembrane proteins, IRE1, PERK, and ATF6, which are expressed with BiP expression. For example, PERK suppresses translation and suppresses the generation of abnormal proteins. ATF6 induces transcription and enhances the folding ability in the endoplasmic reticulum. IRE1 activates ERAD-related factors and enhances degradation capacity.

BiPは、非ストレス時にはIRE1、PERK、ATF6のセンサー領域に結合しており、ストレス時に解離することでIRE1とPERKは多量体化し、ATF6は単量体で活性化する。つまり、BiPは小胞体ストレスセンサーとして働いていることになる。そして活性化したIRE1はアポトーシス経路へ、PERKは翻訳抑制へ、ATF6は転写抑制へとそれぞれ移行することが知られている。   BiP binds to the sensor regions of IRE1, PERK, and ATF6 when not stressed, and dissociates when stressed to multimerize IRE1 and PERK, and ATF6 is activated with a monomer. That is, BiP functions as an endoplasmic reticulum stress sensor. It is known that activated IRE1 shifts to the apoptotic pathway, PERK shifts to translational repression, and ATF6 shifts to transcriptional repression.

本発明のスクリーニング方法は、その詳細な機構は不明であるが、前述のストレス応答機構を利用したものと言うことができ、ストレス応答機構に基づく細胞生存率の回復や、小胞体ストレスセンサーとして働くBiPの分析により、被検物質が小胞体ストレスに関与するか否かを判別する。   Although the detailed mechanism of the screening method of the present invention is unknown, it can be said that the above-described stress response mechanism is used, and it serves as a recovery of cell viability based on the stress response mechanism or as an endoplasmic reticulum stress sensor. By analyzing BiP, it is determined whether or not the test substance is involved in endoplasmic reticulum stress.

先ず、本発明のスクリーニング方法の第1の実施形態について説明する。第1の実施形態のスクリーニング方法は、ストレス応答機構に基づく細胞生存率の回復を利用したものであり、小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無による細胞生存率回復濃度(細胞生存率が回復する小胞体ストレス誘導物質濃度)の変化を見る。そして、そのパターンを指標として被検物質の小胞体ストレス誘導性アポトーシスに対する効果を評価する。具体的には、被検物質を加えた時と加えない時で細胞生存率が回復する小胞体ストレス誘導物質濃度が変化(シフト)した場合には、被検物質は小胞体ストレスに何らかの関与するものと判断する。前記変化が見られない場合には、被検物質は小胞体ストレスに関与していないと判断する。   First, a first embodiment of the screening method of the present invention will be described. The screening method of the first embodiment utilizes recovery of cell viability based on a stress response mechanism, and cultivates cells by changing the concentration of an endoplasmic reticulum stress inducer in stages, and the presence or absence of a test substance. The change of the cell viability recovery concentration (the endoplasmic reticulum stress inducer concentration at which the cell viability is restored) due to is observed. Then, the effect of the test substance on endoplasmic reticulum stress-induced apoptosis is evaluated using the pattern as an index. Specifically, when the concentration of the endoplasmic reticulum stress inducer that restores cell viability when the test substance is added or not is changed (shifted), the test substance is involved in the endoplasmic reticulum stress. Judge that. When the change is not observed, it is determined that the test substance is not involved in endoplasmic reticulum stress.

図1は、小胞体ストレス誘導物質濃度と細胞生存率の関係を模式的に示すものである。小胞体ストレス誘導物質濃度が増加するのに伴って、細胞の生存率は次第に低下するが、ある濃度において急激に細胞の生存率が回復する。その理由について、詳細は不明であるが、前述のストレス応答機構が関与しているものと推測される。ここで、例えば被検物質を加えない時の細胞生存率回復濃度をC1とする。同様の実験を被検物質を加えた系で行うと、図中一点鎖線で示すように、前記細胞生存率回復濃度が低濃度側にシフトしてC2となることがある。このような場合、被検物質は小胞体ストレスに何らかの影響を与えたものと推測される。例えば、前記低濃度側へのシフトは、被検物質における小胞体ストレス誘導性アポトーシスの抑制作用、若しくは小胞体ストレスを回復させる作用を示唆するものと考えられる。   FIG. 1 schematically shows the relationship between the endoplasmic reticulum stress inducer concentration and cell viability. As the endoplasmic reticulum stress inducer concentration increases, the cell viability gradually decreases, but at a certain concentration, the cell viability is rapidly recovered. Although the details are not clear about the reason, it is presumed that the above-mentioned stress response mechanism is involved. Here, for example, the cell viability recovery concentration when no test substance is added is C1. When a similar experiment is performed in a system to which a test substance is added, the cell viability recovery concentration may shift to a low concentration side and become C2, as indicated by a one-dot chain line in the figure. In such a case, it is presumed that the test substance had some influence on the endoplasmic reticulum stress. For example, the shift to the low concentration side is considered to suggest an action of suppressing endoplasmic reticulum stress-induced apoptosis in a test substance or an action of recovering endoplasmic reticulum stress.

なお、小胞体ストレス誘導物質濃度と細胞生存率の関係を調べた場合、細胞培養における種々の変動要因や測定誤差等により、微小な山や谷が観察されることがある。このような場合、前記細胞生存率回復濃度か否かを判断する指標として、細胞生存率が回復する前後における生存率の差を挙げることができる。例えば、図1において、細胞生存率が回復する前の谷における生存率L1と、細胞生存率が回復した後の山における生存率をL2とした際に、生存率L1と生存率L2の差(L2−L1)が生存率L2の50%以上であれば、前記細胞生存率の回復と判断すればよい。   When the relationship between the endoplasmic reticulum stress inducer concentration and the cell viability is examined, minute peaks and valleys may be observed due to various variation factors or measurement errors in cell culture. In such a case, as an index for determining whether or not the cell viability recovery concentration is reached, a difference in the viability before and after the cell viability is recovered can be mentioned. For example, in FIG. 1, when the survival rate L1 in the valley before the cell survival rate is recovered and the survival rate in the mountain after the cell survival rate is recovered is L2, the difference between the survival rate L1 and the survival rate L2 ( If L2-L1) is 50% or more of the survival rate L2, it may be determined that the cell survival rate is restored.

