JP2008128797A - Method of measuring saliva buffer capacity - Google Patents

Method of measuring saliva buffer capacity Download PDF

Info

Publication number
JP2008128797A
JP2008128797A JP2006313700A JP2006313700A JP2008128797A JP 2008128797 A JP2008128797 A JP 2008128797A JP 2006313700 A JP2006313700 A JP 2006313700A JP 2006313700 A JP2006313700 A JP 2006313700A JP 2008128797 A JP2008128797 A JP 2008128797A
Authority
JP
Japan
Prior art keywords
saliva
measured
caries
buffer capacity
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006313700A
Other languages
Japanese (ja)
Inventor
Fumio Ukaji
文緒 宇梶
Koichiro Hirata
広一郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Dental Corp
Original Assignee
Tokuyama Dental Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Dental Corp filed Critical Tokuyama Dental Corp
Priority to JP2006313700A priority Critical patent/JP2008128797A/en
Publication of JP2008128797A publication Critical patent/JP2008128797A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of measuring saliva buffer capacity even when a subject has a small saliva secretion quantity. <P>SOLUTION: Saliva is divided into a component held on a filter material and a filtered liquid by the filter material with diameter of 0.8-2 μm; the number of bacteria causing erosion is measured using the component on the filter material, and the filtered liquid is brought into contact with an absorbent carrier carrying a test reagent containing a pH indicator; the pH is measured, and the saliva buffer capacity is measured. Thus, even when the subject has a small saliva secretion quantity, the saliva buffer capacity can be measured rapidly and accurately. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は唾液の緩衝能を測定し、齲蝕発生のリスクを診断する方法に関する。詳しくは、齲蝕原因菌数を測定するために、唾液を濾材で濾過することで生じる濾液により唾液緩衝能を測定する方法に関する。   The present invention relates to a method for diagnosing the risk of caries development by measuring the buffer capacity of saliva. More specifically, the present invention relates to a method for measuring the saliva buffering ability with a filtrate produced by filtering saliva with a filter medium in order to measure the number of caries-causing bacteria.

近年、ヒトの口腔内の齲蝕発生のリスクを判定し、齲蝕を予防しようとする試みがなされている。齲蝕発生リスクの判定は、齲蝕発生に関与する因子(齲蝕リスク因子)を測定し、これらの結果を総合的に判断することで判定される。齲蝕リスク因子として、唾液中のミュータンスレンサ球菌、ラクトバチラス菌等の齲蝕原因菌数、唾液分泌量や唾液緩衝能といった唾液の性状、歯垢の付着量、食事回数やフッ化物の使用状況といった生活習慣等の各項目が調べられている(例えば非特許文献1参照)。   In recent years, attempts have been made to determine the risk of caries development in the human oral cavity and prevent caries. The determination of caries occurrence risk is determined by measuring factors involved in caries occurrence (caries risk factor) and comprehensively judging these results. Caries risk factors such as the number of caries-causing bacteria such as mutans streptococci and lactobacillus in saliva, saliva properties such as salivary secretion and saliva buffering capacity, plaque adhesion, number of meals and fluoride usage Each item, such as a custom, is examined (for example, refer nonpatent literature 1).

上記の各項目を調べる方法として、以下のような方法が開発されている。ミュータンスレンサ球菌数やラクトバチラス菌数の測定は、選択培地を使用した培養法により実施されており、例えばミュータンスレンサ球菌数の測定では、選択培地としてミチス・サリバリウス・バシトラシン固体培地等が使用されている。唾液分泌量の測定は、一定時間に分泌される唾液を計量カップ等に採取することで実施されている。唾液緩衝能の測定は、一定量の酸と一定量の唾液を混合後のpHを、pH指示薬の色調変化を調べる方法で実施されている。歯垢の付着量、食事回数やフッ化物の使用状況といった生活習慣等は、歯科医の視診や患者への問診等で実施されている。   The following methods have been developed as methods for examining the above items. The number of mutans streptococci and the number of Lactobacillus are measured by a culture method using a selective medium. ing. The saliva secretion amount is measured by collecting saliva secreted in a certain time in a measuring cup or the like. The saliva buffering ability is measured by a method of examining the pH after mixing a certain amount of acid and a certain amount of saliva, and examining the color change of the pH indicator. Lifestyles such as the amount of plaque adhering, the number of meals, and the use status of fluoride are carried out by dentist inspection and patient interview.

一部の歯科医院では、上記の各検査項目を全て検査、点数化し、患者の口腔内の齲蝕リスク因子の総和を一定レベル以下に押さえ込む方法により齲蝕を予防する試みがなされており、一定の成果を挙げている(例えば非特許文献1参照)。   At some dental clinics, all of the above-mentioned inspection items are examined and scored, and attempts have been made to prevent caries by reducing the total of caries risk factors in the patient's oral cavity below a certain level. (See, for example, Non-Patent Document 1).

上記の各齲蝕リスク因子の中で、特にミュータンスレンサ球菌数と唾液分泌量、及び唾液緩衝能は齲蝕リスクと密接に関係していると言われている。食物中に含まれる炭水化物やその分解産物である糖は歯垢中に存在するミュータンスレンサ球菌によって速やかに代謝されて酸が作られ、その結果、歯垢中のpHが下がり、歯の表面からカルシウムイオン、リン酸イオンが歯垢や唾液中に溶出する(脱灰)。しかし、上記のように、ミュータンスレンサ球菌の作用により歯の脱灰がおこっても、唾液の洗浄作用や緩衝作用により歯垢中のpHが中性付近に戻ると、唾液や歯垢中のカルシウムイオン、リン酸イオンが再び歯面に沈着する(再石灰化)。齲蝕とは、脱灰、再石灰化のバランスが崩れエナメル質表層下の脱灰が進む現象である。上記の理由から、齲蝕発生のリスクの判定には、ミュータンスレンサ球菌数に加えて、唾液の分泌量と唾液緩衝能を測定することが重要である。   Among the above caries risk factors, it is said that in particular the number of mutans streptococci, salivary secretion, and saliva buffering capacity are closely related to caries risk. Carbohydrates in food and sugar, which is a degradation product, are rapidly metabolized by mutans streptococci present in plaque to produce acid, resulting in a decrease in pH in the plaque and the surface of the teeth. Calcium ions and phosphate ions are eluted in plaque and saliva (decalcification). However, as mentioned above, even if teeth decalcify due to the action of mutans streptococci, if the pH in the plaque returns to near neutrality due to the cleaning and buffering action of saliva, Calcium ions and phosphate ions are deposited again on the tooth surface (remineralization). Caries are a phenomenon in which the balance between demineralization and remineralization is lost and demineralization proceeds under the surface of the enamel. For the above reasons, it is important to measure the saliva secretion amount and saliva buffering capacity in addition to the number of mutans streptococci in order to determine the risk of caries development.

例えば、唾液中のミュータンスレンサ球菌数が多くても、唾液分泌量と唾液緩衝能が高い人と低い人では齲蝕発生のリスクが異なるし、唾液分泌量、または唾液緩衝能が低い場合でも、口腔内のミュータンスレンサ球菌数の多い人と少ない人では齲蝕発生のリスクは異なる。従って、齲蝕発生のリスクを判定するためには、口腔内のミュータンスレンサ球菌数と唾液分泌量、唾液緩衝能を同時に測定して、総合的に判定することが重要である。   For example, even if the number of mutans streptococci in saliva is large, the risk of caries development is different between people with low saliva secretion and saliva buffer capacity and those with low saliva buffer capacity, and even when saliva secretion capacity or saliva buffer capacity is low, The risk of caries development differs between people with a high number of mutans streptococci in the oral cavity and those with a low number. Therefore, in order to determine the risk of the occurrence of caries, it is important to make a comprehensive determination by simultaneously measuring the number of mutans streptococci in the oral cavity, the saliva secretion amount, and the saliva buffering capacity.

口腔内のミュータンスレンサ球菌数、唾液分泌量、唾液緩衝能は日内変動することが知られている。唾液を採取する時間によって齲蝕リスク因子の測定結果が変動するので、採取時期の異なる唾液を使用して、ミュータンスレンサ球菌数と唾液緩衝能を測定し比較しても正確に口腔内の状況を判定できない。このような理由から、齲蝕原因菌数、唾液分泌量、唾液緩衝能を測定する際には、同一のサンプルを使用して同時に測定することが望ましいといえる。   It is known that the number of mutans streptococci in the oral cavity, salivary secretion, and saliva buffering capacity vary within the day. Since the measurement results of caries risk factors vary depending on the time at which saliva is collected, using the saliva with different collection times, the number of mutans streptococci and the saliva buffering capacity can be measured and compared, so that the situation in the oral cavity can be accurately determined. Cannot judge. For these reasons, when measuring the number of caries-causing bacteria, the amount of saliva secreted, and the saliva buffering capacity, it can be said that it is desirable to simultaneously measure using the same sample.

唾液中の齲蝕原因菌の測定は、従来培養法によって実施されているが、結果が判明するまでに2日以上という比較的長時間を要するという欠点があったが、免疫学的測定方法が開発され検査時間が大幅に短縮された。免疫学的測定方法は微生物が有する特異的な抗原に対する抗体を利用して該微生物を高感度に検出するという方法である(非特許文献2、3)。培養法で齲蝕原因菌を測定する場合、0.01〜0.1mL程度の唾液が必要だが、免疫学的測定法を実施する場合、培養法より多量の唾液(0.3〜0.5mL程度)の唾液が必要である(例えば非特許文献3)。この理由は以下の通りである。免疫学的測定法では、通常、齲蝕原因菌の表面に存在する抗原に対する抗体を使用する。唾液中の齲蝕原因菌は歯垢で覆われているので、このままでは抗体が接触できず、抗原抗体反応がおこらない。抗原抗体反応をおこすためには、何らかの前処理を行い、歯垢を除去して抗原を露出させるか、または菌体より抗原を抽出する必要がある。しかし、前処理を行っても、歯垢が完全に除去できない、全ての抗原を抽出することができない、前処理により一部の抗原が破壊される、等の理由により、齲蝕原因菌に存在する全ての抗原が測定可能な状態になるわけではないので、培養法に比べて多量の唾液が必要になる。   Measurement of caries-causing bacteria in saliva has been carried out by the conventional culture method, but there was a drawback that it took a relatively long time of 2 days or more until the results were revealed, but an immunological measurement method was developed. Inspection time has been greatly reduced. The immunological measurement method is a method of detecting a microorganism with high sensitivity using an antibody against a specific antigen possessed by the microorganism (Non-patent Documents 2 and 3). When measuring caries-causing bacteria by the culture method, about 0.01 to 0.1 mL of saliva is required, but when performing an immunoassay, a larger amount of saliva (about 0.3 to 0.5 mL) than the culture method ) Saliva is necessary (for example, Non-Patent Document 3). The reason is as follows. In an immunoassay, an antibody against an antigen present on the surface of a cariogenic bacteria is usually used. Since the caries-causing bacteria in saliva are covered with dental plaque, the antibody cannot be contacted as it is, and the antigen-antibody reaction does not occur. In order to cause an antigen-antibody reaction, it is necessary to perform some pretreatment to remove plaque and expose the antigen, or to extract the antigen from the cells. However, even if pretreatment is performed, dental plaque cannot be completely removed, all antigens cannot be extracted, and some antigens are destroyed by pretreatment. Since not all antigens can be measured, a large amount of saliva is required as compared with the culture method.

