JP2008129727A - Fitting variation prediction method for component for automobile - Google Patents

Fitting variation prediction method for component for automobile Download PDF

Info

Publication number
JP2008129727A
JP2008129727A JP2006312079A JP2006312079A JP2008129727A JP 2008129727 A JP2008129727 A JP 2008129727A JP 2006312079 A JP2006312079 A JP 2006312079A JP 2006312079 A JP2006312079 A JP 2006312079A JP 2008129727 A JP2008129727 A JP 2008129727A
Authority
JP
Japan
Prior art keywords
variation
analysis
component
stage
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006312079A
Other languages
Japanese (ja)
Inventor
Akito Yasuda
明人 安田
Satsuki Yamane
五月 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Jidosha Kogyo KK
Toyota Motor East Japan Inc
Original Assignee
Kanto Jidosha Kogyo KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Jidosha Kogyo KK, Kanto Auto Works Ltd filed Critical Kanto Jidosha Kogyo KK
Priority to JP2006312079A priority Critical patent/JP2008129727A/en
Publication of JP2008129727A publication Critical patent/JP2008129727A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for predicting the variation of the fitting of components for an automobile under the consideration of component rigidity so as to highly precisely verify fitting achievement property. <P>SOLUTION: This fitting variation prediction method includes a first stage S2 for acquiring the variation value of each of components by a tolerance analysis based on the drawing data of each component; and a second stage S3 for creating the finite element analytic model of each of components having variation by using the variation value of each of components obtained in the first stage S2 as component data, and for executing FEM analysis so as to assemble those finite element analytic models with each other, and for acquiring a variation value under the consideration of deformation by the FEM analysis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の車体等を構成する部品の建て付けのバラツキを予測する方法に関するものである。   The present invention relates to a method for predicting variation in building parts constituting a car body of an automobile.

一般に、コンピュータにより、例えば自動車の車体を構成する部品、例えばフロントバンパー,フロントフェンダー,ヘッドランプ,フード,リヤバンパー,フロントドア,リヤドア等の部品の図面を作成する場合に、図面完成度を向上させる目的で、建て付け成立性の検証を行なうために、各部品の図面における図面データに基づいて建て付けのバラツキ予測及び部品剛性予測を、それぞれ解析ツールを利用して実施している。この建て付けバラツキ予測は、具体的には、所謂公差解析により行なわれ、また部品剛性予測は所謂FEM解析により行なわれている。   In general, the purpose of improving the completeness of drawings when a computer is used to create drawings of parts constituting the body of an automobile, such as front bumpers, front fenders, headlamps, hoods, rear bumpers, front doors, rear doors, etc. Therefore, in order to verify the feasibility of building, building variation prediction and part rigidity prediction are performed using analysis tools based on the drawing data in the drawings of each part. Specifically, the built-in variation prediction is performed by so-called tolerance analysis, and the part rigidity prediction is performed by so-called FEM analysis.

ここで、上述した公差解析においては、図8に示すように、各部品の図面データAに基づいて、剛体に関する公差解析Bにより公差の分布に応じて寸法にバラツキを有する多数の部品を仮想的に生成して、これらを組み合わせる手法、所謂モンテカルロ法に基づいて、三次元空間における建て付けのバラツキCを予測する。   Here, in the above-described tolerance analysis, as shown in FIG. 8, based on the drawing data A of each part, a large number of parts having variations in dimensions according to the distribution of the tolerance are virtually obtained by the tolerance analysis B regarding the rigid body. Based on a so-called Monte Carlo method, which is generated by combining the two, a built-in variation C in a three-dimensional space is predicted.

さらに、この公差解析においては、建て付けのバラツキに影響を与えるような因子の寄与度を算出することによって、最適構造への絞り込みを行なう。この場合、剛体部品同士の組み合わせであることから、建て付けバラツキに個々の部品の変形が大きく寄与する場合には、予測精度が低下することになる。   Further, in this tolerance analysis, the optimum structure is narrowed down by calculating the contribution of factors that affect the variation in building. In this case, since it is a combination of rigid parts, when the deformation of individual parts greatly contributes to the build-up variation, the prediction accuracy is lowered.