前述の第1の実施形態のスクリーニングを行うためには、小胞体ストレス誘導物質の濃度を段階に変えた細胞の培養を、被検物質が存在する場合と存在しない場合について行う必要がある。この時、使用する細胞は、任意の細胞を使用することができるが、入手が容易で安定して増殖率が高い株化細胞が好適である。具体的には、ヒト白血病性T細胞株(Jurkat細胞)、メラノーマ細胞、PC12細胞、大腸癌細胞等を挙げることができる。   In order to perform the screening of the first embodiment described above, it is necessary to culture cells in which the concentration of the endoplasmic reticulum stress-inducing substance is changed in stages depending on whether the test substance is present or not. At this time, any cell can be used as the cell to be used, but a cell line that is readily available, stable, and has a high growth rate is preferable. Specific examples include human leukemic T cell lines (Jurkat cells), melanoma cells, PC12 cells, colon cancer cells, and the like.

また、使用する小胞体ストレス誘導物質も任意である。例えば、ツニカマイシンの他、小胞体のCaを減少させるタプシガルギン(Tg)、小胞体−ゴルジ装置間の輸送を止めるブレフェルジンA(BFA)、グルコースの枯渇をもたらす2−デオキシグルコース(2−DG)、還元剤であるDTT等を挙げることができるが、ツニカマイシンは最も典型的な小胞体ストレス誘導物質である。小胞体ストレス誘導物質の濃度範囲及び段階的に濃度を変化させる場合の濃度刻みについても、任意に設定することができるが、例えばツニカマイシンを使用した場合、濃度範囲を0〜2.5μM程度とし、0.2μM程度の刻みで濃度を変化させればよい。   Moreover, the endoplasmic reticulum stress inducer to be used is also arbitrary. For example, in addition to tunicamycin, thapsigargin (Tg) which decreases Ca in the endoplasmic reticulum, Brefeldin A (BFA) which stops transport between the endoplasmic reticulum and the Golgi apparatus, 2-deoxyglucose (2-DG) which causes depletion of glucose, reduction Although DTT etc. which are agents can be mentioned, tunicamycin is the most typical endoplasmic reticulum stress inducer. The concentration range of the endoplasmic reticulum stress inducer and the step of concentration when changing the concentration stepwise can be arbitrarily set. For example, when tunicamycin is used, the concentration range is about 0 to 2.5 μM, The concentration may be changed in steps of about 0.2 μM.

細胞の生存率は、例えばMTTアッセイに類似した細胞増殖試験により算出することができる。また、例えば培養した細胞を所定の色素で染色し、蛍光顕微鏡等で観察することにより、アポトーシスやネクローシスを判定することも可能である。例えば、商品名ヘキスト33342は核膜を通過し、DNAに取り込まれて青色の蛍光を発するため、生細胞、初期アポトーシスの検出に用いることができる。ヨウ化プロピジウム(PI)は、核膜を透過せず、死細胞のDNAに取り込まれ、赤色の蛍光を発するため、後期アポトーシス、ネクローシスの検出に用いることができる。   Cell viability can be calculated, for example, by a cell proliferation test similar to the MTT assay. In addition, for example, apoptosis or necrosis can be determined by staining cultured cells with a predetermined dye and observing the cells with a fluorescence microscope or the like. For example, the trade name Hoechst 33342 passes through the nuclear membrane, is taken up by DNA and emits blue fluorescence, and thus can be used to detect living cells and early apoptosis. Propidium iodide (PI) does not permeate the nuclear membrane, is taken up by the DNA of dead cells and emits red fluorescence, and therefore can be used for detection of late apoptosis and necrosis.

以上が本発明のスクリーニング方法の第1の実施形態であるが、前記細胞生存率の回復の他、前述のBiPの解析によっても被検物質が小胞体ストレスに関与するか否かを判別することが可能である。これが本発明のスクリーニング方法の第2の実施形態である。   The above is the first embodiment of the screening method of the present invention. In addition to the restoration of the cell viability, it is determined whether or not the test substance is involved in endoplasmic reticulum stress by the aforementioned BiP analysis. Is possible. This is the second embodiment of the screening method of the present invention.

前述の通り、BiPは小胞体ストレスセンサーとして働いていることが推測されている。したがって、このBiPを分析することで、やはり小胞体ストレスの状態を把握することが可能であると考えられる。本発明者らは、このような知見に基づいて実験を重ねたところ、小胞体ストレス誘導物質濃度が増加すると、所定の濃度(BiP検出開始濃度)に到達した時点でBiPが検出されること、被検物質が小胞体ストレスに関与する場合、前記BiP検出開始濃度がシフトすることを見出すに至った。   As described above, it is speculated that BiP works as an endoplasmic reticulum stress sensor. Therefore, it is considered that the state of endoplasmic reticulum stress can still be grasped by analyzing this BiP. As a result of repeated experiments based on such knowledge, the present inventors have found that when the endoplasmic reticulum stress inducer concentration increases, BiP is detected when a predetermined concentration (BiP detection start concentration) is reached, When the test substance is involved in endoplasmic reticulum stress, the inventors have found that the BiP detection start concentration shifts.

本実施形態は、これを利用して被検物質が小胞体ストレスに関与するか否かを判別する。すなわち、前記BiP検出開始濃度をモニターし、先の第1の実施形態と同様、被検物質を加えた時と加えない時でBiP検出開始濃度が変化(シフト)した場合には、被検物質は小胞体ストレスに何らかの関与するものと判断する。前記変化が見られない場合には、被検物質は小胞体ストレスに関与していないと判断する。   The present embodiment uses this to determine whether or not the test substance is involved in endoplasmic reticulum stress. That is, the BiP detection start concentration is monitored, and when the BiP detection start concentration changes (shifts) between when the test substance is added and when the test substance is not added, as in the first embodiment, Is considered to be involved in ER stress. When the change is not observed, it is determined that the test substance is not involved in endoplasmic reticulum stress.

この第2の実施形態においても、スクリーニングに際して、小胞体ストレス誘導物質の濃度を段階に変えた細胞の培養を、被検物質が存在する場合と存在しない場合について行うことは同様である。使用する細胞や小胞体ストレス誘導物質も同様である。BiPの分析は、電気泳動等により行うことができる。   In the second embodiment as well, in the screening, it is the same that the cells cultured with the concentration of the endoplasmic reticulum stress-inducing substance changed in stages are used for cases where the test substance is present and not present. The same applies to cells and endoplasmic reticulum stress inducers used. BiP analysis can be performed by electrophoresis or the like.