唾液緩衝能は、唾液に一定量の酸を添加し、pHを測定することで測定できる。pH指示薬の呈色を目視で確認し、予め作製された各pH値での標準比色表と比較する方法は、特に機器を必要とせず測定できるため、簡便性、迅速性の点から特に好ましい実施形態の一つであると言える。例えば、山田らは、pH指示薬と酸性緩衝剤を吸収性担体に保持させ、該担体に唾液をたらし色調を目視で確認する方法、いわゆる試験紙法、を提案している(特許文献1)。この方法は、0.005〜0.03mL程度のごく少量の唾液で唾液緩衝能が測定できるが、唾液が担体に染み込み試薬と混合されて初めて緩衝能の測定が可能になるため、粘度の高い唾液では担体への唾液の浸透が不均一になりやすいので、pH指示薬の呈色がまだらになり唾液緩衝能の判定が困難になる場合があるという欠点を持つ。一般的に、唾液分泌量の少ない被検者から採取した唾液は粘度が高いことが知られており、このような場合、上記理由により試験紙法による唾液緩衝能の測定は困難な場合が多いが、このような試験紙法において、測定に供する唾液について、濾過処理により唾液中の不純物やムチン等の粘性物質を取り除いて供することが知られている(特許文献2)。しかしながら、この従来例において具体的に使用されている濾材はグラスファイバーフィルターAP15(ミリポア社製)であり、その孔径はカタログ値で0.2〜0.6μmの微小のものである。しかして、このように孔径が小さい場合、後述の実施例で示されるように、唾液中の不溶物により濾材が目詰まりを起こしやすく、少量の唾液しか濾過できない。唾液緩衝能のみを測定する場合には特に問題なく使用できるが、同一の唾液からミュータンスレンサ球菌数を測定する場合には、測定に必要な量の唾液が濾過できないためミュータンスレンサ球菌数が正確に測定できないという問題がある。さらに、岡崎らは、予め試薬(乳酸、pH指示薬)の乾燥粉末を入れたテストチューブに唾液を加え、蓋をして振盪して試薬を溶解し、pH指示薬の色調を目視で判定するという方法、いわゆる判定チューブ法、を提案している(非特許文献4)。この方法では試薬を担体に染み込ませる必要がないため、粘度の高い唾液であっても比較的容易に唾液緩衝能の測定が可能であるが、0.5〜2mL程度の唾液が測定に必要である。   Saliva buffering ability can be measured by adding a certain amount of acid to saliva and measuring the pH. The method of visually confirming the color of the pH indicator and comparing it with a standard colorimetric table prepared in advance at each pH value is particularly preferable from the viewpoint of simplicity and speed, because it can be measured without requiring an instrument. It can be said that this is one of the embodiments. For example, Yamada et al. Have proposed a method of holding a pH indicator and an acidic buffer in an absorbent carrier, adding saliva to the carrier and visually checking the color tone, a so-called test paper method (Patent Document 1). . This method can measure the saliva buffering capacity with a very small amount of saliva of about 0.005 to 0.03 mL, but the viscosity can be measured only after saliva soaks into the carrier and is mixed with the reagent. In saliva, since the penetration of saliva into the carrier tends to be uneven, there is a drawback that the color of the pH indicator becomes mottled and determination of the saliva buffering capacity may be difficult. Generally, saliva collected from subjects with low saliva secretion is known to have high viscosity. In such cases, it is often difficult to measure the saliva buffer capacity by the test paper method for the above reasons. However, in such a test paper method, it is known that saliva used for measurement is subjected to filtration treatment to remove impurities and mucous substances such as mucin in the saliva (Patent Document 2). However, the filter medium specifically used in this conventional example is a glass fiber filter AP15 (manufactured by Millipore), and its pore diameter is a very small one having a catalog value of 0.2 to 0.6 μm. Thus, when the pore diameter is small as described above, the filter medium is likely to be clogged by the insoluble matter in the saliva, and only a small amount of saliva can be filtered. When measuring only the saliva buffering capacity, it can be used without any problem, but when measuring the number of mutans streptococci from the same saliva, the amount of mutans streptococci cannot be filtered because the amount of saliva required for the measurement cannot be filtered. There is a problem that it cannot be measured accurately. Furthermore, Okazaki et al. Add saliva to a test tube containing a dry powder of a reagent (lactic acid, pH indicator) in advance, and cover and shake to dissolve the reagent, and visually determine the color tone of the pH indicator. The so-called determination tube method is proposed (Non-Patent Document 4). In this method, since it is not necessary to soak the reagent in the carrier, saliva buffering ability can be measured relatively easily even with high-viscosity saliva, but about 0.5 to 2 mL of saliva is necessary for the measurement. is there.

被験者が高齢者である場合、または幼児の場合、唾液の分泌量が少ない、唾液をうまく吐き出せない等の理由により、0.5mL以下の唾液しか採取できない場合があり、齲蝕原因菌と唾液緩衝能の両方が測定できないという問題があった。   If the test subject is an elderly person or an infant, the saliva secretion amount may be low, or the saliva may not be discharged well. There was a problem that both could not be measured.

クリニカル カリオロジー、 熊谷崇著、 医歯薬出版株式会社 1996年Clinical Carriology, Takashi Kumagai, Bio-Dental Publishing Co., Ltd. 1996 日本生化学会編集,新生化学実験講座12 分子免疫学III 抗原・抗体・捕体,東京化学同人,1992年Edited by The Biochemical Society of Japan, Laboratory for Neonatal Chemistry 12 Molecular Immunology III Antigens / Antibodies / Captures, Tokyo Chemical Dojin, 1992 ヘルスケア歯科診療室発 予防歯科のすぐれモノ17+α、株式会社デンタルダイアモンド社、2006年From Healthcare Dental Clinic Excellent preventive dentistry 17 + α, Dental Diamond Co., Ltd., 2006 岡崎好秀 他,小児歯科学雑誌,38巻615−621頁,2000年Yoshihide Okazaki et al., Journal of Pediatric Dentistry, 38: 615-621, 2000 特許第1574981号公報Japanese Patent No. 1574981 特開2002−323493号公報JP 2002-323493 A

本発明は上記事情に鑑みなされたものであり、齲蝕原因菌と唾液緩衝能とを測定し、これら両方の測定値から齲蝕発生リスクを判定する際において、少ない唾液量で唾液緩衝能までを、迅速且つ正確に測定できる方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, measuring caries-causing bacteria and saliva buffering capacity, and determining the caries development risk from both measured values, up to saliva buffering capacity with a small amount of saliva, It is an object of the present invention to provide a method capable of measuring quickly and accurately.

本発明者等は上記課題を解決するために、鋭意検討してきた。その結果、孔径0.8〜2μmの濾材により唾液を濾過することにより、齲蝕原因菌を含む不溶物を除去した濾液によっても唾液緩衝能が正確に測定可能であり、しかも、この方法によれば、該唾液の粘性が低下し、試験紙法においても吸収性担体への該唾液濾液の浸透の均一性が向上するため、pHの判定が容易になり好ましいことを見出した。そして、さらに検討を進め、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, by filtering the saliva with a filter medium having a pore diameter of 0.8 to 2 μm, the saliva buffering ability can be accurately measured even with the filtrate from which insoluble matter containing caries-causing bacteria has been removed. The present inventors have found that the viscosity of the saliva is reduced and the uniformity of the penetration of the saliva filtrate into the absorbent carrier is improved even in the test paper method, so that the pH can be easily determined. And further examination was advanced and it came to complete this invention.

即ち、本発明は、唾液を孔径0.8〜2μmの濾材で濾過し該濾材上に保持される成分より齲蝕原因菌数を測定する際に生じる唾液の濾液を用いて、該唾液の緩衝能を測定することを特徴とする唾液緩衝能の測定方法である。   That is, the present invention uses the saliva filtrate produced when the saliva is filtered through a filter medium having a pore size of 0.8 to 2 μm and the number of caries-causing bacteria is measured from the components retained on the filter medium. Is a method for measuring saliva buffering capacity, characterized in that

本発明の測定方法によれば、唾液を濾過し、該濾材上に保持される齲蝕原因菌数と濾液の緩衝能とを測定することにより、齲蝕発生リスクを効率的に評価することができる。被験者から採取した唾液は、常法により採取した場合(被験者にガム等の咀嚼物を5分間噛ませ分泌してきた唾液を集める)0.3mL〜20mL程度であり、この採取したものを本発明の方法に適用すればよい。齲蝕原因菌数と唾液緩衝能の両方の測定に供することができるため、本発明の方法は、唾液量が少ない場合、例えば、0.3mL〜0.5mLであっても、十分に両方の測定が実施可能であり好適である。   According to the measurement method of the present invention, the caries risk can be efficiently evaluated by filtering saliva and measuring the number of caries-causing bacteria and the buffer capacity of the filtrate retained on the filter medium. Saliva collected from the subject is about 0.3 mL to 20 mL when collected by a conventional method (collecting saliva chewed by a subject such as a chewing gum for 5 minutes), and this collected sample is used in the present invention. Apply to the method. Since it can be used for the measurement of both the number of caries-causing bacteria and the saliva buffering capacity, the method of the present invention can measure both sufficiently even when the amount of saliva is small, for example, 0.3 mL to 0.5 mL. Is feasible and suitable.

また、本発明において、濾材により濾過した唾液は、不溶物含量および粘度が共に低下するため、濾過前の唾液に比べて、唾液緩衝能の測定が容易に実施できる。被験者の中には、ガム等の咀嚼物を5分間被験者に噛ませながら採取した刺激唾液量が上記0.3mL〜0.5mLしかない者も珍しくないため、このような被験者の齲蝕発生リスクを評価する場合に、本発明の上記効果は顕著に発揮される。   Moreover, in the present invention, saliva filtered with a filter medium has both insoluble matter content and viscosity decreased, so that saliva buffering ability can be easily measured as compared to saliva before filtration. Among subjects, it is not unusual for the amount of stimulated saliva collected while chewing a gum or the like to chew a subject for 5 minutes, so there is a risk of caries development of such subjects. When evaluating, the said effect of this invention is exhibited notably.

そしてこの効果は、前記試験紙法にて唾液緩衝能を測定するときに、より顕著に発揮させることができる。すなわち、上記濾過により唾液の粘性は低下し、測定の操作性が改善される。特に、唾液の粘度が高い場合には、上記濾過することにより粘性が低下した濾液は試験紙への浸透性が大きく向上し、pH指示薬の呈色を均一にさせることができるようになる。   This effect can be exhibited more remarkably when the saliva buffer capacity is measured by the test paper method. That is, the viscosity of saliva is reduced by the filtration, and the operability of measurement is improved. In particular, when the viscosity of saliva is high, the filtrate whose viscosity has been reduced by the filtration greatly improves the permeability to the test paper, and the color of the pH indicator can be made uniform.

本発明の唾液緩衝能の測定方法では、唾液を濾過することで齲蝕原因菌を含む不溶物と濾液に分離し、該濾液を使用して唾液緩衝能を測定する。   In the method for measuring saliva buffering capacity of the present invention, saliva is filtered to separate into insoluble matter containing caries-causing bacteria and filtrate, and the saliva buffer capacity is measured using the filtrate.

本発明では、安静時唾液、刺激唾液の両方を使用することができるが、検体採取の再現性、容易さ等の理由から、刺激唾液を使用することが好ましい。刺激唾液は、例えば、ガム、パラフィンペレット等の咀嚼物を一定時間被験者に噛ませながら唾液を吐き出させることで採取することができる。   In the present invention, both resting saliva and stimulated saliva can be used, but it is preferable to use stimulated saliva for reasons such as reproducibility and ease of sample collection. Stimulated saliva can be collected, for example, by spitting saliva while chewing a chewing object such as gum or paraffin pellets for a certain period of time.

