JP2008128918A - On-chip analysis method for salivary component - Google Patents

On-chip analysis method for salivary component Download PDF

Info

Publication number
JP2008128918A
JP2008128918A JP2006316421A JP2006316421A JP2008128918A JP 2008128918 A JP2008128918 A JP 2008128918A JP 2006316421 A JP2006316421 A JP 2006316421A JP 2006316421 A JP2006316421 A JP 2006316421A JP 2008128918 A JP2008128918 A JP 2008128918A
Authority
JP
Japan
Prior art keywords
reservoir
saliva
electrophoresis
sample
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316421A
Other languages
Japanese (ja)
Other versions
JP5008064B2 (en
Inventor
Shinichi Wakita
慎一 脇田
Yoshihide Tanaka
喜秀 田中
Naoko Naruishi
奈穂子 鳴石
Masayuki Matsubara
正幸 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006316421A priority Critical patent/JP5008064B2/en
Publication of JP2008128918A publication Critical patent/JP2008128918A/en
Application granted granted Critical
Publication of JP5008064B2 publication Critical patent/JP5008064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for analyzing components having an amino group in salivary simply, quickly, and with high accuracy in the microchip electrophoretic method. <P>SOLUTION: The method for on-chip analyzing of components, having an amino group in salivary using an electrophoretic microchip in which two reservoirs 1 and 2 are connected by a microfluidic passage containing a buffer solution for electrophoresis, comprises step (1) fluorescence-labeling a component, having an amino group in salivary by introducing salivary and a fluorescence-labeled reagent in the reservoir 1 and coating it with oil; and step (2) analyzing, by applying a voltage across the two reservoirs 1 and 2 and making the component move, having an amino group fluorescence-labeled obtained in step of (1). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロチップ電気泳動を用いた唾液中のアミノ酸や生体アミン類を高感度に分析する方法に関する。   The present invention relates to a method for analyzing amino acids and biogenic amines in saliva with high sensitivity using microchip electrophoresis.

近年、マイクロマシニング技術を用いて、分析装置の超小型化を図る研究が行われている。この様な、研究の背景には、小型、軽量、安価なオンチップ分析装置は医療や環境分析などの分野で要求されるオンサイト(on site)分析につながること、サンプルや溶媒
の消費量の低減化につながること、分析の高速化につながることなどが挙げられる。
In recent years, research has been conducted to reduce the size of analyzers using micromachining technology. The background of this research is that small, light, and inexpensive on-chip analyzers can lead to on-site analysis required in fields such as medical and environmental analysis, and the consumption of samples and solvents. This can lead to reductions and faster analysis.

この分析装置として代表的なものがマイクロチップ電気泳動装置であり、通常、電気泳動装置本体と制御用PCから構成される。マイクロチップには、石英ガラス製又はポリメチルメタクリレート等のプラスチック製の電気泳動用チップが用いられている(特許文献1及び2)。   A typical example of this analyzer is a microchip electrophoresis apparatus, which is usually composed of an electrophoresis apparatus body and a control PC. As the microchip, an electrophoresis chip made of quartz glass or plastic such as polymethylmethacrylate is used (Patent Documents 1 and 2).

電気泳動用チップを用いた場合、通常、オフラインで試料を蛍光ラベル化した後、これを電気泳動用チップのリザーバーに導入して、電気泳動分離、レーザー励起蛍光検出を行う方法が採用されている(非特許文献1)。しかし、オフラインで蛍光ラベル化の操作を行う場合、分析に時間がかかり分析操作が煩雑となるため迅速な分析が困難となる。   When an electrophoresis chip is used, a method is generally employed in which a sample is fluorescently labeled off-line and then introduced into a reservoir of the electrophoresis chip for electrophoresis separation and laser-excited fluorescence detection. (Non-Patent Document 1). However, when fluorescent labeling operation is performed off-line, analysis takes time and the analysis operation becomes complicated, so that quick analysis becomes difficult.

また、近年、電気泳動用チップのマイクロチャネル(流路)でオンライン誘導体化を行う方法が報告されているが(非特許文献2)、この方法では、試料と蛍光ラベル化剤が瞬時に反応する必要がある、蛍光ラベル化剤導入用のリザーバーとチャネルを必要とする等問題点を有している。   In recent years, a method for online derivatization using a microchannel (flow channel) of an electrophoresis chip has been reported (Non-Patent Document 2). In this method, a sample and a fluorescent labeling agent react instantaneously. There is a problem that a reservoir and a channel for introducing a fluorescent labeling agent are necessary.

さらに、キャピラリー電気泳動法ではオンキャピラリー誘導体化法が報告されている(特許文献3)が、この場合もプラグとしてキャピラリー内に誘導体化試薬と分析試料を注入する為、これをチップに適用するには蛍光ラベル化剤導入用のリザーバーとチャネルが必要となり、チップの構造が複雑となる。
特開2000−314719号公報 特開2001−242138号公報 米国特許第5318680号明細書 Anal. Chem. 1996, 68, 2044-2053 Anal. Chem. 1994, 66, 3472-3476
Furthermore, in capillary electrophoresis, an on-capillary derivatization method has been reported (Patent Document 3). In this case as well, a derivatization reagent and an analytical sample are injected into the capillary as a plug, and this is applied to the chip. Requires a reservoir and a channel for introducing a fluorescent labeling agent, which complicates the structure of the chip.
JP 2000-314719 A JP 2001-242138 A U.S. Pat.No. 5,318,680 Anal. Chem. 1996, 68, 2044-2053 Anal. Chem. 1994, 66, 3472-3476

本発明の主な目的は、マイクロチップ電気泳動法において、唾液中のアミノ基を有する成分をオンチップで簡便、迅速かつ高精度に分析する方法を提供することにある。具体的には、唾液中のアミノ基を有する成分をオンチップで蛍光ラベル化を行い、安定かつ精度の高い電気泳動原理を用いた流体制御法を用いて、簡便かつ迅速に分析する方法を提供することにある。   The main object of the present invention is to provide a method for analyzing a component having an amino group in saliva easily, rapidly and with high accuracy in a microchip electrophoresis method. Specifically, it provides a simple and rapid analysis method using a fluid control method that uses stable and highly accurate electrophoresis principle by labeling saliva-containing amino acid-containing components on-chip. There is to do.