前述の被検物質の有無による細胞生存率回復濃度の変化に基づくスクリーニング(第1の実施形態のスクリーニング)と、被検物質の有無によるBiP検出開始濃度の変化に基づくスクリーニング(第2の実施形態のスクリーニング)は、それぞれ単独で行ってもよいし、併用して行ってもよい。これら2つのスクリーニングを併用することで、より正確な評価が可能になる。例えば、被検物質の添加により細胞生存率回復濃度が低濃度側にシフトし、BiP検出開始濃度も低濃度側にシフトすれば、かなりの確率で被検物質が小胞体ストレス誘導性アポトーシスの抑制作用、若しくは小胞体ストレスを回復させる作用を有するものと予測することが可能である。   Screening based on the change in the cell viability recovery concentration depending on the presence or absence of the aforementioned test substance (screening in the first embodiment), and screening based on the change in the BiP detection start concentration depending on the presence or absence of the test substance (second embodiment) Screening) may be performed alone or in combination. By using these two screenings together, more accurate evaluation becomes possible. For example, if the cell viability recovery concentration shifts to a lower concentration side by addition of the test substance and the BiP detection start concentration also shifts to the lower concentration side, the test substance suppresses endoplasmic reticulum stress-induced apoptosis with considerable probability. It is possible to predict that it has an action or an action to restore endoplasmic reticulum stress.

次に、小胞体ストレス誘導物質の濃度を段階に変えた細胞の培養を簡単且つ一括して行うことが可能な細胞評価チップについて説明する。   Next, a cell evaluation chip capable of easily and collectively culturing cells in which the concentration of an endoplasmic reticulum stress inducer is changed in stages will be described.

図2は、本発明を適用した細胞評価チップの一例を示すものである。この細胞評価チップは、基板上に小胞体ストレス誘導物質溶液が導入される第1の流路1と、前記小胞体ストレス誘導物質溶液を希釈する希釈液が導入される第2の流路2が平行(ほぼ平行であればよく、若干の角度のズレは許容される。)に形成されるとともに、分岐流路3a〜3fや細胞培養セル4a〜4f、さらには第1の流路と第2の流路を繋ぐ連結流路5a〜5fが形成されて構成されている。   FIG. 2 shows an example of a cell evaluation chip to which the present invention is applied. This cell evaluation chip has a first channel 1 into which an endoplasmic reticulum stress inducer solution is introduced on a substrate and a second channel 2 into which a diluent for diluting the endoplasmic reticulum stress inducer solution is introduced. It is formed in parallel (substantially parallel, and a slight angle deviation is allowed), and the branch flow paths 3a to 3f and the cell culture cells 4a to 4f, as well as the first flow path and the second flow path. The connecting flow paths 5a to 5f that connect these flow paths are formed.

ここで、基板にはポリジメチルシロキサン(PDMS)等の材料を用いることができ、光学的な加工等により多様な形態のチップを形成することが可能である。前述の各流路や細胞培養セルを形成した基板上には第2の基板を重ねて密閉構造とするが、第2の基板としてはガラス基板が好適である。重ねる基板をガラス基板とすることで、これを透過して細胞培養セルの様子を確認することができ、また細胞培養セルに対して直接分光分析等を行うことも可能である。なお、前記PDMS及びガラスは、いずれも細胞への毒性が低く、長時間の浸潤に耐えるという特徴も有する。   Here, a material such as polydimethylsiloxane (PDMS) can be used for the substrate, and chips of various shapes can be formed by optical processing or the like. A second substrate is stacked on the substrate on which each of the above-described flow paths and cell culture cells is formed to form a sealed structure, and a glass substrate is preferable as the second substrate. By using a glass substrate as the substrate to be stacked, the state of the cell culture cell can be confirmed through the glass substrate, and the cell culture cell can be directly subjected to spectroscopic analysis or the like. The PDMS and glass are both characterized by low toxicity to cells and withstand long-time infiltration.

前記分岐流路3a〜3fは、前記第1の流路1から直交方向に分岐され、第1の流路1にほぼ等間隔で設けられている。各分岐流路3a〜3fの中途部には、例えば円形の細胞培養セル4a〜4fが形成されており、この細胞培養セル4a〜4f内で細胞培養が行われる。細胞培養セル4a〜4fには、前記分岐流路3a〜3fの下流部分として排出流路6a〜6fが形成されており、余剰の溶液等がここから排出される。また、これら排出流路6a〜6fから各細胞培養セル4a〜4fに培養細胞を導入することができる。   The branch flow paths 3a to 3f are branched from the first flow path 1 in the orthogonal direction, and are provided in the first flow path 1 at substantially equal intervals. For example, circular cell culture cells 4a to 4f are formed in the middle of each of the branch channels 3a to 3f, and cell culture is performed in the cell culture cells 4a to 4f. In the cell culture cells 4a to 4f, discharge channels 6a to 6f are formed as downstream portions of the branch channels 3a to 3f, and excess solution and the like are discharged from here. Moreover, a cultured cell can be introduce | transduced into each cell culture cell 4a-4f from these discharge flow paths 6a-6f.

また、前記第1の流路1において、各分岐流路3a〜3fの上流位置には、それぞれ第2の流路から分岐され第1の流路1と第2の流路2を繋ぐ連結流路5a〜5fが形成されている。第1の流路1に導入された小胞体ストレス誘導物質溶液は、前記連結流路5a〜5fによって第1の流路1内に流入する希釈液(バッファー)によって順次希釈され、第1の流路1の下流部分1a〜1fで混合されて各細胞培養セル4a〜4fに注入される。したがって、細胞培養セル4a〜4f内には段階に濃度が異なる小胞体ストレス誘導物質溶液が注入されることになる。例えば、細胞培養セル4aには最も濃度の高い小胞体ストレス誘導物質溶液が注入され、細胞培養セル4fには最も濃度の薄い小胞体ストレス誘導物質溶液が注入される。なお、各細胞培養セル4a〜4fに注入される小胞体ストレス誘導物質溶液の濃度は、例えば連結流路5a〜5fの太さ(断面積)を変えることで任意に変更することが可能である。   In the first flow channel 1, a connecting flow that branches from the second flow channel and connects the first flow channel 1 and the second flow channel 2 is located upstream of the branch flow channels 3 a to 3 f. Paths 5a to 5f are formed. The endoplasmic reticulum stress inducer solution introduced into the first channel 1 is sequentially diluted with a diluent (buffer) flowing into the first channel 1 through the connection channels 5a to 5f, and the first flow It mixes in the downstream parts 1a-1f of the path | route 1, and is inject | poured into each cell culture cell 4a-4f. Therefore, endoplasmic reticulum stress inducer solutions having different concentrations are injected into the cell culture cells 4a to 4f. For example, the ER stress inducer solution with the highest concentration is injected into the cell culture cell 4a, and the ER stress inducer solution with the lowest concentration is injected into the cell culture cell 4f. The concentration of the endoplasmic reticulum stress inducer solution injected into each of the cell culture cells 4a to 4f can be arbitrarily changed, for example, by changing the thickness (cross-sectional area) of the connection channels 5a to 5f. .