一方、FEM解析においては、同様に図8に示すように、各部品の図面データAに基づいて、弾性体に関するFEM解析Dにより有限要素解析モデルを作成して、外力による変形、即ち部品剛性Eを予測する。   On the other hand, in the FEM analysis, as shown in FIG. 8, similarly, based on the drawing data A of each part, a finite element analysis model is created by FEM analysis D related to the elastic body, and deformation due to external force, that is, part rigidity E Predict.

しかしながら、このような公差解析Bによる建て付けバラツキ予測Cにおいては、建て付けバラツキに個々の部品の変形が大きく寄与するような場合には、公差解析による建て付けバラツキ予測Cが個々の部品の変形を考慮していないことから、建て付けバラツキ予測Cの精度が低下してしまうことになる。   However, in the build variation prediction C based on the tolerance analysis B, when the deformation of individual parts greatly contributes to the build variation, the build variation prediction C based on the tolerance analysis is used to determine the deformation of the individual components. Therefore, the accuracy of the built-in variation prediction C is reduced.

また、FEM解析による部品剛性予測Eにおいては、各部品のデータは、バラツキのない所謂正寸部品のデータであることから、個々の部品の寸法バラツキを考慮していないので、正寸部品に対する部品剛性予測に限定されることになってしまう。   Further, in the part rigidity prediction E by FEM analysis, since the data of each part is data of a so-called exact part with no variation, the dimension variation of each part is not taken into consideration. It will be limited to rigidity prediction.

このようにして、従来は部品の剛性を考慮した建て付けバラツキ予測を行なう手法がないことから、公差解析Bによる建て付けバラツキ予測C及びFEM解析Dによる部品剛性予測Eを並行してそれぞれ独立的に実施している。
しかしながら、上述したように、個々の部品の変形や寸法バラツキを考慮した建て付けバラツキ予測や部品剛性予測を行なうことができないため、例えばバラツキを持った部品同士の組み付けにより変形が生じた場合の建て付けバラツキ予測を行なうことができず、高精度の建て付け成立性の検証を行なうことができなかった。
As described above, since there is no conventional method for predicting the build variation considering the rigidity of the component, the build variation prediction C based on the tolerance analysis B and the component stiffness prediction E based on the FEM analysis D are independently performed in parallel. Have been implemented.
However, as described above, because it is impossible to predict building variation and component rigidity in consideration of deformation and dimensional variation of individual parts, for example, when a deformation occurs due to assembly of parts having variation. Attached variation prediction could not be performed, and high-precision building feasibility could not be verified.

本発明は、以上の点にかんがみ、高精度の建て付け成立性の検証を行なうことができるように、部品剛性を考慮した自動車用部品の建て付けバラツキ予測方法を提供することを目的としている。   In view of the above points, an object of the present invention is to provide a method for predicting the variation in building parts for automobiles in consideration of the rigidity of parts so that the building feasibility can be verified with high accuracy.

上記目的を達成するために、本発明の自動車用部品の建て付けのバラツキ予測方法は、各部品の図面データに基づいて公差解析によって各部品のバラツキ値を取得する第一の段階と、第一の段階によって得られた各部品のバラツキ値を部品データとして、バラツキを持った各部品の有限要素解析モデルを作成し、これらの有限要素解析モデルを相互に組み付けるようにFEM解析を行い、FEM解析によって変形(剛性)を考慮したバラツキ値を取得する第二の段階と、を含むことを特徴としている。   In order to achieve the above object, a method for predicting a variation in building an automotive part according to the present invention includes a first stage of obtaining a variation value of each part by tolerance analysis based on drawing data of each part, Using the variation value of each part obtained in the above step as part data, create a finite element analysis model of each part with dispersion, perform FEM analysis so that these finite element analysis models are assembled with each other, and perform FEM analysis And a second stage of obtaining a variation value in consideration of deformation (rigidity).