本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、水系試料(唾液)と蛍光ラベル化試薬をマイクロチップ上のリザーバーに直接導入して、該リザーバー上で唾液中のアミノ基を有する成分を蛍光ラベル化することにより、試料導入・電気泳動分離・レ
ーザー励起蛍光検出の一連の操作が迅速かつ簡便に行えることを見出した。しかも、水系試料(唾液)と相溶性の低いオイルでリザーバー内の試料溶液を覆うことで、反応リザーバー(リザーバー1)からの溶媒の蒸発を抑制できること、また、マイクロ流路(チャネル)にある泳動緩衝溶液に、メチルセルロースを添加して粘性を持たせることにより、リザーバーからマイクロ流路への試料の拡散が抑制できることをも見出した。かかる知見に基づきさらに研究を行った結果、本発明を完成するに至った。
As a result of intensive studies to achieve the above-described object, the present inventor directly introduced an aqueous sample (saliva) and a fluorescent labeling reagent into a reservoir on the microchip, and the amino group in the saliva on the reservoir. It has been found that a series of operations of sample introduction, electrophoretic separation, and laser-excited fluorescence detection can be performed quickly and easily by fluorescently labeling a component having s. Furthermore, the evaporation of the solvent from the reaction reservoir (reservoir 1) can be suppressed by covering the sample solution in the reservoir with oil having low compatibility with the aqueous sample (saliva), and the electrophoresis in the microchannel (channel). It was also found that the diffusion of the sample from the reservoir to the microchannel can be suppressed by adding methylcellulose to the buffer solution to make it viscous. As a result of further research based on this finding, the present invention has been completed.

すなわち、本発明は、下記の唾液中のアミノ基を有する成分のオンチップ分析方法を提供する。   That is, this invention provides the following on-chip analysis method of the component which has an amino group in saliva.

項1. 2個のリザーバー1及び2の間が電気泳動用緩衝液を含むマイクロ流路で結ばれたユニットを複数有する電気泳動用マイクロチップを用いて、唾液中のアミノ基を有する成分をオンチップ分析する方法であって、
(1)唾液及び蛍光ラベル化試薬をリザーバー1に導入して、これをオイルで被覆し、唾液中のアミノ基を有する成分を蛍光ラベル化する工程、及び
(2)2個のリザーバー1及び2の間に電圧を印加して、上記(1)で得られた蛍光ラベル化されたアミノ基を有する成分を、リザーバー1からリザーバー2の方向に移動させて分析を行う工程、
を含むオンチップ分析方法。
Item 1. On-chip analysis of components having an amino group in saliva is performed using an electrophoresis microchip having a plurality of units in which two reservoirs 1 and 2 are connected by a microchannel containing an electrophoresis buffer. A method,
(1) a step of introducing saliva and a fluorescent labeling reagent into the reservoir 1, coating this with oil, and fluorescently labeling a component having an amino group in the saliva; and (2) two reservoirs 1 and 2 A step of performing analysis by applying a voltage between and moving the component having the fluorescently labeled amino group obtained in (1) above from the reservoir 1 to the reservoir 2;
An on-chip analysis method.

項2. 電気泳動用緩衝液が、メチルセルロースを含むホウ酸塩緩衝液である項1に記載のオンチップ分析方法。   Item 2. Item 2. The on-chip analysis method according to Item 1, wherein the electrophoresis buffer is a borate buffer containing methylcellulose.

項3. 工程(1)で用いられる蛍光ラベル化試薬が、4−フルオロ−7−ニトロ−2,1,3−ベンズオキサジアゾールである項1に記載のオンチップ分析方法。   Item 3. Item 2. The on-chip analysis method according to Item 1, wherein the fluorescent labeling reagent used in step (1) is 4-fluoro-7-nitro-2,1,3-benzoxadiazole.

項4. 工程(1)で用いられるオイルが、ポリ−α−オレフィンオイルである項1に記載のオンチップ分析方法。   Item 4. Item 2. The on-chip analysis method according to Item 1, wherein the oil used in the step (1) is poly-α-olefin oil.

本発明の分析方法によれば、マイクロチップ電気泳動を用いて簡便かつ迅速に唾液中のアミノ酸や生体アミン類の高感度分析を行うことができる。   According to the analysis method of the present invention, high-sensitivity analysis of amino acids and biogenic amines in saliva can be performed easily and quickly using microchip electrophoresis.

また、リザーバー上でラベル化を実行する場合に、水系試料と混合しないオイルでリザーバーの試料溶液を覆うことで、反応中の溶媒の蒸発を回避できる。   When labeling is performed on the reservoir, the evaporation of the solvent during the reaction can be avoided by covering the sample solution in the reservoir with oil that is not mixed with the aqueous sample.

しかも、流路(チャネル)を満たす電気泳動用溶液にメチルセルロースを添加することにより粘性を持たせることで、リザーバーからのマイクロ流路への試料拡散が抑制できる。   In addition, the sample diffusion from the reservoir to the microchannel can be suppressed by adding viscosity to the electrophoresis solution that fills the channel (channel) by imparting viscosity.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で用いられる電気泳動用マイクロチップは、2個のリザーバー1及びリザーバー2の間が電気泳動用緩衝液を含むマイクロ流路で結ばれたユニットを複数(好ましくは3個以上)有している。複数のユニットはチップ上に設けられており、その配列の仕方は特に限定はなく、該ユニットのマイクロ流路は並列していても、交差していても良い。   The electrophoresis microchip used in the present invention has a plurality of units (preferably 3 or more) in which two reservoirs 1 and 2 are connected by microchannels containing electrophoresis buffer. Yes. The plurality of units are provided on the chip, and the arrangement method is not particularly limited, and the microchannels of the units may be arranged in parallel or cross each other.

ここで、リザーバーとは、分析対象となる試料を受容するくぼみ部分を意味し、その形状は、必要量の試料溶液を満たすことができる形状であれば特に限定はない。オンチップ
で唾液中のアミノ基を有する成分を蛍光ラベル化することを考慮すると、通常、オイルの被膜が形成しやすい円形のものが好適である。リザーバー1は水系試料(唾液)を蛍光ラベル化試薬で蛍光ラベル化するための反応リザーバーとして用い、リザーバー2は後述する電気泳動によって試料が移動する先のリザーバーとして用いられる。
Here, the reservoir means a hollow portion that receives a sample to be analyzed, and the shape thereof is not particularly limited as long as it can fill a necessary amount of the sample solution. Considering that the component having an amino group in saliva is fluorescently labeled on-chip, a circular shape in which an oil film is easily formed is usually preferable. The reservoir 1 is used as a reaction reservoir for fluorescently labeling an aqueous sample (saliva) with a fluorescent labeling reagent, and the reservoir 2 is used as a reservoir to which the sample moves by electrophoresis to be described later.