前述の細胞評価チップを用いて被検出物質のスクリーニングを行う場合には、先ず、前記細胞評価チップの細胞培養セル4a〜4f内に等量の細胞を導入し、固定する。導入する細胞は、例えばヒト白血病性T細胞株(Jurkat細胞)、メラノーマ細胞、PC12細胞、大腸癌細胞等である。生きた細胞は、各細胞培養セル4a〜4f内に吸着して自ずと固定される。   When screening a substance to be detected using the above-described cell evaluation chip, first, an equal amount of cells are introduced and fixed in the cell culture cells 4a to 4f of the cell evaluation chip. The cells to be introduced are, for example, human leukemic T cell lines (Jurkat cells), melanoma cells, PC12 cells, colon cancer cells and the like. The living cells are adsorbed in the cell culture cells 4a to 4f and are naturally fixed.

次に、第1の流路1の注入口10から所定の濃度の小胞体ストレス誘導物質溶液を注入し、第2の流路2の注入口20から希釈液(バッファー)を注入する。これにより各細胞培養セル4a〜4fに段階的に濃度が異なる小胞体ストレス誘導物質溶液が注入される。前記小胞体ストレス誘導物質溶液の注入が終わった後、所定の培養条件で各細胞培養セル4a〜4f内で細胞の培養を行う。   Next, an endoplasmic reticulum stress inducer solution having a predetermined concentration is injected from the inlet 10 of the first channel 1, and a diluent (buffer) is injected from the inlet 20 of the second channel 2. As a result, endoplasmic reticulum stress inducer solutions having different concentrations in stages are injected into the cell culture cells 4a to 4f. After the injection of the endoplasmic reticulum stress inducer solution is completed, the cells are cultured in the cell culture cells 4a to 4f under predetermined culture conditions.

細胞培養の後、細胞培養セル4a〜4f内で分光分析等により細胞生存率の測定を行う。あるいは、各細胞培養セル4a〜4fから培養した細胞を取り出し、細胞生存率の測定を行ってもよい。ここで測定される小胞体ストレス誘導物質濃度と細胞生存率の関係が基準パターンとなり、細胞の生存率が回復する濃度が基準小胞体ストレス誘導物質濃度になる。   After cell culture, cell viability is measured by spectroscopic analysis or the like in the cell culture cells 4a to 4f. Or you may take out the cultured cell from each cell culture cell 4a-4f, and may measure a cell viability. The relationship between the endoplasmic reticulum stress inducer concentration measured here and the cell viability becomes the reference pattern, and the concentration at which the cell viability recovers becomes the reference endoplasmic reticulum stress inducer concentration.

次に、被検物質を導入して細胞の培養を行うが、この場合の手順もほとんど同じである。唯一異なるのは、第1の流路1の注入口10から注入される小胞体ストレス誘導物質溶液と、第2の流路2の注入口20から注入される希釈液(バッファー)に、同じ濃度で被検物質を混合することである。前記小胞体ストレス誘導物質溶液と希釈液(バッファー)に同じ濃度(完全に同じ濃度であることが理想的であるが、若干のズレは許容される。)の被検物質を混合することにより、各細胞培養セル4a〜4fに注入される小胞体ストレス誘導物質溶液における被検物質濃度は、全て同一の濃度となる。また、各細胞培養セル4a〜4fに注入される小胞体ストレス誘導物質溶液における小胞体ストレス誘導物質濃度は、段階的に変化する。   Next, the test substance is introduced and the cells are cultured, and the procedure in this case is almost the same. The only difference is that the endoplasmic reticulum stress inducer solution injected from the inlet 10 of the first channel 1 and the diluent (buffer) injected from the inlet 20 of the second channel 2 have the same concentration. Is to mix the test substance. By mixing the test substance of the same concentration (ideally the same concentration, ideally a slight deviation is allowed) into the endoplasmic reticulum stress inducer solution and diluent (buffer), The test substance concentrations in the endoplasmic reticulum stress inducer solution injected into the cell culture cells 4a to 4f are all the same. Moreover, the endoplasmic reticulum stress inducer concentration in the endoplasmic reticulum stress inducer solution injected into each cell culture cell 4a-4f changes in steps.

被検物質を導入した場合についても、同様の培養条件で各細胞培養セル4a〜4f内で細胞の培養を行う。細胞培養の後、細胞培養セル4a〜4f内で分光分析等により細胞生存率の測定を行う。あるいは、各細胞培養セル4a〜4fから培養した細胞を取り出し、細胞生存率の測定を行う。これにより得られたパターンを前記基準パターンと比較し、細胞の生存率が回復する濃度が基準小胞体ストレス誘導物質濃度からシフトしていた場合、被検物質は小胞体ストレスに影響を与える物質と判定する。逆に、細胞の生存率が回復する濃度が基準小胞体ストレス誘導物質濃度と同じであれば、被検物質は小胞体ストレスに影響を与えない物質と判定する。   Even when the test substance is introduced, the cells are cultured in the cell culture cells 4a to 4f under the same culture conditions. After cell culture, cell viability is measured by spectroscopic analysis or the like in the cell culture cells 4a to 4f. Or the cell cultured from each cell culture cell 4a-4f is taken out, and a cell viability is measured. The pattern obtained thereby is compared with the reference pattern, and when the concentration at which the cell viability is restored is shifted from the reference endoplasmic reticulum stress inducer concentration, the test substance is a substance that affects the endoplasmic reticulum stress. judge. Conversely, if the concentration at which the cell viability is restored is the same as the reference endoplasmic reticulum stress inducer concentration, the test substance is determined to be a substance that does not affect endoplasmic reticulum stress.

なお、各細胞培養セル4a〜4f内で培養した細胞について、BiPを抽出して分析することで、被検物質の評価を行ってもよいし、細胞の生存率が回復する小胞体ストレス誘導物質濃度とBiP検出開始濃度の両者に基づいて被検物質の評価を行ってもよい。   In addition, about the cell culture | cultivated in each cell culture cell 4a-4f, you may evaluate a test substance by extracting and analyzing BiP, and the endoplasmic reticulum stress inducer which recovers the cell viability The test substance may be evaluated based on both the concentration and the BiP detection start concentration.