本発明の方法に供する唾液は、粘度の高いものであるのが、唾液緩衝能の測定において、改善効果が顕著に発揮されるため好ましい。一般的に唾液の粘度と濾過に要する時間は比例関係にある。後述する本発明の実施例に従って唾液を濾過する場合、具体的には、孔径が1μmのガラス繊維濾紙(例えば、アドバンテック東洋社のGA−100)をセットし作製した、図1の構造の濾過装置(濾過面の面積0.95cm)に唾液を0.3mL添加し、2.5mLシリンジ(例えばテルモ社製)のプランジャーを外した状態で濾過装置に装着した後に、シリンジ外筒にプランジャーを挿入し下まで押し下げた状態で保持することにより加圧することで濾過を行った場合に、添加した唾液全量の濾過に要する時間が20秒以上となるような場合(唾液分泌量が比較的多く粘度の低い唾液の場合は、濾過に要する時間は数秒〜10秒程度である)、粘度の高い唾液といえる。本発明では、濾過に供する、被験者から採取した唾液の粘度が上述のように濾過に要する時間が20秒以上、より好ましくは25〜60秒である場合にも、良好な測定が実施できる。 It is preferable that the saliva used for the method of the present invention has a high viscosity because the improvement effect is remarkably exhibited in the measurement of the saliva buffering ability. Generally, the viscosity of saliva and the time required for filtration are in a proportional relationship. When filtering saliva in accordance with an embodiment of the present invention to be described later, specifically, a filtration device having the structure of FIG. 1 prepared by setting a glass fiber filter paper (for example, GA-100 manufactured by Advantech Toyo Co., Ltd.) having a pore diameter of 1 μm. After adding 0.3 mL of saliva to the (filtration surface area 0.95 cm 2 ) and removing the plunger of the 2.5 mL syringe (eg, Terumo), the plunger is attached to the syringe outer cylinder. When filtration is performed by pressurizing by inserting and holding down, the time required for filtration of the total amount of added saliva is 20 seconds or more (the amount of saliva secretion is relatively large) In the case of saliva with low viscosity, the time required for filtration is about several seconds to 10 seconds), which can be said to be saliva with high viscosity. In the present invention, good measurement can be performed even when the viscosity of saliva collected from a subject to be filtered is 20 seconds or longer, more preferably 25 to 60 seconds, as described above.

本発明において齲蝕原因菌とは、齲蝕発生、または進展に深く関わっている口腔内に存在する微生物を指す。具体例として、ミュータンスレンサ球菌、ラクトバチラス菌を挙げることができるが、齲蝕の発生との関連性が特に高いといわれている、ストレプトコッカス・ミュータンス(Streptococcus mutans)、ストレプトコッカス・ソブリヌス(Streptococcus sobrinus)を測定することが特に好ましい。   In the present invention, caries-causing bacteria refer to microorganisms present in the oral cavity that are deeply involved in the occurrence or development of caries. Specific examples include mutans streptococci and lactobacilli, but Streptococcus mutans and Streptococcus sobrinus, which are said to be particularly highly related to the occurrence of dental caries. It is particularly preferable to measure.

齲蝕原因菌の測定は、例えば、齲蝕原因菌より抗原を抽出し、該抽出抗原を免疫学的測定法により測定することで、迅速かつ正確に測定することができる。例えば、唾液を濾過することで齲蝕原因菌を濾材上に濃縮し、抗原を抽出することで、高感度な免疫学的測定が可能になる。抽出法としては公知の方法が何ら制限なく使用できるが、好適な例として、亜硝酸抽出法を示すことができる。亜硝酸抽出法は、公知の方法(例えば特開2003−215126号公報記載の方法)により実施することができる。以下、亜硝酸抽出法について説明する。亜硝酸抽出法は亜硝酸塩水溶液と酸水溶液を濾材に滴下し、亜硝酸を形成させ、生じた亜硝酸水溶液中に糖鎖抗原を抽出するという方法である。亜硝酸塩水溶液としては、例えば、0.5〜8Mの亜硝酸ナトリウム、亜硝酸カリウム等が、酸水溶液としては、0.5〜4Mの酢酸、硝酸、塩酸、クエン酸等が使用できる。上記のような亜硝酸塩水溶液と酸水溶液を例えば、0.005〜0.05mLずつ濾材に添加し、15〜50℃で1〜10分放置することで濾材上で反応を行わせる。反応後の抽出液は、唾液の濾過と同様の方法により加圧することで回収すれば良い。反応液は強酸性であるので例えば1〜3M水酸化ナトリウム、0.5〜2Mトリス、0.5〜1M炭酸水素ナトリウム等の塩基性水溶液を添加し抽出液のpHを7.0〜8.5に調整するのが好ましい。塩基水溶液は抗原抽出液を濾材から回収した後に添加しても良いし、抽出液を回収する前に濾材に添加した後に抽出液を回収しても良いが、免疫学的測定法での感度の観点から、回収前に濾材に添加することがより好適である。または、亜硝酸塩水溶液と酸水溶液を予め混合して、亜硝酸水溶液(0.2〜4M 亜硝酸ナトリウム、0.5〜4M 酢酸)を調製し、該亜硝酸水溶液で濾過膜を濾過することで亜硝酸抽出を実施することもできる。この場合は、亜硝酸ナトリウム水溶液と酢酸水溶液を混合し調製した亜硝酸水溶液を0.2〜0.5mL添加して濾過し、5〜50℃で1〜10分放置することで亜硝酸抽出を行い、反応後の中和は0.5〜1.0Mトリスを100〜800μL濾過膜に添加し、加圧濾過することで糖鎖抗原抽出液を回収する。   The caries-causing bacteria can be measured quickly and accurately, for example, by extracting an antigen from the caries-causing bacteria and measuring the extracted antigen by an immunoassay. For example, caries-causing bacteria are concentrated on a filter medium by filtering saliva, and antigens are extracted, thereby enabling highly sensitive immunological measurement. As the extraction method, a known method can be used without any limitation. As a suitable example, a nitrous acid extraction method can be shown. The nitrous acid extraction method can be carried out by a known method (for example, the method described in JP-A-2003-215126). Hereinafter, the nitrous acid extraction method will be described. The nitrite extraction method is a method in which a nitrite aqueous solution and an acid aqueous solution are dropped onto a filter medium to form nitrous acid, and a sugar chain antigen is extracted from the resulting nitrous acid aqueous solution. Examples of the aqueous nitrite solution include 0.5 to 8M sodium nitrite and potassium nitrite, and examples of the aqueous acid solution include 0.5 to 4M acetic acid, nitric acid, hydrochloric acid, and citric acid. For example, 0.005 to 0.05 mL of the nitrite aqueous solution and the acid aqueous solution as described above are added to the filter medium and allowed to stand at 15 to 50 ° C. for 1 to 10 minutes to cause the reaction on the filter medium. What is necessary is just to collect | recover the extract after reaction by pressurizing by the method similar to filtration of saliva. Since the reaction solution is strongly acidic, for example, a basic aqueous solution such as 1 to 3 M sodium hydroxide, 0.5 to 2 M Tris, 0.5 to 1 M sodium hydrogen carbonate or the like is added to adjust the pH of the extract to 7.0 to 8. It is preferable to adjust to 5. The base aqueous solution may be added after the antigen extract is recovered from the filter medium, or the extract may be recovered after the extract is added to the filter medium before the extract is recovered. From the viewpoint, it is more preferable to add to the filter medium before recovery. Alternatively, an aqueous nitrite solution and an aqueous acid solution are mixed in advance to prepare an aqueous nitrite solution (0.2-4M sodium nitrite, 0.5-4M acetic acid), and the filtration membrane is filtered with the aqueous nitrite solution. Nitrous acid extraction can also be performed. In this case, 0.2 to 0.5 mL of a nitrous acid aqueous solution prepared by mixing a sodium nitrite aqueous solution and an acetic acid aqueous solution was added, filtered, and left at 5 to 50 ° C. for 1 to 10 minutes to extract nitrous acid. The neutralization after the reaction is performed, and 0.5 to 1.0 M Tris is added to a 100 to 800 μL filter membrane, and the sugar chain antigen extract is recovered by pressure filtration.

本発明の唾液緩衝能の測定法で使用する濾材としては、上記抽出操作において安定な、膜状、層状の濾材が制限なく使用することができる。このような濾材を例示すると、メンブランフィルター等のスクリーンフィルターや、濾紙、ガラス繊維濾紙等のデプスフィルターが挙げられる。   As the filter medium used in the method for measuring the saliva buffering capacity of the present invention, a membrane or layered filter medium that is stable in the above extraction operation can be used without limitation. Examples of such a filter medium include a screen filter such as a membrane filter, and a depth filter such as filter paper and glass fiber filter paper.

本発明での濾材の孔径とは、スクリーンフィルターの場合は、日本工業規格(JIS K 3832)記載の液体で濡れたメンブランフィルターの孔を通って空気が押し出されるときの圧力より算出される数値(バブルポイント法)であり、デプスフィルターの場合は、日本工業規格(JIS P 3801)記載の硫酸バリウム等を自然濾過したときの漏洩粒子径により求めた数値である。一般的には、濾材がメンブランフィルターの等のスクリーンフィルターである場合は、市販濾材カタログに表示されている孔径が上記方法で求めた本発明の孔径に相当し、濾材がガラス繊維濾紙や濾紙のようなデプスフィルターの場合は、市販濾材カタログに表示されている保留粒子径、粒子保持能が本発明の孔径に相当する。   In the case of a screen filter, the pore diameter of the filter medium in the present invention is a numerical value calculated from the pressure when air is pushed out through the pores of a membrane filter wetted with a liquid described in Japanese Industrial Standard (JIS K3832) ( In the case of a depth filter, it is a numerical value obtained from a leaked particle diameter when barium sulfate or the like described in Japanese Industrial Standard (JIS P 3801) is naturally filtered. In general, when the filter medium is a screen filter such as a membrane filter, the hole diameter displayed in the commercially available filter medium catalog corresponds to the hole diameter of the present invention obtained by the above method, and the filter medium is made of glass fiber filter paper or filter paper. In the case of such a depth filter, the retained particle diameter and the particle retention capacity displayed in the commercially available filter media catalog correspond to the pore diameter of the present invention.

濾材の孔径は齲蝕原因菌が通過できない孔径であることが必要である。本発明の好適な測定対象であるストレプトコッカス・ミュータンスやストレプトコッカス・ソブリヌスは、菌体自身の大きさは0.5〜0.9μmの範囲にある。従って、これらの細菌を濾材上に保持するためには、上記菌体のサイズより十分に小さな孔径、具体的には、0.22μm〜0.45μmの孔径を有する濾材が使用されるのが常法である。本発明においても、唾液の濾過は、上記小孔径を有する濾材を用いて行えば、ストレプトコッカス・ミュータンスやストレプトコッカス・ソブリヌスを良好に補足することができるが、このように小孔径であると、唾液の濾過速度が遅くなり、また、唾液には通常他の不溶物が含まれているので、目詰まりも生じやすくなる。そして、このように濾材に目詰まりが生じた場合、上記工程に続く濾材上に保持される上記細菌からの抗原の抽出工程においても、抽出効率がやや低下する。   The pore size of the filter medium needs to be a pore size through which caries-causing bacteria cannot pass. Streptococcus mutans and Streptococcus sobrinus, which are suitable measurement targets of the present invention, have a cell size of 0.5 to 0.9 μm. Therefore, in order to retain these bacteria on the filter medium, a filter medium having a pore size sufficiently smaller than the size of the cells, specifically, a pore size of 0.22 μm to 0.45 μm is usually used. Is the law. Also in the present invention, if saliva is filtered using the filter medium having the small pore diameter, Streptococcus mutans and Streptococcus sobrinus can be supplemented well. In addition, since saliva usually contains other insoluble matter, clogging is likely to occur. When the filter medium is clogged in this way, the extraction efficiency is slightly lowered in the antigen extraction process from the bacteria held on the filter medium following the above process.