マイクロ流路は、電気泳動用緩衝液が満たされ蛍光ラベル化されたアミノ基を有する成分が移動できるものであれば特に限定はなく、例えば、深さ10〜200μm、幅20〜200μmの溝であればよい。また、マイクロ流路の長さは通常、1〜100mm(好ましくは5〜20mm)である。該マイクロ流路は、試料や溶液の乾燥等を防ぐため通常チップ内部に形成されている。   The microchannel is not particularly limited as long as the electrophoresis buffer solution is filled with a fluorescently labeled amino group-containing component. For example, the microchannel is a groove having a depth of 10 to 200 μm and a width of 20 to 200 μm. I just need it. The length of the microchannel is usually 1 to 100 mm (preferably 5 to 20 mm). The microchannel is usually formed inside the chip to prevent drying of the sample or solution.

また、電気泳動用マイクロチップとは、上記した複数のリザーバーと複数の溝(マイクロ流路)が形成されたチップを意味し、分析実験室で行われる試料の前処理、電気泳動分離や検出機能を集積化したチップに相当する。該マイクロチップは、分析に用いる試薬や試料により影響を受けない材質(例えば、ガラス、透明プラスチック等)で構成されている。   The microchip for electrophoresis means a chip in which a plurality of reservoirs and a plurality of grooves (microchannels) described above are formed, and sample pretreatment, electrophoresis separation and detection functions performed in an analysis laboratory. This corresponds to a chip in which is integrated. The microchip is made of a material (for example, glass, transparent plastic, etc.) that is not affected by the reagent or sample used for analysis.

本発明で用いられる電気泳動型ラボチップの一実施例を図1に示す。これを用いて具体的に説明する。但しこれに限定されるものではない。   An embodiment of an electrophoresis type laboratory chip used in the present invention is shown in FIG. This will be described in detail. However, it is not limited to this.

図1の電気泳動用マイクロチップは、リザーバー1、リザーバー2及びこれらを結ぶマイクロ流路Aを有し、リザーバー3、リザーバー4及びこれらを結ぶマイクロ流路Bを有している。マイクロ流路Aとマイクロ流路Bとは交差しており、マイクロ流路Bの交差部からリザーバー4までがアミノ基を有する成分の分析流路として機能する。有効長は交差部から検出部までである。   The electrophoresis microchip of FIG. 1 has a reservoir 1, a reservoir 2, and a micro flow path A connecting them, and a reservoir 3, a reservoir 4 and a micro flow path B connecting them. The microchannel A and the microchannel B intersect each other, and the portion from the intersection of the microchannel B to the reservoir 4 functions as an analysis channel for components having amino groups. The effective length is from the intersection to the detector.

電気泳動用マイクロチップ上には、上記のリザーバー1〜4、並びにマイクロ流路A及びBを含む構成が、1又は2以上設けられていても良い。   On the electrophoresis microchip, one or two or more configurations including the reservoirs 1 to 4 and the microchannels A and B may be provided.

リザーバー1〜4の形状は、必要量の溶液を満たすことができる形状であれば特に限定はなく、通常、オイルの被膜が形成しやすい円形のものが好適である。   The shape of the reservoirs 1 to 4 is not particularly limited as long as it is a shape that can fill a required amount of the solution, and usually a circular shape in which an oil film is easily formed is preferable.

流路A及びBは、電気泳動用緩衝液が満たされ蛍光ラベル化されたアミノ基を有する成分が移動できるものであれば特に限定はなく、例えば、深さ10〜200μm、幅20〜200μmの溝であればよい。また、流路Aは、試料導入するためのものであるから、その長さは通常、1〜100mm(好ましくは5〜20mm)である。流路Bは、分離するためのものであるから、その長さは通常、5〜500mm(好ましくは5〜50mm)であり、アミノ基を有する成分の分析流路として機能する交差部からリザーバー4までの長さは5mm以上(好ましくは10〜500mm)である。   The flow paths A and B are not particularly limited as long as the components having an amino group which is filled with the electrophoresis buffer and fluorescently labeled can move. For example, the channels A and B have a depth of 10 to 200 μm and a width of 20 to 200 μm. Any groove may be used. Moreover, since the channel A is for introducing a sample, its length is usually 1 to 100 mm (preferably 5 to 20 mm). Since the channel B is for separation, the length thereof is usually 5 to 500 mm (preferably 5 to 50 mm), and the reservoir 4 starts from the intersection functioning as an analysis channel for the component having an amino group. The length is up to 5 mm or more (preferably 10 to 500 mm).

電気泳動用マイクロチップの具体例としては、例えば、DNA用i−チップIC−9001(日立ハイテクノロジーズ社製)、Type U [50×20]、Type D [110×50](島津製作
所製)等が例示される。
Specific examples of the microchip for electrophoresis include, for example, DNA i-chip IC-9001 (manufactured by Hitachi High-Technologies Corporation), Type U [50 × 20], Type D [110 × 50] (manufactured by Shimadzu Corporation), etc. Is exemplified.

本発明は上記電気泳動用マイクロチップを用いて、唾液中のアミノ基を有する成分をオンチップ分析する方法である。具体的には、次の工程を含むものである。
(1)唾液及び蛍光ラベル化試薬をリザーバー1に導入して、これをオイルで被覆し、唾液中のアミノ基を有する成分を蛍光ラベル化する工程、及び
(2)2個のリザーバー1及び2の間に電圧を印加して、上記(1)で得られた蛍光ラベル化されたアミノ基を有する成分を、リザーバー1からリザーバー2の方向に移動させて
分析を行う工程。
The present invention is a method for on-chip analysis of a component having an amino group in saliva using the above microchip for electrophoresis. Specifically, the following steps are included.
(1) a step of introducing saliva and a fluorescent labeling reagent into the reservoir 1, coating this with oil, and fluorescently labeling a component having an amino group in the saliva; and (2) two reservoirs 1 and 2 And applying a voltage between them to move the component having the fluorescently labeled amino group obtained in (1) above in the direction from the reservoir 1 to the reservoir 2 for analysis.