以下、本発明の具体的な実施例について、実験結果に基づいて説明する。   Hereinafter, specific examples of the present invention will be described based on experimental results.

(1)細胞処理
(1−1) 細胞培養
ヒト白血病性T細胞株Jurkatは理化学研究所細胞バンクより譲渡されたものを用いた。Jurkat細胞は10%非働化ウシ胎児血清(FETAL BOVINE SERUM:FBS)(SIGMA社)を含むRPMI1640培地(GIBCO社)を用いて150mmシャーレ(Corning社)内で37℃、5%CO条件下で培養した。継代は3日に1回、10%非働化FBSを含むRPMI1640培地にその1/10量の細胞懸濁液を加えることにより行った。細胞の保存に関しては、約70%コンフルエントに達した細胞を遠心分離(1,000rpm、5分間)して集め、1mlセルバンカー(日本全薬工業社)に懸濁し(1.5×10cell/ml)、保存チューブ(IWAKI社)に添加した。その後、バイセルに入れ、−80℃で1日間静置して、液体窒素中に保存した。細胞は継代培養していると形態変化を喪失するため、1ヶ月に1回保存したストック細胞を改めて融解し、再度継代培養した。また、融解直後の細胞は凍結ストレスにより、増殖に異常がみられることがあるので、3回以上継代をした細胞を実験に用いた。
(1) Cell treatment (1-1) Cell culture The human leukemic T cell line Jurkat used from RIKEN Cell Bank. Jurkat cells were used in RPMI 1640 medium (GIBCO) containing 10% inactivated fetal bovine serum (FETAL BOVINE SERUM: FBS) (GIBCO) in a 150 mm petri dish (Corning) at 37 ° C. and 5% CO 2 . Cultured. Passage was performed once every 3 days by adding 1/10 volume of the cell suspension to RPMI 1640 medium containing 10% inactivated FBS. For cell storage, cells that reached approximately 70% confluence were collected by centrifugation (1,000 rpm, 5 minutes) and suspended in a 1 ml cell banker (Nippon Zenyaku Kogyo Co., Ltd.) (1.5 × 10 6 cells). / Ml) was added to a storage tube (IWAKI). Then, it put into the bicell and left still at -80 degreeC for 1 day, and preserve | saved in liquid nitrogen. Since cells lost their morphological changes when they were subcultured, stock cells stored once a month were thawed again and subcultured again. In addition, since cells immediately after thawing may have abnormal growth due to freezing stress, cells that have been passaged three or more times were used in the experiments.

(1−2) ツニカマイシン(Tm)処理
Tm培地は以下のように作製した。Tm(WAKO社)をDMSOに溶かした後、RPMI1640培地で適当な濃度に希釈し、0.22μmニューステラディスク(KURABO社)に供し、フィルター滅菌した。Jurkat細胞は約70%コンフルエントになった細胞を15ml遠心チューブ(IWAKI社)に移し、遠心分離(1,000rpm、5分)した。血球計算盤を用いて細胞数を数え、細胞濃度2×10cell/mlになるよう調整し、Tm培地で37℃、5%COの条件下で適当な時間培養した。
(1-2) Tunicamycin (Tm) treatment The Tm medium was prepared as follows. Tm (WAKO) was dissolved in DMSO, diluted to an appropriate concentration with RPMI 1640 medium, applied to 0.22 μm New Terradisk (KURABO), and filter sterilized. Jurkat cells were transferred to a 15 ml centrifuge tube (IWAKI) after approximately 70% confluence, and centrifuged (1,000 rpm, 5 minutes). The number of cells was counted using a hemocytometer, adjusted to a cell concentration of 2 × 10 5 cells / ml, and cultured in Tm medium under conditions of 37 ° C. and 5% CO 2 for an appropriate time.

(1−3) Tm及びリノール酸同時処理
リノール酸はDMSOに溶かした後、RPMI1640培地で適当な濃度に希釈し、0.22μmニューステラディスク(KURABO社)に供し、フィルター滅菌した。その後、Tm培地に終濃度が25μMになるように添加した。Jurkat細胞は約70%コンフルエントになった細胞を15ml遠心チューブ(IWAKI社)に移し、遠心分離(1,000rpm、5分)した。血球計算盤を用いて細胞数を数え、細胞濃度2×10cell/mlになるよう調整し、リノール酸入りTm培地で37℃、5%COの条件下で適当な時間培養した。
(1-3) Simultaneous treatment of Tm and linoleic acid After linoleic acid was dissolved in DMSO, the linoleic acid was diluted to an appropriate concentration with RPMI 1640 medium, subjected to 0.22 μm New Terradisk (KURABO), and filter sterilized. Then, it added to Tm culture medium so that final concentration might be set to 25 micromol. Jurkat cells were transferred to a 15 ml centrifuge tube (IWAKI) after approximately 70% confluence, and centrifuged (1,000 rpm, 5 minutes). The number of cells was counted using a hemocytometer, adjusted to a cell concentration of 2 × 10 5 cells / ml, and cultured in a Tm medium containing linoleic acid at 37 ° C. and 5% CO 2 for an appropriate time.

(2) 細胞増殖試験を用いた生存率の測定
MTTアッセイに類似した細胞増殖試験(Cell titer 96 Aqueous(Promega社))により、細胞生存率を産出した。これは、テトラゾリウム化合物であるMTS(3−(4,5−dimethylthiazol−2−yl)−5−(3−carboxymethoxyphenyl)−2−(4−sulfophenyl)−2H−tetrazolium,inner salt)が細胞中の脱水素酵素によって490nmに吸収をもつホルマザンに変換されることを利用している。MTSとホルマザンの構造を化1に示す。
(2) Measurement of cell viability using cell proliferation test Cell viability was produced by a cell proliferation test similar to the MTT assay (Cell titer 96 Aqueous (Promega)). This is because the tetrazolium compound MTS (3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium, inner salt) is contained in cells. It is utilized that it is converted into formazan having absorption at 490 nm by dehydrogenase. The structures of MTS and formazan are shown in Chemical Formula 1.