このような背景から、本発明では、濾材として0.8〜2μm、更に好適には0.8〜1.6μmの孔径のものを用いる。上記孔径は、濾材上に保持する前記ストレプトコッカス・ミュータンスやストレプトコッカス・ソブリヌスの大きさよりも大抵において若干上回るものになるが、これら齲蝕関連菌の場合においては、この程度に孔径が大きい濾材であってもほとんど流下させることなく補足できる。したがって、濾過速度も大幅に向上する。さらに、同じ面積の濾過膜を用いて、唾液を濾過する場合、孔径0.45μmの濾過膜と比べての孔径0.8〜2μmの濾過膜では約10倍量の唾液が濾過できることから分かるように、他の不溶物による目詰まりも極めて生じ難い。   From such a background, in the present invention, a filter medium having a pore diameter of 0.8 to 2 μm, more preferably 0.8 to 1.6 μm is used. The pore diameter is usually slightly larger than the size of the Streptococcus mutans or Streptococcus sobrinus retained on the filter medium, but in the case of these caries-related bacteria, the filter medium has a large pore diameter to this extent. Can be supplemented with almost no flow. Therefore, the filtration rate is also greatly improved. Furthermore, when saliva is filtered using a filtration membrane of the same area, it can be seen that about 10 times the amount of saliva can be filtered with a filtration membrane having a pore diameter of 0.8-2 μm compared to a filtration membrane having a pore diameter of 0.45 μm. In addition, clogging due to other insoluble materials is extremely unlikely to occur.

目詰まりが生じにくいということは、齲蝕原因菌を高感度に測定するためには重要である。例えば、前記の亜硝酸抽出法により抗原を抽出する場合、濾材の濾過面の面積に比例して、亜硝酸抽出時に添加する試薬量も増加し、濾材より回収される糖鎖抗原抽出液量が増加する。免疫学的測定法で使用できる液量は限られているので(一般的に0.15mL以下)、たとえ大量の唾液を濾過できたとしても、濾過面の面積が大きく、糖鎖抗原抽出液量が増えてしまった場合、その一部しか免疫学的測定法で分析できないので、高感度な測定が不可能になる。高感度な測定を実現するためには、濾過する唾液量と濾材の濾過面の面積の関係を好適な範囲にする必要がある。上述したように、濾材の面積あたりの濾過可能な唾液量は濾材の孔径に比例するので(孔径が小さいと濾過可能な唾液量が低下する)、適切な孔径の濾材、例えば0.8〜2μmの濾材を使用する必要がある。   The fact that clogging is less likely to occur is important for highly sensitive measurement of caries-causing bacteria. For example, when antigen is extracted by the nitrous acid extraction method described above, the amount of reagent added at the time of nitrous acid extraction increases in proportion to the area of the filtration surface of the filter medium, and the amount of sugar chain antigen extract recovered from the filter medium increases. To increase. Since the amount of liquid that can be used in immunoassay is limited (generally 0.15 mL or less), even if a large amount of saliva can be filtered, the area of the filtration surface is large and the amount of sugar chain antigen extract When the number of cells increases, only a part of them can be analyzed by immunoassay, so that highly sensitive measurement becomes impossible. In order to realize highly sensitive measurement, the relationship between the amount of saliva to be filtered and the area of the filtration surface of the filter medium needs to be in a suitable range. As described above, the amount of saliva that can be filtered per area of the filter medium is proportional to the pore diameter of the filter medium (the amount of saliva that can be filtered decreases when the pore diameter is small), so a filter medium with an appropriate pore diameter, for example, 0.8 to 2 μm. Filter media must be used.

唾液の濾過は、例えば図1のような構造の濾過装置により実施できる。濾過装置本体及び蓋は柔軟な物質、例えばポリプロピレン等のプラスチックにより構成されることが好ましい。濾過装置本体の底面に濾材をセットし、唾液を注入した後に蓋を閉めて加圧することで濾過を行うが、濾材は接着剤により底面に保持されていても良いし、または特に接着をせずに摩擦力によってのみ底面に保持されていても良い。   For example, saliva can be filtered by a filtering device having a structure as shown in FIG. The filtration device body and the lid are preferably made of a flexible material, for example, a plastic such as polypropylene. Filter material is set on the bottom surface of the filter device body, and after injecting saliva, the lid is closed and pressure is applied to perform filtration, but the filter material may be held on the bottom surface with an adhesive or not particularly bonded. Further, it may be held on the bottom surface only by the frictional force.

本発明では上述のようにして調製した抗原抽出液に対して、通常は、免疫学的測定方法により定量することで、齲蝕原因菌数を測定する。免疫学的測定法の具体的手法は、免疫凝集法、光学免疫測定方法、標識免疫測定方法、およびこれらの組合わせ等の従来公知の方法が制限無く採用出来る。   In the present invention, the number of caries-causing bacteria is usually measured by quantifying the antigen extract prepared as described above by an immunological measurement method. As a specific method of the immunological measurement method, conventionally known methods such as an immunoagglutination method, an optical immunoassay method, a labeled immunoassay method, and a combination thereof can be used without limitation.

以下、これら免疫学的測定方法について説明する。
[免疫凝集法]
該方法は、抗原抗体反応に基づく不溶性担体の凝集反応を利用して、糖鎖抗原抽出液中の抗原を検出、定量する方法である。半定量的方法としてはラテックス凝集法、マイクロタイター法等が、定量的測定方法としてはラテックス定量法等がある。
Hereinafter, these immunological measurement methods will be described.
[Immunoagglutination]
This method is a method for detecting and quantifying an antigen in a sugar chain antigen extract using an agglutination reaction of an insoluble carrier based on an antigen-antibody reaction. Semi-quantitative methods include latex agglutination and microtiter methods, and quantitative measurement methods include latex quantification and the like.

例えば、ラテックス凝集法を利用して糖鎖抗原抽出液中の抗原量を免疫学的に測定する場合には、ラテックスビーズに微生物の糖鎖抗原と結合する抗体(以下単に抗体ともいう)を固定化した抗体感作粒子からなる測定試薬を作製後、該測定試薬と糖鎖抗原抽出液を混合し、抗原抗体反応後における感作粒子の凝集の度合を、目視、或いは光学的測定方法等により検出することで測定することが出来る。   For example, when the amount of antigen in a sugar chain antigen extract is immunologically measured using the latex agglutination method, an antibody that binds to a microorganism sugar chain antigen (hereinafter also simply referred to as an antibody) is immobilized on latex beads. After preparing a measurement reagent composed of sensitized antibody-sensitized particles, the measurement reagent and a sugar chain antigen extract are mixed, and the degree of aggregation of the sensitized particles after the antigen-antibody reaction is visually or optically measured. It can be measured by detecting.

[光学免疫測定方法]
該方法は、抗体と糖鎖抗原抽出液とを接触させて抗原抗体反応を行った場合に、抗原抗体反応の結果生じる凝集物の濁度の変化を検出する方法、又は抗体を固定化した薄層(以下、抗体層ともいう。)に糖鎖抗原抽出液を接触させ、抗原抗体反応の結果生じる抗体層の屈折率の変化を透過光や表面プラズモン波等の変化として検出する方法等、抗原抗体反応の有無を光学的に検出する方法のことである。
[Optical immunoassay method]
This method is a method for detecting a change in turbidity of an aggregate resulting from an antigen-antibody reaction when an antigen-antibody reaction is carried out by contacting an antibody and a sugar chain antigen extract, or a thin antibody on which an antibody is immobilized. A method in which a sugar chain antigen extract is brought into contact with a layer (hereinafter also referred to as an antibody layer), and a change in the refractive index of the antibody layer resulting from an antigen-antibody reaction is detected as a change in transmitted light, surface plasmon wave, etc. It is a method for optically detecting the presence or absence of an antibody reaction.

[標識免疫測定方法]
該方法は、抗体に放射性物質、酵素、各種色素類、コロイド類、各種粒子等の各種標識物質を結合させて得た標識抗体を含む測定試薬と、糖鎖抗原抽出液とを接触させて抗原抗体反応を行った後に、糖鎖抗原抽出液中の抗原に結合した標識物質の量、すなわち標識物質に由来する放射活性、酵素活性、蛍光強度、着色等を測定することによって、糖鎖抗原抽出液中の抗原を検出、定量する方法である。
[Labeled immunoassay]
The method comprises contacting an antigen with a measurement reagent containing a labeled antibody obtained by binding various labeled substances such as radioactive substances, enzymes, various dyes, colloids, and various particles to an antibody, and a sugar chain antigen extract. After performing the antibody reaction, the amount of the labeling substance bound to the antigen in the sugar chain antigen extract, ie, the radioactivity, enzyme activity, fluorescence intensity, coloring, etc. derived from the labeling substance is measured to extract the sugar chain antigen. This is a method for detecting and quantifying an antigen in a liquid.

該方法では、例えば抗体を固定化した不溶性担体(粒子、メンブレン、イムノプレート等)からなる測定試薬と糖鎖抗原抽出液とを接触させて抗原抗体反応を行った後に、抗体を標識物質で標識した標識抗体を含む別の測定試薬を接触させて更に抗原抗体反応を行った後に、標識物質の量を測定することによって、又は糖鎖抗原抽出液と標識物質で標識した糖鎖抗原とを混合し、抗体を固定化した不溶性担体からなる測定試薬に接触させて抗原抗体反応を行った後に、抗体に結合した標識物質の量を測定することによって糖鎖抗原抽出液中の抗原を検出、定量することができる。   In this method, for example, an antigen-antibody reaction is performed by contacting a measurement reagent comprising an insoluble carrier (particle, membrane, immunoplate, etc.) on which an antibody is immobilized with a sugar chain antigen extract, and then the antibody is labeled with a labeling substance. After further antigen-antibody reaction by contacting with another measurement reagent containing the labeled antibody, the amount of the labeled substance is measured, or the sugar chain antigen extract and the sugar chain antigen labeled with the labeled substance are mixed After the antigen-antibody reaction by contacting with a measurement reagent consisting of an insoluble carrier with immobilized antibody, the antigen in the sugar chain antigen extract is detected and quantified by measuring the amount of the labeled substance bound to the antibody. can do.

標識物質としては、放射性物質として放射性ヨード、放射性炭素等が、酵素としてペルオキシダーゼ、アルカリホスファターゼ、ガラクトシダーゼ等が、各種色素類として、フルオレセインイソチオシアネート、テトラメチルローダミン等の蛍光色素類が、コロイドとして金コロイド、炭素コロイド等が、各種粒子としては着色ラテックス粒子等が使用出来る。なお、酵素標識を行う場合は、チオール基とマレイミド基、アミノ基とアルデヒド基等の共有結合により直接標識する、或いはビオチン−アビジン複合体を介し標識する等の方法が使用可能である。また、標識酵素としてアルカリホスファターゼ及びパーオキシダーゼを使用し、さらに前者の酵素の場合にはジオキセタン誘導体等の化学発光物質を、また後者の酵素の場合にはルミノール誘導体等の化学発光物質を酵素の基質として使用した場合には、該基質の発光を検出することも出来る。   Labeling substances include radioactive iodine, radioactive carbon, etc. as radioactive substances, peroxidase, alkaline phosphatase, galactosidase, etc. as enzymes, various dyes, fluorescent dyes such as fluorescein isothiocyanate, tetramethylrhodamine, etc., colloidal gold colloid Carbon colloids and the like, and various latex particles such as colored latex particles can be used. When performing enzyme labeling, methods such as direct labeling through covalent bonds such as thiol group and maleimide group, amino group and aldehyde group, or labeling via a biotin-avidin complex can be used. In addition, alkaline phosphatase and peroxidase are used as labeling enzymes, and in the case of the former enzyme, a chemiluminescent substance such as a dioxetane derivative, and in the case of the latter enzyme, a chemiluminescent substance such as a luminol derivative is used as the enzyme substrate. When used as, the luminescence of the substrate can also be detected.

