JP2008129663A - Photovoltaic power generation system having remote display function - Google Patents

Photovoltaic power generation system having remote display function Download PDF

Info

Publication number
JP2008129663A
JP2008129663A JP2006310780A JP2006310780A JP2008129663A JP 2008129663 A JP2008129663 A JP 2008129663A JP 2006310780 A JP2006310780 A JP 2006310780A JP 2006310780 A JP2006310780 A JP 2006310780A JP 2008129663 A JP2008129663 A JP 2008129663A
Authority
JP
Japan
Prior art keywords
power generation
generation system
data
power supply
function module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006310780A
Other languages
Japanese (ja)
Inventor
Takashi Santo
隆志 山藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2006310780A priority Critical patent/JP2008129663A/en
Publication of JP2008129663A publication Critical patent/JP2008129663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Computer And Data Communications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remotely monitor a photovoltaic power generation system having specifications different by delivery model with simple configurations. <P>SOLUTION: A monitored power unit side including a power control power source with a characteristic data detection means, and comprising a battery with a switching means and a photovoltaic power generation panel is provided with an MIB information storage device, a transmission/reception control means, and a communication interface for transmitting and receiving data from a communication line, and an SNMP agent function module to which an OID is attached is provided. On the other hand, the SNMP manager side is provided with: a communication interface, a transmission/reception control means, MIB database storage means, and an MIB database adding means having redundancy and adding information according to the difference of specifications, a display means, a first display control means, a characteristic data decision means and a second display control means, and the SNMP manager side and the agent function module are connected through a communication line, and remotely displayed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

連続運転・稼動中に異常発熱などが発生したとき、設置場所から離れたサービス管理者の居る管理拠点に警告または表示させる太陽光発電システムに関する。 The present invention relates to a photovoltaic power generation system that warns or displays at a management base where a service manager away from an installation location is located when abnormal heat generation or the like occurs during continuous operation or operation.

太陽電池と蓄電池及び制御電源で構成のシステムの異常を発見し、早期に補修要員を現場に派遣でき、多様な納入先に安全と安心を与える効果と顧客満足度向上に寄与することができる太陽光発電システムであり、類似の要求に応える方法が(電化製品での)一例として、特許文献1の開示があった。 A solar system that can detect abnormalities in a system composed of solar cells, storage batteries, and control power supplies, dispatch repair personnel to the site at an early stage, and contribute to improving the safety and security of customers and improving customer satisfaction. As an example of a photovoltaic power generation system and a method for responding to similar requirements (in an electrical appliance), there has been disclosed Patent Document 1.

特許文献1の段落(0006)に、「家庭内部の全ての家庭電化製品を制御する制御用のサーバを備え、このサーバは効率的にキッチン内に位置する。このサーバと家庭電化製品とはホームネットワーク回線を介して連結され、既定のプロトコルにより所望の機能を具現するための通信を相互間行う。一方、制御用のサーバはインターネット回線網を介して外部のパーソナルコンピュータおよびセルラーホン等の外部通信装置と連結され、インターネットプロトコルにより外部通信装置との通信を行う。」と記載されている。また「少なくとも1つの家庭電化製品はそれぞれ内部にサブコントローラを有して家庭の内部に位置する。一方、制御用のサーバは内部にメインコントローラを有して家庭の内部に位置し、双方向データ通信可能な通信プロトコルおよび通信媒体を用いて少なくとも1つの家庭電化製品との通信を行う。そして、少なくとも1つの外部通信装置はそれぞれコントローラを備え、家庭の外部に位置し、双方向データ通信可能な通信プロトコルおよび通信媒体を用いてサーバとの通信を行う。」と記載されている。しかし、構成要素が記述されているが、構成要素ごとについて中身の具体的技術の説明がない。 In paragraph (0006) of Patent Document 1, “a server for control that controls all home appliances in the home is provided, and this server is efficiently located in the kitchen. This server and home appliances are homes. Connected via a network line, they communicate with each other to implement a desired function using a predetermined protocol, while the control server communicates with an external personal computer, cellular phone, etc. via the Internet line network. It is connected to the device and communicates with an external communication device using the Internet protocol. " “At least one home appliance has a sub-controller inside and is located inside the home. On the other hand, the control server has a main controller inside and is located inside the home. Communication is performed with at least one home appliance using a communication protocol and a communication medium that can communicate, and each of the at least one external communication device includes a controller and is located outside the home and capable of two-way data communication. It communicates with the server using a communication protocol and communication medium. " However, although the components are described, there is no description of the specific technology for each component.

「特開2001−218282」公報,「家庭電化製品ネットワークシステムおよびその運用方法」“JP 2001-218282”, “Home Appliance Network System and Operation Method”

太陽光発電システムにおいて、太陽電池の発熱や蓄電池の過放電や寿命末期などの異常による出力不良、また蓄電池の劣化等による交換の必要性の事態が発生したときには早い目に、管理者に知らせ、修理等の対応を迅速に行うようにするために、太陽電池や蓄電池の異常発生時に遠隔地のサービス拠点へ報知する機能を持つ経済的且つ確実に作動し、多くの納入先に安全と安心を与える実用的システムの提供が要望されていた。 In a solar power generation system, when an output failure due to abnormalities such as overheating of a solar battery, overdischarge or end of life of a storage battery, or a need for replacement due to deterioration of the storage battery occurs, the administrator is informed at an early stage, In order to promptly respond to repairs, etc., it operates economically and reliably with the function to notify remote service bases when an abnormality occurs in solar cells or storage batteries, ensuring safety and security for many customers There was a need to provide a practical system to give.