Figure 2008131899
Figure 2008131899

10%非働化FBSを含むRPMI1640培地にBPAを添加して濃度を調整し、96穴プレート(IWAKI社)に加えた。1穴につき2×10個の細胞を添加した。処理を開始してから24、48時間後にMTS/PMS(phenazine methosulfate)混合溶液(MTS溶液:PMS溶液=20:1)を1穴につき20μlずつ添加して2時間培養(37℃、5%CO)した。培養後、マイクロプレートリーダー(BIO RAD社、model450)で490nmの吸光度を測定した(対照波長655nm)。未処理細胞の吸光度を基準として、下記式に従って相対細胞生存率を算出した。式中Xは培地のみの値を示す。Tm処理後の細胞生存率(24時間処理)を図3に、Tm及びリノール酸同時処理後の細胞生存率(24時間処理)を図4に示す。
細胞生存率=(実験値−X/コントロール値−X)×100
The concentration was adjusted by adding BPA to RPMI 1640 medium containing 10% inactivated FBS, and added to a 96-well plate (IWAKI). 2 × 10 4 cells were added per well. 24 and 48 hours after the start of the treatment, 20 μl of a mixed solution of MTS / PMS (phenazine method) (MTS solution: PMS solution = 20: 1) was added to each well and cultured for 2 hours (37 ° C., 5% CO 2). 2 ). After culturing, the absorbance at 490 nm was measured with a microplate reader (BIO RAD, model 450) (control wavelength: 655 nm). Based on the absorbance of untreated cells, the relative cell viability was calculated according to the following formula. In the formula, X represents the value of the medium alone. The cell survival rate after Tm treatment (24 hours treatment) is shown in FIG. 3, and the cell survival rate after Tm and linoleic acid simultaneous treatment (24 hours treatment) is shown in FIG.
Cell viability = (experimental value−X / control value−X) × 100

先ず、図3に示すように、Tmに細胞を暴露した場合、生存率が次第に低下し、Tm1.7μM付近で生存率の回復が観察された。これは時間依存ではなく濃度依存であった。一方、被検物質であるリノール酸を添加した場合、生存率の回復ポイントが低濃度側(Tm0.8μM付近)にシフトした。したがって、前記リノール酸は、小胞体ストレスに関与する物質と判断できる。   First, as shown in FIG. 3, when the cells were exposed to Tm, the survival rate gradually decreased, and recovery of the survival rate was observed at around Tm 1.7 μM. This was not time dependent but concentration dependent. On the other hand, when linoleic acid as the test substance was added, the recovery point of the survival rate shifted to the low concentration side (around Tm 0.8 μM). Therefore, the linoleic acid can be determined to be a substance involved in endoplasmic reticulum stress.

(3)ウェスタンブロッティング
(3−1) サンプル調製
Jurkat細胞を各濃度のTmまたはTmとリノール酸で処理し、適当な時間培養した後、サンプル(2×10細胞)を回収した。Lysis緩衝液(表1)50μlに回収した細胞を溶解させ、2×SDS−PAGEサンプル緩衝液(表2)を50μl添加した。約20〜30秒間氷冷しながら超音波処理して溶液を均一に溶かした。98℃で5分間熱処理し、5分間氷冷後、遠心分離(12,000rpm、5分間)したものを10%SDS−PAGEに供した。
(3) Western blotting (3-1) Sample preparation Jurkat cells were treated with various concentrations of Tm or Tm and linoleic acid, cultured for an appropriate time, and then samples (2 × 10 6 cells) were collected. Cells collected in 50 μl of Lysis buffer (Table 1) were lysed, and 50 μl of 2 × SDS-PAGE sample buffer (Table 2) was added. The solution was uniformly dissolved by sonication with ice cooling for about 20 to 30 seconds. The mixture was heat-treated at 98 ° C. for 5 minutes, ice-cooled for 5 minutes, and centrifuged (12,000 rpm, 5 minutes), and subjected to 10% SDS-PAGE.

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

(3−2) SDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)
濃縮ゲル(表3)は4%、分離ゲル(表4)は10%になるように40%アクリルアミド(第一化学薬品社)溶液(表5)を加えた。泳動用緩衝液はSDS−PAGE用緩衝液(表6)を使用した。分子量マーカーは、プレステインドタンパク質マーカー(ナカライテスク社)を用いた。
(3-2) SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
A 40% acrylamide (Daiichi Kagaku) solution (Table 5) was added so that the concentration gel (Table 3) was 4% and the separation gel (Table 4) was 10%. As the electrophoresis buffer, an SDS-PAGE buffer (Table 6) was used. As the molecular weight marker, a prestained protein marker (Nacalai Tesque) was used.

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

(3−3) 目的タンパク質のPVDF膜へのブロッティング
SDS−PAGEのゲルと同じ大きさのpolyvinylidene difluoride(PVDF)膜を、100%メタノールに20秒間浸し、B液(表8)中で約30分間振とうした。ゲル1枚につきゲルと同じ大きさのアブソーベントペーパー(ATTO社)をA液(表7)に2枚、B液に1枚、C液(表9)に3枚ずつ浸した。また、電気泳動後のゲルはB液中で30分間振とうした。ブロッティング装置はホライズブロット(ATTO社)を用いた。A液で湿らせておいた下部電極に、A液に浸しておいたアブソーベントペーパーを2枚重ね、その上にB液に浸しておいたアブソーベントペーパーを1枚重ねた。PVDF膜をさらに上に重ね、B液を数ml程度かけて気泡の入らないようにゲルを載せた。その後、C液を上から少量かけ、C液に浸しておいたアブソーベントペーパー3枚を同様に重ね、上からしっかり押さえて、ゲル、PVDF膜、アブソーベントペーパーを密着させた。最後に、上部電極をおろして100mA(ゲル面積1cm当たり2mA程度)で35分間通電し、目的タンパク質をPVDF膜上にブロッティングした。
(3-3) Blotting of target protein on PVDF membrane Polyvinylidene difluoride (PVDF) membrane of the same size as the SDS-PAGE gel is immersed in 100% methanol for 20 seconds, and about 30 minutes in solution B (Table 8). Shake. Two sheets of absorbent paper (ATTO) having the same size as the gel were immersed in solution A (Table 7), one in solution B, and three in solution C (Table 9). Moreover, the gel after electrophoresis was shaken in B liquid for 30 minutes. As a blotting apparatus, a horizon blot (ATTO) was used. Two sheets of absorbent paper immersed in the liquid A were stacked on the lower electrode wetted with the liquid A, and one sheet of absorbent paper immersed in the liquid B was stacked thereon. A PVDF membrane was further stacked on top, and the gel was placed so that bubbles could not enter over several ml of solution B. Thereafter, a small amount of liquid C was applied from above, and three sheets of absorbent paper immersed in liquid C were stacked in the same manner and pressed firmly from above to bring the gel, PVDF membrane, and absorbent paper into close contact. Finally, the upper electrode was lowered, and current was applied at 100 mA (about 2 mA per 1 cm 2 of gel area) for 35 minutes to blot the target protein on the PVDF membrane.