これら各種標識免疫測定方法における操作、手順等は一般に採用されているそれらと特に異ならず、公知の非競合法や競合法、サンドイッチ法等に準じることが出来る。また、抗体と共に、上記の各標識物質で標識した二次抗体、プロテインA等の抗体に結合可能な物質を使用して糖鎖抗原の検出・定量に用いることもできる。   The operations, procedures and the like in these various labeled immunoassay methods are not particularly different from those generally employed, and can be applied to known non-competitive methods, competitive methods, sandwich methods, and the like. In addition to the antibody, a secondary antibody labeled with each of the labeling substances described above, a substance capable of binding to an antibody such as protein A, and the like can also be used for detection and quantification of a sugar chain antigen.

該標識免疫測定方法では、用いる標識に応じて従来使用されている方法が特に限定無く使用できるが、中でも放射性物質を標識として使用する放射免疫測定方法、酵素を標識として使用する酵素免疫測定方法、色素、特に蛍光色素を標識として利用する蛍光免疫測定方法、酵素の基質としての化学発光物質を標識として利用する化学発光免疫測定方法等は定量性が高いので、高精度の定量測定を行なう場合にはこれら測定方法を採用するのが好適である。また、コロイドまたは各種粒子を標識として使用するフロースルー免疫測定方法、免疫クロマト法、並びにラテックス凝集法は、操作が簡便であるという特徴がある。   In the labeled immunoassay method, a conventionally used method can be used without particular limitation depending on the label to be used. Among them, a radioimmunoassay method using a radioactive substance as a label, an enzyme immunoassay method using an enzyme as a label, Fluorescent immunoassay methods that use dyes, especially fluorescent dyes as labels, and chemiluminescent immunoassay methods that use chemiluminescent substances as labels for enzymes as labels are highly quantitative, so when performing highly accurate quantitative measurements It is preferable to adopt these measurement methods. In addition, the flow-through immunoassay method, immunochromatography method, and latex agglutination method using colloid or various particles as labels are characterized by simple operation.

本発明では、唾液を濾材で濾過して調製した濾液を使用して唾液緩衝能を測定する。このように唾液を濾過した濾液について、その緩衝能を測定しても、測定結果は、唾液を直接測定に供する場合と実質的に等しい結果が得られる。   In the present invention, the saliva buffer capacity is measured using a filtrate prepared by filtering saliva with a filter medium. Even if the buffer capacity of the filtrate obtained by filtering saliva is measured, the measurement result is substantially the same as when the saliva is directly subjected to measurement.

唾液緩衝能の測定は前記のように調製した唾液の濾液と検査試薬とを接触させ、pHを目視等により判定することによって実施される。濾液の緩衝能の測定は、唾液に一定量の酸を添加し、これにpH指示薬を直接滴下してその呈色の状態でpHを確認して実施しても良いが、前記したように唾液の濾液は粘度が低下しているため、pH指示薬を含む検査試薬を担持させた吸収性担体に、該濾液を接触させてpHを測定する方法により実施するのが好ましい。すなわち、これら試験紙法に代表される方法は、特に、粘度の高い唾液を供する場合等にあっては、該担体に吸収し難くなり発色にバラツキが生じるが、上記濾液を用いた場合、この問題が緩和され、正確な判断が行えるようになる。   The saliva buffering capacity is measured by bringing the saliva filtrate prepared as described above into contact with a test reagent and determining the pH visually or the like. The buffer capacity of the filtrate may be measured by adding a certain amount of acid to the saliva and dropping the pH indicator directly onto the saliva to confirm the pH in the colored state. Since the viscosity of this filtrate is lowered, it is preferable to carry out the method by measuring the pH by bringing the filtrate into contact with an absorbent carrier carrying a test reagent containing a pH indicator. That is, the methods represented by these test paper methods are particularly difficult to absorb into the carrier and cause variation in color development when, for example, high-viscosity saliva is provided, but when the above filtrate is used, The problem is alleviated and accurate judgment can be made.

本発明でpH指示薬とは、酸塩基反応によりプロトン付加・脱離して変色する試薬を指し、公知のものが何ら制限なく使用できる。このようなpH指示薬の具体例として、新実験化学講座9 分析化学II(1977年発行 丸善株式会社 日本化学会編集)181ページの表(中和滴定用指示薬)記載の指示薬(クロロフェノールレッド、ブロモクレゾールパープル、クロロフェノールレッド等)を例示できる。   In the present invention, the pH indicator refers to a reagent that changes color by adding / eliminating protons by acid-base reaction, and any known one can be used without any limitation. As specific examples of such pH indicators, new experimental chemistry course 9 Analytical Chemistry II (published by Maruzen Co., Ltd. The Chemical Society of Japan, edited by the Chemical Society of Japan), page 181 (neutralization titration indicator), indicators (chlorophenol red, bromo) Cresol purple, chlorophenol red, etc.).

ここで、pH指示薬を含む検査試薬としては、通常、上記pH指示薬の他、乳酸、塩酸、クエン酸、酒石酸等の酸により構成されている。また、必要に応じて、唾液の試験紙への浸透を促進するために、ポリエチレングリコール、ポリビニルピロリドン、界面活性剤(ポリオキシエチレンアルキルエーテル系、ポリオキシエチレンソルビタン脂肪酸エステル系等)等の湿潤剤を上記検査試薬成分に含ませることもできる。これらの検査試薬が担持された紙等の吸収性担体と濾液との接触方法は、試薬形態に適した方法で実施することができる。例えば、検査試薬が酸、pH指示薬等が短冊状の吸収性担体に乾燥状態で保持されたストリップである場合には、判定部が十分湿潤する量の唾液(0.005〜0.03mL程度)の濾液を滴下することで実施できる。この他、濾液の緩衝能の測定は、容器に濾液を入れ、ストリップの判定部を容器中の濾液中に挿入することで接触させても良い。   Here, the test reagent containing a pH indicator is usually composed of an acid such as lactic acid, hydrochloric acid, citric acid, and tartaric acid in addition to the pH indicator. If necessary, wetting agents such as polyethylene glycol, polyvinyl pyrrolidone, surfactants (polyoxyethylene alkyl ether type, polyoxyethylene sorbitan fatty acid ester type, etc.) to promote the penetration of saliva into test paper Can also be included in the test reagent component. The contact method between the absorbent carrier such as paper carrying these test reagents and the filtrate can be carried out by a method suitable for the reagent form. For example, when the test reagent is a strip in which acid, pH indicator, etc. are held in a strip-shaped absorbent carrier in a dry state, the amount of saliva (about 0.005 to 0.03 mL) that the determination unit is sufficiently moistened The filtrate can be added dropwise. In addition, the buffer capacity of the filtrate may be measured by putting the filtrate into a container and inserting the determination part of the strip into the filtrate in the container.

pHの測定は、検査試薬と唾液の濾液を接触させた後の色調を目視で確認することで実施される。予め各pHでの色調を調べて比色表を作成し、この比色表と比較することでpHを判定し、唾液緩衝能を判定すれば良い。例えば、酒石酸とクロロフェノールレッドにより検査試薬を調製した場合、該検査薬と唾液の混合液は、pHに依存して以下の表に示したような色調を呈す。唾液緩衝能が高いほど、上記混合液のpHも高くなるため。従って、その色調に応じて表1に示したように判定することができる。   The measurement of pH is carried out by visually confirming the color tone after contacting the test reagent with the saliva filtrate. The color tone at each pH is examined in advance, a colorimetric table is created, the pH is determined by comparing with the colorimetric table, and the saliva buffering capacity is determined. For example, when a test reagent is prepared from tartaric acid and chlorophenol red, the mixed solution of the test drug and saliva has a color tone as shown in the following table depending on pH. The higher the saliva buffering capacity, the higher the pH of the mixed solution. Therefore, it can be determined as shown in Table 1 according to the color tone.

Figure 2008128797
Figure 2008128797

以上により、齲蝕原因菌数と唾液緩衝能が効率的に測定される。本発明において測定される齲蝕原因菌数と唾液緩衝能を考慮しての齲蝕発生リスクの評価は次のようにして行われる。すなわち、齲蝕は単一の原因で発症するわけではなく、齲蝕発生を促進する複数の因子(齲蝕リスク因子)が齲蝕発生に適した状態になったときに発生することが知られている。従って、なるべく多くの齲蝕リスク因子を測定し、これらの結果から齲蝕発生のリスクを総合的に判定れば、判定の確度を上げることになる。齲蝕リスク因子として、唾液中の齲蝕原因菌数、唾液分泌量や唾液緩衝能といった唾液の性状、歯垢の付着量、食事回数やフッ化物の使用状況といった生活習慣等が知られており、これらの齲蝕リスク因子を同時に測定し、総合的に判断することにより、個々の齲蝕リスク因子の測定結果だけから判定するより、はるかに正確に被験者の齲蝕発生のリスクを判定することができる。これらの齲蝕リスク因子中、歯垢の付着量、食事回数やフッ化物の使用状況は従来歯科で行われてきた検査(視診、問診等)により把握することができるが、齲蝕原因菌数、唾液分泌量、唾液緩衝能は従来歯科で行われてきた検査では測定できない。刺激唾液を採取し唾液分泌量を測定し、次いで、例えば、本発明の方法に従って齲蝕原因菌数と唾液緩衝能を測定する必要がある。本発明の唾液緩衝能の測定方法によれば、従来、齲蝕原因菌数と唾液緩衝能を同時に測定することが困難であった唾液分泌量の少ない被検者であっても、両方を同時に測定することが可能である。   As described above, the number of caries-causing bacteria and the saliva buffering capacity are efficiently measured. Evaluation of the caries occurrence risk in consideration of the number of caries-causing bacteria and saliva buffer capacity measured in the present invention is performed as follows. That is, it is known that caries does not develop due to a single cause, but occurs when a plurality of factors (caries risk factors) that promote caries are in a state suitable for caries. Therefore, if as many caries risk factors as possible are measured and the risk of caries occurrence is comprehensively determined from these results, the accuracy of the determination will be improved. Known caries risk factors include the number of germs causing caries in saliva, saliva properties such as saliva secretion and saliva buffering capacity, the amount of plaque adhering, the number of meals and the use of fluoride, etc. By simultaneously measuring and comprehensively determining the caries risk factor, it is possible to determine the caries risk of the subject much more accurately than judging only from the measurement results of the individual caries risk factors. Among these caries risk factors, the amount of plaque adhering, the number of meals and the use of fluoride can be ascertained by conventional dental examinations (inspection, interview, etc.). The amount of secretion and the ability to buffer saliva cannot be measured by examinations conventionally performed in dentistry. It is necessary to collect the stimulated saliva and measure the amount of saliva secretion, and then, for example, to measure the number of caries-causing bacteria and the saliva buffer capacity according to the method of the present invention. According to the method for measuring the salivary buffering capacity of the present invention, both of the subjects having a low saliva secretion amount, which has been difficult to measure simultaneously the number of caries-causing bacteria and the saliva buffering capacity, have been measured at the same time. Is possible.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by a following example.