太陽光発電パネルは、図3に示すような出力特性の太陽電池を、一枚のパネルに40乃至50個取り付け、直列または/および並列に接続することによって構成されている。無負荷の電圧は、朝夕の暗いとき低い電圧V2であるが明るくなるとV2より高いV1の電圧を出力する、この40倍乃至50倍が一枚のパネル出力電圧である。最大電力は点a1に示され、電圧はV1から僅か低いが、さらに低いVs近傍まで故障時は低下する。この低下した電圧を検出して記録を取り続けて、例えば約20日間に亘って低下した電圧の変化を記録して故障した状態にあるのか、雨天が続いた為に低下した電圧状態で推移しているのかを、納入現場で診断しながら技術者が判断していた。 The solar power generation panel is configured by attaching 40 to 50 solar cells having output characteristics as shown in FIG. 3 and connecting them in series or in parallel. The no-load voltage is a low voltage V2 when it is dark in the morning and evening, but when it gets brighter, it outputs a voltage V1 higher than V2, which is 40 to 50 times the panel output voltage. The maximum power is shown at point a1, and the voltage is slightly lower than V1, but drops to near lower Vs at the time of failure. Detecting this reduced voltage and continuing to record it, for example, recording a change in voltage that has been reduced over a period of about 20 days, or whether it is in a faulty state or changing in a reduced voltage state due to continued rainy weather The engineer was deciding whether it was present at the delivery site.

異常を判定する確実性の高い判定手段が安価に製作出来なかったので、太陽電池や蓄電池の何らかの異常による電源供給不良、また蓄電池の劣化等による交換の必要性等の事態が発生したときの自動判定が出来て、遠隔表示可能な太陽光発電システムを安価に製作し提供できる技術の創造が課題であった。 Automatic judgment when there is a need for replacement due to poor power supply due to some abnormality of the solar battery or storage battery, or deterioration of the storage battery, etc. The challenge was to create a technology that could make a judgment and produce and provide a remotely-displayable solar power generation system at low cost.

本発明においては、太陽電池に並列接続した蓄電池の容量を、例えば1年中を通して負荷に電力を供給し続けることが可能な容量を持つものとし、蓄電池の何らかの異常による電源供給不良、また蓄電池交換の必要性等の事態が発生したことを判定し、警告表示を行うようにしたシステムにおいて、請求項1に関しては、太陽電池、蓄電池など付帯部材、制御電源装置から構成される被監視電源装置側の検出手段が検出した特性値データを、MIBの規約に基づきデータビット列に変換して蓄積するMIB情報蓄積装置と,MIBデータを送信する為のデータ送信制御手段と該データを所定の通信回線で伝送する為の通信インターフェイスとを具備したSNMPエージェント機能モジュールを被監視電源装置側に付帯させて、SNMPマネージャ側で通信インターフェイスと,伝送されたデータを受信して蓄積するMIBデータベース蓄積手段と,追記できるように冗長性を有するMIBデータベース追記手段と,特性データと基準値と比較して異常を判定する判定手段と,受信データの表示する第1表示制御手段及び判定結果の表示を制御する第2表示制御手段及び表示手段を具備し、SNMPエージェント機能モジュールから通信回線を介し伝送されてきたデータ及び,該判定手段で判定して得た判定結果を表示手段に表示させることを特徴とする遠隔監視可能な太陽光発電システムとした。 In the present invention, the capacity of the storage battery connected in parallel to the solar battery has a capacity capable of continuing to supply power to the load throughout the year, for example, the power supply failure due to some abnormality of the storage battery, or the replacement of the storage battery In the system in which it is determined that a situation such as necessity has occurred and a warning is displayed, with respect to claim 1, the monitored power supply side comprising a solar battery, an auxiliary member such as a storage battery, and a control power supply apparatus The MIB information storage device for converting the characteristic value data detected by the detection means into a data bit string based on the MIB rules and storing it, the data transmission control means for transmitting the MIB data, and the data via a predetermined communication line An SNMP agent function module having a communication interface for transmission is attached to the monitored power supply device side, and SNMP money The communication interface, the MIB database storage means for receiving and storing the transmitted data, the MIB database additional recording means having redundancy so that additional data can be added, and comparing the characteristic data with the reference value to determine abnormality A determination means; a first display control means for displaying received data; a second display control means for controlling the display of the determination result; and a display means; data transmitted from the SNMP agent function module via a communication line; The determination result obtained by the determination unit is displayed on the display unit, and the solar power generation system capable of remote monitoring is provided.

請求項2に関しては、前記被監視電源装置側に、検出手段とさらに加えて切換操作手段を設け、通信回線から送・受信するための送・受信制御手段とを具備させて、サービス拠点に設置したSNMPマネージャ側に、切換操作指令手段を設けて、SNMPエージェント機能モジュールへ伝送されて受信した信号で切換操作手段を操作させ、負荷(及び/又は)蓄電池を接・断して、変化しない(又は変化した)特性値データを表示手段に表示させることを特徴とする遠隔監視可能な太陽光発電システムとした。 With respect to claim 2, the monitoring power supply apparatus is provided with a switching operation means in addition to a detection means, and a transmission / reception control means for transmission / reception from a communication line is provided at the service base. On the SNMP manager side, switching operation command means is provided, the switching operation means is operated by the signal transmitted to the SNMP agent function module and received, and the load (and / or) storage battery is connected / disconnected, so that it does not change ( (Or changed) characteristic value data is displayed on the display means, and the solar power generation system capable of remote monitoring is provided.