上記構成によれば、FEM解析により作成された有限要素解析モデルが、公差解析により取得された各部品のバラツキ値に基づいて作成される。
従って、このようなバラツキを含んだ有限要素解析モデルに基づいて組み付け解析を行なうことにより、部品同士の組み付けの際に部品に変形が生じたとしても、各部品のこのような変形、そして部品剛性を考慮した建て付けバラツキを予測することができる。
According to the above configuration, the finite element analysis model created by the FEM analysis is created based on the variation value of each part acquired by the tolerance analysis.
Therefore, by performing assembly analysis based on a finite element analysis model that includes such variations, even if the components are deformed during the assembly of components, such deformation of each component and component rigidity Can be predicted.

このようにして、本発明によれば、寸法バラツキを持った部品同士を組み付ける場合でも、組み付けによる各部品の変形を予測して、建て付けバラツキの予測を行なうことができるので、正確な建て付けバラツキの予測が可能になる。   In this way, according to the present invention, even when parts having dimensional variations are assembled, it is possible to predict the variation of each part by assembling and predict the installation variation, so that accurate installation is possible. Variations can be predicted.

以下、図面に示した実施形態に基づいて本発明を詳細に説明する。
図1は、本発明による自動車用部品の建て付けバラツキ予測方法の一実施形態を実施するための建て付けバラツキ予測装置の構成を示している。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
FIG. 1 shows a configuration of a built-in variation prediction apparatus for carrying out an embodiment of a method for predicting built-in variation of automotive parts according to the present invention.

図1において、建て付けバラツキ予測装置10は、制御部11と記憶部12と表示部13とから構成されている。
制御部11は、例えばパーソナルコンピュータから構成されており、インストールされたプログラムを稼動させることにより、自動車用部品の設計図面を作成し、さらに後述する建て付けバラツキ予測のために必要な公差解析,FEM解析等の処理動作を行なう。
In FIG. 1, the built-in variation prediction device 10 includes a control unit 11, a storage unit 12, and a display unit 13.
The control unit 11 is composed of, for example, a personal computer, creates a design drawing of an automobile part by running an installed program, and further performs tolerance analysis and FEM necessary for building variation prediction described later. Processing operations such as analysis are performed.

記憶部12は、ハードディスクドライブ等から構成されており、制御部11から各種データやプログラムが読み書き可能に登録される。さらに、記憶部12は、自動車用部品の設計に必要な諸データや、各部品の作成済みや作成途中の図面データそして解析結果が登録される。   The storage unit 12 includes a hard disk drive and the like, and various data and programs are registered in the control unit 11 so as to be readable and writable. Further, the storage unit 12 registers various data necessary for the design of automobile parts, drawing data of each part that has been created or being created, and analysis results.

表示部13は、例えば液晶ディスプレイ装置であって、制御部11によって制御されることで、作成する各部品に関する図面データや、解析結果等が画面表示されるようになっていると共に、図示しない入力部による入力時に、入力操作に必要な各種情報が画面表示される。   The display unit 13 is, for example, a liquid crystal display device, and is controlled by the control unit 11 so that drawing data, analysis results, and the like regarding each component to be created are displayed on the screen, and input not shown. Various information necessary for the input operation is displayed on the screen at the time of input by the unit.

そして、建て付けバラツキ予測装置10は、プログラムの動作により、図2のフローチャートに従って、自動車用部品の建て付けのバラツキ予測を行ない、その解析結果を表示部13に表示する。   Then, the built-in variation prediction apparatus 10 performs the build-up variation prediction of the automobile parts according to the flowchart of FIG. 2 by the operation of the program, and displays the analysis result on the display unit 13.