製造例1[ストレプトコッカス・ミュータンスに対する精製ポリクローナル抗体の作製]
(1)[菌体試料懸濁液の調製]
ブレインハートインフュージョン(以下「BHI」と略すこともある)(DIFCO社)3.7gを100mLの純水に溶解後、オートクレーブ処理し、BHI液体培地を調製した。BHI液体培地2mL中でIngbritt(ストレプトコッカス・ミュータンス、血清型c)を37℃、5時間、嫌気条件下(N:H:CO=80:10:10)で培養した後、培養液を4000g、5分遠心処理し、上清の培地成分を除去し菌体沈殿を回収した。
Production Example 1 [Preparation of purified polyclonal antibody against Streptococcus mutans]
(1) [Preparation of cell sample suspension]
Brain Heart Infusion (hereinafter sometimes abbreviated as “BHI”) (DIFCO) (3.7 g) was dissolved in 100 mL of pure water and then autoclaved to prepare a BHI liquid medium. After culturing Ingbritt (Streptococcus mutans, serotype c) in 2 ml of BHI liquid medium under anaerobic conditions (N 2 : H 2 : CO 2 = 80: 10: 10) at 37 ° C. for 5 hours, the culture solution Was centrifuged at 4000 g for 5 minutes, the medium components in the supernatant were removed, and the cell pellets were collected.

次いで、沈殿物を5mLのリン酸生理食塩緩衝液(pH7.4)(以下PBSと略すこともある)に懸濁し、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。その後得られた菌体沈殿をPBSに懸濁し、A600=1.0に調整しIngbritt菌体試料懸濁液とした。なお、該菌体試料懸濁液を超音波処理後、適宜希釈した後にBHI培地プレート上に添加し、生じたコロニー数を計数し菌体試料懸濁液の希釈倍率を乗じることで該菌体試料懸濁液の菌体濃度を求めたところ、約1×10個/mLであった。 Subsequently, the precipitate was suspended in 5 mL of phosphate physiological saline buffer (pH 7.4) (hereinafter sometimes abbreviated as PBS), and the same centrifugation operation was performed three times to wash the precipitate. Thereafter, the obtained bacterial cell precipitate was suspended in PBS, adjusted to A 600 = 1.0, and used as an Ingbritt cell sample suspension. In addition, after ultrasonically treating the bacterial cell sample suspension, it is appropriately diluted and then added to a BHI medium plate, and the number of colonies produced is counted and multiplied by the dilution factor of the bacterial cell sample suspension. The bacterial cell concentration of the sample suspension was determined to be about 1 × 10 9 cells / mL.

(2)〔ストレプトコッカス・ミュータンスに対する抗血清の作製〕
免疫は以下のように実施した。即ち、第1週は0.5mLのIngbritt菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第2週は1.0mLの該菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第3週は2.0mLの該菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第4週は第3週と同様に免疫した。力価の上昇をスライドグラスを利用した菌体の凝集反応の程度により確認後、最終免疫より1週間後に、定法に従い採血しストレプトコッカス・ミュータンスに対する抗血清を得た。
(2) [Preparation of antiserum against Streptococcus mutans]
Immunization was performed as follows. That is, in the first week, 0.5 mL of Ingbritt cell sample suspension was injected into the auricular vein to the rabbit 5 times for 5 consecutive days. In the second week, 1.0 mL of the bacterial cell sample suspension was injected into the auricle intravenously to the rabbit 5 times for 5 consecutive days. In the third week, 2.0 mL of the bacterial cell sample suspension was injected into the ear vein of the rabbit 5 times for 5 consecutive days. The fourth week was immunized as in the third week. After confirming the increase in titer by the degree of agglutination reaction of the bacterial cells using a slide glass, blood was collected according to a standard method one week after the final immunization to obtain an antiserum against Streptococcus mutans.

(3)〔ストレプトコッカス・ミュータンスに対するポリクローナル抗体の精製〕
オートクレーブ処理したBHI液体培地1L中でIngbrittを37℃、12時間、嫌気条件下で培養した。培養液を4000g、5分遠心処理し、上清の培地成分を除去し菌体沈殿を回収した。次いで、沈殿物を100mLのPBSに懸濁させて、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。
(3) [Purification of polyclonal antibody against Streptococcus mutans]
Ingbritt was cultured at 37 ° C. for 12 hours under anaerobic conditions in 1 L of autoclaved BHI liquid medium. The culture solution was centrifuged at 4000 g for 5 minutes to remove the culture medium component of the supernatant and collect the bacterial cell precipitate. Next, the precipitate was suspended in 100 mL of PBS and subjected to the same centrifugation three times to wash the precipitate.

Ingbritt菌体を洗浄した後、0.1M トリス塩酸緩衝液(pH8.0)に懸濁しA600=15に調整した。ここにプロナーゼ(和光純薬社)を5mg/mLとなるように添加し、37℃で1時間保温した。反応終了後、遠心分離し菌体沈殿を回収した。次いで、沈殿物を20mLのPBSに懸濁して、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。次いで20mLの0.1M グリシン塩酸緩衝液(pH2.0)で3回洗浄し、更に20mLのPBSで3回洗浄し、プロテアーゼ処理菌体懸濁液(A600=12.5)を調製した。 The Ingbritt cells were washed, suspended in 0.1 M Tris-HCl buffer (pH 8.0), and adjusted to A 600 = 15. Pronase (Wako Pure Chemical Industries, Ltd.) was added to this so that it might become 5 mg / mL, and it heat-retained at 37 degreeC for 1 hour. After completion of the reaction, the mixture was centrifuged to collect the cell precipitate. Subsequently, the precipitate was suspended in 20 mL of PBS and subjected to the same centrifugation three times to wash the precipitate. Subsequently, it was washed 3 times with 20 mL of 0.1 M glycine hydrochloride buffer (pH 2.0), and further washed 3 times with 20 mL of PBS to prepare a protease-treated cell suspension (A 600 = 12.5).

次いで、該プロテアーゼ処理菌体懸濁液と(2)で調製した抗血清0.5mLとを混合し、4℃、60分反応させた。混合液を4000g、5分遠心分離し、菌体を回収した。この菌体を10mLのPBSに懸濁し、同様の遠心分離をする操作を3回行い洗浄した。   Next, the protease-treated cell suspension and 0.5 mL of the antiserum prepared in (2) were mixed and reacted at 4 ° C. for 60 minutes. The mixed solution was centrifuged at 4000 g for 5 minutes to recover the cells. The cells were suspended in 10 mL of PBS and washed by performing the same centrifugation operation three times.

次いで、0.5mLの0.1M グリシン塩酸緩衝液(pH2.0)に菌体を懸濁し、吸着した抗体を溶出し、遠心分離により上清を回収し、1Mトリス−塩酸(pH9.0)を添加しpH7.4に調整した。同様の溶出操作を4回行い、各画分のタンパク質量を280nmの吸光度により測定した。   Subsequently, the cells are suspended in 0.5 mL of 0.1 M glycine hydrochloride buffer (pH 2.0), the adsorbed antibody is eluted, the supernatant is recovered by centrifugation, and 1 M Tris-HCl (pH 9.0) is collected. Was added to adjust the pH to 7.4. The same elution operation was performed 4 times, and the protein amount of each fraction was measured by absorbance at 280 nm.

次いで、あらかじめPBSで平衡化した1mLのプロテインA−セファロース(アマシャムファルマシアバイオテク社)を充填したカラムに上記溶出液を添加し、5mL洗浄後、5mLの0.1Mグリシン−塩酸緩衝液(pH3.0)にて溶出し、直ちに1Mトリス−塩酸(pH9.0)を添加しpH7.4に調整した。IgGの溶出画分は、A280を測定することで確認した。IgG画分を回収し、0.01Mリン酸緩衝液に対して透析を行った(4℃、3日)。 Next, the eluate was added to a column packed with 1 mL of Protein A-Sepharose (Amersham Pharmacia Biotech) previously equilibrated with PBS, washed with 5 mL, and then 5 mL of 0.1 M glycine-HCl buffer (pH 3.0). 1M Tris-hydrochloric acid (pH 9.0) was immediately added to adjust to pH 7.4. The eluted fraction of IgG was confirmed by measuring A280 . The IgG fraction was collected and dialyzed against 0.01 M phosphate buffer (4 ° C., 3 days).

以上により、抗血清(0.5mL)をプロテアーゼ処理菌体により精製したポリクローナル抗体を約1mg得た。
製造例2[免疫クロマトデバイスの製造]
コロイド粒径が40nmの市販金コロイド溶液(EY Laboratory)10mLに100mMKCOを88μL添加し、pHを9.0に調製後、0.22μmフィルター処理した。金コロイド溶液の520nmの吸光度を測定したところ、A520=1.0であった。
As described above, about 1 mg of a polyclonal antibody obtained by purifying antiserum (0.5 mL) with protease-treated cells was obtained.
Production Example 2 [Production of immunochromatographic device]
88 μL of 100 mM K 2 CO 3 was added to 10 mL of a commercially available gold colloid solution (EY Laboratory) having a colloid particle size of 40 nm to adjust the pH to 9.0, followed by 0.22 μm filter treatment. The absorbance at 520 nm of the colloidal gold solution was measured and found to be A 520 = 1.0.

次いで、1mg/mLに調整した製造例1で調製した抗体の2mMホウ酸緩衝溶液(pH9.0)64μLを、上記金コロイド溶液に撹拌しながら添加し、室温下5分放置した。次いで、10%スキムミルク−2mMホウ酸緩衝液(pH9.0)を1.1mL撹拌しながら添加し(スキムミルク終濃度1%)、室温下30分放置した。次いで、反応溶液を10℃、10000g、30分遠心処理し、上清を除去後、2mLの2mMPBS(pH7.4)を添加し、下層の金コロイド画分を再懸濁した。該再懸濁した画分の520nmの吸光度を測定したところ、A520=4.9であった。得られた金コロイド画分(以下、「金コロイド標識抗体」と表記することもある)は、4℃にて保存した。 Next, 64 μL of the 2 mM borate buffer solution (pH 9.0) of the antibody prepared in Production Example 1 adjusted to 1 mg / mL was added to the gold colloid solution while stirring, and left at room temperature for 5 minutes. Next, 1.1 mL of 10% skim milk-2 mM borate buffer (pH 9.0) was added while stirring (final concentration of skim milk 1%), and left at room temperature for 30 minutes. The reaction solution was then centrifuged at 10 ° C. and 10,000 g for 30 minutes, and after removing the supernatant, 2 mL of 2 mM PBS (pH 7.4) was added to resuspend the lower gold colloid fraction. When the absorbance at 520 nm of the resuspended fraction was measured, A 520 = 4.9. The obtained gold colloid fraction (hereinafter sometimes referred to as “gold colloid-labeled antibody”) was stored at 4 ° C.

ニトロセルロースメンブレン(MILLIPORE社、Hi−Flow Plus Membrane、HF180、25mm×6mm)からなる展開メンブレン上の検出ラインおよびコントロール判定ライン上に、それぞれ1mg/mLの製造例1で調製した抗体および抗ウサギIgG(H+L)ポリクローナル抗体(ICNファーマシューティカルズ社)1μLをスポットし、インキュベーター内で37℃、60分乾燥し抗体を固定化した。該抗体固定化メンブレンを1%スキムミルク−0.1%TritonX100水溶液中で室温下、5分振とうした。次いで、該メンブレンを10mMリン酸緩衝液(pH7.4)中で室温下、10分振とう後取り出し、真空ポンプで吸引しながら60分間デシケーター中で乾燥した。   1 mg / mL of the antibody and anti-rabbit IgG prepared in Production Example 1 on a detection line and a control determination line on a development membrane composed of a nitrocellulose membrane (MILLIPORE, Hi-Flow Plus Membrane, HF180, 25 mm × 6 mm), respectively 1 μL of (H + L) polyclonal antibody (ICN Pharmaceuticals) was spotted and dried in an incubator at 37 ° C. for 60 minutes to immobilize the antibody. The antibody-immobilized membrane was shaken in a 1% skim milk-0.1% Triton X100 aqueous solution at room temperature for 5 minutes. Next, the membrane was taken out in a 10 mM phosphate buffer solution (pH 7.4) at room temperature for 10 minutes and then taken out, and dried in a desiccator for 60 minutes while sucking with a vacuum pump.