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

(3−4) BiPの活性化
ブロッティング後のPVDF膜をブロッキング緩衝液(5%(w/v)skim milk in TBST(表10))20mlに1時間浸し、TBST溶液で5分間ずつ3回洗浄後、PVDF膜上のタンパク質とBiPの一次抗体(フナコシ社、Anti−BiP、(H−129)、Human (Rabbit))を4℃で一晩反応させた。反応後、TBST溶液で5分間ずつ3回洗浄し、PVDF膜上のタンパク質と二次抗体(抗ウサギIgG(SIGMA社))を室温で2時間反応させた。反応後、TBST溶液で5分間ずつ3回洗浄し、AP緩衝液(表12)に5分間浸した後、展開溶媒(表13)に浸し、染色させた。染色後、TBS溶液(表11)で5分間ずつ3回洗浄した。Tm処理後(6時間処理)のBiP発現の検出結果を図5に、Tm及びリノール酸同時処理後(6時間処理)のBiP発現の検出結果を図6に示す。
(3-4) Activation of BiP The PVDF membrane after blotting is immersed in 20 ml of blocking buffer (5% (w / v) skim milk in TBST (Table 10)) for 1 hour, and washed 3 times for 5 minutes each with TBST solution. Thereafter, the protein on the PVDF membrane and the primary antibody of BiP (Funakoshi, Anti-BiP, (H-129), Human (Rabbit)) were reacted overnight at 4 ° C. After the reaction, the plate was washed with TBST solution three times for 5 minutes, and the protein on the PVDF membrane and the secondary antibody (anti-rabbit IgG (SIGMA)) were reacted at room temperature for 2 hours. After the reaction, the plate was washed with TBST solution three times for 5 minutes, immersed in AP buffer (Table 12) for 5 minutes, and then immersed in a developing solvent (Table 13) for staining. After staining, the plate was washed 3 times for 5 minutes each with a TBS solution (Table 11). The detection result of BiP expression after Tm treatment (6 hour treatment) is shown in FIG. 5, and the detection result of BiP expression after Tm and linoleic acid simultaneous treatment (6 hour treatment) is shown in FIG.

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

Figure 2008131899
Figure 2008131899

これら図5及び図6を見ると、リノール酸の添加によってBiPの発現ポイント(BiP検出開始濃度)が0.3μMから0.1μMへと低濃度側にシフトしている。したがって、このことからも前記リノール酸が小胞体ストレスに関与する物質と判断することが可能である。   5 and 6, the BiP expression point (BiP detection start concentration) is shifted from 0.3 μM to 0.1 μM on the low concentration side by the addition of linoleic acid. Therefore, it can be judged from this that the linoleic acid is a substance involved in endoplasmic reticulum stress.

小胞体ストレス誘導物質濃度と細胞生存率の関係を模式的に示す図である。It is a figure which shows typically the relationship between an endoplasmic reticulum stress inducer density | concentration and cell viability. 細胞評価チップの一例を示す概略平面図である。It is a schematic plan view which shows an example of a cell evaluation chip | tip. Tmで24時間処理した後の細胞生存率を示す図である。It is a figure which shows the cell survival rate after processing for 24 hours by Tm. Tm及びリノール酸で24時間同時処理した後の細胞生存率を示す図である。It is a figure which shows the cell viability after carrying out simultaneous treatment with Tm and linoleic acid for 24 hours. Tmで6時間処理した後のBiP発現の検出結果を示す写真である。It is a photograph which shows the detection result of BiP expression after processing for 6 hours by Tm. Tm及びリノール酸で6時間同時処理した後のBiP発現の検出結果を示す写真である。It is a photograph which shows the detection result of BiP expression after 6-hour simultaneous treatment with Tm and linoleic acid.

符号の説明Explanation of symbols

1 第1の流路、2 第2の流路、3a〜3f 分岐流路、4a〜4f 細胞培養セル、5a〜5f 連結流路、6a〜6f 排出流路 DESCRIPTION OF SYMBOLS 1 1st flow path, 2nd flow path, 3a-3f branch flow path, 4a-4f cell culture cell, 5a-5f connection flow path, 6a-6f discharge flow path

Claims (9)