上記工程(1)の試料である唾液とは、ヒト或いは動物の唾液であれば特に限定はなく、そのまま試料として用いることもでき、必要に応じて水等で希釈してもよい。唾液成分の中には、ストレスに応じて増減が観測されるアミノ基を有する成分などのストレス指標物質が存在し、かかるストレス増減を定量的かつ高精度に測定することにより、ストレス評価実験に適用することが可能である。唾液成分中のストレス指標物質としては、例えば、アミノ酸(グリシン等)、カテコールアミン類(ドーパミン、エピネフリン、ノルエピネフリン等)、クロモグラニンA、コルチゾール,分泌型免疫イムノグロブリンA(sIgA
)等が例示される。
The saliva that is the sample in the above step (1) is not particularly limited as long as it is human or animal saliva, and can be used as it is as a sample, or may be diluted with water or the like as necessary. Among saliva components, there are stress indicator substances such as components having amino groups that are observed to increase or decrease in response to stress, and this stress increase and decrease can be measured quantitatively and with high accuracy, and applied to stress evaluation experiments. Is possible. Examples of stress indicator substances in saliva components include amino acids (such as glycine), catecholamines (such as dopamine, epinephrine, and norepinephrine), chromogranin A, cortisol, and secretory immune immunoglobulin A (sIgA).
And the like.

上記工程(1)で用いられる蛍光ラベル化試薬とは、微量な目的成分であるアミノ基を有する成分を高感度に検出するために、該アミノ基を有する成分のアミノ基と容易に反応してラベル化し、より光感受性の高い物質に変換できる試薬であればよい。例えば、OPA
(o−フタルアルデヒド)、DPS−Cl(4-(5,6-ジメトキシ-1,3-ジハイドロ-1-オキソ-2H-イソインドール-2-イル)ベンゼンスルホニルクロライド)、NBD−Cl
(4−クロロ−7−ニトロ−2,1,3−ベンズオキサジアゾール)、NBD−F(4−フルオロ−7−ニトロ−2,1,3−ベンズオキサジアゾール)、Phisyl−Cl(4-(1,3-ジヒドロ-1-オキソ-2H-イソインドール-2-イル)ベンゼンスルホニルクロライド)、DNBC(3,5-ジニトロベンゾイクロリド)、FITC(フルオレセインイソチオシアネ
ート)、等が例示される。このうち、温和な条件下において短時間で反応が進行する点からNBD−FやOPA等が望ましい。
The fluorescent labeling reagent used in the above step (1) easily reacts with the amino group of the component having an amino group in order to detect a component having an amino group, which is a trace amount of the target component, with high sensitivity. Any reagent can be used as long as it can be labeled and converted into a more photosensitive substance. For example, OPA
(O-phthalaldehyde), DPS-Cl (4- (5,6-dimethoxy-1,3-dihydro-1-oxo-2H-isoindol-2-yl) benzenesulfonyl chloride), NBD-Cl
(4-chloro-7-nitro-2,1,3-benzoxadiazole), NBD-F (4-fluoro-7-nitro-2,1,3-benzoxadiazole), Phisyl-Cl (4 -(1,3-dihydro-1-oxo-2H-isoindol-2-yl) benzenesulfonyl chloride), DNBC (3,5-dinitrobenzoic chloride), FITC (fluorescein isothiocyanate), etc. . Among these, NBD-F, OPA, and the like are desirable because the reaction proceeds in a short time under mild conditions.

蛍光ラベル化試薬は、唾液とともにリザーバー1に導入する前に、唾液に含まれる水と相溶性のある極性有機溶媒に溶解させて溶液として使用する。該極性有機溶媒としては、アセトニトリル、ジオキサン、メタノール、ジメチルスルホキシド等が例示され、特に、反応性の点から、アセトニトリルが好適である。蛍光ラベル化試薬のアセトニトリルの濃度は、通常、5〜50体積%までであればよい。好ましくは、1〜50mMのNBD−Fアセトニトリル溶液である。   Before the fluorescent labeling reagent is introduced into the reservoir 1 together with saliva, it is dissolved in a polar organic solvent compatible with water contained in saliva and used as a solution. Examples of the polar organic solvent include acetonitrile, dioxane, methanol, dimethyl sulfoxide and the like, and acetonitrile is particularly preferable from the viewpoint of reactivity. The concentration of acetonitrile in the fluorescent labeling reagent is usually 5 to 50% by volume. Preferably, it is a 1-50 mM NBD-F acetonitrile solution.

上記の唾液と蛍光ラベル化試薬の溶液をリザーバー1に導入して、リザーバー1上でオンチップで唾液中のアミノ基を有する成分を蛍光ラベル化する場合、ラベル化反応に要する時間の間に、溶媒(特に、極性有機溶媒のアセトニトリル等)が蒸発してしまう場合がある。溶媒が蒸発すると、反応リザーバー中の試料濃度が変化し、定量が不可能となる。   When the saliva and fluorescent labeling reagent solution is introduced into the reservoir 1 and the component having an amino group in the saliva is fluorescently labeled on the reservoir 1 on the chip, during the time required for the labeling reaction, A solvent (particularly, a polar organic solvent such as acetonitrile) may evaporate. As the solvent evaporates, the sample concentration in the reaction reservoir changes, making quantification impossible.

しかし、唾液と蛍光ラベル化試薬の溶液をリザーバー1に導入した後に、所定のオイルを用いてリザーバー上の試料を覆うことにより上記の問題点が解消される。即ち、水性の試料溶液の全面を水と相溶せず水より比重の小さいオイルで被覆することにより、試料中の極性有機溶媒の気散、蒸発を抑制することができるのである。これにより、より高精度の分析が可能となる。上記のオイルとしては、ポリ−α−オレフィンオイル、ミネラルオイル等が例示される。   However, after the solution of saliva and fluorescent labeling reagent is introduced into the reservoir 1, the above problem is solved by covering the sample on the reservoir with a predetermined oil. That is, by covering the entire surface of the aqueous sample solution with an oil that is not compatible with water and has a specific gravity smaller than that of water, it is possible to suppress the evaporation and evaporation of the polar organic solvent in the sample. Thereby, analysis with higher accuracy becomes possible. Examples of the oil include poly-α-olefin oil and mineral oil.

唾液と蛍光ラベル化試薬の反応は、通常、リザーバー1に唾液を導入して、これに25〜150mMホウ酸塩緩衝液(pH8〜10)を等量加えて、弱塩基性に調製し、これに蛍光ラベル化試薬の溶液を加えて行う。反応条件は、通常、室温(20〜30℃)で3〜15分であればよい。   The reaction between the saliva and the fluorescent labeling reagent is usually made weakly basic by introducing saliva into the reservoir 1 and adding an equal amount of 25 to 150 mM borate buffer (pH 8 to 10) thereto. Add the fluorescent labeling reagent solution to the solution. The reaction conditions may usually be 3 to 15 minutes at room temperature (20 to 30 ° C.).