また、コンジュゲートパッド(MILLIPORE社、7.5mm×6mm)を0.5%PVA−0.5%ショ糖水溶液中で1分間振とう後取り出し、真空ポンプで吸引しながら60分間デシケーター中で乾燥した。該コンジュゲートパッドにA520=1.0に調整した金コロイド標識抗体を25μL添加し、真空ポンプで吸引しながら60分間デシケーター中で乾燥した。更に、サンプルパッド(MILLIPORE社、17mm×6mm)を1%Tween20−PBS水溶液中で1分間振とう後取り出し、真空ポンプで吸引しながら60分間デシケーター中で乾燥した。尚、吸収パッド(MILLIPORE社、20mm×6mm)は未処理のまま用いた。 Further, the conjugate pad (MILLIPORE, 7.5 mm × 6 mm) was removed after being shaken in a 0.5% PVA-0.5% sucrose aqueous solution for 1 minute, and dried in a desiccator for 60 minutes while sucking with a vacuum pump. did. 25 μL of gold colloid-labeled antibody adjusted to A 520 = 1.0 was added to the conjugate pad, and dried in a desiccator for 60 minutes while sucking with a vacuum pump. Further, the sample pad (MILLIPORE, 17 mm × 6 mm) was removed after being shaken in a 1% Tween 20-PBS aqueous solution for 1 minute, and dried in a desiccator for 60 minutes while sucking with a vacuum pump. The absorbent pad (MILLIPORE, 20 mm × 6 mm) was used untreated.

このように調製した、図2に示すような免疫クロマト法ストリップの各構成部分をプラスチックの支持台上に配置し、図3に示すような免疫クロマト法ストリップを組み立てた。
参考例1[唾液と濾液による唾液緩衝能の測定]
5人の被験者(A,B,C,D,E)にパラフィンペレットを5分間噛ませ、唾液を採取した。唾液分泌量を表2に示した。
Each component of the immunochromatography strip prepared as shown in FIG. 2 was placed on a plastic support, and the immunochromatography strip as shown in FIG. 3 was assembled.
Reference Example 1 [Measurement of saliva buffering capacity by saliva and filtrate]
Five subjects (A, B, C, D, E) chewed paraffin pellets for 5 minutes and collected saliva. Table 2 shows the amount of saliva secretion.

一方、SCカートリッジ(マルエム社)に、孔径(日本工業規格(JIS P 3801)記載の硫酸バリウム等を自然濾過したときの漏洩粒子径により求めた数値)が1.0μmのガラス繊維濾紙「GA−100」(アドバンテック東洋社製)をセットし(濾過面の面積0.95cm)、図1の構造の濾過装置を作製した。この濾過装置に、上記5人の被検者から採取した唾液をそれぞれ0.7mLずつを添加し、蓋を閉めシリンジにより加圧して濾過した。 On the other hand, a glass fiber filter paper “GA-” having a pore size (value obtained from the leaked particle size when natural filtration of barium sulfate described in Japanese Industrial Standard (JIS P 3801)) is 1.0 μm is applied to an SC cartridge (Maruem). 100 ”(manufactured by Advantech Toyo Co., Ltd.) was set (filtration surface area 0.95 cm 2 ) to produce a filtration device having the structure of FIG. 0.7 mL each of saliva collected from the above five subjects was added to the filtration device, and the lid was closed and pressurized with a syringe for filtration.

唾液と濾液の緩衝能を判定チューブ法試薬であるオーラルテスターバッファ(トクヤマデンタル)により唾液緩衝能を測定した。測定法はキットの取り扱い説明書に従い、唾液または濾液を0.5mL判定チューブに添加し、判定チューブ中の試薬と良く混合して緩衝能を判定した。判定は3人の判定者(ア、イ、ウ)により実施し、黄色が低緩衝能、橙が中緩衝能、赤紫が高緩衝能と判定した。結果を表2に示した。   The buffer capacity of saliva and filtrate was measured with an oral tester buffer (Tokuyama Dental), which is a determination tube method reagent. According to the instruction manual of the kit, saliva or filtrate was added to a 0.5 mL determination tube and mixed well with the reagent in the determination tube to determine the buffer capacity. Judgment was carried out by three judges (A, B, and U), and yellow was judged to have a low buffer capacity, orange to a medium buffer capacity, and reddish purple to be a high buffer capacity. The results are shown in Table 2.

唾液の粘度の影響を受けにくい判定チューブ法で測定した唾液と濾液の緩衝能は同じ結果であった。このことから、濾液を使用しても唾液と同様に緩衝能が測定できることが明らかとなった。   The buffering capacity of saliva and filtrate measured by the judgment tube method which is not easily affected by the viscosity of saliva was the same result. From this, it was clarified that the buffer capacity can be measured in the same manner as saliva even when the filtrate is used.

Figure 2008128797
Figure 2008128797

実施例1
(1)唾液の採取と培養法によるミューストレプトコッカス・ミュータンス菌数の測定
前記参考例1の被験者Aと、他の4人の被験者(F,G,H,I,J)にパラフィンペレットを5分間噛ませ、唾液を採取した。それぞれの被験者の唾液分泌量を表3に示した。
Example 1
(1) Collection of saliva and measurement of the number of Streptococcus mutans bacteria by culture method Paraffin pellets were added to subject A of Reference Example 1 and the other four subjects (F, G, H, I, J). Chewing for minutes and collecting saliva. Table 3 shows the saliva secretion amount of each subject.

採取した唾液を適宜希釈して0.05mLをMSB固体培地上に添加し、37℃、嫌気条件下、48時間培養した。MSB固体培地上に生じるコロニー数を計数し、唾液の希釈率から、ミュータンスレンサ球菌濃度を個/mLとして算出し、表4に示した。MSB培地上のストレプトコッカス・ミュータンスの識別は、コロニーの形態学的分類、および形態学的に識別不可能なコロニーに関しては、該コロニーを純粋培養後、ミュータンスレンサ球菌の血清型特異的な抗体を利用した免疫学的測定方法および、糖発酵試験等の生化学的方法によりストレプトコッカス・ミュータンスの同定を行った。
(2)唾液の濾過と糖鎖抗原抽出液の調製
唾液A,F,G,H,I,Jの0.3mLを参考例1と同様にGA−100で濾過し、濾液を採取した。0.3mLの唾液全量が濾過できた。唾液の濾過に要した時間を表3に示した。
The collected saliva was appropriately diluted and 0.05 mL was added onto the MSB solid medium, and cultured at 37 ° C. under anaerobic conditions for 48 hours. The number of colonies generated on the MSB solid medium was counted, and the concentration of mutans streptococci was calculated as number / mL from the dilution rate of saliva. The identification of Streptococcus mutans on MSB medium is based on the morphological classification of colonies, and for morphologically indistinguishable colonies, the serotype-specific antibodies of mutans streptococci after pure culture of the colonies Streptococcus mutans was identified by an immunological measurement method using a biochemical method and a biochemical method such as a sugar fermentation test.
(2) Filtration of saliva and preparation of sugar chain antigen extract 0.3 mL of saliva A, F, G, H, I, and J was filtered with GA-100 in the same manner as in Reference Example 1, and the filtrate was collected. A total amount of 0.3 mL of saliva could be filtered. Table 3 shows the time required for filtering saliva.

Figure 2008128797
Figure 2008128797

次いで、0.5mLの0.1M NaOH溶液を濾過装置に添加し濾過し、さらに0.5mLのPBSを濾過装置に添加し濾過することで、濾過膜上の微生物と濾過膜の洗浄を行った。1M 亜硝酸ナトリウム溶液と2M 酢酸溶液を1:1で混合し、亜硝酸水溶液を調製し、該亜硝酸水溶液0.3mLを濾過装置に添加し濾過した。2分間室温で放置した後、0.09mLの0.05% Tween20を含む1M トリス(pH未調製)を添加し、濾過装置をシリンジで加圧することで糖鎖抗原抽出液を回収した。
(3)免疫クロマトデバイスによる糖鎖抗原抽出液の測定
製造例2で製造した免疫クロマトデバイスのサンプルパッド上に、糖鎖抗原抽出液0.1mLを添加し、10分後にスポットの有無を判定した。判定は、検出用抗体スポット上に捕捉された金コロイドの程度を4段階(+++:強い陽性、++:陽性、+:弱い陽性、−:陰性)に目視で識別した。結果を表4に示した。
Next, 0.5 mL of 0.1 M NaOH solution was added to the filtration device and filtered, and then 0.5 mL of PBS was added to the filtration device and filtered to wash the microorganisms on the filtration membrane and the filtration membrane. . A 1M sodium nitrite solution and a 2M acetic acid solution were mixed at a ratio of 1: 1 to prepare an aqueous nitrous acid solution, and 0.3 mL of the aqueous nitrous acid solution was added to a filter and filtered. After leaving at room temperature for 2 minutes, 0.09 mL of 1M Tris (pH unadjusted) containing 0.05% Tween 20 was added, and the sugar chain antigen extract was recovered by pressurizing the filtration device with a syringe.
(3) Measurement of sugar chain antigen extract using immunochromatography device 0.1 mL of sugar chain antigen extract was added to the sample pad of the immunochromatography device manufactured in Production Example 2, and the presence or absence of a spot was determined after 10 minutes. . In the determination, the degree of colloidal gold captured on the detection antibody spot was visually identified in four stages (++: strong positive, ++: positive, +: weak positive, −: negative). The results are shown in Table 4.

Figure 2008128797
Figure 2008128797

表4に示したように、培養法により得られたストレプトコッカス・ミュータンスの濃度と相関するスポット発色強度が得られた。
(4)濾液による唾液緩衝能の測定
(2)で採取した濾液を使用して、試験紙法試薬であるDentobuff Strip(オーラルケア)により唾液緩衝能を測定した。測定法はキットの取り扱い説明書に従い、試験紙の濾液を1滴滴下し、5分後の呈色を観察した。判定は黄色が低緩衝能、緑が中緩衝能、青が高緩衝能と判定した。判定は3人の判定者(ア、イ、ウ)により実施した。結果を表5に示した。
As shown in Table 4, a spot color intensity correlated with the concentration of Streptococcus mutans obtained by the culture method was obtained.
(4) Measurement of saliva buffer capacity by filtrate Using the filtrate collected in (2), saliva buffer capacity was measured by Dentobuff Strip (Oral Care) which is a test paper method reagent. According to the instruction manual of the kit, a drop of the test paper filtrate was dropped and the coloration after 5 minutes was observed. Judgment was made with yellow as low buffer capacity, green as medium buffer capacity, and blue as high buffer capacity. Judgment was carried out by three judges (a, i, c). The results are shown in Table 5.