小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無による細胞生存率回復濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする小胞体ストレス関与物質のスクリーニング方法。   Culturing the cells with different concentrations of the endoplasmic reticulum stress inducing substance, and evaluating the effect of the test substance on the endoplasmic reticulum stress based on the difference in the recovery concentration of cell viability depending on the presence or absence of the test substance A screening method for a characteristic endoplasmic reticulum stress-related substance. 小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無によるBiP検出開始濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする小胞体ストレス関与物質のスクリーニング方法。   Culturing the cells at different concentrations of the endoplasmic reticulum stress inducer, and evaluating the influence of the test substance on the endoplasmic reticulum stress based on the difference in the BiP detection start concentration depending on the presence or absence of the test substance A screening method for a substance involved in endoplasmic reticulum stress. 小胞体ストレス誘導物質の濃度を段階に変えて細胞の培養を行い、被検物質の有無による細胞生存率回復濃度の相違及びBiP検出開始濃度の相違に基づいて当該被検物質の小胞体ストレスへの影響を評価することを特徴とする小胞体ストレス関与物質のスクリーニング方法。   Culturing the cells by changing the concentration of the endoplasmic reticulum stress inducing substance in stages, to the endoplasmic reticulum stress of the test substance based on the difference in the cell viability recovery concentration depending on the presence or absence of the test substance and the difference in the BiP detection start concentration A screening method for a substance involved in endoplasmic reticulum stress, characterized by evaluating the effect of ER. 前記細胞が株化細胞であることを特徴とする請求項1から3のいずれか1項記載の小胞体ストレス関与物質のスクリーニング方法。   The screening method for a substance involved in endoplasmic reticulum stress according to any one of claims 1 to 3, wherein the cell is a cell line. 前記細胞が、ヒト白血病性T細胞株(Jurkat細胞)、メラノーマ細胞、PC12細胞、大腸癌細胞から選択される少なくとも1種であることを特徴とする請求項4記載の小胞体ストレス関与物質のスクリーニング方法。   The screening for a substance involved in endoplasmic reticulum stress according to claim 4, wherein the cell is at least one selected from human leukemic T cell line (Jurkat cell), melanoma cell, PC12 cell, and colon cancer cell. Method. 前記小胞体ストレス誘導物質がツニカマイシンであることを特徴とする請求項1から5のいずれか1項記載の小胞体ストレス関与物質のスクリーニング方法。   6. The screening method for a substance involved in endoplasmic reticulum stress according to claim 1, wherein the endoplasmic reticulum stress inducer is tunicamycin. 小胞体ストレス誘導物質溶液が導入される第1の流路と、前記小胞体ストレス誘導物質溶液を希釈する希釈液が導入される第2の流路が略平行に形成され、
前記第1の流路には所定の間隔で複数の分岐流路が形成され、当該分岐流路に細胞培養セルが形成されるとともに、
各分岐流路の上流位置に前記第1の流路と第2の流路を繋ぐ連結流路が形成されていることを特徴とする小胞体ストレス関与物質スクリーニング用細胞評価チップ。
A first flow path into which the endoplasmic reticulum stress inducer solution is introduced and a second flow path into which a diluent for diluting the endoplasmic reticulum stress inducer solution is introduced are formed substantially in parallel.
A plurality of branch channels are formed at predetermined intervals in the first channel, and cell culture cells are formed in the branch channels,
A cell evaluation chip for screening an endoplasmic reticulum stress-related substance, wherein a connecting flow path connecting the first flow path and the second flow path is formed at an upstream position of each branch flow path.
各細胞培養セルに排出流路が形成されており、培養細胞がこれら排出流路から前記細胞培養セルに導入されることを特徴とする請求項7記載の小胞体ストレス関与物質スクリーニング用細胞評価チップ。   8. A cell evaluation chip for screening an endoplasmic reticulum stress-related substance according to claim 7, wherein a discharge channel is formed in each cell culture cell, and cultured cells are introduced into the cell culture cell from these discharge channels. . 被検物質が前記第1の流路に導入される小胞体ストレス誘導物質溶液及び第2の流路に導入される希釈液に略同一濃度で溶解されて細胞培養セルに導入されることを特徴とする請求項7または8記載の小胞体ストレス関与物質スクリーニング用細胞評価チップ。   A test substance is dissolved in substantially the same concentration in an endoplasmic reticulum stress inducer solution introduced into the first channel and a diluent introduced into the second channel, and is introduced into the cell culture cell. The cell evaluation chip for screening an endoplasmic reticulum stress participation substance according to claim 7 or 8.
JP2006320650A 2006-11-28 2006-11-28 Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance Pending JP2008131899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320650A JP2008131899A (en) 2006-11-28 2006-11-28 Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320650A JP2008131899A (en) 2006-11-28 2006-11-28 Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance

Publications (1)

Publication Number Publication Date
JP2008131899A true JP2008131899A (en) 2008-06-12

Family

ID=39557199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320650A Pending JP2008131899A (en) 2006-11-28 2006-11-28 Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance

Country Status (1)

Country Link
JP (1) JP2008131899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142161A1 (en) 2008-05-20 2009-11-26 日本曹達株式会社 Process for production of polysilane compound
US9085791B2 (en) 2011-02-07 2015-07-21 The University Of Tokushima Method for screening substance relating to endoplasmic reticulum stress participating in onset of diabetes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142161A1 (en) 2008-05-20 2009-11-26 日本曹達株式会社 Process for production of polysilane compound
US9085791B2 (en) 2011-02-07 2015-07-21 The University Of Tokushima Method for screening substance relating to endoplasmic reticulum stress participating in onset of diabetes

Similar Documents

Publication Publication Date Title
Mori et al. A pretreatment‐free, polymer‐based platform prepared by molecular imprinting and post‐imprinting modifications for sensing intact exosomes
Alapan et al. Emerging point-of-care technologies for sickle cell disease screening and monitoring
JP2022058772A (en) Devices and methods for sample analysis
Nosrati et al. based quantification of male fertility potential
Chung et al. Nanoparticle detection of urinary markers for point-of-care diagnosis of kidney injury
Whiten et al. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking
Shaheer et al. A comparative study of high sensitivity C-reactive protein and metabolic variables in type 2 diabetes mellitus with and without nephropathy
Mahoney et al. Point-of-care urinalysis with emerging sensing and imaging technologies
Harpaz et al. Blood-based biomarkers are associated with different ischemic stroke mechanisms and enable rapid classification between cardioembolic and atherosclerosis etiologies
KR101732300B1 (en) Methods of failsafing electrochemical measurements of an analyte as well as devices, apparatuses and systems incorporating the same
Pulikkathodi et al. Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor
EP2982979B1 (en) Method for evaluating urine sample, analyzer, and analysis system
Lapizco‐Encinas et al. Microfluidic systems in clinical diagnosis
Pomowski et al. Acoustic biosensors coated with phosphorylcholine groups for label-free detection of human C-reactive protein in serum
JP2008131899A (en) Method for screening endoplasmic reticulum stress-related substance, and cell-evaluating chip for screening endoplasmic reticulum stress-related substance
GB2524519A (en) Method for identifying a biomarker indicative of a reduced drug response using a thermal shift assay
Ciepiela et al. Delay in the measurement of eosin-5′-maleimide (EMA) binding does not affect the test result for the diagnosis of hereditary spherocytosis
Laha et al. Smartphone-integrated label-free rapid screening of anemia from the pattern formed by one drop of blood on a wet paper strip
Bivona et al. Analysis of Ras activation in living cells with GFP‐RBD
Schordan et al. Alterations of the podocyte proteome in response to high glucose concentrations
Padmanabhan et al. Immunoblotting analysis of intracellular PD-L1 levels in interferon-γ-treated ovarian cancer cells stably transfected with Bcl3 shRNA
Hartnett et al. LANCE: a label-free live apoptotic and necrotic cell explorer using convolutional neural network image analysis
Ren et al. based analytical device for fast colorimetric detection of total hemoglobin and free hemoglobin from human blood sample
Ghosh et al. Self-assembled sensor-in-a-tube as a versatile tool for label-free EIS viability investigation of cervical cancer cells
van den Berg Labs on a chip for health care applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090715

Free format text: JAPANESE INTERMEDIATE CODE: A621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424