この場合、pH調製した唾液試料、蛍光ラベル化試薬の溶液、オイルの使用量は、それぞれの特性にも依存するが、通常、蛍光ラベル化試薬の溶液1容量部に対し、pH調製した唾液試料1〜10容量部、オイル1〜10容量部にすることが好ましい。これにより、
オイルがリザーバーの試料溶液を完全に被覆することができ、極性有機溶媒の蒸発を抑制できるからである。
In this case, the pH-adjusted saliva sample, the fluorescent labeling reagent solution, and the amount of oil used depend on the respective characteristics, but usually the pH-adjusted saliva sample for one volume part of the fluorescent labeling reagent solution. 1 to 10 parts by volume and 1 to 10 parts by volume of oil are preferable. This
This is because the oil can completely cover the sample solution in the reservoir, and the evaporation of the polar organic solvent can be suppressed.

本発明において、該マイクロ流路A及びBに有する電気泳動用緩衝液として、通常、25〜150mMホウ酸塩緩衝液(pH8〜10)が、用いられる。この場合、リザーバー1においてラベル化反応の時間が長い場合、反応中にマイクロ流路へ試料の拡散が生じる場合がある。しかし、電気泳動用緩衝液に、粘度の高い(例えば、0.1〜5.0体積%)メチルセルロース等を添加したホウ酸塩緩衝液を用いると、かかる試料の拡散が抑制される。電気泳動用緩衝液中の粘性物質の濃度は該粘性物質の粘性にもよるが、チャネル内に導入できる程度(例えばメチルセルロースの場合0.1〜1.5%)であればよい。   In the present invention, 25 to 150 mM borate buffer (pH 8 to 10) is usually used as the electrophoresis buffer in the microchannels A and B. In this case, if the labeling reaction time in the reservoir 1 is long, the sample may diffuse into the microchannel during the reaction. However, when a borate buffer solution in which methylcellulose or the like having a high viscosity (for example, 0.1 to 5.0% by volume) is added to the electrophoresis buffer solution, diffusion of the sample is suppressed. The concentration of the viscous substance in the buffer for electrophoresis depends on the viscosity of the viscous substance, but may be a level that can be introduced into the channel (for example, 0.1 to 1.5% in the case of methyl cellulose).

上記のようにして唾液中のアミノ基を有する成分が効果的に蛍光ラベル化される。   As described above, the component having an amino group in saliva is effectively fluorescently labeled.

次に、上記工程(2)では、工程(1)で得られた蛍光ラベル化されたアミノ基を有する成分を、リザーバー1とリザーバー2の間に電圧を印加して、リザーバー1からマイクロ流路を通ってリザーバー2の方向へ移動
させて分析を行う。分析は、マイクロチップ電気泳動装置を用いて行う。
Next, in the step (2), a voltage is applied between the reservoir 1 and the reservoir 2 to the component having the fluorescent-labeled amino group obtained in the step (1), and the microchannel from the reservoir 1 is applied. The sample is moved in the direction of the reservoir 2 and analyzed. Analysis is performed using a microchip electrophoresis apparatus.

工程(2)は、いずれも公知の方法を用いて実施することができる。例えば、非特許文献1(Anal. Chem. 1996, 68, 2044-2053)の記載に従い或いは準じて実施できる。マイ
クロチップ電気泳動装置としては、コスモアイSV1100(日立ハイテクノロジーズ社製)、MCE-2010(島津製作所製)等が例示される。
Step (2) can be carried out using any known method. For example, it can be performed according to or according to the description of Non-Patent Document 1 (Anal. Chem. 1996, 68, 2044-2053). Examples of the microchip electrophoresis apparatus include Cosmo Eye SV1100 (manufactured by Hitachi High-Technologies Corporation), MCE-2010 (manufactured by Shimadzu Corporation), and the like.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1(唾液成分のオンチップ蛍光ラベル化条件の予備的検討)
(1)蛍光ラベル化試薬の選定
アミノ基と短時間で反応する蛍光ラベル化試薬として、市販のマイクロチップ電気泳動(MCE)装置の検出波長(励起波長473 nm,蛍光検出波長580 nm以上)を考慮した上で,カテコールアミン類との反応が報告されている蛍光ラベル化試薬4-fluoro-7-nitro-2,1,3- benzoxadiazole (NBD-F)を選定した(X. Zhu, P.N. Shaw, D.A. Barrett, Anal. Chim. Acta, 478 (2003) 259-269.)。唾液にはアミノ酸なども多数含まれておりNBD-Fと反
応する(E. Soderling, K.Parto, O. Simell, Braz. J. Oral. Sci., 1 (2002) 40-43. P. Coufal, J. Zuska, T. van de Goor, V. Smith, B. Gas, Electrophoresis, 24 (2003) 671-677.)。
図2に,アミノ酸及びカテコールアミンとNBD-Fとの反応式を示す。
Example 1 (Preliminary examination of on-chip fluorescent labeling conditions for saliva components)
(1) Selection of fluorescent labeling reagent As a fluorescent labeling reagent that reacts with amino groups in a short time, the detection wavelength (excitation wavelength: 473 nm, fluorescence detection wavelength: 580 nm or more) of a commercially available microchip electrophoresis (MCE) device is used. In consideration, 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), which has been reported to react with catecholamines, was selected (X. Zhu, PN Shaw, DA Barrett, Anal. Chim. Acta, 478 (2003) 259-269.). Saliva contains many amino acids and reacts with NBD-F (E. Soderling, K. Parto, O. Simell, Braz. J. Oral. Sci., 1 (2002) 40-43. P. Coufal , J. Zuska, T. van de Goor, V. Smith, B. Gas, Electrophoresis, 24 (2003) 671-677.).
FIG. 2 shows the reaction formula of amino acids and catecholamines with NBD-F.