請求項3に関しては、前記検出手段は、太陽光発電可能な昼間か太陽光発電不能な夜間かを判定する昼間判定器を含む検出手段である請求項1乃至2記載の遠隔監視可能な太陽光発電システムとした。 3. The remote-monitorable solar light according to claim 1, wherein the detection means includes detection means for determining whether it is daytime when solar power generation is possible or nighttime when solar power generation is impossible. A power generation system was adopted.

請求項4に関しては、前記昼間判定器は、太陽光発電パネルが受光する場所の周辺の照度を受けるように設置された昼夜区別センサ20が検出手段3に接続されている昼間判定器である。太陽光発電パネルSの出力電圧を、昼間判定器が昼間であると判定したときのみ検出するようにした。このため、夕刻の低い太陽光発電パネルSの出力電圧を、「故障」「異常」として誤判定しないようにしている。 With regard to claim 4, the daytime determination device is a daytime determination device in which a day / night distinction sensor 20 installed to receive the illuminance around the place where the photovoltaic power generation panel receives light is connected to the detection means 3. The output voltage of the photovoltaic power generation panel S is detected only when the daytime determiner determines that it is daytime. For this reason, the output voltage of the photovoltaic power generation panel S that is low in the evening is not erroneously determined as “failure” or “abnormal”.

請求項5に関しては、検出手段3は、累進計測する太陽電池発熱センサ21が接続されていて、太陽電池の通常の温度が高くなってきて太陽電池が異常になるであろうことを、完全に故障してしまうより前に検出する検出手段である遠隔監視可能な太陽光発電システムとした。ここで累進計測とは、温度が時間と共に高くなってくる計時比較検温方法であり、例えば、10分前の温度と比較して温度差T1を記憶し、その次の10分間での温度差T2、さらに次の10分間での温度差T3を記憶してT1、T2、T3の値が順に高くなってくるとき、急上昇してくる温度を捉えると「異常」信号を発するようにしたものである。 With respect to claim 5, the detection means 3 is connected to the solar cell heat generation sensor 21 for progressive measurement, and it is completely detected that the normal temperature of the solar cell will increase and the solar cell will become abnormal. It was set as the photovoltaic power generation system which can be monitored remotely which is a detection means to detect before it breaks down. Here, the progressive measurement is a time comparison comparative temperature detection method in which the temperature increases with time. For example, the temperature difference T1 is stored in comparison with the temperature 10 minutes ago, and the temperature difference T2 in the next 10 minutes. Further, the temperature difference T3 in the next 10 minutes is stored, and when the values of T1, T2, and T3 increase in order, an “abnormal” signal is generated when the rapidly rising temperature is captured. .

請求項6に関しては、太陽光発電システムにおいて,被監視電源装置が,(付帯する部材である)蓄電池の特性値判定のため,蓄電池の電圧又は寿命末期の判定が可能な数値データ収集の指令を出す電源機能判定手段を含む被監視電源装置である,遠隔監視可能な太陽光発電システムとした。 With regard to claim 6, in the photovoltaic power generation system, the monitored power supply device issues a command for collecting numerical data that can determine the voltage of the storage battery or the end of life in order to determine the characteristic value of the storage battery. This is a remotely-monitored photovoltaic power generation system that is a monitored power supply device that includes a power supply function judgment means for output.

請求項7に関しては、SNMPエージェント機能モジュール8が,オブジェクト識別子(OID)がネットワーク被監視電源装置毎に付与されたメモリーデバイスを具備するSNMPエージェント機能モジュールである遠隔監視可能な太陽光発電システムとした。 With respect to claim 7, the SNMP agent function module 8 is a remotely monitored solar power generation system which is an SNMP agent function module including a memory device having an object identifier (OID) assigned to each network monitored power supply device. .

請求項8に関しては、SNMPエージェント機能モジュールが,納入先別の番号が被監視電源装置毎に付与されたメモリーデバイスと,CPUデバイスとで形成されたSNMPエージェント機能モジュールである遠隔監視可能な太陽光発電システムとした。 With regard to claim 8, the SNMP agent function module is an SNMP agent function module formed by a memory device and a CPU device, each of which is provided with a number for each monitored power supply, and can be remotely monitored. A power generation system was adopted.

請求項9に関しては、被監視電源装置のMIB情報蓄積装置5に格納される特性値が,半導体素子の温度又は故障の判定が出来る特性値のうち何れか1つ又は,全てを含むものとする遠隔監視可能な太陽光発電システムとした。 According to the ninth aspect of the present invention, the remote monitoring is performed such that the characteristic value stored in the MIB information storage device 5 of the monitored power supply device includes any one or all of the characteristic values capable of determining the temperature of the semiconductor element or the failure. Possible solar power generation system.

請求項10に関しては、前記MIBデータベース蓄積手段30に格納された特性値が,入力電圧,入力電流,入力電力,出力電圧,出力電流,出力電力,被監視電源装置内部の所定部位の電圧・電流,付帯する部材の特性値のうち何れか又は,全てを含むものとする,遠隔監視可能な太陽光発電システムとした。 With respect to claim 10, the characteristic values stored in the MIB database storage means 30 are input voltage, input current, input power, output voltage, output current, output power, voltage / current of a predetermined part inside the monitored power supply device. , A solar power generation system capable of remote monitoring, including any or all of the characteristic values of the attached members.