即ち、図2にて、まずステップS1において、制御部11は、建て付けバラツキの予測を行なおうとする複数個の部品に関して、各部品の図面データ12aを記憶部12から読み出す。   That is, in FIG. 2, first, in step S <b> 1, the control unit 11 reads the drawing data 12 a of each part from the storage unit 12 for a plurality of parts for which building variation is to be predicted.

次に、ステップS2において、制御部11は、読み出した部品の図面データ12aに基づいて公差解析を実施することにより、正寸データに対する図面データ上の部品の評価ポイントのバラツキを評価し、図3に示すような評価ポイントにおけるバラツキのグラフを得て、評価ポイントにおけるバラツキ値12bとして記憶部12に登録する。このバラツキ値12bは、評価ポイントにおけるバラツキが最大になる、即ち、図3のグラフにおいて評価ポイントのバラツキの上下限における、各部品の管理部位のバラツキ値である。   Next, in step S2, the control unit 11 performs tolerance analysis based on the read drawing data 12a of the component, thereby evaluating the variation in the evaluation point of the component on the drawing data with respect to the exact size data. Is obtained, and is registered in the storage unit 12 as a variation value 12b at the evaluation point. This variation value 12b is the variation value of the management part of each component at the maximum of the variation at the evaluation point, that is, at the upper and lower limits of the variation of the evaluation point in the graph of FIG.

具体的には、制御部11は、図4に示すように、各部品に関するボディ精度(L,W,H)、即ち、第一の部品P1のボディ精度(L1,W1,H1),第二の部品P2のボディ精度(L2,W2,H2),第三の部品P3のボディ精度(L3,W3,H3),第四の部品P4のボディ精度(L4,W4,H4)について、それぞれバラツキ値を取得する。例えば、部品P4であれば図中の☆(白星)印が評価ポイントであり、この評価ポイントにおけるバラツキが最大になる場合の各部品のバラツキ値、具体的には図に○(白丸)印で示す接合ポイントである各部品の管理部位のバラツキ値を取得する。   Specifically, as shown in FIG. 4, the control unit 11 determines the body accuracy (L, W, H) for each component, that is, the body accuracy (L1, W1, H1) of the first component P1, the second The body accuracy (L2, W2, H2) of the part P2, the body accuracy (L3, W3, H3) of the third part P3, and the body precision (L4, W4, H4) of the fourth part P4, respectively. To get. For example, in the case of the part P4, the ☆ (white star) mark in the figure is the evaluation point, and the dispersion value of each part when the fluctuation at the evaluation point is the maximum, specifically, the circle (white circle) mark in the figure The variation value of the management part of each component, which is the joining point shown, is acquired.

続いて、ステップS3において、制御部11は、ステップS2で取得した各部品のバラツキ値12bを部品データとして、FEM解析を実施する。具体的には、制御部11は、公差解析によって得られた各部品のバラツキ値を部品データとしてバラツキを持った有限要素解析モデルを各部品毎に作成し、これらの有限要素解析モデルを相互に組み付けるようにFEM解析を行う。即ち、FEM解析によって、所謂組み付け解析を実行する。そして、FEM解析を行うことで、有限要素解析モデルが部品の寸法バラツキを含んでいるので、図5に示すように、例えば部品P4には、寸法バラツキを持った部品同士の組み付けにより変形が生じる。   Subsequently, in step S3, the control unit 11 performs FEM analysis using the variation value 12b of each component acquired in step S2 as component data. Specifically, the control unit 11 creates a finite element analysis model having a variation for each component by using the variation value of each component obtained by the tolerance analysis as component data, and mutually transmits these finite element analysis models. Perform FEM analysis to assemble. That is, so-called assembly analysis is executed by FEM analysis. Then, by performing the FEM analysis, the finite element analysis model includes the dimensional variation of the parts. Therefore, as shown in FIG. 5, for example, the part P4 is deformed by assembling the parts having the dimensional variation. .