(2)蛍光ラベル化試薬との反応条件
図2のグリシン(R=H)及びノルエピネフリン(R=H,R=OH)を標準試料として用い,各標準溶液に対して50mMホウ酸塩緩衝液(pH8.0)を等量加えてpH調整し、
この液に等量の25mM NBD-Fアセトニトリル溶液を加えて反応させた。室温放置(グリシン溶液:約5分,ノルエピネフリン溶液:15〜30分)した液につき,NBD-Fラベル化反応生成物を質量スペクトルで確認した。
(2) Reaction conditions with fluorescent labeling reagent Using glycine (R = H) and norepinephrine (R 1 = H, R 2 = OH) in FIG. 2 as standard samples, 50 mM borate buffer for each standard solution Adjust the pH by adding an equal volume of liquid (pH 8.0)
An equal volume of 25 mM NBD-F acetonitrile solution was added to this solution for reaction. The NBD-F labeled reaction product was confirmed by mass spectrum for the liquid left at room temperature (glycine solution: about 5 minutes, norepinephrine solution: 15 to 30 minutes).

図3に示すとおり,ノルエピネフリンでは3種類の反応生成物をすべて検出した。(a
)は正イオンモードの質量スペクトルであり、ラベル化反応時間30分,250 μMノルエピ
ネフリン反応液に対し,0.05%ギ酸を含む水及びメタノール混液(1:1)で50倍希釈した
。試料導入量は3 μL/minであった。(b)は負イオンモードの質量スペクトルであり、
ラベル化反応時間15分,250 μMノルエピネフリン反応液に対し,水及び2-プロパノール
混液(1:1)で10倍希釈した。試料導入量は2 μL/minであった。
As shown in Fig. 3, norepinephrine detected all three types of reaction products. (A
) Is a mass spectrum of positive ion mode, and was diluted 50 times with a mixture of water and methanol (1: 1) containing 0.05% formic acid to a 250 μM norepinephrine reaction solution with a labeling reaction time of 30 minutes. The sample introduction amount was 3 μL / min. (B) is a negative ion mode mass spectrum;
The labeling reaction time was 15 minutes, and the 250 μM norepinephrine reaction solution was diluted 10-fold with a mixture of water and 2-propanol (1: 1). The sample introduction amount was 2 μL / min.

(3)オンチップラベル化条件の検討
ヒト唾液を用いて,前述のラベル化条件でオンチップラベル化を実施し,蛍光顕微鏡を用いて状態観察を行った。その結果,反応中にアセトニトリルの揮発が認められた(図4)。
(3) Examination of on-chip labeling conditions Using human saliva, on-chip labeling was performed under the aforementioned labeling conditions, and the state was observed using a fluorescence microscope. As a result, volatilization of acetonitrile was observed during the reaction (FIG. 4).

ミネラルオイルとポリ-α-オレフィンオイルを検討したところ,低粘性で取り扱いやすく,添加したときのオイル層も広がりやすいポリ-α-オレフィンオイルを選択した。   As a result of examining mineral oil and poly-α-olefin oil, we selected poly-α-olefin oil that has low viscosity and is easy to handle, and that the oil layer when added is easy to spread.

反応リザーバー全面を一様にカバーする条件を得るために,アセトニトリルの比率変更も必要となった。なお,水:アセトニトリル(唾液:NBD-Fアセトニトリル溶液)の体積
比率を9:1に低減させても蛍光ラベル化反応に支障がないことは,アミノ酸のプレラベル化標準試料を用いてマイクロチップ電気泳動で確認した(図5)。
(a)は、唾液 5 μL, NBD-F溶液 5 μL, オイル 5 μLであり、(b)は、唾液 9 μL, NBD-F溶液 1 μL, オイル 5 μLであり、(c)は、唾液 8 μL, NBD-F溶液 1 μL, オイル 6
μLである。
In order to obtain conditions that uniformly cover the entire reaction reservoir, it was necessary to change the acetonitrile ratio. Microchip electrophoresis using a prelabeled standard sample of amino acids indicates that there is no problem in the fluorescence labeling reaction even if the volume ratio of water: acetonitrile (saliva: NBD-F acetonitrile solution) is reduced to 9: 1. (Fig. 5).
(a) is saliva 5 μL, NBD-F solution 5 μL, oil 5 μL, (b) is saliva 9 μL, NBD-F solution 1 μL, oil 5 μL, (c) is saliva 8 μL, NBD-F solution 1 μL, oil 6
μL.

以上より,オンチップラベル化条件は唾液 8 μL, NBD-Fアセトニトリル溶液 1 μL,
ポリ-α-オレフィンオイル 6 μLが好適であることが分かった。
Based on the above, the on-chip labeling conditions were 8 μL saliva, 1 μL NBD-F acetonitrile solution,
6 μL of poly-α-olefin oil has been found to be suitable.

実施例2(MCE法における分離分析条件の検討)
(1)プレラベル化試料による検討
アミノ酸標準溶液(a)及びヒト唾液試料(b)に対し,50mMホウ酸塩緩衝液(pH8.0)を等
量加えてpH調整し,この液に等量の25mM NBD-Fアセトニトリル溶液を加えてラベル化した(室温,15分間放置)。これらの試料につき,MCE法で測定した。このとき,マイクロチ
ップ流路のプレコンディショニング(流路表面の平衡化)を測定直前に実施することで,分析再現性の大幅な向上が図れることが分かった。
Example 2 (Examination of separation analysis conditions in MCE method)
(1) Examination with pre-labeled sample Adjust the pH of amino acid standard solution (a) and human saliva sample (b) by adding an equal volume of 50 mM borate buffer (pH 8.0). 25 mM NBD-F acetonitrile solution was added for labeling (room temperature, left for 15 minutes). These samples were measured by the MCE method. At this time, it was found that the reproducibility of the analysis can be greatly improved by performing preconditioning of the microchip channel (equalization of the channel surface) immediately before the measurement.

また、電気泳動液にメチルセルロースを添加することで唾液の個人差による影響を受けにくい頑健性の高い下記の分析条件を見出しこれを適用することで,唾液中成分(アミノ酸類と推定)の測定を行った。(図6)。
<装置>
マイクロチップ電気泳動装置:コスモアイSV1100(日立ハイテクノロジーズ)
プラスチック製マイクロチップ:DNA用i-チップ IC-9001(日立ハイテクノロジーズ)
(流路幅100 μm,深さ30 μm,有効分離流路長30 mm)
<電気泳動液>
1.0%(w/v)メチルセルロースを含む50 mMホウ酸塩緩衝液(pH 9.3)
<泳動条件>
図1に記載のプラスチック製マイクロチップを用いて、下記の泳動条件で測定を行った。
Moreover, by adding methylcellulose to the electrophoretic solution and finding the following robust analysis conditions that are not easily affected by individual differences in saliva, and applying them, measurement of salivary components (assuming amino acids) can be performed. went. (FIG. 6).
<Device>
Microchip electrophoresis system: Cosmo Eye SV1100 (Hitachi High Technologies)
Plastic microchip: DNA i-chip IC-9001 (Hitachi High-Technologies)
(Channel width 100 μm, depth 30 μm, effective separation channel length 30 mm)
<Electrophoresis solution>
50 mM borate buffer solution (pH 9.3) containing 1.0% (w / v) methylcellulose
<Electrophoretic conditions>
Using the plastic microchip described in FIG. 1, the measurement was performed under the following electrophoresis conditions.