Figure 2008128797
Figure 2008128797

濾液を使用すると唾液の粘度が低下するので、試験紙へ濾液が均一に浸透した。3人の判定者で同じ結果となり容易に判定できた。
比較例1[孔径の小さい濾材を使用した場合におけるストレプトコッカス・ミュータンス菌数の測定]
濾材として、孔径が0.6μmのガラス繊維濾紙「GA−55」(アドバンテック東洋社製)を用いた以外は実施例1と同様の方法にて唾液を濾過した。次いで実施例1と同様に免疫クロマトデバイスにより菌数を測定した。結果を表6に示した。唾液は実施例1で使用したA,F,G,H,Iを用いた。Jは残量が少ないため濾過できなかった。
When the filtrate was used, the viscosity of saliva decreased, so that the filtrate uniformly penetrated the test paper. The same results were obtained with three judges, and the judgment was easy.
Comparative Example 1 [Measurement of the number of Streptococcus mutans bacteria when a filter medium having a small pore size is used]
Saliva was filtered by the same method as in Example 1 except that glass fiber filter paper “GA-55” (manufactured by Advantech Toyo Co., Ltd.) having a pore size of 0.6 μm was used as the filter medium. Subsequently, the number of bacteria was measured with an immunochromatographic device in the same manner as in Example 1. The results are shown in Table 6. As saliva, A, F, G, H, and I used in Example 1 were used. J could not be filtered because the remaining amount was small.

GA−55を用いた場合、0.15mLの唾液しか濾過できないためにGA−100の場合に比べてスポット発色が弱く、5×10個/mL以上の菌数でないと陽性にならなかった。GA−55を用いた場合、感度が不足していた。 When GA-55 was used, only 0.15 mL of saliva could be filtered, so the spot color development was weaker than in the case of GA-100, and it was not positive unless the number of bacteria was 5 × 10 5 cells / mL or more. When GA-55 was used, the sensitivity was insufficient.

Figure 2008128797
Figure 2008128797

比較例2[唾液を直接用いての唾液緩衝能の測定]
唾液を濾過することなく用いて実施例1(4)と同様の方法にて唾液緩衝能を測定した。結果を表7に示した。この場合、粘性が高く濾過に時間がかかる唾液である被験者G,H,I,Jからの唾液において、唾液が試験紙に均一に浸透しないので、発色がまだらになり判定し難い発色状態になった。その結果、判定者により結果が異なるものになった。
Comparative Example 2 [Measurement of saliva buffering ability using saliva directly]
Saliva buffer capacity was measured by the same method as in Example 1 (4) using saliva without filtering. The results are shown in Table 7. In this case, in saliva from subjects G, H, I, and J, which is saliva that is highly viscous and takes a long time to filter, the saliva does not uniformly penetrate the test paper. It was. As a result, the results differ depending on the judge.

Figure 2008128797
Figure 2008128797

実施例2,比較例3
粘度の高い唾液である被験者Gより、実施例1(1)と同様の方法により唾液を採取した(唾液量2mL)。この唾液を用い、濾過装置として表8に示したガラス繊維濾紙、濾紙を用いた図1の構造のものを用いる以外は、実施例1(2)と同様にして0.3mLの唾液の濾過、糖鎖抗原の抽出を行い、実施例1(3)と同様に糖鎖抗原抽出液を用いた免疫クロマト法によるストレプトコッカス・ミュータンスの菌数の測定を実施した。濾材の孔径が本発明の範囲である実験No.1〜4では実施例1と同様の結果であったが、濾材の孔径が本発明の範囲を越える実験No.5では、ミュータンス菌が濾材上に十分に保持されないためにスポットが検出されなかった。
Example 2, Comparative Example 3
Saliva was collected from subject G, which is saliva with high viscosity, by the same method as in Example 1 (1) (saliva volume 2 mL). Using this saliva, filtration of 0.3 mL of saliva was carried out in the same manner as in Example 1 (2), except that the glass fiber filter paper shown in Table 8 was used as a filtration device, and that having the structure of FIG. 1 using filter paper was used. The sugar chain antigen was extracted, and the number of Streptococcus mutans bacteria was measured by immunochromatography using the sugar chain antigen extract in the same manner as in Example 1 (3). Experiment No. in which the pore diameter of the filter medium is within the scope of the present invention. 1-4, the results were the same as in Example 1. However, in Experiment No. 1, the pore size of the filter medium exceeded the scope of the present invention. In No. 5, spots were not detected because the mutans bacteria were not sufficiently retained on the filter medium.

次いで、各濾液について、実施例1(4)と同様にして緩衝能の測定を行い結果を表9に示した。濾材の孔径が本発明の範囲である実験N0.1〜4では、いずれも3人の判定者で同じ結果となり容易に判定できた。他方、濾材の孔径が本発明の範囲を超える実験No.5の場合、唾液の粘性が十分に低下していなかったことから、試験紙の発色がややまだらになり、3人の判定者の結果がばらついた。   Next, the buffer capacity of each filtrate was measured in the same manner as in Example 1 (4), and the results are shown in Table 9. In Experiments N0.1 to 4 in which the pore diameter of the filter medium was within the scope of the present invention, all of the three judges showed the same result and could easily be judged. On the other hand, Experiment No. in which the pore diameter of the filter media exceeds the range of the present invention. In the case of 5, the viscosity of the saliva was not sufficiently reduced, so the color of the test paper became slightly mottled, and the results of the three judges varied.

Figure 2008128797
Figure 2008128797

Figure 2008128797
Figure 2008128797

本図は、本発明の抗原の抽出方法で使用する濾過装置の該略図である。This figure is a schematic view of a filtration apparatus used in the antigen extraction method of the present invention. 本図は、本発明の免疫クロマト法で使用するストリップの各部材の概略図である。This figure is a schematic view of each member of the strip used in the immunochromatography method of the present invention. 本図は、本発明の免疫クロマト法で使用するストリップの側面図である。This figure is a side view of a strip used in the immunochromatography method of the present invention.

符号の説明Explanation of symbols

1・・・排液口
2・・・濾材
3・・・容器本体
4・・・シリンジ差込口
5・・・蓋部
6・・・濾過装置
7・・・ストリップ
8・・・サンプルパッド
9・・・コンジュゲートパッド
10・・・展開メンブレン
11・・・吸収パッド
12・・・検出ライン
13・・・コントロール判定ライン
DESCRIPTION OF SYMBOLS 1 ... Drainage port 2 ... Filter medium 3 ... Container main body 4 ... Syringe insertion port 5 ... Cover part 6 ... Filtration apparatus 7 ... Strip 8 ... Sample pad 9 ... Conjugate pad 10 ... Deployment membrane 11 ... Absorption pad 12 ... Detection line 13 ... Control judgment line

Claims (3)

唾液を孔径0.8〜2μmの濾材で濾過し該濾材上に保持される成分より齲蝕原因菌数を測定する際に生じる唾液の濾液を用いて、該唾液の緩衝能を測定することを特徴とする唾液緩衝能の測定方法。   The saliva is filtered through a filter medium having a pore diameter of 0.8 to 2 μm, and the buffer capacity of the saliva is measured using the filtrate of saliva generated when the number of caries-causing bacteria is measured from the components retained on the filter medium. And measuring method of saliva buffer capacity. 濾液緩衝能の測定を、pH指示薬を含む検査試薬を担持させた吸収性担体に、該濾液を接触させてpHを測定することにより実施する請求項1記載の唾液緩衝能の測定方法。   The method for measuring the saliva buffer capacity according to claim 1, wherein the filtrate buffer capacity is measured by bringing the filtrate into contact with an absorbent carrier carrying a test reagent containing a pH indicator and measuring the pH. 濾過に供する、被験者から採取した唾液量が0.3〜0.5mL である請求項1または請求項2記載の唾液緩衝能の測定方法。   The method for measuring the saliva buffering capacity according to claim 1 or 2, wherein the amount of saliva collected from the subject for filtration is 0.3 to 0.5 mL.
JP2006313700A 2006-11-21 2006-11-21 Method of measuring saliva buffer capacity Pending JP2008128797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313700A JP2008128797A (en) 2006-11-21 2006-11-21 Method of measuring saliva buffer capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313700A JP2008128797A (en) 2006-11-21 2006-11-21 Method of measuring saliva buffer capacity

Publications (1)

Publication Number Publication Date
JP2008128797A true JP2008128797A (en) 2008-06-05

Family

ID=39554772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313700A Pending JP2008128797A (en) 2006-11-21 2006-11-21 Method of measuring saliva buffer capacity

Country Status (1)

Country Link
JP (1) JP2008128797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017826A (en) * 2016-06-09 2019-02-20 덴카 세이켄 가부시키가이샤 An immunochromatography test piece for extracting and measuring a sugar chain antigen, a device for adding a sample, and an immunochromatography method
WO2023234336A1 (en) * 2022-05-31 2023-12-07 感染症創薬研究所株式会社 Method for pretreatment of specimen for immunochromatographic test

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190017826A (en) * 2016-06-09 2019-02-20 덴카 세이켄 가부시키가이샤 An immunochromatography test piece for extracting and measuring a sugar chain antigen, a device for adding a sample, and an immunochromatography method
EP3470841A4 (en) * 2016-06-09 2019-12-11 Denka Seiken Co., Ltd. Immunochromatography test piece and specimen adding device for extracting and measuring sugar chain antigen, and immunochromatography method using same
KR102317128B1 (en) 2016-06-09 2021-10-22 덴카 주식회사 Immunochromatographic test piece and specimen addition device for extracting and measuring sugar chain antigen, and immunochromatographic method using the same
EP4220167A1 (en) * 2016-06-09 2023-08-02 Denka Company Limited Immunochromatography test piece and specimen adding device for extracting and measuring sugar chain antigen
WO2023234336A1 (en) * 2022-05-31 2023-12-07 感染症創薬研究所株式会社 Method for pretreatment of specimen for immunochromatographic test

Similar Documents

Publication Publication Date Title
JP5981350B2 (en) Method for determining oral condition, and analysis tool, apparatus, and program used therefor
Kusumi et al. Rapid detection of pyuria by leukocyte esterase activity
CA2554904C (en) Method for the rapid diagnosis of targets in human body fluids
FI76379B (en) MEDEL OCH FOERFARANDE FOER SNABB DIAGNOS AV TANDKARIES MEDELST ETT ICKE-VAOTFOERFARANDE.
JP2021536267A (en) Particle inspection
JP2005526513A (en) Method and apparatus for measuring white blood cell count
JP2016031306A (en) Inspection method of periodontal disease and inspection diagnostic kit
JP3757171B2 (en) Extraction method of microbial antigen
JP2013076642A (en) Probe for detecting target substance, target substance detection apparatus using the probe, and target substance detection method
CN102590508A (en) Immunochromatographic strip for detecting viscerotropic leishmania infection and diagnosing kala-azar
JP2008224543A (en) Measuring method of saliva buffer performance
JP4268358B2 (en) Antibody and immunological assay
JP2008128797A (en) Method of measuring saliva buffer capacity
JP2004233127A (en) Immunological measurement method and immunochromatography measurement kit
JPS6171000A (en) Discovery of presence of tooth gum disease
JPH03500369A (en) Methods for monitoring periodontal disease by monitoring endotoxins and inflammatory substances
JP2002181815A (en) Immunoassay for saliva constituent
CN113281504B (en) Novel immunochromatography detection device
CA1320419C (en) Diagnostic methods, product and kits for detecting periodontal diseases
CA2368105A1 (en) Rapid diagnostic method for distinguishing allergies and infections
WO2004081568A1 (en) Method of examining specimen and specimen container to be used in the examinaton method
JPH04355339A (en) Trace specimem sampling device
RU2184781C2 (en) Method of diagnosing chelicobacteriosis from estimation of urease activity of biological material and device realization thereof
JP3781768B2 (en) Microbial extraction method and filtration apparatus used in the method
JP2006071478A (en) Preparing method of specimen liquid for measuring intraoral microbial concentration