請求項11に関しては、前記MIBデータベース蓄積手段に格納された,付帯する部材の特性値が,電圧,電流,温度に加えて,異常及び故障の判定が出来る基準特性値を含むものとする,遠隔監視可能な太陽光発電システムとした。 With regard to claim 11, remote monitoring is possible, wherein the characteristic values of the incidental members stored in the MIB database storage means include reference characteristic values that can determine abnormality and failure in addition to voltage, current, and temperature. A solar power generation system.

請求項12に関しては、MIB情報蓄積手段に蓄積されたデータが,SNMP(Simple Network Management Protocol)に従って制御されて,送・受信されることを特徴とする遠隔監視可能な太陽光発電システムとした。 According to a twelfth aspect of the present invention, the remotely monitored solar power generation system is characterized in that the data stored in the MIB information storage means is controlled according to SNMP (Simple Network Management Protocol) and transmitted / received.

本発明においては、太陽電池の異常および、太陽電池に並列接続した蓄電池の何らかの異常による電源供給不良、また蓄電池の劣化等による交換の必要性等の事態が発生したことを検出し、警告・表示を行うようにしたため、対応が早めに行え、継続した負荷への電源供給が可能になるという効果がある。太陽光発電パネルの出力電圧を、昼間判定器が昼間であると判定したときのみ検出するようにしたため、夕刻の低い太陽光発電パネルの出力電圧を、「故障」「異常」として誤判定しないようにし、20日間も掛けなくて太陽電池の異常が判断できるようになった。太陽電池発熱センサ21が累進計測で太陽電池が異常になるであろうことを、完全に故障してしまうより前に検出するので、T1、T2、T3の値が順に高くなってくるとき、急上昇してくる温度を捉えると「異常」信号を発するようにしたので、太陽電池の過熱による周辺被害が未然に予防できた。 In the present invention, it is detected that an abnormality has occurred in the solar cell, a power supply failure due to some abnormality of the storage battery connected in parallel to the solar battery, or a need for replacement due to deterioration of the storage battery, etc., and a warning / display As a result, it is possible to respond quickly and to supply power continuously to the load. Since the output voltage of the photovoltaic power generation panel is detected only when the daytime determiner determines that it is daytime, the output voltage of the photovoltaic power generation panel that is low in the evening will not be misjudged as “failure” or “abnormal”. In addition, the abnormality of the solar cell can be judged without taking 20 days. Since the solar cell heat generation sensor 21 detects that the solar cell will become abnormal in the progressive measurement before it completely fails, when the values of T1, T2, and T3 increase in order, it rapidly increases When an incoming temperature is detected, an "abnormal" signal is generated, so that damage to the surroundings due to overheating of the solar cell can be prevented.

本発明の実施の形態について図面を用いて説明する。図1は本発明による一実施の形態を示すブロック図である。 図2は本発明による第2の実施の形態を示すブロック図であり、同じ符号の部分は図1と図2に共通であるから図2での重複説明を省略している、図1で第1の実施形態を詳しく説明し、図2に関しては安価に提供できる簡易型とした第2の実施形態を図1との相違点を主に説明した。先ず被監視電源装置Aについて述べる。太陽光発電パネルSが切り替え手段16を介して制御電源回路INVに接続されて切り替え手段16を介して負荷1及び付帯部材2(蓄電池など)2に接続されている。蓄電池2は太陽光発電パネルSの出力電圧を変圧して供給され、充電したり負荷に放電して、太陽光発電パネルSが電圧不足のときの出力を補う役割をしている。制御電源回路INVは直流電圧を調整する機能及び、交流に変換するインバータを内蔵している。以上の説明した部分と検出手段3、切換制御手段4、とで被監視電源装置Aが構成されている。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment according to the present invention. FIG. 2 is a block diagram showing a second embodiment according to the present invention. Since the same reference numerals are common to FIGS. 1 and 2, duplicate explanation in FIG. 2 is omitted. The first embodiment has been described in detail, and with respect to FIG. 2, the second embodiment, which is a simplified type that can be provided at low cost, has been described mainly with respect to the differences from FIG. 1. First, the monitored power supply device A will be described. The photovoltaic power generation panel S is connected to the control power supply circuit INV via the switching means 16 and is connected to the load 1 and the incidental member 2 (storage battery etc.) 2 via the switching means 16. The storage battery 2 is supplied by transforming the output voltage of the photovoltaic power generation panel S, and is charged or discharged to a load to supplement the output when the photovoltaic power generation panel S is short of voltage. The control power supply circuit INV includes a function for adjusting a DC voltage and an inverter for converting to an AC voltage. The monitored power supply device A is constituted by the above-described portions, the detection means 3, and the switching control means 4.

ここで検出手段3は、太陽光発電可能な昼間であるのか太陽光発電不能な夜間であるかを判定する昼間判定器を含む検出手段3である。昼夜区別センサ20が検出手段3に接続されていて、太陽光発電パネルSの出力電圧を、昼間判定器が昼間であると判定したときのみ検出する。このため、故障又は異常の場合の低い出力電圧と、太陽光発電パネルSの夕刻の低い出力電圧とを誤まって、夜間に「故障」及び「異常」として判定しないようにしている。また検出手段3は太陽電池発熱センサ21が接続されていて太陽電池の通常の温度が高くなってきて太陽電池故障であることを検出する。 Here, the detection means 3 is the detection means 3 including a daytime determination device that determines whether it is daytime when solar power generation is possible or nighttime when solar power generation is impossible. The day / night distinction sensor 20 is connected to the detection means 3, and the output voltage of the photovoltaic power generation panel S is detected only when the daytime determiner determines that it is daytime. For this reason, the low output voltage in the case of a failure or abnormality and the low output voltage in the evening of the photovoltaic power generation panel S are mistakenly determined so as not to be determined as “failure” or “abnormal” at night. Further, the detecting means 3 is connected to the solar cell heat generation sensor 21 and detects that the normal temperature of the solar cell becomes higher and the solar cell is out of order.