そして、制御部11は、FEM解析を行って各部品を相互に組み付け、評価ポイントの正寸データとのズレ量を取得する。これを評価ポイントのバラツキ値とし、図6に示す評価ポイントのバラツキのグラフを得る。これにより、寸法バラツキを持った部品同士の組み付けの際に、各部品に組み付けによって変形が生じたときでも、建て付けバラツキの予測を行なうことができる。なお、図3のグラフで示す公差解析による評価ポイントのバラツキはその範囲が広いが、これに比べて、図6のグラフで示すFEM解析による評価ポイントのバラツキはその範囲が狭い。   Then, the control unit 11 performs FEM analysis, assembles the components to each other, and acquires a deviation amount from the exact size data of the evaluation point. This is taken as the variation value of the evaluation points, and the variation graph of the evaluation points shown in FIG. 6 is obtained. As a result, when assembling parts having dimensional variations, it is possible to predict the built-in variations even when the parts are deformed due to the assembly. Note that the variation of the evaluation points by the tolerance analysis shown in the graph of FIG. 3 has a wide range, but the variation of the evaluation points by the FEM analysis shown in the graph of FIG. 6 has a narrow range.

その後、制御部11は、ステップS4にて、予測結果、即ち建て付けバラツキ予測の解析結果を記憶部12に登録すると共に、表示部13に画面表示する。
以上で、自動車用部品の建て付けバラツキ予測の作業が完了する。
Thereafter, in step S4, the control unit 11 registers the prediction result, that is, the analysis result of the built-in variation prediction, in the storage unit 12 and displays the screen on the display unit 13.
This completes the work of predicting the variation in building parts for automobiles.

この場合、図7に示すように、制御部11により、部品の図面における図面データ21に基づいて、公差解析22とFEM解析23が互いに連携しながら実施される。これにより、従来のような正寸部品による変形予測ではなく、部品の寸法バラツキを考慮した建て付けバラツキ予測24が行なわれることになるので、より正確な建て付け成立性の検証が可能になる。   In this case, as shown in FIG. 7, the control unit 11 performs the tolerance analysis 22 and the FEM analysis 23 in cooperation with each other based on the drawing data 21 in the drawing of the part. As a result, instead of the deformation prediction using the exact size parts as in the prior art, the building variation prediction 24 taking into account the dimensional variation of the parts is performed, so that more accurate building feasibility can be verified.

本発明はその趣旨を逸脱しない範囲において様々な形態で実施をすることができる。例えば、本発明は、各部品の組み付けによって自動車の車体を構成する部品、例えばフロントバンパー,フロントフェンダー,ヘッドランプ,フード,リヤバンパー,フロントドア,リヤドア等の部品について図面の完成度を検証する場合にも利用可能であることは明白である。   The present invention can be implemented in various forms without departing from the spirit of the present invention. For example, the present invention is used when verifying the completeness of drawings for parts constituting an automobile body by assembling each part, for example, parts such as a front bumper, a front fender, a headlamp, a hood, a rear bumper, a front door, and a rear door. It is clear that can also be used.

本発明による自動車用部品の建て付けバラツキ予測方法を実施するための建て付けバラツキ予測装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the built-in variation prediction apparatus for implementing the built-in variation prediction method of the components for motor vehicles by this invention. 図1の装置を使用した建て付けバラツキ予測方法の一実施形態の構成を示すフローチャートである。It is a flowchart which shows the structure of one Embodiment of the built-in variation prediction method using the apparatus of FIG. 公差解析によって得た評価ポイントにおけるバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the evaluation point obtained by tolerance analysis. 図2のフローチャートにおいて、ステップS2における公差解析の具体例を示す概略図である。In the flowchart of FIG. 2, it is the schematic which shows the specific example of the tolerance analysis in step S2. 図2のフローチャートにおいて、ステップS3におけるFEM解析の具体例を示す概略図である。In the flowchart of FIG. 2, it is the schematic which shows the specific example of the FEM analysis in step S3. FEM解析によって得た評価ポイントにおけるバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the evaluation point obtained by FEM analysis. 図2のフローチャートにおいて、公差解析とFEM解析の関係を示す説明図である。In the flowchart of FIG. 2, it is explanatory drawing which shows the relationship between tolerance analysis and FEM analysis. 従来の自動車用部品の建て付け成立性を検証するための方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method for verifying the construction feasibility of the conventional automotive component.