Figure 2008128918
<試料検出>
励起波長473 nm,蛍光波長580 nm以上を用いて、試料の検出を行った。その結果を図6に示す。
Figure 2008128918
<Sample detection>
Samples were detected using an excitation wavelength of 473 nm and a fluorescence wavelength of 580 nm or more. The result is shown in FIG.

(2)オンチップラベル化への適用
実施例1(3)で定めたオンチップラベル化反応条件(試料溶液 8 μL, NBD-F溶液 1 μL, オイル 6 μL)で,反応中のマイクロチップ流路への試料拡散について検証した。
その結果,15分で約1.8 mm,30分で約2.9 mmの流路への流入が認められた(図7)。
(2) Application to on-chip labeling Microchip flow during reaction under the on-chip labeling reaction conditions (sample solution 8 μL, NBD-F solution 1 μL, oil 6 μL) defined in Example 1 (3) The sample diffusion into the road was verified.
As a result, inflow into the channel about 1.8 mm in 15 minutes and about 2.9 mm in 30 minutes was observed (Fig. 7).

(3)プレラベル化及びオンチップラベル化ヒト唾液の比較
プレラベル化したヒト唾液及びオンチップラベル化したヒト唾液について,ラベル化反応時間を室温15分間とし,MCE法で測定を行った。ラベル化反応率及び試料導入量に若干
の相違は認められているが,両者で類似した泳動結果が得られた(図8)。
(3) Comparison of pre-labeled and on-chip labeled human saliva Prelabeled human saliva and on-chip labeled human saliva were measured by the MCE method at a labeling reaction time of 15 minutes at room temperature. Although slight differences were observed in the labeling reaction rate and the sample introduction amount, similar electrophoresis results were obtained between the two (FIG. 8).

また,チップ流路の交差部分に到達していない程度の試料拡散では,分離分析への影響が軽微であるとの確証を得た。以上より,NBD-Fによるオンチップラベル化法が実用可能
であることが明らかとなった(図8)。
In addition, it was confirmed that the sample diffusion that did not reach the crossing part of the chip channel had a minor effect on the separation analysis. From the above, it became clear that the on-chip labeling method using NBD-F is practical (Fig. 8).

比較例1
オイル皮膜なしの場合、図4に示すように反応中に試料中の溶媒が蒸発してしまい、測定値から濃度を定量できなくなる。
Comparative Example 1
When there is no oil film, as shown in FIG. 4, the solvent in the sample evaporates during the reaction, and the concentration cannot be determined from the measured value.

比較例2
緩衝液にメチルセルロースを含まない場合、ラベル化反応中に拡散により試料がチップチャネル内へ流れ込んでしまう。メチルセルロース添加により試料拡散を電気泳動分離に影響がないように最小限に抑えている。
Comparative Example 2
When methylcellulose is not included in the buffer solution, the sample flows into the chip channel due to diffusion during the labeling reaction. Addition of methylcellulose minimizes sample diffusion so that electrophoretic separation is not affected.

実施例2(1)で使用するプラスチック製マイクロチップ流路部の模式図を示す。The schematic diagram of the plastic microchip flow path part used in Example 2 (1) is shown. 実施例1(1)におけるアミノ酸及びカテコールアミンとNBD−Fとの反応式を示す。The reaction formula of amino acid and catecholamine and NBD-F in Example 1 (1) is shown. 実施例1(2)におけるノルエピネフリンのNBDラベル化反応生成物の質量スペクトルを示す。The mass spectrum of the NBD labeling reaction product of norepinephrine in Example 1 (2) is shown. 実施例1(3)におけるリザーバーでラベル化したときの蛍光顕微鏡観察図である。It is a fluorescence microscope observation figure when labeling with the reservoir | reserver in Example 1 (3). 実施例1(3)におけるリザーバーへのポリ−α−オレフィンオイルを添加したときの蛍光顕微鏡観察図である。It is a fluorescence microscope observation figure when poly-alpha-olefin oil is added to the reservoir | reserver in Example 1 (3). 実施例2(1)におけるプレラベル化したアミノ酸標準溶液(a)及びヒト唾液試料(b)の泳動結果を示す。The migration results of the prelabeled amino acid standard solution (a) and human saliva sample (b) in Example 2 (1) are shown. 実施例2(2)におけるオンチップラベル化時の試料拡散(30分)の様子を示す。The state of sample diffusion (30 minutes) during on-chip labeling in Example 2 (2) is shown. 実施例2(3)におけるプレラベル化試料(a)及びオンチップラベル化試料(b)の泳動結果を示す。The migration result of the pre-labeled sample (a) and the on-chip labeled sample (b) in Example 2 (3) is shown.

Claims (4)