次にSNMPエージェント機能モジュール8について述べる。MIB情報蓄積装置5および通信インターフェイス7と送・受信制御手段18とによって、SNMPエージェント機能モジュール8が構成されていて、被監視電源装置Aに付帯させている。MIB情報蓄積装置に蓄積されたデータが,SNMP(Simple Network Management Protocol)に従って制御されて送・受信される。(図2では送・受信制御手段18がデータ送信制御手段6に代わる。)後述のSNMPマネージャMと通信回線9を介して交信して被監視電源装置Aを遠隔制御及び遠隔表示する役割を受け持っている。MIB情報蓄積装置5は納入先(ユーザ)別に付与されたOID(オブジェクト識別子)が格納されたメモリーデバイスとCPUデバイスとで形成されている。 Next, the SNMP agent function module 8 will be described. The MIB information storage device 5, the communication interface 7, and the transmission / reception control means 18 constitute an SNMP agent function module 8 that is attached to the monitored power supply device A. Data stored in the MIB information storage device is controlled and transmitted / received in accordance with SNMP (Simple Network Management Protocol). (In FIG. 2, the transmission / reception control means 18 replaces the data transmission control means 6.) It is responsible for remote control and remote display of the monitored power supply device A by communicating with the SNMP manager M described later via the communication line 9. ing. The MIB information storage device 5 is formed of a memory device and a CPU device that store OIDs (object identifiers) assigned to respective delivery destinations (users).

太陽光発電パネルSの出力電圧、蓄電池の電圧を検出手段3で検出して、SNMPマネージャMへ送信して遠隔表示するのであるが、太陽光発電パネルSの出力電圧も蓄電圧の電圧も負荷電流を流した時と無負荷時の電圧との差が、故障判定や寿命末期か否か判定するのに重要であって、負荷電流を流したり無負荷にしたり切換操作手段16を遠隔地で指令できるように切換制御手段4にSNMPマネージャM側から信号を送信する。 The output voltage of the photovoltaic power generation panel S and the voltage of the storage battery are detected by the detection means 3 and transmitted to the SNMP manager M for remote display. Both the output voltage of the photovoltaic power generation panel S and the voltage of the storage voltage are loaded. The difference between the voltage when the current is passed and the voltage when there is no load is important for determining whether or not it is a failure or end of life. A signal is transmitted from the SNMP manager M side to the switching control means 4 so that it can be commanded.

次にSNMPエージェント機能モジュール8と遠隔地から交信するSNMPマネージャについて述べる。通信回線9を介して交信し被監視電源装置Aを遠隔制御及び遠隔表示する役割を受け持っているSNMPマネージャMは、通信インターフェイス10、送・受信制御手段11、MIBデータベース蓄積手段30、MIBデータベース追記手段12、第1表示制御手段13、第2の表示制御手段14、判定手段15、切換操作指令手段17、(図2では切換操作指令はできない簡易形であるのでこの手段はない。)および表示手段D,で構成されている。 Next, an SNMP manager that communicates with the SNMP agent function module 8 from a remote location will be described. The SNMP manager M, which communicates via the communication line 9 and is responsible for remote control and remote display of the monitored power supply A, has a communication interface 10, transmission / reception control means 11, MIB database storage means 30, and MIB database addition. Means 12, first display control means 13, second display control means 14, determination means 15, switching operation command means 17 (there is no such means because no switching operation command is possible in FIG. 2) and display. Means D.

MIBデータベース蓄積手段30は、特性値データをMIBの規約に基づきデータビット列に変換して蓄積する。SNMPマネージャ(M)側に、切換操作指令手段17を設けていて、SNMPエージェント機能モジュール8へ伝送されて受信した信号で切換操作手段16を遠隔操作させ、負荷1(及び/又は)蓄電池2を接・断して、変化しないか、又は、変化した特性値データを表示手段(D)に表示させる。MIBデータベース蓄積手段30に格納された,(付帯する部材)である蓄電池2の特性値が,電圧,電流,温度に加えて,内部インピーダンスなど異常及び故障の予知的観測が出来て、判定が出来るように基準値となる特性値を含むので、基準値と観測値を比較判定する判定手段の機能が判定して得た判定結果を表示手段(D)に表示させる。 The MIB database storage means 30 converts the characteristic value data into a data bit string based on the MIB rules and stores it. A switching operation command means 17 is provided on the SNMP manager (M) side, and the switching operation means 16 is remotely operated by a signal transmitted to the SNMP agent function module 8 and received, and the load 1 (and / or) storage battery 2 is connected. The characteristic value data that is not changed or changed is displayed on the display means (D). The characteristic value of the storage battery 2 (ancillary member) stored in the MIB database accumulating means 30 can be determined by predicting abnormalities and failures such as internal impedance in addition to voltage, current, and temperature. As described above, since the characteristic value serving as the reference value is included, the determination result obtained by the function of the determining means for comparing and determining the reference value and the observed value is displayed on the display means (D).

SNMPマネージャ(M)側に、切換操作指令手段17を設けて、SNMPエージェント機能モジュール8へ伝送されて受信した信号で切換操作手段16を遠隔操作させ、負荷1(及び/又は)蓄電池2を接・断して、負荷時と無負荷とで特性値データが変動したとき表示手段Dに表示させたデータで蓄電池2が寿命末期に近いかどうか判定できるので、この発電システムの出力が突然停止しないで、速目に警告を表示する。第2の実施形態(図2)では負荷1(及び/又は)蓄電池2を接・断する機能を持たない簡易タイプであり、負荷時の特性値データで凡その判断が出来るようにした。 A switching operation command means 17 is provided on the SNMP manager (M) side, and the switching operation means 16 is remotely operated by a signal transmitted to the SNMP agent function module 8 and received, and the load 1 (and / or) storage battery 2 is connected. -When the characteristic value data fluctuates between loaded and unloaded, it is possible to determine whether or not the storage battery 2 is near the end of life with the data displayed on the display means D, so the output of this power generation system does not stop suddenly Then, a warning is displayed quickly. The second embodiment (FIG. 2) is a simple type that does not have a function of connecting / disconnecting the load 1 (and / or) the storage battery 2, so that it can be roughly judged by the characteristic value data at the time of load.

検出手段3は、被監視電源装置の特性値が,構成要素の半導体素子の温度又は、端子間短絡などの故障の判定が出来る特性値の1つ以上の検出が、可能な検出手段3として、制御電源回路INVの所定の部位に接続されている。 The detection means 3 is a detection means 3 capable of detecting one or more characteristic values of the characteristic value of the monitored power supply device that can determine the temperature of the semiconductor element of the constituent element or a failure such as a short circuit between terminals. It is connected to a predetermined part of the control power circuit INV.

SNMPエージェント機能モジュール8は,オブジェクト識別子(OID)がネットワーク被監視電源装置毎に付与されたメモリーデバイスと,CPUデバイスとで形成されたSNMPエージェント機能モジュールであり、多く納入した場合の各現場に対して容易且つ安価な方法でのアクセスができて、経済的に異常判定ができる利点がある。 The SNMP agent function module 8 is an SNMP agent function module formed by a memory device and a CPU device having an object identifier (OID) assigned to each network monitored power supply device. This is advantageous in that it can be accessed by an easy and inexpensive method and the abnormality can be determined economically.

太陽電池の過熱による周辺被害が未然に予防でき、蓄電池交換の必要性等の事態が発生したことを検出し、警告・表示により対応が早めに迅速に行え、中断せずに継続して負荷に電源供給が可能になる遠隔点検可能な太陽光発電システムで、多くの需要先に安全と安心を与えるという効果があり、工業的価値が大きい。 The surrounding damage caused by overheating of the solar cell can be prevented in advance, the situation such as the need to replace the storage battery has been detected, the warning and display can respond quickly and promptly, and it can continue to be loaded without interruption A solar power generation system that can be remotely inspected to enable power supply. It has the effect of giving safety and security to many customers, and has great industrial value.

本発明による第1の実施の形態を示すブロック図である。It is a block diagram which shows 1st Embodiment by this invention. 本発明による第2の実施の形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment by this invention. 太陽光発電パネルの出力特性図である。It is an output characteristic figure of a photovoltaic power generation panel.

符号の説明Explanation of symbols

1 負荷
2 蓄電池(付帯部材)
3 検出手段
4 切換制御手段
5 MIB情報蓄積装置
6 データ送信制御手段
7 通信インターフェイス
8 SNMPエージェント機能モジュール
9 通信回線
10 通信インターフェイス
11 送・受信制御手段
12 MIBデータベース追記手段
13 第1表示制御手段
14 第2表示制御手段
15 判定手段
16 切換操作手段
17 切換操作指令手段
18 送・受信制御手段
20 昼夜区別センサ
21 太陽電池発熱センサ
30 MIBデータベース蓄積手段
A 被監視電源装置
D 表示手段
INV 制御電源回路
M SNMPマネージャ
S 太陽光発電パネル
1 Load 2 Storage battery (Attachment member)
3 Detection means 4 Switching control means 5 MIB information storage device 6 Data transmission control means 7 Communication interface 8 SNMP agent function module 9 Communication line 10 Communication interface 11 Transmission / reception control means 12 MIB database additional recording means 13 First display control means 14 First 2 Display control means 15 Determination means 16 Switching operation means 17 Switching operation command means 18 Transmission / reception control means 20 Day / night distinction sensor 21 Solar cell heat generation sensor 30 MIB database storage means A Monitored power supply D Display means INV Control power supply circuit M SNMP Manager S Photovoltaic panel

Claims (12)

太陽光発電パネル、制御電源及び付帯部材(蓄電池など)を含む被監視電源装置の検出手段が検出した特性値データをMIBの規約に基づきデータビット列に変換して蓄積するMIB情報蓄積装置と,MIBデータを送信する為のデータ送信制御手段と該データを所定の通信回線で伝送する為の通信インターフェイスとを具備したSNMPエージェント機能モジュールを被監視電源装置側に付帯させて、一方で遠隔設置されたSNMPマネージャ側で通信インターフェイスと,伝送されたデータを受信して蓄積するMIBデータベース蓄積手段と,追記できるように冗長性を有するMIBデータベース追記手段と,特性データと基準値と比較して異常を判定する判定手段と,受信データの表示する第1表示制御手段及び判定結果の表示を制御する第2表示制御手段及び表示手段を具備し、SNMPエージェント機能モジュールから伝送され受信したデータ及び,該判定手段で得た判定データを表示手段に表示させることを特徴とする、遠隔監視可能な太陽光発電システム。 A MIB information storage device that converts characteristic value data detected by the detection means of the monitored power supply device including a photovoltaic power generation panel, a control power source, and an auxiliary member (storage battery, etc.) into a data bit string based on the MIB rules, and a MIB; An SNMP agent function module having a data transmission control means for transmitting data and a communication interface for transmitting the data through a predetermined communication line is attached to the monitored power supply device side, while being remotely installed A communication interface on the SNMP manager side, an MIB database storage means for receiving and storing transmitted data, an MIB database additional recording means having redundancy so that additional data can be added, and determining abnormalities by comparing with characteristic data and reference values Control means, first display control means for displaying received data, and display of judgment results Remote-monitorable solar, comprising: second display control means and display means for displaying data transmitted and received from the SNMP agent function module and judgment data obtained by the judgment means on the display means Photovoltaic system. 前記被監視電源装置側に、検出手段とさらに切換操作手段を設け、通信回線から送・受信するための送・受信制御手段とを具備し、SNMPマネージャ側に、切換操作指令手段を設けて、SNMPエージェント機能モジュールへ伝送され受信した信号で切換操作手段を操作させ、変化しないか、又は変化した特性値データを表示手段に表示させることを特徴とする、遠隔監視可能な太陽光発電システム。 On the monitored power supply device side, a detecting means and further a switching operation means are provided, a transmission / reception control means for transmitting / receiving from a communication line is provided, and a switching operation command means is provided on the SNMP manager side, A remote-monitorable photovoltaic power generation system, wherein a switching operation means is operated with a signal transmitted to and received by an SNMP agent function module, and the characteristic value data which has not changed or has been changed is displayed on a display means. 前記検出手段は、太陽光発電可能な昼間か太陽光発電不能な夜間かを判定する昼間判定器を含む検出手段である請求項1乃至2記載の遠隔監視可能な太陽光発電システム。 3. The remotely-monitorable solar power generation system according to claim 1, wherein the detection unit includes a daytime determination unit that determines whether it is daytime in which solar power generation is possible or nighttime in which solar power generation is impossible. 前記昼間判定器は、太陽光発電パネルが受光する場所の周辺の照度を受けるように設置された昼夜区別センサ20が検出手段3に接続されている昼間判定器である請求項1乃至3記載の遠隔監視可能な太陽光発電システム。 The daytime determination device is a daytime determination device in which a day / night distinction sensor (20) installed so as to receive illuminance around a place where the photovoltaic power generation panel receives light is connected to the detection means (3). Photovoltaic power generation system that can be monitored remotely. 前記検出手段3は、温度が時間と共に高くなってくる計時比較の検温方法で検温する累進計測機能を有する太陽電池発熱センサ21を具備し、太陽電池の温度が高くなってきて太陽電池が異常状態になるであろうことを、完全に故障してしまうより前に検出する検出手段である請求項1乃至4記載の遠隔監視可能な太陽光発電システム。 The detection means 3 includes a solar cell heat generation sensor 21 having a progressive measurement function for detecting the temperature by a time-measurement comparison temperature detection method in which the temperature increases with time. The temperature of the solar cell increases and the solar cell is in an abnormal state. 5. The remotely-monitorable photovoltaic power generation system according to claim 1, wherein the photovoltaic power generation system is a detection means for detecting that a failure will occur before it completely fails. 前記被監視電源装置が,付帯する部材である蓄電池の特性値を判定するため,蓄電池の電圧又は寿命末期の判定が可能な数値データ収集の指令を出す電源機能判定手段を含む被監視電源装置である請求項1乃至5記載の遠隔監視可能な太陽光発電システム。 The monitored power supply apparatus includes a power supply function determining means for issuing a numerical data collection command capable of determining the voltage of the storage battery or the end of life in order to determine the characteristic value of the storage battery as an accessory member. The solar power generation system capable of remote monitoring according to any one of claims 1 to 5. SNMPエージェント機能モジュールが,オブジェクト識別子(OID)がネットワーク被監視電源装置毎に付与されたメモリーデバイスを具備するNMPエージェント機能モジュールである請求項1乃至6記載の遠隔監視可能な太陽光発電システム。 7. The remotely monitorable photovoltaic power generation system according to claim 1, wherein the SNMP agent function module is an NMP agent function module including a memory device having an object identifier (OID) assigned to each network monitored power supply device. SNMPエージェント機能モジュールが,納入先別の番号が被監視電源装置毎に付与されたメモリーデバイスと,CPUデバイスとで形成されたSNMPエージェント機能モジュールである請求項1乃至7記載の,遠隔監視可能な太陽光発電システム。 8. The SNMP agent function module according to claim 1, wherein the SNMP agent function module is an SNMP agent function module formed by a memory device to which a number for each delivery destination is assigned for each monitored power supply and a CPU device. Solar power system. 前記被監視電源装置のMIB情報蓄積装置5に格納される特性値が,半導体素子の温度又は故障の判定が出来る特性値のうち何れか1つ又は全てを含むものとする請求項1乃至8記載の遠隔監視可能な太陽光発電システム。 9. The remote according to claim 1, wherein the characteristic value stored in the MIB information storage device 5 of the monitored power supply device includes any one or all of characteristic values capable of determining the temperature or failure of the semiconductor element. A solar power generation system that can be monitored. 前記MIBデータベース蓄積手段に格納された特性値が,入力電圧,入力電流,入力電力,出力電圧,出力電流,出力電力,被監視電源装置内部の所定部位の電圧・電流,付帯する部材の特性値のうち何れか又は全てを含むものとする請求項1乃至9記載の遠隔監視可能な太陽光発電システム。 The characteristic values stored in the MIB database storage means are input voltage, input current, input power, output voltage, output current, output power, voltage / current of a predetermined part inside the monitored power supply device, and characteristic values of attached members. The solar power generation system capable of remote monitoring according to any one of claims 1 to 9, wherein any one or all of the above are included. 前記MIBデータベース蓄積手段に格納された,付帯する部材の特性値が,電圧,電流,温度に加えて,異常及び故障の判定が出来る基準特性値を含むものとする請求項1乃至10記載の,遠隔監視可能な太陽光発電システム。 11. The remote monitoring according to claim 1, wherein the characteristic values of the incidental members stored in the MIB database storage means include reference characteristic values that can determine abnormality and failure in addition to voltage, current, and temperature. Possible solar power generation system. 前記MIB情報蓄積手段に蓄積されたデータが,SNMP(Simple Network Management Protocol)に従って制御されて,送・受信されることを特徴とする請求項1乃至11記載の遠隔監視可能な太陽光発電システム。 12. The remotely-monitorable photovoltaic power generation system according to claim 1, wherein the data stored in the MIB information storage means is controlled according to SNMP (Simple Network Management Protocol) and transmitted / received.
JP2006310780A 2006-11-16 2006-11-16 Photovoltaic power generation system having remote display function Pending JP2008129663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310780A JP2008129663A (en) 2006-11-16 2006-11-16 Photovoltaic power generation system having remote display function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310780A JP2008129663A (en) 2006-11-16 2006-11-16 Photovoltaic power generation system having remote display function

Publications (1)

Publication Number Publication Date
JP2008129663A true JP2008129663A (en) 2008-06-05

Family

ID=39555438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310780A Pending JP2008129663A (en) 2006-11-16 2006-11-16 Photovoltaic power generation system having remote display function

Country Status (1)

Country Link
JP (1) JP2008129663A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035136A (en) * 2009-07-31 2011-02-17 Kowa Denki Sangyo Kk Restoration device of photovoltaic power generator, photovoltaic power generation system and restoration system of the photovoltaic power generator
KR200457335Y1 (en) * 2011-05-25 2011-12-15 주식회사 앤엠에스 Smart photovoltaic power generation system
KR101327474B1 (en) 2013-02-07 2013-11-08 (주)대은 Solar generating apparatus with systems for remote monitoring
JP2014112582A (en) * 2012-12-05 2014-06-19 Pacific Ind Co Ltd Cluster state monitoring device
KR101549428B1 (en) 2014-05-13 2015-09-02 한국에너지기술연구원 Monitoring apparatus for solar cell module and the method thereof
WO2016079913A1 (en) * 2014-11-19 2016-05-26 株式会社 東芝 Storage cell management system and storage cell management method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035136A (en) * 2009-07-31 2011-02-17 Kowa Denki Sangyo Kk Restoration device of photovoltaic power generator, photovoltaic power generation system and restoration system of the photovoltaic power generator
KR200457335Y1 (en) * 2011-05-25 2011-12-15 주식회사 앤엠에스 Smart photovoltaic power generation system
JP2014112582A (en) * 2012-12-05 2014-06-19 Pacific Ind Co Ltd Cluster state monitoring device
KR101327474B1 (en) 2013-02-07 2013-11-08 (주)대은 Solar generating apparatus with systems for remote monitoring
KR101549428B1 (en) 2014-05-13 2015-09-02 한국에너지기술연구원 Monitoring apparatus for solar cell module and the method thereof
WO2016079913A1 (en) * 2014-11-19 2016-05-26 株式会社 東芝 Storage cell management system and storage cell management method

Similar Documents

Publication Publication Date Title
CN104813431B (en) Method and apparatus for preventing electric meter fault
US9941695B2 (en) Fault diagnosis method, grid interconnection apparatus, and controller
US9441625B2 (en) System and method for pump component controlling and testing
CA2825006C (en) Uninterruptible power supplies for use in a distributed network
CN101911416B (en) Electronic protection unit for automatic circuit breakers and relative process
US20110051325A1 (en) Power supply system
US20060129798A1 (en) Stand-by power generator monitoring system
KR101106724B1 (en) Smart pannel board with blackbox and emergency-battery
JP2008129663A (en) Photovoltaic power generation system having remote display function
KR20080099320A (en) Systems and methods for providing and managing high-availability power infrastructures with flexible load prioritization
KR101824223B1 (en) A cooling fan monitering system for electrical room of photovoltaic power station
US8796883B2 (en) Hybrid power management system and method for unmanned remote cell sites
KR20150078489A (en) Dual power supply apparatus for high voltage direct current system and control method using the same
US20150057823A1 (en) Control apparatus, control system, and control method
JP2007043802A (en) Uninterruptible power supply and distribution panel
JPWO2012050209A1 (en) Management system and system controller
US20150280642A1 (en) Solar photovoltaic module monitoring and control system
JP2008306851A (en) System, method, and program for managing power supply facility for emergency
KR101822928B1 (en) Monitoring System for Energy Storage System
US8984180B2 (en) Relay and data processing method
JP5950718B2 (en) Power supply
WO2018066693A1 (en) Assessing device and monitoring device
US9979228B2 (en) Energy management apparatus and method of controlling the same
CN113872313A (en) Circuit control method and power supply switching device
KR102528486B1 (en) System for monitoring remotely emergency generator in interworking with smartphone providing screen switching based on UVR signal