符号の説明Explanation of symbols

10 建て付けバラツキ予測装置
11 制御部
12 記憶部
13 表示部
10 Built-in variation prediction device 11 Control unit 12 Storage unit 13 Display unit

Claims (2)

各部品の図面データに基づいて公差解析によって各部品のバラツキ値を取得する第一の段階と、
第一の段階によって得られた各部品のバラツキ値を部品データとして、バラツキを持った各部品の有限要素解析モデルを作成し、これらの有限要素解析モデルを相互に組み付けるようにFEM解析を行い、FEM解析によって変形を考慮したバラツキ値を取得する第二の段階と、
を含んでいることを特徴とする、自動車用部品の建て付けバラツキ予測方法。
A first stage of obtaining a variation value of each part by tolerance analysis based on the drawing data of each part;
Using the variation value of each part obtained in the first stage as part data, create a finite element analysis model of each part with variation, perform FEM analysis so that these finite element analysis models are assembled together, A second stage of obtaining a variation value considering deformation by FEM analysis;
A method for predicting the variation in the installation of automotive parts, characterized by comprising:
前記各部品が、フロントバンパー,フロントフェンダー,ヘッドランプ,フード,リヤバンパー,フロントドア,リヤドア等の車体を構成する部品であることを特徴とする、請求項1に記載の自動車用部品の建て付けバラツキ予測方法。   The vehicle component according to claim 1, wherein each of the components is a component constituting a vehicle body such as a front bumper, a front fender, a headlamp, a hood, a rear bumper, a front door, and a rear door. Prediction method.
JP2006312079A 2006-11-17 2006-11-17 Fitting variation prediction method for component for automobile Pending JP2008129727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312079A JP2008129727A (en) 2006-11-17 2006-11-17 Fitting variation prediction method for component for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312079A JP2008129727A (en) 2006-11-17 2006-11-17 Fitting variation prediction method for component for automobile

Publications (1)

Publication Number Publication Date
JP2008129727A true JP2008129727A (en) 2008-06-05

Family

ID=39555493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312079A Pending JP2008129727A (en) 2006-11-17 2006-11-17 Fitting variation prediction method for component for automobile

Country Status (1)

Country Link
JP (1) JP2008129727A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658843A (en) * 2012-03-16 2012-09-12 吉林大学 Matching method of powerplant parameters to prevent automobile cab from resonating at common speed
JP2013196406A (en) * 2012-03-21 2013-09-30 Toyota Motor East Japan Inc Design support device and design support method
US9659143B2 (en) 2014-02-05 2017-05-23 Ford Global Technologies, Llc Method for analyzing the robustness of components within a vehicular mechanical system to calculate out-of-specification robustness
WO2017141553A1 (en) * 2016-02-18 2017-08-24 キヤノン株式会社 3-dimensional data processing device and 3-dimensional data processing method
CN112896373A (en) * 2021-04-08 2021-06-04 东风柳州汽车有限公司 Automobile engine hood deformation prediction method, device, equipment and storage medium
CN113657003A (en) * 2021-08-13 2021-11-16 浙江吉利控股集团有限公司 Size deviation prediction method and prediction system
CN114547920A (en) * 2022-04-28 2022-05-27 南昌航空大学 Reliability evaluation method for aircraft structural member assembly deviation simulation model

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258643A (en) * 2004-03-10 2005-09-22 Kanto Auto Works Ltd Device for assessing tolerance of path of linear, flexible object
JP2007310660A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Piping movable range prediction device, piping movable range prediction method, and piping movable dimension prediction program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258643A (en) * 2004-03-10 2005-09-22 Kanto Auto Works Ltd Device for assessing tolerance of path of linear, flexible object
JP2007310660A (en) * 2006-05-18 2007-11-29 Toyota Motor Corp Piping movable range prediction device, piping movable range prediction method, and piping movable dimension prediction program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658843A (en) * 2012-03-16 2012-09-12 吉林大学 Matching method of powerplant parameters to prevent automobile cab from resonating at common speed
CN102658843B (en) * 2012-03-16 2013-07-24 吉林大学 Matching method of powerplant parameters to prevent automobile cab from resonating at common speed
JP2013196406A (en) * 2012-03-21 2013-09-30 Toyota Motor East Japan Inc Design support device and design support method
US9659143B2 (en) 2014-02-05 2017-05-23 Ford Global Technologies, Llc Method for analyzing the robustness of components within a vehicular mechanical system to calculate out-of-specification robustness
WO2017141553A1 (en) * 2016-02-18 2017-08-24 キヤノン株式会社 3-dimensional data processing device and 3-dimensional data processing method
CN112896373A (en) * 2021-04-08 2021-06-04 东风柳州汽车有限公司 Automobile engine hood deformation prediction method, device, equipment and storage medium
CN113657003A (en) * 2021-08-13 2021-11-16 浙江吉利控股集团有限公司 Size deviation prediction method and prediction system
CN114547920A (en) * 2022-04-28 2022-05-27 南昌航空大学 Reliability evaluation method for aircraft structural member assembly deviation simulation model

Similar Documents

Publication Publication Date Title
JP2008129727A (en) Fitting variation prediction method for component for automobile
US6760693B1 (en) Method of integrating computer visualization for the design of a vehicle
KR102240212B1 (en) Analysis method and apparatus of optimizing joint location of automotive body
Scigliano et al. Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements
CN111125946B (en) Method for optimizing structure of boarding body based on MDO technology
CN111868730B (en) Method for optimizing a vehicle body structure
Demirel et al. Digital human modeling for product lifecycle management
JP5919782B2 (en) Dent resistance evaluation method
KR20100116025A (en) Structure-borne noise prospecting method of power-train using hybrid transfer path analysis
Duddeck et al. New achievements on implicit parameterization techniques for combined shape and topology optimization for crashworthiness based on SFE CONCEPT
Schäffer et al. Methodological approach for reducing computational costs of vehicle frontal crashworthiness analysis by using simplified structural modelling
US7158923B1 (en) Method of integrating product information management with vehicle design
US7133812B1 (en) Method of parametic design of an instrument panel support structure
JP2008146504A (en) Analysis model preparation method, analysis model preparation device and analysis model preparation program
Schneider et al. Virtualization, integration and simulation in the context of vehicle systems engineering
Charpentier et al. Modeling process and validation of Hybrid FE-SEA method to structure-borne noise paths in a trimmed automotive vehicle
JP2003226230A (en) Product repair supporting device, its method and recording medium recording product repair supporting program
Wang Rationale and history of vehicle noise and vibration refinement
Jans et al. Reducing body development time by integrating NVH and durability analysis from the start
CN110008614B (en) Method for optimizing torsional rigidity of white car body
Farkas et al. Optimization Study of a Parametric Vehicle Bumper Subsystem Under Multiple Load Cases
Attridge et al. The role of physical modelling in the design verification stage of the automotive NPI process in the premium sector
JP2007310660A (en) Piping movable range prediction device, piping movable range prediction method, and piping movable dimension prediction program
Chaudhari et al. Noise and Vibration Prediction and Validation for Off-Highway Vehicle Cab Using Hybrid FE-SEA Methodology
Van der Auweraer et al. New approaches enabling NVH analysis to lead design in body development

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012