2個のリザーバー1及び2の間が電気泳動用緩衝液を含むマイクロ流路で結ばれたユニットを複数有する電気泳動用マイクロチップを用いて、唾液中のアミノ基を有する成分をオンチップ分析する方法であって、
(1)唾液及び蛍光ラベル化試薬をリザーバー1に導入して、これをオイルで被覆し、唾液中のアミノ基を有する成分を蛍光ラベル化する工程、及び
(2)リザーバー1及び2の間に電圧を印加して、上記(1)で得られた蛍光ラベル化されたアミノ基を有する成分を、リザーバー1からリザーバー2の方向に移動させて分析を行う工程、
を含むオンチップ分析方法。
On-chip analysis of components having an amino group in saliva is performed using an electrophoresis microchip having a plurality of units in which two reservoirs 1 and 2 are connected by a microchannel containing an electrophoresis buffer. A method,
(1) introducing saliva and a fluorescent labeling reagent into the reservoir 1, coating this with oil, and fluorescently labeling the component having an amino group in saliva; and (2) between the reservoirs 1 and 2. Applying a voltage and moving the component having the fluorescently labeled amino group obtained in (1) above in the direction from reservoir 1 to reservoir 2, and
An on-chip analysis method.
電気泳動用緩衝液が、メチルセルロースを含むホウ酸塩緩衝液である請求項1に記載のオンチップ分析方法。   The on-chip analysis method according to claim 1, wherein the electrophoresis buffer is a borate buffer containing methylcellulose. 工程(1)で用いられる蛍光ラベル化試薬が、4−フルオロ−7−ニトロ−2,1,3−ベンズオキサジアゾールである請求項1に記載のオンチップ分析方法。   The on-chip analysis method according to claim 1, wherein the fluorescent labeling reagent used in the step (1) is 4-fluoro-7-nitro-2,1,3-benzoxadiazole. 工程(1)で用いられるオイルが、ポリ−α−オレフィンオイルである請求項1に記載のオンチップ分析方法。   The on-chip analysis method according to claim 1, wherein the oil used in the step (1) is a poly-α-olefin oil.
JP2006316421A 2006-11-24 2006-11-24 On-chip analysis method for saliva components Expired - Fee Related JP5008064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316421A JP5008064B2 (en) 2006-11-24 2006-11-24 On-chip analysis method for saliva components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316421A JP5008064B2 (en) 2006-11-24 2006-11-24 On-chip analysis method for saliva components

Publications (2)

Publication Number Publication Date
JP2008128918A true JP2008128918A (en) 2008-06-05
JP5008064B2 JP5008064B2 (en) 2012-08-22

Family

ID=39554874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316421A Expired - Fee Related JP5008064B2 (en) 2006-11-24 2006-11-24 On-chip analysis method for saliva components

Country Status (1)

Country Link
JP (1) JP5008064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047735A (en) * 2010-07-29 2012-03-08 Ono Pharmaceut Co Ltd Biomarker for stress diseases
JP2013224934A (en) * 2012-03-21 2013-10-31 National Institute For Materials Science Sensor element for measuring trace quantity of samples

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500971A (en) * 1996-09-18 2001-01-23 アクラーラ バイオサイエンシス インコーポレイテッド Surface-modified electrophoresis chamber
JP2003334056A (en) * 2001-10-29 2003-11-25 Toray Ind Inc Protein synthesis chip and microchip provided with membrane
WO2004017073A1 (en) * 2002-08-13 2004-02-26 Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization Method of detecting allergen protein
JP2004317297A (en) * 2003-04-16 2004-11-11 Advance Co Ltd Dye agent and dyeing method using the same
JP2004535565A (en) * 2001-05-10 2004-11-25 インビトロジェン コーポレイション Method and apparatus for electrophoresis of a precast hydratable separation medium
WO2005103670A1 (en) * 2004-04-21 2005-11-03 Toray Industries, Inc. Substrate for labo-on-a-chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500971A (en) * 1996-09-18 2001-01-23 アクラーラ バイオサイエンシス インコーポレイテッド Surface-modified electrophoresis chamber
JP2004535565A (en) * 2001-05-10 2004-11-25 インビトロジェン コーポレイション Method and apparatus for electrophoresis of a precast hydratable separation medium
JP2003334056A (en) * 2001-10-29 2003-11-25 Toray Ind Inc Protein synthesis chip and microchip provided with membrane
WO2004017073A1 (en) * 2002-08-13 2004-02-26 Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization Method of detecting allergen protein
JP2004317297A (en) * 2003-04-16 2004-11-11 Advance Co Ltd Dye agent and dyeing method using the same
WO2005103670A1 (en) * 2004-04-21 2005-11-03 Toray Industries, Inc. Substrate for labo-on-a-chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047735A (en) * 2010-07-29 2012-03-08 Ono Pharmaceut Co Ltd Biomarker for stress diseases
JP2013224934A (en) * 2012-03-21 2013-10-31 National Institute For Materials Science Sensor element for measuring trace quantity of samples

Also Published As

Publication number Publication date
JP5008064B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
von Heeren et al. Micellar electrokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure
Tantra et al. Integrated potentiometric detector for use in chip-based flow cells
JP6422131B2 (en) Capillary device for separation analysis, microfluidic chip for separation analysis, protein or peptide analysis method, electrophoresis apparatus, and microfluidic chip electrophoresis apparatus for separation analysis
US20150316480A1 (en) Thermophoresis measurements in nanoliterdroplets
Nandi et al. Development and optimization of an integrated PDMS based‐microdialysis microchip electrophoresis device with on‐chip derivatization for continuous monitoring of primary amines
JP6130306B2 (en) Rapid quantification of biomolecules and methods in selectively functionalized nanofluidic biosensors
Nuchtavorn et al. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis
Ye et al. Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection
Beard et al. Integrated on‐chip derivatization and electrophoresis for the rapid analysis of biogenic amines
Lapos et al. Injection of fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis
Pumera Microfluidics in amino acid analysis
Ji et al. Sensitive determination of sulfonamides in environmental water by capillary electrophoresis coupled with both silvering detection window and in‐capillary optical fiber light‐emitting diode‐induced fluorescence detector
ES2645987T3 (en) Method of diagnosis of Alzheimer&#39;s disease
Moehlenbrock et al. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes
Zhu et al. Alternate injections coupled with flow-gated capillary electrophoresis for rapid and accurate quantitative analysis of urine samples
Belder et al. Rapid quantitative determination of ephedra alkaloids in tablet formulations and human urine by microchip electrophoresis
JP5008064B2 (en) On-chip analysis method for saliva components
Sirichai et al. A capillary electrophoresis microchip for the analysis of photographic developer solutions using indirect fluorescence detection
Zeid et al. Stacking-cyclodextrin-microchip electrokinetic chromatographic determination of gabapentinoid drugs in pharmaceutical and biological matrices
Ávila et al. Point of care creatinine measurement for diagnosis of renal disease using a disposable microchip
Wei et al. Microchip electrophoresis for fast and interference-free determination of trace amounts of glyphosate and glufosinate residues in agricultural products
US20160153978A1 (en) Automated chemical analysis apparatus with integrated microfluidic microchip
Tolba et al. Fast quantitative determination of diuretic drugs in tablets and human urine by microchip electrophoresis with native fluorescence detection
KR100762532B1 (en) Sample analysis method using microchip
Buyuktuncel Microchip electrophoresis and bioanalytical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

R150 Certificate of patent or registration of utility model

Ref document number: 5008064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees